查询PIC24FJ256GB206供应商

2010 Microchip Technology Inc.

zsc.com

MICROCHIP

PIC24FJ256GB210 Family Data Sheet

64/100-Pin, 16-Bit Flash Microcontrollers with USB On-The-Go (OTG)

查询PIC24FJ256GB206供应商

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-209-0

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

64/100-Pin, 16-Bit Flash Microcontrollers with USB On-The-Go (OTG)

Universal Serial Bus Features:

- · USB v2.0 On-The-Go (OTG) Compliant
- Dual Role Capable Can act as either Host or Peripheral
- Low-Speed (1.5 Mbps) and Full-Speed (12 Mbps) USB Operation in Host mode
- Full-Speed USB Operation in Device mode
- High-Precision PLL for USB
- · Supports up to 32 Endpoints (16 bidirectional):
- USB module can use the internal RAM location from 0x800 to 0xFFFF as USB endpoint buffers
- On-Chip USB Transceiver with Interface for Off-Chip Transceiver
- Supports Control, Interrupt, Isochronous and Bulk
 Transfers
- On-Chip Pull-up and Pull-Down Resistors

Peripheral Features:

- Enhanced Parallel Master Port/Parallel Slave Port (EPMP/PSP):
 - Direct access from CPU with an Extended Data Space (EDS) interface
 - 4, 8 and 16-bit wide data bus
 - Up to 23 programmable address lines
 - Up to 2 chip select lines
 - Up to 2 Acknowledgement lines (one per chip select)
 - Programmable address/data multiplexing
 - Programmable address and data Wait states
 - Programmable polarity on control signals

Peripheral Features (Continued):

- Peripheral Pin Select:
 Up to 44 available pins (100-pin devices)
- Three 3-Wire/4-Wire SPI modules (supports 4 Frame modes)
- Three I²C[™] modules Supporting Multi-Master/Slave modes and 7-Bit/10-Bit Addressing
- Four UART modules:
 Supports RS-485, RS-232, LIN/J2602 protocols and IrDA[®]
- Five 16-Bit Timers/Counters with Programmable
 Prescaler
- Nine 16-Bit Capture Inputs, each with a Dedicated Time Base
- Nine 16-Bit Compare/PWM Outputs, each with a Dedicated Time Base
- Hardware Real-Time Clock and Calendar (RTCC)
- Enhanced Programmable Cyclic Redundancy Check (CRC) Generator
- · Up to 5 External Interrupt Sources

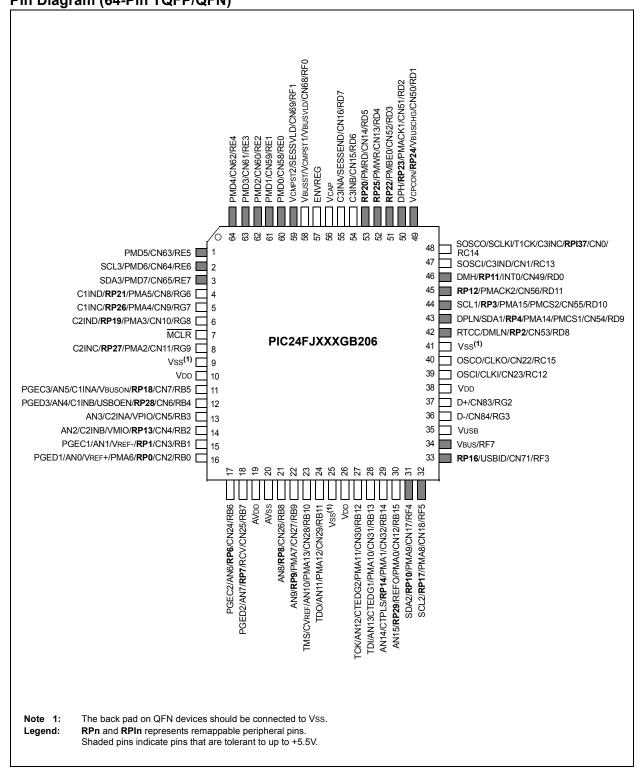
				R	emappa	able Per	ipheral	s							
PIC24FJ Device	Pins	Program Memory (bytes)	SRAM (bytes)	Remappable Pins	16-Bit Timers	IC/OC PWM	UART w/IrDA [®]	IdS	I²C ™	10-Bit A/D (ch)	Comparators	CTMU	dSd/dWd3	RTCC	USB OTG
PIC24FJ128GB206	64	128K	96K	29	5	9/9	4	3	3	16	3	Y	Y	Y	Y
PIC24FJ256GB206	64	256K	96K	29	5	9/9	4	3	3	16	3	Y	Y	Y	Y
PIC24FJ128GB210	100/121	128K	96K	44	5	9/9	4	3	3	24	3	Y	Y	Y	Y
PIC24FJ256GB210	100/121	256K	96K	44	5	9/9	4	3	3	24	3	Y	Y	Y	Y

查询PIC24FJ256GB206供应商 High-Performance CPU

- Modified Harvard ArchitectureUp to 16 MIPS Operation at 32 MHz
- 8 MHz Internal Oscillator
- 17-Bit x 17-Bit Single-Cycle Hardware Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture with Flexible Addressing modes
- Linear Program Memory Addressing, up to 12 Mbytes
- Data Memory Addressing, up to 16 Mbytes:
 - 2K SFR space
 - 30K linear data memory
 - 66K extended data memory
 - Remaining (from 16 Mbytes) memory (external) can be accessed using extended data Memory (EDS) and EPMP (EDS is divided into 32-Kbyte pages)
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Power Management:

- On-Chip Voltage Regulator of 1.8V
- · Switch between Clock Sources in Real Time
- Idle, Sleep and Doze modes with Fast Wake-up and Two-Speed Start-up
- + Run Mode: 800 $\mu\text{A/MIPS}$, 3.3V Typical
- + Sleep mode Current Down to 20 $\mu\text{A},$ 3.3V Typical
- Standby Current with 32 kHz Oscillator: 22 $\mu\text{A},$ 3.3V Typical


Analog Features:

- 10-Bit, up to 24-Channel Analog-to-Digital (A/D) Converter at 500 ksps:
 - Operation is possible in Sleep mode
 - Band gap reference input feature
- Three Analog Comparators with Programmable
 Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
- Supports capacitive touch sensing for touch screens and capacitive switches
- Minimum time measurement setting at 100 ps
- Available LVD Interrupt VLVD Level

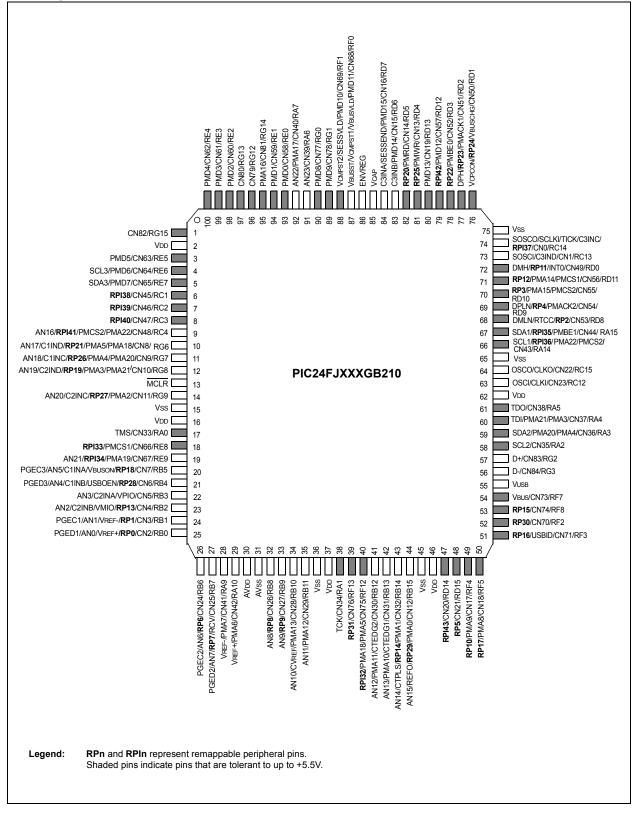
Special Microcontroller Features:

- Operating Voltage Range of 2.2V to 3.6V
- 5.5V Tolerant Input (digital pins only)
- Configurable Open-Drain Outputs on Digital I/O
 Ports
- High-Current Sink/Source (18 mA/18 mA) on all I/O Ports
- Selectable Power Management modes:
- Sleep, Idle and Doze modes with fast wake-up
- Fail-Safe Clock Monitor (FSCM) Operation:
- Detects clock failure and switches to on-chip, FRC oscillator
- On-Chip LDO Regulator
- Power-on Reset (POR) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Flexible Watchdog Timer (WDT) with On-Chip Low-Power RC Oscillator for Reliable Operation
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Debug (ICD) via 2 Pins
- JTAG Boundary Scan Support
- Flash Program Memory:
 - 10,000 erase/write cycle endurance (minimum)
 - 20-year data retention minimum
 - Selectable write protection boundary
 - Self-reprogrammable under software control
 - Write protection option for Configuration Words

查询PIC24FJ256GB206供应商 Pin Diagram (64-Pin TQFP/QFN)

查询PIC24FJ256GB206供应商

TABLE 1: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 64-PIN DEVICES


Pin	Function	Pin	Function
1	PMD5/CN63/RE5	33	RP16/USBID/CN71/RF3
2	SCL3/PMD6/CN64/RE6	34	VBUS/RF7
3	SDA3/PMD7/CN65/RE7	35	Vusb
4	C1IND/RP21/PMA5/CN8/RG6	36	D-/CN84/RG3
5	C1INC/RP26/PMA4/CN9/RG7	37	D+/CN83/RG2
6	C2IND/RP19/PMA3/CN10/RG8	38	VDD
7	MCLR	39	OSCI/CLKI/CN23/RC12
8	C2INC/RP27/PMA2/CN11/RG9	40	OSCO/CLKO/CN22/RC15
9	Vss	41	Vss
10	Vdd	42	RTCC/DMLN/ RP2 /CN53/RD8
11	PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5	43	DPLN/SDA1/ RP4 /PMACK2/CN54/RD9
12	PGED3/AN4/C1INB/USBOEN/RP28/CN6/RB4	44	SCL1/ RP3 /PMA15/PMCS2 ⁽¹⁾ /CN55/RD10
13	AN3/C2INA/VPIO/CN5/RB3	45	RP12/PMA14/PMCS1 ⁽¹⁾ /CN56/RD11
14	AN2/C2INB/VMIO/RP13/CN4/RB2	46	DMH/RP11/INT0/CN49/RD0
15	PGEC1/AN1/VREF-/ RP1 /CN3/RB1	47	SOSCI/C3IND/CN1/RC13
16	PGED1/AN0/VREF+/PMA6/ RP0 /CN2/RB0	48	SOSCO/SCLKI/T1CK/C3INC/RPI37/CN0/RC14
17	PGEC2/AN6/ RP6 /CN24/RB6	49	VCPCON/RP24/VBUSCHG/CN50/RD1
18	PGED2/AN7/ RP7 /RCV/CN25/RB7	50	DPH/RP23/PMACK1/CN51/RD2
19	AVdd	51	RP22/PMBE0/CN52/RD3
20	AVss	52	RP25/PMWR/CN13/RD4
21	AN8/ RP8 /CN26/RB8	53	RP20/PMRD/CN14/RD5
22	AN9/ RP9 /PMA7/CN27/RB9	54	C3INB/CN15/RD6
23	TMS/CVREF/AN10/PMA13/CN28/RB10	55	C3INA/SESSEND/CN16/RD7
24	TDO/AN11/PMA12/CN29/RB11	56	VCAP
25	Vss	57	ENVREG
26	Vdd	58	VBUSST/VCMPST1/VBUSVLD/CN68/RF0
27	TCK/AN12/CTEDG2/PMA11/CN30/RB12	59	VCMPST2/SESSVLD/CN69/RF1
28	TDI/AN13/CTEDG1/PMA10/CN31/RB13	60	PMD0/CN58/RE0
29	AN14/CTPLS/ RP14 /PMA1/CN32/RB14	61	PMD1/CN59/RE1
30	AN15/RP29/REFO/PMA0/CN12/RB15	62	PMD2/CN60/RE2
31	SDA2/ RP10 /PMA9/CN17/RF4	63	PMD3/CN61/RE3
32	SCL2/ RP17 /PMA8/CN18/RF5	64	PMD4/CN62/RE4

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

Note 1: Pin assignment for PMCSx when CSF<1:0> are not equal to '00'.

查询PIC24FJ256GB206供应商

查询PIC24FJ256GB206供应商

TABLE 2: **COMPLETE PIN FUNCTION DESCRIPTIONS FOR 100-PIN DEVICES**

Pin	Function	Pin	Function
1	CN82/RG15	41	AN12/PMA11/CTEDG2/CN30/RB12
2	VDD	42	AN13/PMA10/CTEDG1/CN31/RB13
3	PMD5/CN63/RE5	43	AN14/CTPLS/ RP14 /PMA1/CN32/RB14
4	SCL3/PMD6/CN64/RE6	44	AN15/REFO/RP29/PMA0/CN12/RB15
5	SDA3/PMD7/CN65/RE7	45	Vss
6	RPI38/CN45/RC1	46	VDD
7	RPI39/CN46/RC2	47	RPI43/CN20/RD14
8	RPI40/CN47/RC3	48	RP5/CN21/RD15
9	AN16/ RPI41 /PMCS2/PMA22 ⁽²⁾ /CN48/RC4	49	RP10/PMA9/CN17/RF4
10	AN17/C1IND/ RP21 /PMA5/PMA18 ⁽²⁾ /CN8/RG6	50	RP17/PMA8/CN18/RF5
11	AN18/C1INC/ RP26 /PMA4/PMA20 ⁽²⁾ /CN9/RG7	51	RP16/USBID/CN71/RF3
12	AN19/C2IND/ RP19 /PMA3/PMA21 ⁽²⁾ /CN10/RG8	52	RP30/CN70/RF2
13	MCLR	53	RP15/CN74/RF8
14	AN20/C2INC/RP27/PMA2/CN11/RG9	54	VBUS/CN73/RF7
15	Vss	55	Vusb
16	Vdd	56	D-/CN84/RG3
17	TMS/CN33/RA0	57	D+/CN83/RG2
18	RPI33/PMCS1/CN66/RE8	58	SCL2/CN35/RA2
19	AN21/ RPI34 /PMA19/CN67/RE9	59	SDA2/PMA20/PMA4 ⁽²⁾ /CN36/RA3
20	PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5	60	TDI/PMA21/PMA3 ⁽²⁾ /CN37/RA4
21	PGED3/AN4/C1INB/USBOEN/RP28/CN6/RB4	61	TDO/CN38/RA5
22	AN3/C2INA/VPIO/CN5/RB3	62	VDD
23	AN2/C2INB/VMIO/RP13/CN4/RB2	63	OSCI/CLKI/CN23/RC12
24	PGEC1/AN1/VREF- ⁽¹⁾ / RP1 /CN3/RB1	64	OSCO/CLKO/CN22/RC15
25	PGED1/AN0/VREF+ ⁽¹⁾ / RP0 /CN2/RB0	65	Vss
26	PGEC2/AN6/ RP6 /CN24/RB6	66	SCL1/ RPI36 /PMA22/PMCS2 ⁽²⁾ /CN43/RA14
27	PGED2/AN7/ RP7 /RCV/CN25/RB7	67	SDA1/ RPI35 /PMBE1/CN44/RA15
28	VREF-/PMA7/CN41/RA9	68	DMLN/RTCC/RP2/CN53/RD8
29	VREF+/PMA6/CN42/RA10	69	DPLN/ RP4 /PMACK2/CN54/RD9
30	AVDD	70	RP3/PMA15/PMCS2 ⁽³⁾ /CN55/RD10
31	AVss	71	RP12/PMA14/PMCS1 ⁽³⁾ /CN56/RD11
32	AN8/ RP8 /CN26/RB8	72	DMH/RP11/INT0/CN49/RD0
33	AN9/ RP9 /CN27/RB9	73	SOSCI/C3IND/CN1/RC13
34	AN10/CVREF/PMA13/CN28/RB10	74	SOSCO/SCLKI/T1CK/C3INC/RPI37/CN0/RC14
35	AN11/PMA12/CN29/RB11	75	Vss
36	Vss	76	VCPCON/RP24/VBUSCHG/CN50/RD1
37	VDD	77	DPH/ RP23 /PMACK1/CN51/RD2
38	TCK/CN34/RA1	78	RP22/PMBE0/CN52/RD3
39	RP31 /CN76/RF13	79	RPI42 /PMD12/CN57/RD12
40	RPI32 /PMA18/PMA5 ⁽²⁾ /CN75/RF12	80	PMD13/CN19/RD13

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions. Note

Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed. 1:

2: Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed (only in 100-pin devices).

Pin assignment for PMCSx when CSF<1:0> is not equal to '00'. 3:

查询PIC24FJ256GB206供应商 COMPLETE PIN FUNCTION DESCRIPTIONS FOR 100-PIN DEVICES (CONTINUED) TABLE 2:

Pin	Function	Pin	Function
81	RP25/PMWR/CN13/RD4	91	AN23/CN39/RA6
82	RP20/PMRD/CN14/RD5	92	AN22/PMA17/CN40/RA7
83	C3INB/PMD14/CN15/RD6	93	PMD0/CN58/RE0
84	C3INA/SESSEND/PMD15/CN16/RD7	94	PMD1/CN59/RE1
85	VCAP	95	PMA16/CN81/RG14
86	ENVREG	96	CN79/RG12
87	VBUSST/VCMPST1/VBUSVLD/PMD11/CN68/RF0	97	CN80/RG13
88	VCMPST2/SESSVLD/PMD10/CN69/RF1	98	PMD2/CN60/RE2
89	PMD9/CN78/RG1	99	PMD3/CN61/RE3
90	PMD8/CN77/RG0	100	PMD4/CN62/RE4

Legend:

RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions. Note

1: Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed.

Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed (only in 100-pin devices). 2:

Pin assignment for PMCSx when CSF<1:0> is not equal to '00'. 3:

查询PIC24FJ256GB206供应商

Pin Diagram – Top View (121-Pin BGA)⁽¹⁾

	1	2	3	4	5	6	7	8	9	10	11
A	RE4	RE3	RG13	RE0	RG0	RF1	O	0	RD12	RD2	RD1
в	O N/C	RG15	RE2	C RE1	O RA7	O RF0	O VCAP	RD5	RD3	O Vss	O RC14
с	O RE6	O Vdd	RG12	ORG14	O RA6	O N/C	O RD7	RD4	O Vdd	O RC13	O RD11
D	O RC1	RE7	RE5	O Vss	O Vss	O N/C	O RD6	RD13	RD0	O n/c	O RD10
E	O RC4	RC3	O RG6	C2	O Vdd	RG1	O N/C	RA15	RD8	RD9	O RA14
F		O RG8	O RG9	O RG7	O Vss	O n/c	O N/C	O VDD	O OSCI/ RC12	O Vss	O OSCO/ RC15
G	e RE8	O RE9	RA0	O N/C	O Vdd	O Vss	O Vss	O N/C	O RA5	RA3	O RA4
н	O PGEC3/ RB5	O PGED3/ RB4	O Vss	O Vdd	O N/C	O Vdd	O n/c	O VBUS/RF7	O Vusb	O D+/RG2	RA2
J	O RB3	O RB2	O PGED2/RB7	O AVDD	O RB11	O RA1	O RB12	O N/C	O N/C	RF8	O D-/RG3
к	O PGEC1/ RB1	O PGED1/ RB0	O RA10	O RB8	O N/C	RF12	O RB14	O VDD	O RD15	USBID/ RF3	RF2
L	O PGEC2/ RB6	O RA9	O AVss	O RB9	O RB10	O RF13	O RB13	O RB15	ORD14	ORF4	O RF5

Note 1: See Table 3 for complete functional pinout descriptions.

Legend: RPn and **RPIn** represent remappable pins for Peripheral Pin Select functions. Shaded pins indicate pins tolerant to up to +5.5V.

查询PIC24FJ256GB206供应商 TABLE 3: **COMPLETE PIN FUNCTION DESCRIPTIONS FOR 121-PIN (BGA) DEVICES** Pin Function Pin Function A1 PMD4/CN62/RE4 E5 VDD PMD3/CN61/RE3 PMD9/CN78/RG1 A2 E6 CN80/RG13 A3 E7 N/C PMD0/CN58/RE0 E8 SDA1/RPI35/PMBE1/CN44/RA15 A4 A5 PMD8/CN77/RG0 E9 DMLN/RTCC/RP2/CN53/RD8 VCMPST2/SESSVLD/PMD10/CN69/RF1 DPLN/RP4/PMACK2/CN54/RD9 A6 E10 A7 ENVREG E11 SCL1/RPI36/PMA22/PMCS2(2)/CN43/RA14 MCLR A8 N/C F1 RPI42/PMD12/CN57/RD12 F2 AN19/C2IND/RP19/PMA3/PMA21(2)/CN10/RG8 Α9 A10 DPH/RP23/PMACK1/CN51/RD2 F3 AN20/C2INC/RP27/PMA2/CN11/RG9 VCPCON/RP24/VBUSCHG/CN50/RD1 AN18/C1INC/RP26/PMA4/PMA20(2)/CN9/RG7 A11 F4 Β1 N/C F5 Vss CN82/RG15 F6 N/C B2 PMD2/CN60/RE2 N/C В3 F7 PMD1/CN59/RE1 B4 F8 VDD B5 AN22/PMA17/CN40/RA7 F9 OSCI/CLKI/CN23/RC12 B6 VBUSST/VCMPST1/VBUSVLD/PMD11/CN68/RF0 F10 Vss B7 F11 OSCO/CLKO/CN22/RC15 VCAP B8 RP20/PMRD/CN14/RD5 G1 RPI33/PMCS1/CN66/RE8 RP22/PMBE0/CN52/RD3 AN21/RPI34/PMA19/CN67/RE9 B9 G2 B10 G3 TMS/CN33/RA0 Vss SOSCO/SCLKI/T1CK/C3INC/RPI37/CN0/RC14 B11 N/C G4 C1 SCL3/PMD6/CN64/RE6 G5 Vdd Vss C2 Vdd G6 VSYNC/CN79/RG12 C3 G7 Vss C4 PMA16/CN81/RG14 N/C G8 C5 AN23/CN39/RA6 G9 TDO/CN38/RA5 SDA2/PMA20/PMA4⁽²⁾/CN36/RA3 C6 N/C G10 C7 C3INA/SESSEND/PMD15/CN16/RD7 G11 TDI/PMA21/PMA3(2)/CN37/RA4 C8 RP25/PMWR/CN13/RD4 H1 PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5 C9 VDD H2 PGED3/AN4/C1INB/USBOEN/RP28/CN6/RB4 C10 SOSCI/C3IND/CN1/RC13 H3 Vss RP12/PMA14/PMCS1(3)/CN56/RD11 C11 H4 VDD D1 RPI38/CN45/RC1 H5 N/C D2 SDA3/PMD7/CN65/RE7 H6 VDD D3 PMD5/CN63/RE5 H7 N/C D4 H8 VBUS/CN73/RF7 Vss D5 Vss H9 VUSB D6 N/C H10 D+/CN83/RG2 D7 C3INB/PMD14/CN15/RD6 H11 SCL2/CN35/RA2 D8 PMD13/CN19/RD13 J1 AN3/C2INA/VPIO/CN5/RB3 D9 DMH/RP11/INT0/CN49/RD0 AN2/C2INB/VMIO/RP13/CN4/RB2 J2 D10 N/C J3 PGED2/AN7/RP7/RCV/CN25/RB7 RP3/PMA15/PMCS2(3)/CN55/RD10 D11 J4 AVDD AN16/RPI41/PMCS2/PMA22⁽²⁾/CN48/RC4 E1 J5 AN11/PMA12/CN29/RB11 E2 RPI40/CN47/RC3 J6 TCK/CN34/RA1 AN17/C1IND/RP21/PMA5/PMA18⁽²⁾/CN8/RG6 J7 AN12/PMA11/CTEDG2/CN30/RB12 E3

E4 Legend: Note

RPn and **RPIn** represent remappable pins for Peripheral Pin Select functions. Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed. 1:

Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed (only in 100-pin devices). 2:

J8

N/C

Pin assignment for PMCSx when CSF<1:0> is not equal to '00'. 3:

RPI39/CN46/RC2

查询PIC24FJ256GB206供应商

COMPLETE PIN FUNCTION DESCRIPTIONS FOR 121-PIN (BGA) DEVICES (CONTINUED) TABLE 3:

Pin	Function	Pin	Function
J9	N/C	L1	PGEC2/AN6/ RP6 /CN24/RB6
J10	RP15/CN74/RF8	L2	VREF- ⁽¹⁾ /PMA7/CN41/RA9
J11	D-/CN84/RG3	L3	AVSS
K1	PGEC1/AN1/VREF- ⁽¹⁾ / RP1 /CN3/RB1	L4	AN9/ RP9 /CN27/RB9
K2	PGED1/AN0/VREF+ ⁽¹⁾ /RP0/CN2/RB0	L5	AN10/CVREF/PMA13/CN28/RB10
K3	VREF+ ⁽¹⁾ /PMA6/CN42/RA10	L6	RP31/CN76/RF13
K4	AN8/ RP8 /CN26/RB8	L7	AN13/PMA10/CTEDG1/CN31/RB13
K5	N/C	L8	AN15/REFO/RP29/PMA0/CN12/RB15
K6	RPI32/PMA18/PMA5 ⁽²⁾ /CN75/RF12	L9	RPI43/CN20/RD14
K7	AN14/CTPLS/RP14/PMA1/CN32/RB14	L10	RP10/PMA9/CN17/RF4
K8	Vdd	L11	RP17/PMA8/SCL2/CN18/RF5
K9	RP5/CN21/RD15	_	—
K10	RP16/USBID/CN71/RF3	_	_
K11	RP30/CN70/RF2	_	—

Legend: Note

RPn and **RPIn** represent remappable pins for Peripheral Pin Select functions. Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed. 1:

Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed (only in 100-pin devices). 2:

Pin assignment for PMCSx when CSF<1:0> is not equal to '00'. 3:

查询PIC24FJ256GB206供应商

lab	Die of Contents	
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Oscillator Configuration	
9.0	Power-Saving Features	
10.0	I/O Ports	
11.0	-	
12.0		
13.0	Input Capture with Dedicated Timers	
14.0		
15.0		
16.0		
17.0	······································	
18.0		
19.0		
20.0		
21.0	· · · · · · · · · · · · · · · · · · ·	
22.0	-	
23.0		
24.0	· · · · · · · · · · · · · · · · · · ·	
25.0		
	•	
27.0	F	
28.0		
29.0		
	Packaging Information	
	endix A: Revision History	
	X	
	Microchip Web Site	
	tomer Change Notification Service	
	tomer Support	
	der Response	
Prod	luct Identification System	

查询PIC24FJ256GB206供应商

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

查询PIC24FJ256GB206供应商 1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ128GB206
- PIC24FJ256GB206
- PIC24FJ128GB210
- PIC24FJ256GB210

The PIC24FJ256GB210 family enhances on the existing line of Microchip's 16-bit microcontrollers, adding a large data RAM, up to 96 Kbytes. The PIC24FJ256GB210 family allows the CPU to fetch data directly from an external memory device using the EPMP module.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FJ256GB210 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

• **On-the-Fly Clock Switching:** The device clock can be changed under software control to the Timer1 source or the internal, low-power RC oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs.

- **Doze Mode Operation:** When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: The microcontroller can suspend all operations, or selectively shut down its core while leaving its peripherals active with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GB210 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- A Fast Internal Oscillator (FRC) with a nominal 8 MHz output, which can also be divided under software control to provide clock speeds as low as 31 kHz.
- A Phase Lock Loop (PLL) frequency multiplier, available to the external oscillator modes and the FRC oscillator, which allows clock speeds of up to 32 MHz.
- A separate Low-Power Internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger, or even in jumping from 64-pin to 100-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

查询PIC24FJ256GB206供应商 1.2 USB On-The-Go

The USB On-The-Go (USB OTG) module provides on-chip functionality as a target device, compatible with the USB 2.0 standard, as well as limited stand-alone functionality as a USB embedded host. By implementing USB Host Negotiation Protocol (HNP), the module can also dynamically switch between device and host operation, allowing for a much wider range of versatile USB enabled applications on a microcontroller platform.

In addition to USB host functionality, PIC24FJ256GB210 family devices provide a true single chip USB solution, including an on-chip transceiver and voltage regulator, and a voltage boost generator for sourcing bus power during host operations.

1.3 Other Special Features

- **Peripheral Pin Select:** The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Communications: The PIC24FJ256GB210 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are three independent I²C[™] modules that support both Master and Slave modes of operation. Devices also have, through the PPS feature, four independent UARTs with built-in IrDA[®] encoders/decoders and three SPI modules.
- Analog Features: All members of the PIC24FJ256GB210 family include a 10-bit A/D Converter (ADC) module and a triple comparator module. The ADC module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speeds. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ256GB210 family include the CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Enhanced Parallel Master/Parallel Slave Port: There are general purpose I/O ports, which can be configured for parallel data communications. In this mode, the device can be master or slave on the communication bus. 4-bit, 8-bit and 16-bit data transfers, with up to 23 external address lines, are supported in Master modes.
- Real-Time Clock and Calendar: (RTCC) This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

1.4 Details on Individual Family Members

Devices in the PIC24FJ256GB210 family are available in 64-pin and 100-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in seven ways:

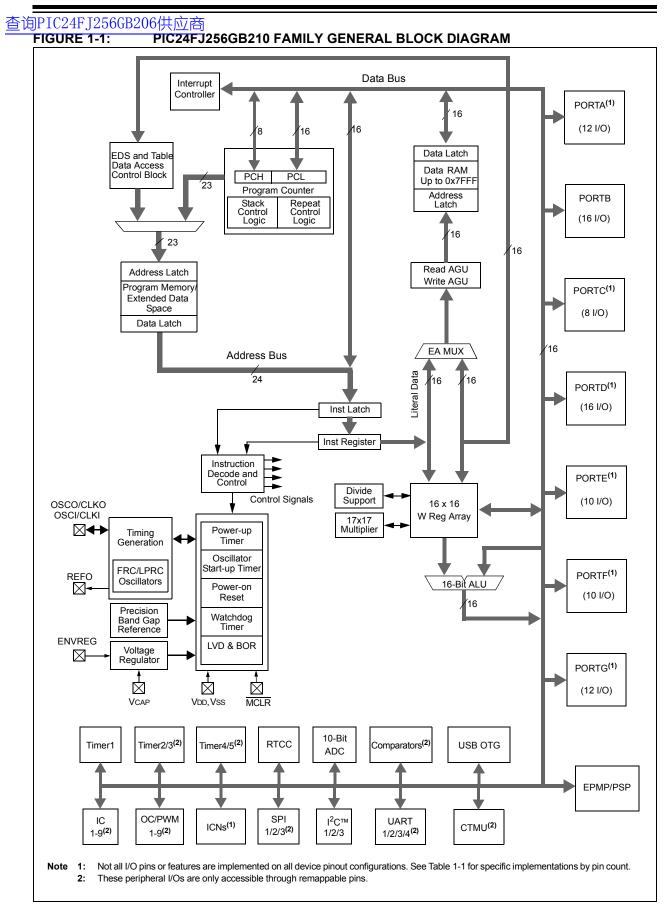
- 1. Flash program memory (128 Kbytes for PIC24FJ128GB2XX devices and 256 Kbytes for PIC24FJ256GB2XX devices).
- Available I/O pins and ports (52 pins on 6 ports for PIC24FJXXXGB2XX devices and 84 pins on 7 ports for PIC24FJXXXGB2XX devices).
- Available Interrupt-on-Change Notification (ICN) inputs (52 on PIC24FJXXXGB2XX devices and 84 on PIC24FJXXXGB2XX devices).
- Available remappable pins (29 pins on PIC24FJXXXGB2XX devices and 44 pins on PIC24FJXXXGB2XX devices).
- Analog channels for ADC (16 channels for PIC24FJXXXGB206 devices and 24 channels for PIC24FJXXXGB2XX devices).

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FJ256GB210 family devices, sorted by function, is shown in Table 1-1. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

查询PIC24FJ256GB206供应商

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ256GB210 FAMILY: 64-PIN


Features	PIC24FJ128GB206	PIC24FJ256GB206
Operating Frequency	DC – 3	2 MHz
Program Memory (bytes)	128K	256K
Program Memory (instructions)	44,032	87,552
Data Memory (bytes)	96	δK
Interrupt Sources (soft vectors/NMI traps)	65 (6	61/4)
I/O Ports	Ports B, C,	D, E, F, G
Total I/O Pins	5	2
Remappable Pins	29 (28 I/O, 2	1 Input only)
Timers:		
Total Number (16-bit)	50	1)
32-Bit (from paired 16-bit timers)	2	-
Input Capture Channels	90	1)
Output Compare/PWM Channels	90	1)
Input Change Notification Interrupt	5	2
Serial Communications:		
UART	40	1)
SPI (3-wire/4-wire)	30	1)
l ² C™	3	3
Parallel Communications (EPMP/PSP)	Ye	es
JTAG Boundary Scan	Ye	es
10-Bit Analog-to-Digital Converter (ADC) Module (input channels)	1	6
Analog Comparators	3	3
CTMU Interface	Ye	es
USB OTG	Ye	es
Resets (and Delays)	POR, BOR, RESET Instruction REPEAT Instruction, Hardwar Mismatch (OS	e Traps, Configuration Word
Instruction Set	76 Base Instructions, Multiple	Addressing Mode Variations
Packages	64-Pin TQF	P and QFN

Note 1: Peripherals are accessible through remappable pins.

查询PIC24FJ256GB206供应商 TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ256GB210 FAMILY: 100-PIN DEVICES

Features	PIC24FJ128GB210	PIC24FJ256GB210			
Operating Frequency	DC – 32 MHz				
Program Memory (bytes)	128K	256K			
Program Memory (instructions)	44,032	87,552			
Data Memory (bytes)	9	6K			
Interrupt Sources (soft vectors/NMI traps)	65 ((61/4)			
I/O Ports	Ports A, B,	C, D, E, F, G			
Total I/O Pins	8	34			
Remappable Pins	44 (32 I/O,	12 input only)			
Timers:					
Total Number (16-bit)	5	;(1)			
32-Bit (from paired 16-bit timers)		2			
Input Capture Channels	g	y(1)			
Output Compare/PWM Channels	g	y(1)			
Input Change Notification Interrupt	8	34			
Serial Communications:					
UART	4	,(1)			
SPI (3-wire/4-wire)	3	3(1)			
I ² C™		3			
Parallel Communications (EPMP/PSP)	Y	′es			
JTAG Boundary Scan	Y	⁄es			
10-Bit Analog-to-Digital Converter (ADC) Module (input channels)	2	24			
Analog Comparators		3			
CTMU Interface	Y	⁄es			
USB OTG	Y	⁄es			
Resets (and delays)	Illegal Opcode, REPEAT Ir	struction, MCLR, WDT; nstruction, Hardware Traps, smatch (OST, PLL Lock)			
Instruction Set	76 Base Instructions, Multipl	e Addressing Mode Variatio			
Packages	100-Pin TQFP a	and 121-Pin BGA			

Note 1: Peripherals are accessible through remappable pins.

查询PIC24FJ256GB206供应商

TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS

		Pin Number			Input			
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description		
AN0	16	25	K2	I	ANA			
AN1	15	24	K1	I	ANA			
AN2	14	23	J2	I	ANA			
AN3	13	22	J1	Ι	ANA			
AN4	12	21	H2	I	ANA			
AN5	11	20	H1	I	ANA			
AN6	17	26	L1	I	ANA			
AN7	18	27	J3	I	ANA			
AN8	21	32	K4	I	ANA			
AN9	22	33	L4	Ι	ANA			
AN10	23	34	L5	I	ANA			
AN11	24	35	J5	Ι	ANA			
AN12	27	41	J7	Ι	ANA	A/D Analog Inputs.		
AN13	28	42	L7	Ι	ANA			
AN14	29	43	K7	Ι	ANA			
AN15	30	44	L8	Ι	ANA			
AN16	—	9	E1	Ι	ANA			
AN17	—	10	E3	Ι	ANA			
AN18	—	11	F4	Ι	ANA			
AN19	—	12	F2	Ι	ANA			
AN20	—	14	F3	Ι	ANA			
AN21	—	19	G2	Ι	ANA			
AN22	—	92	B5	Ι	ANA			
AN23	—	91	C5	Ι	ANA			
AVdd	19	30	J4	Р	_	Positive Supply for Analog modules.		
AVss	20	31	L3	Р	—	Ground Reference for Analog modules.		
C1INA	11	20	H1	Ι	ANA	Comparator 1 Input A.		
C1INB	12	21	H2	Ι	ANA	Comparator 1 Input B.		
C1INC	5	11	F4	Ι	ANA	Comparator 1 Input C.		
C1IND	4	10	E3	Ι	ANA	Comparator 1 Input D.		
C2INA	13	22	J1	Ι	ANA	Comparator 2 Input A.		
C2INB	14	23	J2	I	ANA	Comparator 2 Input B.		
C2INC	8	14	F3	I	ANA	Comparator 2 Input C.		
C2IND	6	12	F2	Ι	ANA	Comparator 2 Input D.		
C3INA	55	84	C7	Ι	ANA	Comparator 3 Input A.		
C3INB	54	83	D7	Ι	ANA	Comparator 3 Input B.		
C3INC	48	74	B11	Ι	ANA	Comparator 3 Input C.		
C3IND	47	73	C10	Ι	ANA	Comparator 3 Input D.		
CLKI	39	63	F9	I	ST	Main Clock Input Connection.		
CLKO	40	64	F11	0		System Clock Output.		
-	TTL = TTL inpu				ST =	Schmitt Trigger input buffer		
	ANA = Analog					= I ² C/SMBus input buffer CW3<12>) bit is programmed to '0'.		

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商 TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number			Input	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
CN0	48	74	B11	Ι	ST	
CN1	47	73	C10	I	ST	
CN2	16	25	K2	Ι	ST	
CN3	15	24	K1	Ι	ST	
CN4	14	23	J2	I	ST	
CN5	13	22	J1	I	ST	
CN6	12	21	H2	Ι	ST	
CN7	11	20	H1	I	ST	
CN8	4	10	E3	I	ST	
CN9	5	11	F4	I	ST	
CN10	6	12	F2	Ι	ST	
CN11	8	14	F3	Ι	ST	
CN12	30	44	L8	Ι	ST	
CN13	52	81	C8	Ι	ST	
CN14	53	82	B8	Ι	ST	
CN15	54	83	D7	Ι	ST	
CN16	55	84	C7	I	ST	
CN17	31	49	L10	I	ST	
CN18	32	50	L11	I	ST	
CN19	_	80	D8	I	ST	
CN20	_	47	L9	I	ST	Interrupt-on-Change Inputs.
CN21	_	48	K9	I	ST	
CN22	40	64	F11	I	ST	
CN23	39	63	F9	I	ST	
CN24	17	26	L1	I	ST	
CN25	18	27	J3	I	ST	
CN26	21	32	K4	I	ST	
CN27	22	33	L4	I	ST	
CN28	23	34	L5	I	ST	
CN29	24	35	J5	I	ST	
CN30	27	41	J7	Ι	ST	
CN31	28	42	L7	I	ST	
CN32	29	43	K7	I	ST	
CN33	_	17	G3	Ι	ST	
CN34	_	38	J6	I	ST	
CN35	_	58	H11	I	ST	
CN36	_	59	G10	I	ST	
CN37	_	60	G11	1	ST	
CN38		61	G9		ST	
CN39		91	C5		ST	
	TTL = TTL inpu			I		I Schmitt Trigger input buffer

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商

TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number	1		Input	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
CN40	—	92	B5	Ι	ST	
CN41	_	28	L2	I	ST	
CN42	—	29	K3	I	ST	
CN43	—	66	E11	I	ST	
CN44	_	67	E8	I	ST	
CN45	_	6	D1	I	ST	
CN46		7	E4	I	ST	
CN47	_	8	E2	I	ST	
CN48	_	9	E1	I	ST	
CN49	46	72	D9	I	ST	
CN50	49	76	A11	I	ST	
CN51	50	77	A10	I	ST	
CN52	51	78	B9	I	ST	
CN53	42	68	E9	I	ST	
CN54	43	69	E10	I	ST	
CN55	44	70	D11	I	ST	
CN56	45	71	C11	I	ST	
CN57	_	79	A9	I	ST	
CN58	60	93	A4	I	ST	
CN59	61	94	B4	I	ST	Interrupt on Change Innuite
CN60	62	98	B3	I	ST	Interrupt-on-Change Inputs.
CN61	63	99	A2	I	ST	
CN62	64	100	A1	I	ST	
CN63	1	3	D3	I	ST	
CN64	2	4	C1	I	ST	
CN65	3	5	D2	I	ST	
CN66	_	18	G1	I	ST	
CN67	—	19	G2	I	ST	
CN68	58	87	B6	I	ST	
CN69	59	88	A6	Ι	ST	
CN70	_	52	K11	I	ST	
CN71	33	51	K10	Ι	ST	
CN73	_	54	H8	Ι	ST	
CN74	_	53	J10	Ι	ST	
CN75	_	40	K6	I	ST	
CN76	_	39	L6	Ι	ST	
CN77	—	90	A5	I	ST	
CN78	—	89	E6	I	ST	
CN79	_	96	C3	I	ST	
CN80	—	97	A3	Ι	ST	

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商 TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number			Immut		
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description	
CN81	_	95	C4	I	ST		
CN82	_	1	B2	Ι	ST	laterrunt en Change Innute	
CN83	37	57	H10	Ι	ST	Interrupt-on-Change Inputs.	
CN84	36	56	J11	Ι	ST		
CTEDG1	28	42	L7	Ι	ANA	CTMU External Edge Input 1.	
CTEDG2	27	41	J7	Ι	ANA	CTMU External Edge Input 2.	
CTPLS	29	43	K7	0		CTMU Pulse Output.	
CVREF	23	34	L5	0	_	Comparator Voltage Reference Output.	
D+	37	57	H10	I/O	_	USB Differential Plus Line (internal transceiver).	
D-	36	56	J11	I/O		USB Differential Minus Line (internal transceiver).	
DMH	46	72	D9	0	_	D- External Pull-up Control Output.	
DMLN	42	68	E9	0	_	D- External Pull-down Control Output.	
DPH	50	77	A10	0		D+ External Pull-up Control Output.	
DPLN	43	69	E10	0	_	D+ External Pull-down Control Output.	
ENVREG	57	86	J7	Ι	ST	Voltage Regulator Enable.	
INT0	46	72	D9	Ι	ST	External Interrupt Input.	
MCLR	7	13	F1	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.	
OSCI	39	63	F9	Ι	ANA	Main Oscillator Input Connection.	
OSCO	40	64	F11	0	ANA	Main Oscillator Output Connection.	
PGEC1	15	24	K1	I/O	ST	In-Circuit Debugger/Emulator/ICSP™ Programming Clock 1.	
PGED1	16	25	K2	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data 1.	
PGEC2	17	26	L1	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock 2.	
PGED2	18	27	J3	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data 2.	
PGEC3	11	20	H1	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock 3.	
PGED3	12	21	H2	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data 3.	
Legend:	: TTL = TTL input buffer ST = Schmitt Trigger input buffer						

ANA = Analog level input/output

 $l^2 C^{TM} = l^2 C/SMB$ us input buffer

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商

TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number			Incut		
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description	
PMA0	30	44	L8	I/O	ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes). Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).	
PMA1	29	43	K7	I/O	ST		
PMA2	8	14	F3	0	_		
PMA3	6	12, 60 ⁽¹⁾	F2, G11 ⁽¹⁾	0	_		
PMA4	5	11,59 ⁽¹⁾	F4,G10 ⁽¹⁾	0	_		
PMA5	4	10,40 ⁽¹⁾	E3,K6 ⁽¹⁾	0	_		
PMA6	16	29	K3	0	_		
PMA7	22	28	L2	0	—		
PMA8	32	50	L11	0	—		
PMA9	31	49	L10	0	—		
PMA10	28	42	L7	0	—		
PMA11	27	41	J7	0	—		
PMA12	24	35	J5	0	_	Parallel Master Port Address bits<22:2>.	
PMA13	23	34	L5	0	—		
PMA14	45	71	C11	0	_		
PMA15	44	70	D11	0	_		
PMA16	_	95	C4	0	_		
PMA17	—	92	B5	0	_		
PMA18	—	40,10 ⁽¹⁾	K6,E3 ⁽¹⁾	0	_		
PMA19	—	19	G2	0	_		
PMA20	_	59, 11 ⁽¹⁾	G10, F4 ⁽¹⁾	0	_		
PMA21	—	60,12 ⁽¹⁾	G11,F2 ⁽¹⁾	0	—		
PMA22	—	66,9 ⁽¹⁾	E11,E1 ⁽¹⁾	0	—		
PMACK1	50	77	A10	I	ST/TTL	Parallel Master Port Acknowledge Input 1.	
PMACK2	43	69	E10	I	ST/TTL	Parallel Master Port Acknowledge Input 2.	
PMALL	30	44	L8	0	—	Parallel Master Port Lower Address Latch Strobe.	
PMALH	29	43	K7	0	—	Parallel Master Port Higher Address Latch Strobe.	
PMALU	—	14	F3	0	—	Parallel Master Port Upper Address Latch Strobe.	
PMBE0	51	78	B9	0	—	Parallel Master Port Byte Enable Strobe 0.	
PMBE1	_	67	E8	0	_	Parallel Master Port Byte Enable Strobe 1.	
PMCS1	45	71 ⁽³⁾ ,18	C11 ⁽³⁾ ,G1	I/O	ST/TTL	Parallel Master Port Chip Select Strobe 1.	
PMCS2	44	70 ⁽²⁾ ,9, 66 ⁽¹⁾	D11 ⁽²⁾ ,E1, E11 ⁽¹⁾	0	-	Parallel Master Port Chip Select Strobe 2.	

$I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商 TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number		I/O	Input	Description	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA		Buffer		
PMD0	60	93	A4	I/O	ST/TTL		
PMD1	61	94	B4	I/O	ST/TTL		
PMD2	62	98	B3	I/O	ST/TTL		
PMD3	63	99	A2	I/O	ST/TTL		
PMD4	64	100	A1	I/O	ST/TTL		
PMD5	1	3	D3	I/O	ST/TTL		
PMD6	2	4	C1	I/O	ST/TTL		
PMD7	3	5	D2	I/O	ST/TTL	Develled Meeter Deve bits (15:0)	
PMD8	_	90	A5	I/O	ST/TTL	Parallel Master Port Data bits<15:0>.	
PMD9	—	89	E6	I/O	ST/TTL		
PMD10	—	88	A6	I/O	ST/TTL		
PMD11	—	87	B6	I/O	ST/TTL		
PMD12	_	79	A9	I/O	ST/TTL		
PMD13	—	80	D8	I/O	ST/TTL		
PMD14	_	83	D7	I/O	ST/TTL		
PMD15	_	84	C7	I/O	ST/TTL		
PMRD	53	82	B8	I/O	ST/TTL	Parallel Master Port Read Strobe.	
PMWR	52	81	C8	I/O	ST/TTL	Parallel Master Port Write Strobe.	
RA0	—	17	G3	I/O	ST		
RA1	—	38	J6	I/O	ST		
RA2	_	58	H11	I/O	ST		
RA3	—	59	G10	I/O	ST		
RA4	—	60	G11	I/O	ST		
RA5	—	61	G9	I/O	ST		
RA6	_	91	C5	I/O	ST	PORTA Digital I/O.	
RA7	—	92	B5	I/O	ST		
RA9	—	28	L2	I/O	ST		
RA10	_	29	K3	I/O	ST		
RA14	—	66	E11	I/O	ST		
RA15	—	67	E8	I/O	ST		
-	TTL = TTL inpu ANA = Analog	ut buffer level input/out	put		ST = I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer	

ANA = Analog level input/output

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商

TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

r		Immut		
121-Pin BGA	I/O	Input Buffer	Description	
K2	I/O	ST		
K1	I/O	ST		
J2	I/O	ST		
J1	I/O	ST		
H2	I/O	ST		
H1	I/O	ST		
L1	I/O	ST		
J3	I/O	ST		
K4	I/O	ST	PORTB Digital I/O.	
L4	I/O	ST		
L5	I/O	ST		
J5	I/O	ST		
J7	I/O	ST		
L7	I/O	ST		
K7	I/O	ST		
L8	I/O	ST		
D1	I/O	ST		
E4	I/O	ST		
E2	I/O	ST		
E1	I/O	ST		
F9	I/O	ST	PORTC Digital I/O.	
C10	I/O	ST		
B11	I/O	ST		
F11	I/O	ST		
J3	I	ST	USB Receive Input (from external transceiver).	
		J3 I	J3 I ST ST =	

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商 TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number			Input			
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	I/O Buffer	Description		
RD0	46	72	D9	I/O	ST			
RD1	49	76	A11	I/O	ST			
RD2	50	77	A10	I/O	ST			
RD3	51	78	B9	I/O	ST			
RD4	52	81	C8	I/O	ST			
RD5	53	82	B8	I/O	ST			
RD6	54	83	D7	I/O	ST			
RD7	55	84	C7	I/O	ST			
RD8	42	68	E9	I/O	ST	PORTD Digital I/O.		
RD9	43	69	E10	I/O	ST			
RD10	44	70	D11	I/O	ST			
RD11	45	71	C11	I/O	ST			
RD12		79	A9	I/O	ST			
RD13	_	80	D8	I/O	ST			
RD14	_	47	L9	I/O	ST			
RD15	—	48	K9	I/O	ST			
RE0	60	93	A4	I/O	ST			
RE1	61	94	B4	I/O	ST			
RE2	62	98	B3	I/O	ST			
RE3	63	99	A2	I/O	ST			
RE4	64	100	A1	I/O	ST			
RE5	1	3	D3	I/O	ST	PORTE Digital I/O.		
RE6	2	4	C1	I/O	ST			
RE7	3	5	D2	I/O	ST			
RE8	_	18	G1	I/O	ST			
RE9	—	19	G2	I/O	ST			
REFO	30	44	L8	0		Reference Clock Output.		
RF0	58	87	B6	I/O	ST			
RF1	59	88	A6	I/O	ST			
RF2	—	52	K11	I/O	ST			
RF3	33	51	K10	I/O	ST			
RF4	31	49	L10	I/O	ST			
RF5	32	50	L11	I/O	ST	PORTF Digital I/O.		
RF7	34	54	H8	I/O	ST			
RF8	—	53	J10	I/O	ST			
RF12	—	40	K6	I/O	ST			
RF13	—	39	L6	I/O	ST			
	TTL = TTL input bufferST = Schmitt Trigger input bufferANA = Analog level input/output $I^2 C^{TM} = I^2 C/SMBus$ input buffer							

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商

TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number			Incut		
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description	
RG0	—	90	A5	I/O	ST		
RG1	—	89	E6	I/O	ST		
RG2	37	57	H10	I/O	ST		
RG3	36	56	J11	I/O	ST		
RG6	4	10	E3	I/O	ST		
RG7	5	11	F4	I/O	ST		
RG8	6	12	F2	I/O	ST	PORTG Digital I/O.	
RG9	8	14	F3	I/O	ST		
RG12	—	96	C3	I/O	ST		
RG13	—	97	A3	I/O	ST		
RG14	—	95	C4	I/O	ST		
RG15	—	1	B2	I/O	ST		
RP0	16	25	K2	I/O	ST		
RP1	15	24	K1	I/O	ST		
RP2	42	68	E9	I/O	ST		
RP3	44	70	D11	I/O	ST		
RP4	43	69	E10	I/O	ST		
RP5	—	48	K9	I/O	ST		
RP6	17	26	L1	I/O	ST		
RP7	18	27	J3	I/O	ST		
RP8	21	32	K4	I/O	ST		
RP9	22	33	L4	I/O	ST	Demonable Derinherel (input er eutput)	
RP10	31	49	L10	I/O	ST	Remappable Peripheral (input or output).	
RP11	46	72	D9	I/O	ST		
RP12	45	71	C11	I/O	ST		
RP13	14	23	J2	I/O	ST		
RP14	29	43	K7	I/O	ST		
RP15	_	53	J10	I/O	ST		
RP16	33	51	K10	I/O	ST		
RP17	32	50	L11	I/O	ST		
RP18	11	20	H1	I/O	ST		
RP19	6	12	F2	I/O	ST		
Legend:	TTL = TTL inpu	ut buffer				Schmitt Trigger input buffer	

ANA = Analog level input/output

SI = Schmitt Irigger input buffer $I^2C^{TM} = I^2C/SMBus input buffer$

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商 TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number			Input	Description	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer		
RP20	53	82	B8	I/O	ST		
RP21	4	10	E3	I/O	ST		
RP22	51	78	B9	I/O	ST		
RP23	50	77	A10	I/O	ST		
RP24	49	76	A11	I/O	ST		
RP25	52	81	C8	I/O	ST		
RP26	5	11	F4	I/O	ST	Remappable Peripheral (input or output).	
RP27	8	14	F3	I/O	ST		
RP28	12	21	H2	I/O	ST		
RP29	30	44	L8	I/O	ST		
RP30	_	52	K11	I/O	ST		
RP31	—	39	L6	I/O	ST		
RPI32	_	40	K6	I	ST		
RPI33	_	18	G1	I	ST		
RPI34	_	19	G2	I	ST		
RPI35	_	67	E8	Ι	ST	- - Remappable Peripheral (input only).	
RPI36	_	66	E11	I	ST		
RPI37	48	74	B11	Ι	ST		
RPI38	_	6	D1	I	ST		
RPI39	_	7	E4	Ι	ST		
RPI40	_	8	E2	Ι	ST		
RPI41	_	9	E1	Ι	ST		
RPI42	_	79	A9	Ι	ST		
RPI43	_	47	L9	Ι	ST		
RTCC	42	68	E9	0	-	Real-Time Clock Alarm/Seconds Pulse Output.	
SCL1	44	66	E11	I/O	l ² C™	I2C1 Synchronous Serial Clock Input/Output.	
SCL2	32	58	H11	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output.	
SCL3	2	4	C1	I/O	l ² C	I2C3 Synchronous Serial Clock Input/Output.	
SCLKI	48	74	B11	0	ANA	Secondary Clock Input.	
SDA1	43	67	E8	I/O	l ² C	I2C1 Data Input/Output.	
SDA2	31	59	G10	I/O	l ² C	I2C2 Data Input/Output.	
SDA3	3	5	D2	I/O	l ² C	I2C3 Data Input/Output.	
SESSEND	55	84	C7	Ι	ST	USB VBUS Boost Generator, Comparator Input 3.	
SESSVLD	59	88	A6	Ι	ST	USB VBUS Boost Generator, Comparator Input 2.	
SOSCI	47	73	C10	Ι	ANA	Secondary Oscillator/Timer1 Clock Input.	
SOSCO	48	74	B11	0	ANA	Secondary Oscillator/Timer1 Clock Output.	
T1CK	48	74	B11	I ST Timer1 Clock.			
•	TTL = TTL inp ANA = Analog		put		ST = I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer	

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

查询PIC24FJ256GB206供应商 TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		Pin Number			Innut		
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description	
TCK	27	38	J6	Ι	ST	JTAG Test Clock Input.	
TDI	28	60	G11	I	ST	JTAG Test Data Input.	
TDO	24	61	G9	0	_	JTAG Test Data Output.	
TMS	23	17	G3	Ι	ST	JTAG Test Mode Select Input.	
USBID	33	51	K10	I	ST	USB OTG ID (OTG mode only).	
USBOEN	12	21	H2	0	—	USB Output Enable Control (for external transceiver).	
VBUS	34	54	H8	Ι	ANA	USB Voltage, Host mode (5V).	
VBUSCHG	49	76	A11	0	_	External USB VBUS Charge Output.	
VBUSON	11	20	H1	0	_	USB OTG External Charge Pump Control.	
VBUSST	58	87	B6	I	ANA	USB OTG Internal Charge Pump Feedback Control.	
VBUSVLD	58	87	B6	I	ST	USB VBUS Boost Generator, Comparator Input 1.	
VCAP	56	85	B7	Р	_	External Filter Capacitor Connection (regulator enabled).	
VCMPST1	58	87	B6	Ι	ST	USB VBUS Boost Generator, Comparator Input 1.	
VCMPST2	59	88	A6	Ι	ST	USB VBUS Boost Generator, Comparator Input 2.	
VCPCON	49	76	A11	0	_	USB OTG VBUS PWM/Charge Output.	
Vdd	10, 26, 38	2, 16, 37, 46, 62	C2, C9, F8, G5, H6, K8, H4, E5	Ρ	—	Positive Supply for Peripheral Digital Logic and I/O Pins.	
VMIO	14	23	J2	Ι	ST	USB Differential Minus Input/Output (external transceiver).	
VPIO	13	22	J1	Ι	ST	USB Differential Plus Input/Output (external transceiver).	
VREF-	15	28, 24 ⁽⁴⁾	L2, K1 ⁽⁴⁾	I	ANA	A/D and Comparator Reference Voltage (low) Input.	
VREF+	16	29, 25 ⁽⁴⁾	K3, K2 ⁽⁴⁾	I	ANA	A/D and Comparator Reference Voltage (high) Input.	
Vss	9, 25, 41	15, 36, 45, 65, 75	B10, F5, F10, G6, G7, H3, D4, D5	Ρ	—	Ground Reference for Logic and I/O Pins.	
VUSB	35	55	H9	Р	—	USB Voltage (3.3V).	
•	TTL = TTL inp ANA = Analog		put	_	ST = I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer	

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

FIGURE 2-1:

查询PIC24FJ256GB206供应商

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ256GB210 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG and VCAP pins (PIC24FJ devices only) (see Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note: The AVDD and AVSS pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

MINIMUM CONNECTIONS C2⁽²⁾ Vdd ٩ŀ /ss ŹR1 VDD (1) (1) R2 ENVREG MCI R VCAP C1 Ī C7 PIC24FXXXX Vdd Vss C6⁽²⁾ C3(2) Vdd Vss AVDD AVSS 90 /SS

RECOMMENDED

C4⁽²⁾

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 $\mu\text{F},\,6.3\text{V}$ or greater, tantalum or ceramic

C5⁽²⁾

R1: 10 kΩ

R2: 100 Ω to 470 Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP)" for explanation of ENVREG pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

查询PIC24FJ256GB206供应商 2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

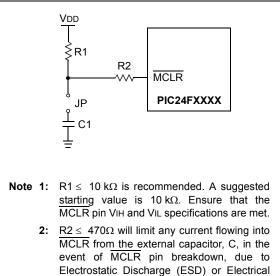
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

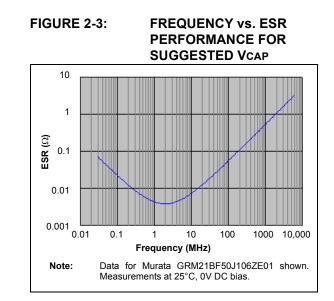
FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Overstress (EOS). Ensure that the MCLR pin

VIH and VIL specifications are met.

查询PIC24FJ256GB206供应商

2.4 Voltage Regulator Pins (ENVREG and VCAP)


Note:	This section applies only t	o PIC24FJ
	devices with an on-chip voltag	e regulator.

The on-chip voltage regulator enable pin (ENVREG) must always be connected directly to a supply voltage.

Refer to **Section 26.2 "On-Chip Voltage Regulator"** for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (<5 Ω) capacitor is required on the VCAP pin to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. A suitable example is the Murata GRM21BF50J106ZE01 (10 μ F, 6.3V) or equivalent. Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 29.0 "Electrical Characteristics"** for additional information.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

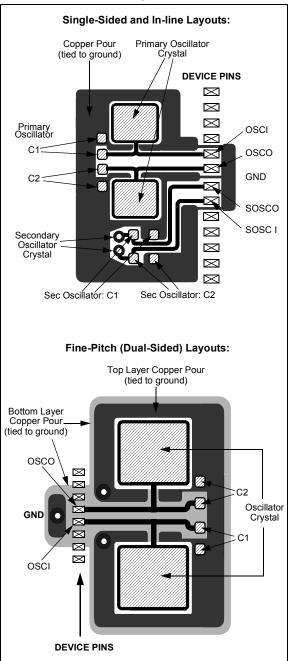
For more information on available Microchip development tools connection requirements, refer to **Section 27.0 "Development Support"**.

查询PIC24FJ256GB206供应商 2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.


Layout suggestions are shown in Figure 2-4. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals in close proximity to the oscillator are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

FIGURE 2-4: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

查询PIC24FJ256GB206供应商

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by clearing all bit in the ANSx registers.

All PIC24FJ devices will have several ANSx registers (one for each port). Refer to (**Section 10.0 "I/O Ports"**) for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the ADC module, as follows:

• Set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 44. "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

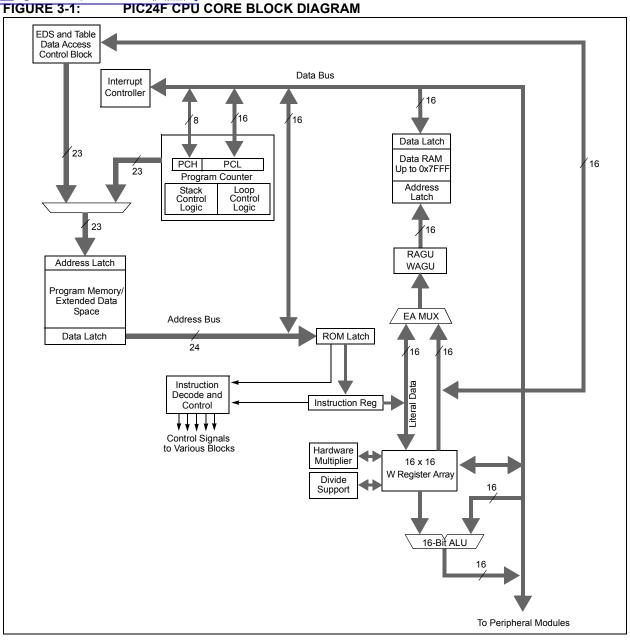
The lower 32 Kbytes of the data space can be accessed linearly. The upper 32 Kbytes of the data space are referred to as extended data space to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal, Memory Direct Addressing modes along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.


The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory mapped.

查询PIC24FJ256GB206供应商 FIGURE 3-1: PIC24F CPU CORE BLOC

Register(s) Name	Description	
W0 through W15	Working Register Array	
PC	23-Bit Program Counter	
SR	ALU STATUS Register	
SPLIM	Stack Pointer Limit Value Register	
TBLPAG	Table Memory Page Address Register	
RCOUNT	Repeat Loop Counter Register	
CORCON	CPU Control Register	
DISICNT	Disable Interrupt Count Register	
DSRPAG	Data Space Read Page Register	
DSWPAG	Data Space Write Page Register	

查询PIC24FI256GB206供应商 FIGURE 3-2: PROGRAMMER'S MODEL

	1	15		0	
Divideo Warking Desistors	W0 (WREG)	-			
Divider Working Registers 🔾	W1				
	= W2				
Multiplier Registers -	W3				
	W4				
	W5				
	W6				
	W7				Working/Address
	W8				Registers
	W9				
	W10				
	W11				
	W12				
	W13		Deinten		
	W14 W15		rame Pointer	0)
	W15	3	tack Pointer		, ,
	Γ		SPLIM	0	Stack Pointer Limit Value Register
22		50		0	-
		PC		0	Program Counter
			7	0	Table Memory Page
			TBLPAG		Address Register
			9	0	
			DSRPAG		Data Space Read Page Register
			8	0	
		-	DSWPAG		Data Space Write Page Register
	1	5	RCOUNT	0	Repeat Loop Counter
	1	5 SRH	SRL	0	Register
	Ē		~ <u>~</u> ~		
			DC IPLI RA N OV Z	z c	ALU STATUS Register (SR)
	1	15		0	CPU Control Register (CORCON)
			IPL3		
			13	0	Disable Interrupt Count Register
			DISICNT		
Registers or bits are sh					

查询PIC24FJ256GB206供应商

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC
—	—	—	—	—	—	—	DC
bit 15							bit 8

R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-9	Unimplemented: Read as '0'
bit 8	DC: ALU Half Carry/Borrow bit
	 1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
	0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU interrupt priority level is 7 (15); user interrupts are disabled
	110 = CPU interrupt priority level is 6 (14)
	101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11)
	010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: ALU Negative bit
	1 = Result was negative
	0 = Result was not negative (zero or positive)
bit 2	OV: ALU Overflow bit
	 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred
bit 1	Z: ALU Zero bit
	 1 = An operation, which affects the Z bit, has set it at some time in the past 0 = The most recent operation, which affects the Z bit, has cleared it (i.e., a non-zero result)
bit 0	C: ALU Carry/Borrow bit
	1 = A carry out from the Most Significant bit of the result occurred
	0 = No carry out from the Most Significant bit of the result occurred
Note 1:	The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
2:	The IPL Status bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU Interrupt Priority
	Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

查询PIC24FJ256GB206供应商 REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	-			—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R-1	U-0	U-0
_	_			IPL3 ⁽¹⁾	r	—	—
bit 7							bit 0

Legend:	C = Clearable bit	r = Reserved bit	HSC = Hardware Settable/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

- bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less
- bit 2 Reserved: Read as '1'
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location. The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

查询PIC24FJ256GB206供应商 3.3.2 DIVIDER

The divide block supports signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION

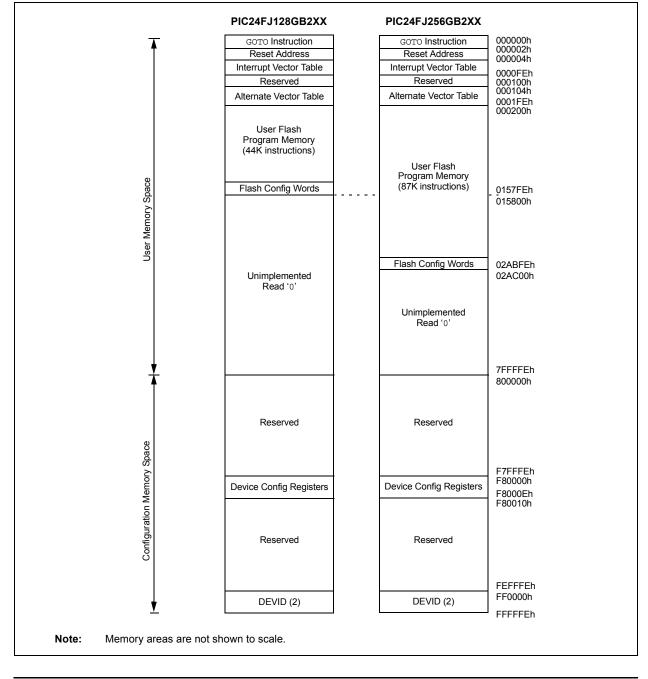
Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

查询PIC24FJ256GB206供应商

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and busses. This architecture also allows direct access of program memory from the data space during code execution.

4.1 **Program Memory Space**


The program address memory space of the PIC24FJ256GB210 family devices is 4M instructions. The space is addressable by a 24-bit value derived

from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FJ256GB210 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ256GB210 FAMILY DEVICES

查询PIC24FJ256GB206供应商 PROGRAM MEMORY 4.1.1ORGANIZATION

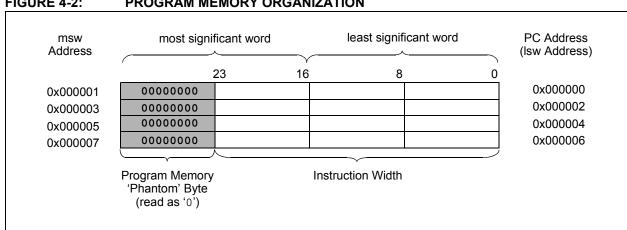
The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 0x00000 and 0x000200 for hard coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000 with the actual address for the start of code at 0x000002.

PIC24F devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".


FLASH CONFIGURATION WORDS 4.1.3

In PIC24FJ256GB210 family devices, the top four words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration register. The addresses of the Flash Word Configuration for devices in the PIC24FJ256GB210 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words does not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in Section 26.1 "Configuration Bits".

FLASH CONFIGURATION TABLE 4-1: WORDS FOR PIC24FJ256GB210 FAMILY DEVICES

Device	Program Memory (Words)	Configuration Word Addresses
PIC24FJ128GB2XX	44,032	0x0157F8:0x0157FE
PIC24FJ256GB2XX	87,552	0x02ABF8:0x02ABFE

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

查询PIC24FJ256GB206供应商 4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 45. "Data Memory with Extended Data Space (EDS)" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range.

The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

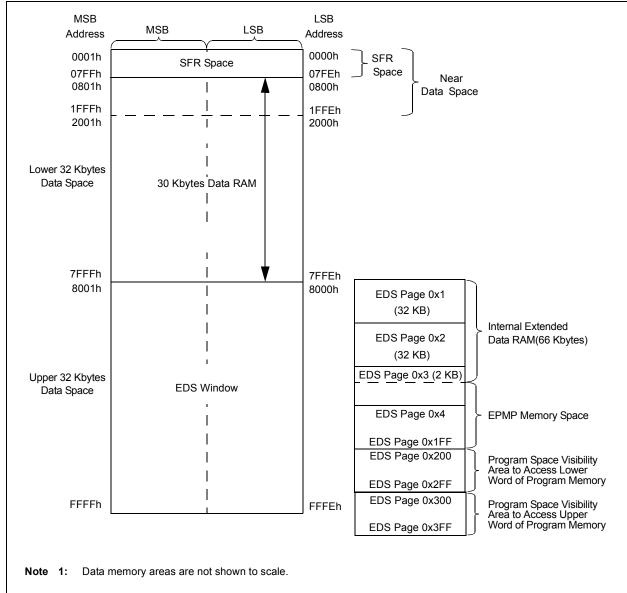
The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 64 Kbytes or 32K words. The lower 32 Kbytes (0x0000 to 0x7FFF) of DS is compatible with the PIC24F microcontrollers without EDS.

The upper 32 Kbytes of data memory address space (0x8000 - 0xFFFF) are used as an EDS window.

The EDS window is used to access all memory region implemented in EDS, as shown in Figure 4-4.

The EDS includes any additional internal data memory not accessible by the lower 32-Kbyte data address space and any external memory through EPMP. For more details on accessing internal extended data memory, refer to the "*PIC24F Family Reference Manual*", Section 45. "Data Memory with Extended Data Space (EDS)" (DS39733). For more details on accessing external memory using EPMP, refer to the "*PIC24F Family Reference Manual*", Section 42. "Enhanced Parallel Master Port (EPMP)" (DS39730). In PIC24F microcontrollers with EDS, the program memory can also be read from EDS. This is called Program Space Visibility (PSV). Table 4-2 lists the total memory accessible by each of the devices in this family.

The EDS is organized as pages, with a single page called an EDS page that equals the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read register (DSRPAG) or Data Space Write register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). For more information on EDS, refer to **Section 4.3.3 "Reading Data from Program Memory Using EDS"**.


TABLE 4-2: TOTAL MEMORY ACCESSIBLE BY THE DEVICE

Devices	Internal RAM	External RAM Access Using EPMP	Program Memory Access Using EDS
PIC24FJXXXGB210	96 Kbytes (30K + 66K ⁽¹⁾)	Yes (up to 16 MB)	Yes
PIC24FJXXXGB206	96 Kbytes (30K + 66K ⁽¹⁾)	Yes (up to 64 KB)	Yes

Note 1: The internal RAM above 30 Kbytes can be accessed through the EDS window.

查询PIC24FJ256GB206供应商 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24FJ256GB210 FAMILY DEVICES⁽¹⁾

查询PIC24FJ256GB206供应商 4.2.2 DATA MEMORY ORGANIZATION

AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCUs and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users

can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is indirectly addressable. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-3. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-4 throughTable 4-33.

			SFR	Space Add	ress				
	xx00	xx20	xx40	xx60	ХХ	80	xxA0	xxC0	xxE0
000h		Core		ICN			Inter	rupts	
100h	Tim	ners	(Capture			C	ompare	
200h	l ² C™	UART	SPI/UART	SPI/I ² C	S	PI	UART	I/	0
300h		ADC/CTMU		_	_	_	—	_	—
400h	—	—	_	_			USB		ANSEL
500h	—	—	_	_	-	_	_		_
600h	EPMP	RTC/Comp	CRC	_			PPS		_
700h	—	—	System	NVM/PMD	-	_	—	_	—

 TABLE 4-3:
 IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = There are no implemented SFRs in this block

TABLE 4-4:		CPU CORE REGISTERS MAP	REG	ISTER	S MAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREGO	0000								Working Register 0	egister 0								0000
WREG1	0002								Working Register 1	egister 1								0000
WREG2	0004								Working Register 2	egister 2								0000
WREG3	0000								Working Register 3	egister 3								0000
WREG4	0008								Working Register 4	egister 4								0000
WREG5	000A								Working Register 5	egister 5								0000
WREG6	0000								Working Register 6	egister 6								0000
WREG7	000E								Working Register 7	egister 7								0000
WREG8	0010								Working Register 8	egister 8								0000
WREG9	0012								Working Register 9	egister 9								0000
WREG10	0014								Working Register 10	gister 10								0000
WREG11	0016								Working Register 11	gister 11								0000
WREG12	0018								Working Register 12	gister 12								0000
WREG13	001A							-	Working Register 13	gister 13								0000
WREG14	001C								Working Register 14	gister 14								0000
WREG15	001E								Working Register 15	gister 15								0800
SPLIM	0020							Stack F	ointer Limi	Stack Pointer Limit Value Register	lister							хххх
PCL	002E							Program	Counter Lo	Program Counter Low Word Register	gister							0000
РСН	0030	Ι		Ι	Ι	Ι		Ι				Program	Counter R	Program Counter Register High Byte	n Byte			0000
DSRPAG	0032	Ι	I	Ι	Ι	Ι	Ι			Exter	nded Data 5	Extended Data Space Read Page Address Register	I Page Add	ress Regist	er			0001
DSWPAG	0034			Ι	Ι			Ι			Extended	Extended Data Space Write Page Address Register	⇒ Write Page	Address R	egister			0001
RCOUNT	0036							Repe	at Loop Co	Repeat Loop Counter Register	ter							XXXX
SR	0042			Ι	Ι			Ι	DC	IPL2	IPL1	IPL0	RA	z	٥٧	Z	c	0000
CORCON	0044			Ι	Ι			Ι		I				IPL3	L			0004
DISICNT	0052	Ι	Ι						Disable	Disable Interrupts Counter Register	Counter Rec	gister						XXXX
TBLPAG	0054	I	I	Ι	Ι	Ι	Ι	I	Ι			Table Me	mory Page	Table Memory Page Address Register	gister			0000
Legend:		olemented,	read as '0';	r = Reserv	ed. Reset v	alues are s	= unimplemented, read as ' 0,2 r = Reserved. Reset values are shown in hexadecimal	adecimal.										

查询PIC	24FJ	[25	66	B2	206	5件	ţ应	ZÈ	5											
	All Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
	Bit 0	CNOPDE	CN16PDE	CN32PDE	CN48PDE ⁽¹⁾	CN64PDE	CN80PDE ⁽¹⁾	CNOIE	CN16IE	CN32IE	CN48IE ⁽¹⁾	CN64IE	CN80IE ⁽¹⁾	CN0PUE	CN16PUE	CN32PUE	CN48PUE ⁽¹⁾	CN64PUE	CN80PUE ⁽¹⁾	
	Bit 1	CN1PDE	CN17PDE	CN33PDE ⁽¹⁾	CN49PDE	CN65PDE	CN81PDE ⁽¹⁾	CN1IE	CN17IE	CN33IE ⁽¹⁾	CN49IE	CN65IE	CN811E ⁽¹⁾	CN1PUE	CN17PUE	CN33PUE ⁽¹⁾	CN49PUE	CN65PUE	CN81PUE ⁽¹⁾	
	Bit 2	CN2PDE	CN18PDE	CN34PDE ⁽¹⁾	CN50PDE	CN66PDE ⁽¹⁾	CN82PDE ⁽¹⁾	CN2IE	CN18IE	CN34IE ⁽¹⁾	CN50IE	CN66IE ⁽¹⁾	CN82IE ⁽¹⁾	CN2PUE	CN18PUE	CN34PUE ⁽¹⁾	CN50PUE	CN66PUE ⁽¹⁾	CN82PUE ⁽¹⁾	
	Bit 3	CN3PDE	CN19PDE ⁽¹⁾	CN35PDE ⁽¹⁾	CN51PDE	CN67PDE ⁽¹⁾	CN83PDE	CN3IE	CN19IE ⁽¹⁾	CN35IE ⁽¹⁾	CN51IE	CN67IE ⁽¹⁾	CN83IE	CN3PUE	CN19PUE ⁽¹⁾	CN35PUE ⁽¹⁾	CN51PUE	CN67PUE ⁽¹⁾	CN83PUE	
	Bit 4	CN4PDE	CN20PDE ⁽¹⁾	CN36PDE ⁽¹⁾	CN52PDE	CN68PDE	CN84PDE	CN4IE	CN20IE ⁽¹⁾	CN36IE ⁽¹⁾	CN52IE	CN68IE	CN84IE	CN4PUE	CN20PUE ⁽¹⁾	CN36PUE ⁽¹⁾	CN52PUE	CN68PUE	CN84PUE	
	Bit 5	CN5PDE	CN21PDE ⁽¹⁾	CN37PDE ⁽¹⁾	CN53PDE	CN69PDE	I	CN5IE	CN211E ⁽¹⁾	CN37IE ⁽¹⁾	CN53IE	CN69IE	-	CN5PUE	CN21PUE ⁽¹⁾	CN37PUE ⁽¹⁾	CN53PUE	CN69PUE	-	
	Bit 6	CN6PDE	CN22PDE	CN38PDE ⁽¹⁾	CN54PDE	CN70PDE ⁽¹⁾	I	CN6IE	CN22IE	CN38IE ⁽¹⁾	CN54IE	CN70IE ⁽¹⁾	-	CN6PUE	CN22PUE	CN38PUE ⁽¹⁾	CN54PUE	CN70PUE ⁽¹⁾	-	
	Bit 7	CN7PDE	CN23PDE	CN39PDE ⁽¹⁾	CN55PDE	CN71PDE	I	CN7IE	CN23IE	CN39IE ⁽¹⁾	CN55IE	CN71IE	-	CN7PUE	CN23PUE	CN39PUE ⁽¹⁾	CN55PUE	CN71PUE	-	
	Bit 8	CN8PDE	CN24PDE	CN40PDE ⁽¹⁾	CN56PDE	I	I	CN8IE	CN24IE	CN40IE ⁽¹⁾	CN56IE	I	Ι	CN8PUE	CN24PUE	CN40PUE ⁽¹⁾	CN56PUE	I	Ι	
	Bit 9	CN9PDE	CN25PDE	CN41PDE ⁽¹⁾	CN57PDE ⁽¹⁾	CN73PDE ⁽¹⁾	I	CN9IE	CN25IE	CN41IE ⁽¹⁾	CN57IE ⁽¹⁾	CN73IE ⁽¹⁾	Ι	CN9PUE	CN25PUE	CN41PUE ⁽¹⁾	CN57PUE ⁽¹⁾	CN73PUE ⁽¹⁾	Ι	
	Bit 10	CN10PDE	CN26PDE	CN42PDE ⁽¹⁾	CN58PDE	CN74PDE ⁽¹⁾	I	CN10IE	CN26IE	CN42IE ⁽¹⁾	CN58IE	CN74IE ⁽¹⁾	Ι	CN10PUE	CN26PUE	CN42PUE ⁽¹⁾	CN58PUE	CN74PUE ⁽¹⁾	Ι	
	Bit 11	CN11PDE	CN27PDE	CN43PDE ⁽¹⁾	CN59PDE	CN75PDE ⁽¹⁾	Ι	CN11IE	CN27IE	CN43IE ⁽¹⁾	CN59IE	CN75IE ⁽¹⁾	-	CN11PUE	CN27PUE	CN43PUE ⁽¹⁾	CN59PUE	CN75PUE ⁽¹⁾	-	hexadecimal
AP	Bit 12	CN12PDE	CN28PDE	CN44PDE ⁽¹⁾	CN60PDE	CN76PDE ⁽¹⁾	I	CN12IE	CN28IE	CN44IE ⁽¹⁾	CN60IE	CN76IE ⁽¹⁾	Ι	CN12PUE	CN28PUE	CN44PUE ⁽¹⁾	CN60PUE	CN76PUE ⁽¹⁾	Ι	— = unimplemented_read as '0' Reset values are shown in heyadecimal
ICN REGISTER MAP	Bit 13	CN13PDE	CN29PDE	CN45PDE ⁽¹⁾	CN61PDE	CN77PDE ⁽¹⁾	1	CN13IE	CN29IE	CN45IE ⁽¹⁾	CN61IE	CN77IE ⁽¹⁾	Ι	CN13PUE	CN29PUE	CN45PUE ⁽¹⁾	CN61PUE	CN77PUE ⁽¹⁾	Ι	,0' Reset valu
N REGI	Bit 14	CN14PDE	CN30PDE	CN47PDE ⁽¹⁾ CN46PDE ⁽¹⁾	CN62PDE	CN78PDE ⁽¹⁾	I	CN14IE	CN30IE	CN46IE ⁽¹⁾	CN62IE	CN78IE ⁽¹⁾	Ι	CN14PUE	CN30PUE	0072 CN47PUE ⁽¹⁾ CN46PUE ⁽¹⁾	CN62PUE	0076 CN79PUE ⁽¹⁾ CN78PUE ⁽¹⁾	Ι	mented read as
	Bit 15	CN15PDE	CN31PDE	CN47PDE ⁽¹⁾	CN63PDE	CN79PDE ⁽¹⁾	I	CN15IE	CN31IE	CN47IE ⁽¹⁾	CN63IE	CN79IE ⁽¹⁾	Ι	CN15PUE	CN31PUE	CN47PUE ⁽¹⁾	CN63PUE	CN79PUE ⁽¹⁾	Ι	= unimpler
н 4-	Addr	0056	0058	005A	005C	005E	0900	0062	0064	9900	0068	006A	006C	006E	0200	0072	0074	0076	0078	
TABLE 4-5:	File Name	CNPD1	CNPD2	CNPD3	CNPD4	CNPD5	CNPD6	CNEN1	CNEN2	CNEN3	CNEN4	CNEN5	CNEN6	CNPU1	CNPU2	CNPU3	CNPU4	CNPU5	CNPU6	l egend:

Legend: Note

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Unimplemented in 64-pin devices; read as '0'.
 ÷

© 2010 Microchip Technology Inc.

查询PIC24FJ256GB206供应商

TABLE	: 4-6:	FN	ERRUP'	INTERRUPT CONTROLLER RE	ROLLE		GISTER MAP	AP										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
INTCON1	0080	NSTDIS	I	1	I		1	I	I	1	I	I	MATHERR	ADDRERR	STKERR	OSCFAIL	I	0000
INTCON2	0082	ALTIVT	DISI	Ι	I	I	I	I	I	1	Ι	I	INT4EP	INT3EP	INTZEP	INT1EP	INTOEP	0000
IFS0	0084	Ι	Ι	AD1IF	U1TXIF	U1RXIF	SPI11F	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	1	11F	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	UZRXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	1	IC8IF	IC7IF	Ι	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	1	Ι	HIPIF	OC8IF	0C7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	I	Ι	Ι	SPI2IF	SPF2IF	0000
IFS3	008A	1	RTCIF	1	I	I	I	I	I	1	INT4IF	INT3IF	I	I	MI2C2IF	SI2C2IF	I	0000
IFS4	008C	Ι	Ι	CTMUIF	Ι	Ι	Ι	Ι	LVDIF	Ι	Ι	Ι	Ι	CRCIF	UZERIF	U1ERIF	-	0000
IFS5	008E	Ι	Ι	1ICOIF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF	N4ERIF	USB1IF	MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF	I	0000
IEC0	0094	Ι	Ι	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	0C2IE	IC2IE	Ι	TIIE	OC1IE	IC1IE	INTOIE	0000
IEC1	9600	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	0C4IE	OC3IE	I	IC8IE	IC7IE	Ι	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	8600	1	Ι	BIMPIE	0C8IE	OC7IE	OCGIE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	I	Ι	Ι	SPI2IE	SPF2IE	0000
IEC3	A000	Ι	RTCIE	1	I	I	I	I	I	1	INT4IE	INT3IE	I	-	MI2C2IE	SI2C2IE	I	0000
IEC4	009C	Ι	Ι	CTMUIE	I	I	I	Ι	LVDIE	1	Ι	I	I	CRCIE	UZERIE	U1ERIE	I	0000
IEC5	3600	Ι	Ι	IC9IE	0C9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE	U4ERIE	USB1IE	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	I	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	Ι	0C1IP2	OC1IP1	OC1IP0	Ι	IC1IP2	IC1IP1	IC1IP0	Ι	INT0IP2	INT0IP1	INTOIPO	4444
IPC1	00A6	Ι	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0	-	IC2IP2	IC2IP1	IC2IP0	Ι	Ι	Ι	-	4440
IPC2	00A8	I	U1RXIP2	U1RXIP1	U1RXIP0	Ι	SPI1IP2	SPI1IP1	SPI1IP0	Ι	SPF1IP2	SPF1IP1	SPF1IP0	Ι	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA		Ι	-	Ι	-	Ι	Ι	1	-	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	Ι	CNIP2	CNIP1	CNIP0	Ι	CMIP2	CMIP1	CMIP0	-	MI2C1IP2	MI2C1IP1	MI2C1IP0	Ι	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE		IC8IP2	IC8IP1	IC8IP0	Ι	IC7IP2	IC7IP1	IC7IP0		Ι	Ι	Ι	Ι	INT1IP2	INT1IP1	INT1IP0	4404
IPC6	00B0	I	T4IP2	T4IP1	T4IP0	Ι	0C4IP2	0C4IP1	OC4IP0	Ι	OC3IP2	OC3IP1	OC3IP0	Ι	Ι	Ι		4440
IPC7	00B2	Ι	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0	-	INT2IP2	INT2IP1	INT2IP0	-	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	I	Ι	Ι	Ι	I	I	Ι	I	Ι	SPI2IP2	SPI2IP1	SP12IP0	Ι	SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	Ι	IC5IP2	IC5IP1	IC5IP0	Ι	IC4IP2	IC4IP1	IC4IP0	Ι	IC3IP2	IC3IP1	IC3IP0	Ι	Ι	Ι		4440
IPC10	00B8		OC7IP2	OC7IP1	OC7IP0	Ι	OC6IP2	OC6IP1	OC6IP0	Ι	OC5IP2	OC5IP1	OC5IP0	Ι	IC6IP2	IC6IP1	IC6IP0	4444
IPC11	00BA	Ι	Ι	I	I	I	I	Ι	Ι	Ι	PMPIP2	PMPIP1	DMPIPO	Ι	OC8IP2	OC8IP1	OC8IP0	0044
IPC12	00BC		Ι	Ι	1	Ι	MI2C2IP2	MI2C2IP1	MI2C2IP0	Ι	SI2C2IP2	SI2C2IP1	SI2C2IP0	Ι	Ι	Ι		0440
IPC13	00BE		I	Ι	I	I	INT4IP2	INT4IP1	INT4IP0	I	INT3IP2	INT3IP1	INT3IP0	Ι		Ι		0440
IPC15	00C2		I	I	I		RTCIP2	RTCIP1	RTCIP0			I		I	I	I		0400
Legend:	"	unimplement	ted, read as '0'	— = unimplemented, read as '0'. Reset values are shown in hexadeci	are shown in f	rexadecimal.												

TABLE 4-6:	4-6:	INTE	ERRUP'	r cont	INTERRUPT CONTROLLER REGISI	R REGI		AP (CON	ER MAP (CONTINUED)	~									查询P
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	IC24
IPC16	00C4	1	CRCIP2	CRCIP1	CRCIPO	I	U2ERIP2	U2ERIP1	UZERIPO	I	U1ERIP2	U1ERIP1	U1ERIP0	I	1	I	1	4440	FJ
IPC18	00C8	I	I	I	I	1	I	I	1	1	I	I	I	I	LVDIP2	LVDIP1	LVDIP0	0004	25
IPC19	00CA	I	I	I	I	1	I	I	I	I	CTMUIP2	CTMUIP1	CTMUIPO	I	I	I	I	0040	6G
IPC20	00CC	I	U3TXIP2	L 3TXIP1	U3TXIP0	I	U3RXIP2	U3RXIP1	U3RXIP0	I	U3ERIP2	U3ERIP1	U3ERIPO	I	I	-	I	4440	B2
IPC21	00CE	Ι	U4ERIP2	14ERIP1	U4ERIP0	I	USB1IP2	USB1IP1	USB1IP0	I	MI2C3IP2	MI2C3IP1	MI2C3IP0	Ι	SI2C3IP2	SI2C3IP1	SI2C3IP0	4444	06
IPC22	0000	Ι	SPI3IP2	1918191	SPI3IP0	I	SPF3IP2	SPF3IP1	SPF3IP0	I	U4TXIP2	U4TXIP1	U4TXIP0	Ι	U4RXIP2	14RXIP1	U4RXIP0	4444	;供
IPC23	00D2	Ι	Ι	—	Ι	1	1	-	Ι	1	IC9IP2	IC9IP1	IC9IP0	-	OC9IP2	OC9IP1	OC9IP0	0044	Ń
INTTREG	00E0	CPUIRQ	-	ΛΗΟΓD	-	ILR3	ILR2	ILR1	ILRO	1	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2 VECNUM1	VECNUM1	VECNUMO	0000	宿
l enend		unimplements	od read as '0'	Recet values	— ≡ unimplemented read as '∩' Beset values are shown in hexaderima	Invadedimal													Ā

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TIMER REGISTER MAP TABLE 4-7:

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 F	Timer1 Register								0000
PR1	0102								Timer1 Period Register	od Register								FFFF
T1CON	0104	TON	I	TSIDL	I	I	I	I	I	I	TGATE	TCKPS1	TCKPS0	I	TSYNC	TCS	I	0000
TMR2	0106								Timer2 F	Timer2 Register								0000
TMR3HLD	0108						Time	r3 Holding F	Register (for	32-bit timer	Timer3 Holding Register (for 32-bit timer operations only)	nly)						0000
TMR3	010A								Timer3 F	Timer3 Register								0000
PR2	010C								Timer2 Period Register	od Register								FFFF
PR3	010E								Timer3 Period Register	od Register								FFFF
T2CON	0110	TON	Ι	TSIDL	Ι	Ι	I	I	Ι	Ι	TGATE	TCKPS1	TCKPS0	T32	Ι	TCS	Ι	0000
T3CON	0112	TON	Ι	TSIDL	Ι	Ι	Ι	I	Ι	Ι	TGATE	TCKPS1	TCKPS0	I	Ι	TCS	I	0000
TMR4	0114								Timer4 F	Timer4 Register								0000
TMR5HLD	0116						Π	mer5 Holdin	g Register (for 32-bit op	Timer5 Holding Register (for 32-bit operations only)	(0000
TMR5	0118								Timer5 F	Timer5 Register								0000
PR4	011A								Timer4 Peri	Timer4 Period Register								FFFF
PR5	011C								Timer5 Period Register	od Register								FFFF
T4CON	011E	TON	Ι	TSIDL	Ι	Ι	Ι	I	Ι	Ι	TGATE	TCKPS1	TCKPS0	T45	Ι	TCS	I	0000
T5CON	0120	TON	Ι	TSIDL	Ι	Ι	Ι	Ι	Ι	Ι	TGATE	TCKPS1	TCKPS0	Ι	Ι	TCS	Ι	0000
Legend:	— = unin	nplemented,	read as '0'.	— = unimplemented, read as '0'. Reset values are shown in hexadecimal	s are shown	n in hexadeci	mal.											

PIC24FJ256GB210 FAMILY

 $\ensuremath{\textcircled{}^{\odot}}$ 2010 Microchip Technology Inc.

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Motio Bits Bits <t< th=""><th>TABLE 4-8:</th><th>4-8:</th><th>.NANI</th><th>T CAPT</th><th>URE R</th><th>EGISTE</th><th>INPUT CAPTURE REGISTER MAP</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>-</th><th></th></t<>	TABLE 4-8:	4-8:	.NANI	T CAPT	URE R	EGISTE	INPUT CAPTURE REGISTER MAP										_	-	
010	10140 CSUL CTSLI C	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0 02 1	0102011001	IC1CON1	0140	I	I	ICSIDL	ICTSEL2		ICTSEL0		I		IC11	ICIO	ICOV	ICBNE	ICM2	ICM1	ICMO	0000
010 011 <td>014 Final could be relationer (a final could be relationer) Final could be relationer)</td> <td>IC1CON2</td> <td>0142</td> <td>Ι</td> <td>I</td> <td>Ι</td> <td>Ι</td> <td>1</td> <td>Ι</td> <td>Ι</td> <td>IC32</td> <td>ICTRIG</td> <td>TRIGSTAT</td> <td>I</td> <td>SYNCSEL4</td> <td>SYNCSEL3</td> <td></td> <td>SYNCSEL1</td> <td></td> <td>000D</td>	014 Final could be relationer (a final could be relationer)	IC1CON2	0142	Ι	I	Ι	Ι	1	Ι	Ι	IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3		SYNCSEL1		000D
01001101	0106 0111 011 011 011 </td <td>IC1BUF</td> <td>0144</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Input Cap</td> <td>ture 1 Buffei</td> <td>Register</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	IC1BUF	0144								Input Cap	ture 1 Buffei	Register							0000
0 0	0148 Standard	IC1TMR	0146								nput Capture	s 1 Timer Va	lue Register							XXXX
0 104 - </td <td>0104 S-WICSELA S-WICSELA<td>IC2CON1</td><td>0148</td><td>I</td><td>I</td><td>ICSIDL</td><td>ICTSEL2</td><td>ICTSEL1</td><td>ICTSEL0</td><td>Ι</td><td>I</td><td> </td><td>ICI1</td><td>ICI0</td><td>ICOV</td><td>ICBNE</td><td>ICM2</td><td>ICM1</td><td>ICMO</td><td>0000</td></td>	0104 S-WICSELA S-WICSELA <td>IC2CON1</td> <td>0148</td> <td>I</td> <td>I</td> <td>ICSIDL</td> <td>ICTSEL2</td> <td>ICTSEL1</td> <td>ICTSEL0</td> <td>Ι</td> <td>I</td> <td> </td> <td>ICI1</td> <td>ICI0</td> <td>ICOV</td> <td>ICBNE</td> <td>ICM2</td> <td>ICM1</td> <td>ICMO</td> <td>0000</td>	IC2CON1	0148	I	I	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	Ι	I		ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICMO	0000
010c 010c <th< td=""><td>0100 1</td><td>C2CON2</td><td>014A</td><td>I</td><td>I</td><td>I</td><td>Ι</td><td>1</td><td>Ι</td><td> </td><td>IC32</td><td>ICTRIG</td><td>TRIGSTAT</td><td>I</td><td>SYNCSEL4</td><td>SYNCSEL3</td><td></td><td>SYNCSEL1</td><td></td><td>0000</td></th<>	0100 1	C2CON2	014A	I	I	I	Ι	1	Ι		IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3		SYNCSEL1		0000
0104 0104 <th< td=""><td>014E </td><td>IC2BUF</td><td>014C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Input Cap</td><td>ture 2 Buffer</td><td>Register</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>	014E	IC2BUF	014C								Input Cap	ture 2 Buffer	Register							0000
0 0 1	0100 CISIDI	IC2TMR	014E								nput Capture	s 2 Timer Va	lue Register							XXXX
0 0	0 0 - - - - - - - - Nor Nor <td>C3CON1</td> <td>0150</td> <td>I</td> <td>I</td> <td>ICSIDL</td> <td>ICTSEL2</td> <td></td> <td>ICTSEL0</td> <td>I</td> <td>I</td> <td> </td> <td>ICI1</td> <td>ICIO</td> <td>ICOV</td> <td>ICBNE</td> <td>ICM2</td> <td>ICM1</td> <td>ICM0</td> <td>0000</td>	C3CON1	0150	I	I	ICSIDL	ICTSEL2		ICTSEL0	I	I		ICI1	ICIO	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
0164 0164 <th< td=""><td>0163Ipont Capture 3 Birter Negleter0164$$$$$$$$$$$$$$$$$$$$$$$$</td><td>C3CON2</td><td>0152</td><td>I</td><td>I</td><td> </td><td>Ι</td><td>1</td><td>Ι</td><td> </td><td>IC32</td><td>ICTRIG</td><td>TRIGSTAT</td><td>I</td><td>SYNCSEL4</td><td>SYNCSEL3</td><td></td><td>SYNCSEL1</td><td>SYNCSEL0</td><td>0000</td></th<>	0163Ipont Capture 3 Birter Negleter0164 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	C3CON2	0152	I	I		Ι	1	Ι		IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3		SYNCSEL1	SYNCSEL0	0000
0105 011 <td>0105 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111 111111 111111 111111 1111111 111111</td> <td>C3BUF</td> <td>0154</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Input Cap</td> <td>ture 3 Buffer</td> <td>Register</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	0105 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111 111111 111111 111111 1111111 111111	C3BUF	0154								Input Cap	ture 3 Buffer	Register							0000
0 008 CSUL CTSLI CTSLI CTSLI CUC COV COV </td <td>0105 <td>C3TMR</td><td>0156</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>nput Capture</td><td>s 3 Timer Va</td><td>lue Register</td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></td>	0105 <td>C3TMR</td> <td>0156</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>nput Capture</td> <td>s 3 Timer Va</td> <td>lue Register</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>XXXX</td>	C3TMR	0156								nput Capture	s 3 Timer Va	lue Register							XXXX
0 0 -	0 0054 C22 CTR06 TR0CSTAT SWNCSEL3 SWNCSEL3 SWNCSEL1	C4CON1	0158	I	I	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	I	I		IC11	ICI0	ICOV	ICBNE	ICM2	ICM1	ICMO	0000
01020110	0105 Processional and transmersional and transmersina and transmersiona and transmersional and transmersio	C4CON2	015A	I	I	I	Ι	1	Ι	I	IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3		SYNCSEL1		0000
01201	010E 012 0120	C4BUF	015C								Input Cap	ture 4 Buffer	Register							0000
0100 CSI0L CTSEL	0160 - - - - CIT COV CON CON <	C4TMR	015E							_	nput Capture	s 4 Timer Va	lue Register							XXXX
0 1060 100 10 10 10 10 100 100	01020112011 <th0< td=""><td>C5CON1</td><td>0160</td><td>Ι</td><td>Ι</td><td>ICSIDL</td><td>ICTSEL2</td><td>ICTSEL1</td><td>ICTSEL0</td><td>Ι</td><td>Ι</td><td> </td><td>ICI1</td><td>ICIO</td><td>ICOV</td><td>ICBNE</td><td>ICM2</td><td>ICM1</td><td>ICMO</td><td>0000</td></th0<>	C5CON1	0160	Ι	Ι	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	Ι	Ι		ICI1	ICIO	ICOV	ICBNE	ICM2	ICM1	ICMO	0000
010401	0103 0104 0104 0105 0104 0105 <th< td=""><td>C5CON2</td><td>0162</td><td>I</td><td>I</td><td>Ι</td><td>Ι</td><td>Ι</td><td>Ι</td><td>Ι</td><td>IC32</td><td>ICTRIG</td><td>TRIGSTAT</td><td>I</td><td>SYNCSEL4</td><td>SYNCSEL3</td><td></td><td></td><td></td><td>0000</td></th<>	C5CON2	0162	I	I	Ι	Ι	Ι	Ι	Ι	IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3				0000
0106011001	01660110	C5BUF	0164								Input Cap	ture 5 Buffei	Register							0000
0166 CSIDL CTSEL1 CTSEL1 CTSEL1 CTSEL1 CTSEL1 CTSEL1 CTSEL1 CTSEL1 COUL CENC CENC<	01660101010101010101010<	C5TMR	0166							_	nput Capture	s 5 Timer Va	lue Register							XXXX
0164 C32 CTGG TRGSTAT SWCSEL3 SWCSEL3 SWCSEL3 SWCSEL3 SWCSEL1 SWCSEL1 <th< td=""><td>016. - - 1 - 1 - 1 - 1 - NUCSEL3 SWICSEL3 SWICSEL1 016 -</td><td>C6CON1</td><td>0168</td><td> </td><td> </td><td>ICSIDL</td><td>ICTSEL2</td><td>ICTSEL1</td><td>ICTSEL0</td><td>Ι</td><td> </td><td> </td><td>ICI1</td><td>ICI0</td><td>ICOV</td><td>ICBNE</td><td>ICM2</td><td>ICM1</td><td>ICMO</td><td>0000</td></th<>	016. - - 1 - 1 - 1 - 1 - NUCSEL3 SWICSEL3 SWICSEL1 016 -	C6CON1	0168			ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	Ι			ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICMO	0000
01060110120120120120120120120120120120120120120120120120120120120130	016cIntercent of the content of the conte	C6CON2	016A	Ι	Ι		Ι	Ι	Ι	Ι	IC32	ICTRIG	TRIGSTAT	Ι	SYNCSEL4	SYNCSEL3		SYNCSEL1		000D
010E0110120120120120120120120120120120120120130140100	016E Input Capture Register 0170 0-	C6BUF	016C								Input Cap	ture 6 Buffer	Register							0000
0170	0170CSDLCTSEL2CTSEL1CTSEL3CTSEL3CTSEL3CDMECDMECDM2CDMECDM2CDM10172SYNCSEL3	C6TMR	016E							_	nput Capture	s 6 Timer Va	lue Register							XXXXX
00NCSEL3SYNCSEL3S	000NCSEL3SYNC	C7CON1	0170	Ι		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	Ι	I		IC11	ICI0	ICOV	ICBNE	ICM2	ICM1		0000
0174 Input Capture 7 Buffer Register 0176 0178 - I CSIDL I CTSEL2 I CTSEL1 I CTSEL2 I CTSEL2 <td< td=""><td>0174 Input Capture 7 Buffer Register 0176 </td><td>C7CON2</td><td>0172</td><td>I</td><td> </td><td> </td><td>Ι</td><td> </td><td>Ι</td><td>Ι</td><td>IC32</td><td>ICTRIG</td><td>TRIGSTAT</td><td> </td><td>SYNCSEL4</td><td>SYNCSEL3</td><td></td><td>SYNCSEL1</td><td></td><td>000D</td></td<>	0174 Input Capture 7 Buffer Register 0176	C7CON2	0172	I			Ι		Ι	Ι	IC32	ICTRIG	TRIGSTAT		SYNCSEL4	SYNCSEL3		SYNCSEL1		000D
0176 0178 ICSIDL ICTSEL2 ICTSEL1 ICTSEL2 ICTSEL2 ICTSEL3 S'NCSEL3 S'NC	0176 0178 0 1 </td <td>C7BUF</td> <td>0174</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Input Cap</td> <td>ture 7 Buffei</td> <td>Register</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	C7BUF	0174								Input Cap	ture 7 Buffei	Register							0000
0178 ICSIDL ICTSEL2 ICTSEL2 ICTSEL3	0178 ICSIDL ICTSEL2 ICTSEL1 ICTSEL3 ICTSEL3 ICTSEL3 ICTSEL3 ICTSEL3 ICTSEL3 ICTSEL3 ICTSEL3 ICTSEL3 ICD3	C7TMR	0176							_	nput Capture	s 7 Timer Va	lue Register							XXXX
0 0 - - - - - - - 102<	017A - - - - - 1032 ITRIGSTAT - SYNCSEL3 SYNCSEL3 <t< td=""><td>C8CON1</td><td>0178</td><td>Ι</td><td>Ι</td><td>ICSIDL</td><td>ICTSEL2</td><td>ICTSEL1</td><td>ICTSEL0</td><td>Ι</td><td> </td><td> </td><td>ICI1</td><td>ICI0</td><td>ICOV</td><td>ICBNE</td><td>ICM2</td><td>ICM1</td><td>ICMO</td><td>0000</td></t<>	C8CON1	0178	Ι	Ι	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	Ι			ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICMO	0000
017c Input Capture 8 Buffer Register 017E 017E 017E Input Capture 8 Timer Yalue Register 0180 - ICSIDL ICTELIZ ICTELIZ ICTELIZ 0180 - - ICSIDL ICTELIZ	017C Input Capture 8 Buffer Register 017E	C8CON2	017A		Ι	Ι	Ι	Ι	Ι	Ι	IC32	ICTRIG	TRIGSTAT		SYNCSEL4	SYNCSEL3		SYNCSEL1		0000
017E Imput Capture 8 Timer Value Register 0180 ICSIDL ICTSEL2 SYNCSEL3 SYNCSEL3 SYNCSEL3 SYNCSEL3 SYNCSEL2 SYNCSEL2 SYNCSEL2 SYNCSEL2 SYNCSEL2 SYNCSEL2 SYNCSEL2 SYNCSEL3	017E Input Capture 8 Timer Value Register 0180 - - ICSIDL ICTSEL1 ICD ICOV ICBNE ICM1 I	C8BUF	017C								Input Cap	ture 8 Buffer	Register							0000
0 0180 - ICSIDL ICTSEL2 ICTSEL3 ICM1 ICM3 ICM3 ICM1 ICM3 ICM3 ICM3 ICM3 ICM1 ICM3 ICM3 ICM3 ICM3 ICM1 ICM3 ICM3 ICM1 ICM3	0180 - CSIDL ICTSEL2 ICTSEL3 ICM3 ICM1 ICM3 ICM1 ICM3 ICM1 ICM3 ICM1 ICM3 ICM1 ICM3 ICM1 ICM1 ICM3 ICM1 ICM	C8TMR	017E							_	nput Capture	s 8 Timer Va	lue Register							XXXX
2 0182 - - - - - - IC32 ICTRIG TRIGSTAT - SYNCSEL3 SYNCSEL1 SYNCSEL1<	I 0182 — — — — — — IC32 ICTRIG TRIGSTAT — SYNCSEL3 SYNCSEL3 SYNCSEL1 0184	C9CON1	0180	I	I	ICSIDL	ICTSEL2		ICTSEL0		Ι	I	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1		0000
0184 Input Capture 9 Buffer Register 0186 Input Capture 9 Timer Value Register	0184 0186 0186 018e 018e 018e 01exed as '0'. Reset values are shown in hexadecimal.	C9CON2	0182	Ι	I		Ι	I		Ι	IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3		SYNCSEL1		0000
0186 Input Capture 9 Timer Value Register	0186 0186 0186 0186 0186 0186 0186 0186	COBUF	0184								Input Cap	ture 9 Buffei	Register							0000
		C9TMR	0186							_	nput Capture	s 9 Timer Va	lue Register							XXXX

	1									:
Bit 11 Bit 10	ã	Bit 9 Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 Bit 0) All Resets
0	ΪŻ	_	ENFLTO							
– DCB1	Ы	DCB0 OC32	OCTRIG	Аī	OCTRIS SY	SYNCSEL4	SYNCSEL3 S	SYNCSEL2 SN	SYNCSEL1 SYNCSEL0	
		Output Com	Output Compare 1 Secondary Register	Register						0000
		Output	Output Compare 1 Register	ster						0000
		Output Comp	Output Compare 1 Timer Value Register	Register						XXXX
OCTSEL1 OCTSEL0		ENFLT2 ENFLT1	ENFLT0	OCFLT2	OCFLT1 C	OCFLT0	TRIGMODE	OCM2	OCM1 OCM0	0000 0000
	1				_	-	-	_	_	
		Output	Output Compare 2 Register	ster						0000
		Output Comp	Output Compare 2 Timer Value Register	; Register						XXXX
OCTSEL1 OCTSEL0		ENFLT2 ENFLT1	ENFLTO	OCFLT2	OCFLT1 C	OCFLT0	TRIGMODE	OCM2	OCM1 OCM0	0000 0
- DCB1	DC	DCB0 0C32	OCTRIG	TRIGSTAT	OCTRIS SY	SYNCSEL4	SYNCSEL3 S	SYNCSEL2 SN	SYNCSEL1 SYNCSEL0	ELO 000C
		Output Comp	Output Compare 3 Secondary Register	Register						0000
		Output	Output Compare 3 Register	ster						0000
		Output Comp	Output Compare 3 Timer Value Register	Register						XXXX
OCTSEL1 OCTSEL0		-	ENFLTO							0000 0
– DCB1	DCB0		OCTRIG	ᆟ	OCTRIS SY	SYNCSEL4	SYNCSEL3 S	SYNCSEL2 SN	SYNCSEL1 SYNCSEL0	
		Output Com	Output Compare 4 Secondary Register	Register						0000
		Output	Output Compare 4 Register	ster						0000
-	-	Output Comp	Output Compare 4 Timer Value Register	-	-	-			-	XXXX
OCTSEL1 OCTSEL0		_	ENFLT0							_
	nanu		Output Compare 5 Secondary Register	7	001149	of NCOEL4	of NUCSELS 0	STINUSELZ ST	STINCSELI STINCSELU	0000
		Output	Output Compare 5 Register	ster						0000
		Output Comp	Output Compare 5 Timer Value Register	Register						XXXX
OCTSEL1 OCTSEL0		ENFLT2 ENFLT1	ENFLTO	OCFLT2		OCFLT0	TRIGMODE	OCM2	OCM1 OCM0	0000 0
- DCB1	DCB0		OCTRIG	ħ	OCTRIS SY	SYNCSEL4	SYNCSEL3 S	SYNCSEL2 SN	SYNCSEL1 SYNCSEL0	ELO 000C
		Output Com	Output Compare 6 Secondary Register	Register						0000
		Output	Output Compare 6 Register	ster						0000
		Output Comp	Output Compare 6 Timer Value Register	Register						XXXX
OCTSEL1 OCTSEL0		ENFLT2 ENFLT1	ENFLTO	OCFLT2	OCFLT1 C	OCFLT0	TRIGMODE	OCM2	OCM1 OCM0	0000 0
- DCB1	1 DCB0		OCTRIG	AT	OCTRIS SY	SYNCSEL4	SYNCSEL3 S	SYNCSEL2 SN	SYNCSEL1 SYNCSEL0	ELO 000C
		Output Com	Output Compare 7 Secondary Register	Register						0000
		Orthurt	Outnut Compare 7 Register	tter						0000
		ndino		2						-

查	询P] g	1		-							商	ſ		ş		[* .	C	6	0	0		0	[*:			0	0		0	F*.
-	All Resets	0000	0000	0000	0000	XXXX	0000	0000	0000	0000	XXXXX			All Resets	0000	00FF	0000	1000	0000	0000	0000	0000	00FF	0000	1000	0000	0000	0000	0000	00FF
	Bit 0	OCMO	SYNCSEL0				OCMO	SYNCSELO						Bit 0				SEN	TBF						SEN	TBF				
-	Bit 1	OCM1	SYNCSEL1				OCM1	SYNCSEL1						Bit 1				RSEN	RBF						RSEN	RBF				
-	Bit 2	OCM2	SYNCSEL2 SY				OCM2	SYNCSEL2 SN						Bit 2				PEN	RM						PEN	RW				
-	Δ		-											Bit 3	legister	Register	Register	RCEN	S			legister	Register	Register	RCEN	S			Register	Register
	Bit 3	TRIGMODE	SYNCSEL3				TRIGMODE	SYNCSEL3						Bit 4	I2C1 Receive Register	I2C1 Transmit Register	2C1 Baud Rate Generator Register	ACKEN	Р	gister	Register	I2C2 Receive Register	I2C2 Transmit Register	2C2 Baud Rate Generator Register	ACKEN	Р	gister	Register	I2C3 Receive Register	I2C3 Transmit Register
	Bit 4	OCFLT0	SYNCSEL4				OCFLT0	SYNCSEL4							I2C.	12C1	aud Rate		Ā	I2C1 Address Register	I2C1 Address Mask Register	12C2	12C2	aud Rate		Ā	2C2 Address Register	I2C2 Address Mask Register	12CC	12C3
-	Bit 5	OCFLT1	OCTRIS S				OCFLT1	OCTRIS S						Bit 5			12C1 E	N ACKDT	/ D/A	12C1 /	I2C1 Add			12C2 E	N ACKDT	/ D/A	12C2 /	12C2 Add		
-				er er		er			er er		er			Bit 6				STREN	IZCOV						STREN	12COV				
-	Bit 6	OCFLT2	TRIGSTAT	dary Regist	Register	/alue Regist	OCFLT2	TRIGSTAT	dary Regist	Register	/alue Regist			Bit 7				GCEN	IWCOL						GCEN	INCOL				
-	Bit 7	ENFLTO	OCTRIG	Output Compare 8 Secondary Register	Output Compare 8 Register	Output Compare 8 Timer Value Register	ENFLTO	OCTRIG	Output Compare 9 Secondary Register	Output Compare 9 Register	Output Compare 9 Timer Value Register			Bit 8	1	Ι		SMEN	ADD10			Ι	I		SMEN	ADD10			Ι	I
ED)	Bit 8	ENFLT1	0C32	Output Com	Output	Output Comp	ENFLT1	0C32	Output Com	Output	Output Comp			Bit 9	1	1	1	DISSLW	GCSTAT				1	Ι	DISSLW	GCSTAT			1	1
NTINU	Bit 9	ENFLT2	DCB0				ENFLT2	DCB0						Bit 10			1	A10M E	BCL						A10M E	BCL 0	1			1
AP (CONTINUED)	Bit 10	OCTSEL0	DCB1				DCTSELO	DCB1				decimal.		7				IPMIEN A	-				-		IPMIEN A		-			
OUTPUT COMPARE REGISTER M	Bit 11	OCTSEL1 (I				OCTSEL1 (1				wn in hexa		12 Bit												-				
EGIS.	Bit 12	OCTSEL2 00	N				OCTSEL2 00	OCINV				s are sho	-	Bit 12		-		L SCLREL	1	-		-	1		L SCLREI	1	-		-	
ARE F			EN OCINV									eset value	RAP	Bit 13		1	1	I2CSIDL	I	1	Ι	Ι	I	Ι	12CSIDL	Ι		Ι	1	1
COMP	Bit 13	OCSIDL	- FLTTRIEN				OCSIDL	- FLTTRIEN				id as '0'. R	I ² C™ REGISTER MAP	Bit 14	T	Ι	I	I	TRSTAT	Ι	Ι	Ι	I	Ι	Ι	TRSTAT	Ι	Ι	Ι	I
TPUT	Bit 14	1	FLTOUT				1	FLTOUT				iented, rea	TM RE(Bit 15	1	Ι	I	IZCEN	ACKSTAT	I			I		12CEN	ACKSTAT	Ι		Ι	I
no	Bit 15	I	FLTMD				Ι	FLTMD				= unimplemented, read as '0'. Reset values are shown in hexac		Addr	0200	0202	0204	0206	0208 A	020A	020C	0210	0212	0214	0216	0218 A	021A	021C	0270	0272
: 4-9:	e Addr	01D6	01D8	01DA	01DC	01DE	01E0	01E2	01E4	01E6	01E8	"	: 4-10																	
TABLE 4-9:	File Name	OC8CON1	OC8CON2	OC8RS	OC8R	OC8TMR	OC9CON1	OC9CON2	OC9RS	OC9R	OC9TMR	Legend:	TABLE 4-10:	File Name	I2C1RCV	I2C1TRN	I2C1BRG	I2C1CON	12C1STAT	I2C1ADD	I2C1MSK	12C2RCV	I2C2TRN	12C2BRG	12C2CON	12C2STAT	I2C2ADD	I2C2MSK	12C3RCV	12C3TRN

I2C3CON I2C3STAT

12C3BRG

1000 0000 0000

SEN TBF

RSEN

RM R

RCEN

ACKEN

ACKDT D/Ā

STREN I2COV

GCEN

DISSLW GCSTAT

A10M BCL

- IPMIEN

SCLREL

I2CSIDL

I

1 1

I

0274 0276 I

1

TRSTAT

I2CEN ACKSTAT

> 0278 027A 027C

1 1

1 1

1 1

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

1 1

I2C3MSK

Legend:

I2C3ADD

SMEN ADD10

۵

I2C3 Address Mask Register

I2C3 Address Register

12C3 Baud Rate Generator Register

0000

查询PI	C24F	J2	56	GB	20	6住	<u>ب</u> لا	Ì	筠													
	All Resets	0000	0110	XXXXX	0000	0000	0000	0110	XXXX	0000	0000	0000	0110	XXXX	0000	0000	0000	0110	XXXX	0000	0000	
	Bit 0	STSEL	URXDA				STSEL	URXDA				STSEL	URXDA				STSEL	URXDA				
	Bit 1	PDSEL0	OERR				PDSEL0	OERR				PDSEL0	OERR				PDSEL0	OERR				
	Bit 2	PDSEL1	FERR				PDSEL1	FERR				PDSEL1	FERR				PDSEL1	FERR				
	Bit 3	BRGH	PERR	jister	ister		BRGH	PERR	jister	ister		BRGH	PERR	jister	ister		BRGH	PERR	jister	ister		
	Bit 4	RXINV	RIDLE	UART1 Transmit Register	UART1 Receive Register		RXINV	RIDLE	UART2 Transmit Register	UART2 Receive Register		RXINV	RIDLE	UART3 Transmit Register	UART3 Receive Register		RXINV	RIDLE	UART4 Transmit Register	UART4 Receive Register		
	Bit 5	ABAUD	ADDEN	UART1 T	UART1 F		ABAUD	ADDEN	UART2 T	UART2 F		ABAUD	ADDEN	UART3 T	UART3 F		ABAUD	ADDEN	UART4 T	UART4 F		
	Bit 6	LPBACK	URXISELO			Register	LPBACK	URXISELO			Register	LPBACK	URXISELO			Register	LPBACK	URXISELO			Register	
	Bit 7	WAKE	URXISEL1			JART1 Baud Rate Generator Prescaler Register	WAKE	URXISEL1			UART2 Baud Rate Generator Prescaler Register	WAKE	URXISEL1			JART3 Baud Rate Generator Prescaler Register	WAKE	URXISEL1			UART4 Baud Rate Generator Prescaler Register	
	Bit 8	UENO	TRMT			l Rate Genera	UENO	TRMT			l Rate Genera	UENO	TRMT			l Rate Genera	UENO	TRMT			l Rate Genera	
	Bit 9	UEN1	UTXBF	Ι	Ι	UART1 Bauc	UEN1	UTXBF	I	Ι	UART2 Bauc	UEN1	UTXBF	Ι	Ι	UART3 Bauc	UEN1	UTXBF	Ι	I	UART4 Bauc	
	Bit 10	1	UTXEN	Ι	Ι		Ι	UTXEN	I	I		I	UTXEN		Ι			UTXEN	Ι	I		nal.
	Bit 11	RTSMD	UTXBRK	Ι	1		RTSMD	UTXBRK	I	I		RTSMD	UTXBRK		Ι		RTSMD	UTXBRK	I	I		in hexadecir
(0	Bit 12	IREN	I	Ι	Ι		IREN	Ι	I	I		IREN	Ι	Ι	Ι		IREN	Ι	Ι	I		are shown
UART REGISTER MAPS	Bit 13	NSIDL	UTXISELO	Ι			NSIDL	UTXISELO	I	I		NSIDL	UTXISELO		Ι		USIDL	UTXISEL0	I	I		= unimplemented, read as '0'. Reset values are shown in hexadecimal
REGISTE	Bit 14	1	UTXINV	I			I	UTXINV	I	I		I	UTXINV	Ι	Ι		Ι	UTXINV	Ι	I		read as '0'. F
UART F	Bit 15	UARTEN	UTXISEL1	Ι	-		UARTEN	UTXISEL1	Ι	I		UARTEN	UTXISEL1	Ι			UARTEN	UTXISEL1				nplemented,
-11:	Addr	0220	0222	0224	0226	0228	0230	0232	0234	0236	0238	0250	0252	0254	0256	0258	02B0	02B2	02B4	02B6	02B8	= unin
TABLE 4-11:	File Name	U1MODE	U1STA	U1TXREG	U1RXREG	U1BRG	U2MODE	U2STA	U2TXREG	U2RXREG	U2BRG	U3MODE	U3STA	U3TXREG	U3RXREG	U3BRG	U4MODE	U4STA	U4TXREG	U4RXREG	U4BRG	Legend:

UART REGISTER MAPS
TABLE 4-11:

查询PIC24FJ256GB206供应商

	SPIRBF 0000	PPRE0 0000	SPIBEN 0000	0000	SPIRBF 0000	PPRE0 0000	SPIBEN 0000	0000	SPIRBF 0000	PPRE0 0000	SPIBEN 0000	0000	
Bit 1	SPITBF	PPRE1	SPIFE		SPITBF	PPRE1	SPIFE		SPITBF	PPRE1	SPIFE		
Bit 2	SISEL0	SPRE0	Ι		SISEL0	SPRE0	Ι		SISEL0	SPRE0	Ι		
Bit 3	SISEL1	SPRE1	Ι		SISEL1	SPRE1	Ι		SISEL1	SPRE1	Ι		
Bit 4	SISEL2	SPRE2	Ι		SISEL2	SPRE2	Ι		SISEL2	SPRE2	Ι		
Bit 5	SRXMPT	MSTEN	Ι		SRXMPT	MSTEN	Ι		SRXMPT	MSTEN	Ι		
Bit 6	SPIROV	СКР	Ι	luffer	SPIROV	СКР	Ι	luffer	SPIROV	СКР	Ι	luffer	ĺ
Bit 7	SRMPT	SSEN	Ι	SPI1 Transmit and Receive Buffer	SRMPT	SSEN	-	SPI2 Transmit and Receive Buffer	SRMPT	SSEN	-	SPI3 Transmit and Receive Buffer	ĺ
Bit 8	SPIBEC0	CKE	Ι	1 Transmit ar	SPIBEC0	CKE	Ι	2 Transmit ar	SPIBEC0	CKE	Ι	3 Transmit ar	
Bit 9	SPIBEC1	SMP	Ι	SPI	SPIBEC1	SMP	Ι	SPI	SPIBEC1	SMP	Ι	SPI	
Bit 10	SPIBEC2	MODE16	Ι		SPIBEC2	MODE16	Ι		SPIBEC2	MODE16	Ι		
Bit 11		DISSDO	Ι		Ι	DISSDO	Ι		Ι	DISSDO	Ι		
Bit 12	I	DISSCK	-		-	DISSCK	—		Ι	DISSCK			
Bit 13	SPISIDL	Ι	SPIFPOL		SPISIDL	Ι	SPIFPOL		SPISIDL	Ι	SPIFPOL		
Bit 14		Ι	SPIFSD		Ι	Ι	SPIFSD		Ι	-	SPIFSD		
Bit 15	SPIEN	Ι	FRMEN		SPIEN	Ι	FRMEN		SPIEN	-	FRMEN		
Addr	0240	0242	0244	0248	0260	0262	0264	0268	0280	0282	0284	0288	
File Name	SPI1STAT	SPI1CON1	SPI1CON2	SPI1BUF	SPI2STAT	SPI2CON1	SP12CON2	SPI2BUF	SPI3STAT	SPI3CON1	SPI3CON2	SPI3BUF	

--- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

PORTA REGISTER MAP⁽¹⁾ **TABLE 4-13**:

6	lit 15	Bit 14	Addr Bit 15 Bit 14 Bit 13 Bit 12	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0	All Resets
02C0 TRISA15 TRISA14	TRIS,	A14	I	I	I	TRISA10	TRISA9	I	TRISA7	TRISA7 TRISA6 TRISA5	TRISA5	TRISA4	TRISA4 TRISA3	TRISA2	TRISA1	TRISA0	CGFF
RA15 RA14	RA	14	I	Ι	I	RA10	6A9	-	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
02C4 LATA15 LATA14	LA ⁷	TA14	I	I	I	LATA10	LATA9	-	LATA7	LATA6	LATA5	LATA4	LATA4 LATA3	LATA2	LATA1	LATA0	XXXX
ODCA 02C6 0DA15 0DA14	ō	DA14	I	I	I	ODA10	6YQO	-	0DA7	ODA6	ODA5	ODA4	ODA3	0DA2	0DA1	ODA0	0000
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices. Note 1: PORTA and all associated bits are unimplemented on 64-pin devices and read as '0'. Bits are available on 100-pin devices only, unless otherwise noted.	d, re vciat	ad as '0 ed bits a	. Reset valu	es are show tented on 64	n in hexade	in hexadecimal. Reset values shown are for 100-pin devices. pin devices and read as '0'. Bits are available on 100-pin devi	values show s '0'. Bits are	vn are for 10 è available oi	0-pin device: n 100-pin dev	s. vices only, ur	less otherw	ise noted.					

PORTB REGISTER MAP TABLE 4-14:

						ſ		ſ									ĺ	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	02C8 TRISB15 TRISB14 TRISB13 TRISB12 TRI	TRISB14	TRISB13	TRISB12	SB11	TRISB10 TRISB9	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RBO	XXXX
LATB	02CC	02CC LATB15 LATB14 LATB13 LATB12	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
ODCB	02CE	ODB15	ODB14	ODB13 ODB12		ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	0DB1	ODB0	0000
Legend:	Reset v	Reset values are shown in hexadecimal.	own in hexad	decimal.														

SPI REGISTER MAPS

TABLE 4-12:

PORTC REGISTER MAP **TABLE 4-15**:

查询PI(C24F	J2	560	GB	20	6供应商
	All Resets	FOLE	XXXX	XXXX	0000	
	Bit 0	I	Ι	Ι	Ι	
	Bit 1 ⁽¹⁾	TRISC1	RC1	LATC1	0DC1	
	Bit 2 ⁽¹⁾	TRISC2	RC2	LATC2	ODC2	ad as '0'.
	Bit 3 ⁽¹⁾	TRISC3	RC3	LATC3	ODC3	otherwise re
	Bit 4 ⁽¹⁾	TRISC4	RC4	LATC4	ODC4	11 or 00);
	Bit 5	I	Ι	Ι	Ι	ration bits =
	Bit 6	Ι	Ι	Ι	Ι	:s. 1:0> Configu = 1.
	Bit 7	I	Ι	Ι	Ι	0-pin device POSCMD<
	Bit 8	I	Ι	Ι	Ι	vn are for 10 is selected (CIOFN Conf
	Bit 9	I	Ι	Ι	Ι	values shov en EC mode and the OS(
	Bit 10	I	Ι	Ι	Ι	cimal. Reset abled or whe = 11 or 00
	Bit 11	I	Ι	-	Ι	n in hexade cillator is dis uration bits =
AP	Bit 12	TRISC12	RC12 ⁽²⁾	LATC12	ODC12	es are show ead as 'o'. e primary os(1:0> Configu
STER M	Bit 13	TRISC13	RC13	LATC15 LATC14 LATC13	ODC13	. Reset valu n devices; re ble when the POSCMD<
c REGI	Bit 14	TRISC14	RC14	LATC14	ODC14	d, read as '0 nted in 64-pi e only availa ble when the
PORT(Bit 15	TRISC15	RC 15 ^(2,3)		ODC15	— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices. Bits are unimplemented in 64-pin devices; read as '0'. RC12 and RC15 are only available when the primary oscillator is disabled or when EC mode is selected (POSCMD<1:0> Configuration bits = 11 or 00); otherwise read as '0'. RC15 is only available when the POSCMD<1:0> Configuration bits = 11 or 00 and the OSCIOFN Configuration bit = 1.
4-15:	Addr	02D0	02D2	02D4	02D6	— = uni Bits are RC12 a RC15 is
TABLE 4-15: PORTC REGISTER MAP	File Name	TRISC	PORTC	LATC	ODCC	Legend: Note 1: 2: 3:

PORTD REGISTER MAP **TABLE 4-16:**

File Name	Addr	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Addr Bit 15 ⁽¹⁾ Bit 14 ⁽¹⁾ Bit 13 ⁽¹⁾ Bit 12 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D8	TRISD15	TRISD14	TRISD13	02D8 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11	TRISD11	TRISD10 TRISD9	TRISD9	TRISD8	TRISD7	TRISD6 TRISD5	TRISD5	TRISD4	TRISD3 TRISD2		TRISD1	TRISD0	FFF
PORTD	02DA	PORTD 02DA RD15	RD14	RD14 RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX
LATD	02DC	LATD15	LATD14	LATD13	02DC LATD15 LATD14 LATD13 LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
ODCD	02DE	ODD15	ODD14	ODD13	02DE 0DD15 0DD14 0DD13 0DD12	00011	0DD10	6000	ODD8	2000	ODD6	ODD5	ODD4	0003	2000	1000	0000	0000
Legend:	un =	implemented	d, read as '0'	. Reset value	— = unimplemented, read as '0'. Reset values are shown in I	in hexadec ו	hexadecimal. Reset values shown are for 100-pin devices.	values show	n are for 100	D-pin devices	10							

Bits are unimplemented in 64-pin devices; read as '0'. Note 1:

PORTE REGISTER MAP **TABLE 4-17**:

	ļ	Î	Ĵ															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ⁽¹⁾ Bit 8 ⁽¹⁾		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02E0	I	Ι	1	1	I	1	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
PORTE	02E2		I	I	I	I	I	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
LATE	02E4		Ι	I	I	I	I	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
ODCE	02E6		Ι	I	Ι	I	I	ODE9	ODE8	ODE7	ODE6	ODE5	ODE4	ODE3	ODE2	0DE1	ODE0	0000
Legend: Note 1:		unimplemen: ire unimplerr	 — = unimplemented, read as '0'. Reset values are shown ir Bits are unimplemented in 64-pin devices; read as '0'. 	^{0'.} Reset val	ues are shov read as '0'.	~	ecimal. Rese	t values sho	hexadecimal. Reset values shown are for 100-pin devices.	00-pin device	ss.							

查询PIC24FJ256GB206供应商

TER MAP	
ORTF REGIS	
TABLE 4-18: I	

	5-			
31BF	XXXX	XXXX	0000	
TRISFO	RFO	LATF0	ODF0	
TRISF1	RF1	LATF1	ODF1	
TRISF2	RF2	LATF2	ODF2	
TRISF3	RF3	LATF3	ODF3	
	RF4	LATF4	ODF4	
TRISF5	RF5	LATF5	ODF5	
I	-	Ι	Ι	es.
TRISF7	RF7	LATF7	ODF7	00-pin devic
TRISF8	RF8	LATF8	ODF8	own are for 1
I	-	Ι	Ι	et values sho
I	Ι	Ι	Ι	hexadecimal. Reset values shown are for 100-pin devices.
I	Ι	Ι	Ι	wn in
TRISF12	RF12	LATF12	ODF12	lues are shc read as '0'.
TRISF13	RF13	LATF13	ODF13	'0'. Reset va
I	Ι	Ι	Ι	Legend: — = unimplemented, read as '0'. Reset values are shown in Note 1: Bits are unimplemented in 64-pin devices; read as '0'.
1	Ι	Ι	Ι	unimplemen are unimplerr
02E8	02EA	02EC	02EE	— = (Bits a
TRISF	PORTF	LATF	ODCF	Legend: Note 1:
	02E8 – – TRISF13 TRISF12 – – TRISF8 TRISF7 – TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF2	02E8 TRISF13 TRISF12 TRISF3 T	02E8 TRISF13 TRISF12 TRISF3 TRIF53 LATF43 LAT	02E8 TRISF13 TRISF12 TRISF3 TRISF3

PORTG REGISTER MAP **TABLE 4-19:**

Addr	Addr Bit 15 ⁽¹⁾ Bit 14 ⁽¹⁾ Bit 13 ⁽¹⁾ Bit 12 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 ⁽¹⁾	Bit 0 ⁽¹⁾	All Resets
11	TRISG15	02F0 TRISG15 TRISG14 TRISG13 TRISG12	TRISG13	TRISG12	1	1	TRISG9	TRISG8	TRISG7	TRISG6	1	I	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
	PORTG 02F2 RG15	RG14	RG13	RG12	I	I	RG9	RG8	RG7	RG6	I	I	RG3	RG2	RG1	RG0	XXXX
	ATG 02F4 LATG15 LATG14 LATG13 LATG12	LATG14	LATG13	LATG12	I	Ι	LATG9	LATG8	LATG7	LATG6	I	I	LATG3	LATG2	LATG1	LATG0	XXXX
	ODCG 02F6 ODG15 ODG14 ODG13 ODG12	0DG14	ODG13	ODG12	I	I	69Q0	8500	7900	9DG0	I	I	0DG3	ODG2	1900	ODGO	0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices. Bits are unimplemented in 64-pin devices; read as '0'.

Legend: Note 1:

PAD CONFIGURATION REGISTER MAP **TABLE 4-20:**

6	1
All Resets	0000
Bit 0	PMPTTL
Bit 1	RTSECSEL
Bit 2	Ι
Bit 3	Ι
Bit 4	Ι
Bit 5	I
Bit 6	I
Bit 7	I
Bit 8	1
Bit 9	1
Bit 10	1
Bit 11	Ι
Bit 12	1
Bit 13	1
Bit 14	1
Bit 15	I
Addr	02FC
File Name	PADCFG1

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

_								F			╞			ŀ			
File Name	Addr	Bit 15 Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300							ADC Data Buffer 0	3uffer 0								XXXX
ADC1BUF1	0302							ADC Data Buffer 1	3uffer 1								XXXX
ADC1BUF2	0304							ADC Data Buffer 2	3uffer 2								XXXX
ADC1BUF3	0306							ADC Data Buffer 3	3uffer 3								XXXX
ADC1BUF4	0308							ADC Data Buffer 4	3uffer 4								XXXX
ADC1BUF5	030A							ADC Data Buffer 5	3uffer 5								XXXX
ADC1BUF6	030C							ADC Data Buffer 6	3uffer 6								XXXX
ADC1BUF7	030E							ADC Data Buffer 7	3uffer 7								XXXX
ADC1BUF8	0310							ADC Data Buffer 8	3uffer 8								XXXX
ADC1BUF9	0312							ADC Data Buffer 9	3uffer 9								XXXX
ADC1BUFA	0314							ADC Data Buffer 10	uffer 10								XXXX
ADC1BUFB	0316							ADC Data Buffer 11	Suffer 11								XXXX
ADC1BUFC	0318							ADC Data Buffer 12	uffer 12								XXXX
ADC1BUFD	031A							ADC Data Buffer 13	uffer 13								XXXX
ADC1BUFE	031C							ADC Data Buffer 14	uffer 14								XXXX
ADC1BUFF	031E							ADC Data Buffer 15	uffer 15								XXXX
ADC1BUF10	0340							ADC Data Buffer 16	uffer 16								xxxx
ADC1BUF11	0342							ADC Data Buffer 17	uffer 17								xxxx
ADC1BUF12	0344							ADC Data Buffer 18	uffer 18								XXXX
ADC1BUF13	0346							ADC Data Buffer 19	uffer 19								XXXX
ADC1BUF14	0348							ADC Data Buffer 20	uffer 20								XXXX
ADC1BUF15	034A							ADC Data Buffer21	3uffer21								XXXX
ADC1BUF16	034C							ADC Data Buffer 22	uffer 22								xxxx
ADC1BUF17	034E							ADC Data Buffer 23	uffer 23								XXXX
ADC1BUF18	0350							ADC Data Buffer 24	uffer 24								XXXX
ADC1BUF19	0352							ADC Data Buffer 25	uffer 25								XXXX
ADC1BUF1A	0354							ADC Data Buffer 26	uffer 26								XXXX
ADC1BUF1B	0356						-	ADC Data Buffer 27	uffer 27								XXXX
ADC1BUF1C	0358							ADC Data Buffer 28	uffer 28								XXXX
ADC1BUF1D	035A							ADC Data Buffer 29	uffer 29								xxxx
ADC1BUF1E	035C							ADC Data Buffer 30	uffer 30								XXXX
ADC1BUF1F	035F							A D C Date D. Her 24	hiffer 31								

查询PIC24FJ256GB206供应商

UED)	
AP (CONTINI	
REGISTER MAI	
: ADC RE	
TABLE 4-21	

	0000	0000	0000	0000	0000	0000	
Bit 0	DONE	ALTS	ADCS0	CH0SA0	CSSL16 ⁽¹⁾	CSSL0	
Bit 1	SAMP	BUFM	ADCS1	CH0SA1	CSSL17 ⁽¹⁾	CSSL1	
Bit 2	ASAM	SMPIO	ADCS2	CH0SA2	CSSL18 ⁽¹⁾	CSSL2	
Bit 3	Ι	SMP11	ADCS3	CH0SA3	CSSL 19 ⁽¹⁾	CSSL3	
Bit 4	Ι	SMP12	ADCS4	CH0SA4	CSSL20 ⁽¹⁾	CSSL4	
Bit 5	SSRC0	SMP13	ADCS5	Ι	CSSL21 ⁽¹⁾	CSSL5	
Bit 6	SSRC1	SMP14	ADCS6	Ι	CSSL24 CSSL23(1) CSSL22(1) CSSL21(1) CSSL20(1) CSSL19(1) CSSL18(1) CSSL17(1) CSSL16(1)	CSSL6	
Bit 7	SSRC2	BUFS	ADCS7	CHONA	CSSL23 ⁽¹⁾	CSSL7	
Bit 8	FORM0	-	SAMC0	CH0SB0		CSSL8	adecimal.
Bit 9	FORM1	—	SAMC1	CH0SB1	CSSL25	CSSL9	"0'. Reset values are shown in hexadecimal
Bit 10	I	CSCNA	SAMC2	CH0SB2	CSSL26	CSSL10	/alues are sl
Bit 11	I	—	SAMC3	CH0SB3	CSSL27	CSSL11	s '0'. Reset v
Bit 12	I	L	SAMC4	CH0SB4		CSSL12	, maintain as
Bit 13	ADSIDL	VCFG0	L			CSSL13	= Reserved
Bit 14	I	VCFG1	L	I	I	CSSL14	ead as '0'. r
Bit 15	ADON	VCFG2	ADRC	CHONB	Ι	CSSL15 CSSL14 CSSL13 CSSL12	— = unimplemented, read as '0', r = Reserved, maintain as
Addr	0320	0322	0324	0328	032E	0330	= unimp
File Name	AD1CON1	AD1CON2	AD1CON3	AD1CHS	AD1CSSH	AD1CSSL	Legend:

Note

Unimplemented in 64-pin devices, read as '0' ÷

CTMU REGISTER MAP TABLE 4-22:

All Resets	0000	0000
Bit 0	EDG1STAT	Ι
Bit 1	EDG2STAT	I
Bit 2	EDG1SEL0	I
Bit 3	EDG1SEL1	Ι
Bit 4	EDG1POL	Ι
Bit 5	EDG2SEL0	Ι
Bit 6	EDG2SEL1	Ι
Bit 7	EDG2POL	I
Bit 8	CTTRIG	IRNG0
Bit 9	IDISSEN	IRNG1
Bit 10	EDGSEQEN	ITRIMO
Bit 11	EDGEN	ITRIM1
Bit 12 Bi	TGEN	ITRIM2
Addr Bit 15 Bit 14 Bit 13	CTMUSIDL TGEN	ITRIM3 ITRIM2
Bit 14	Ι	ITRIM4
Bit 15	CTMUEN	033E ITRIM5
Addr	033C	033E
File Name	CTMUCON 033C	CTMUICON

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U10TGIR ⁽²⁾	0480	I	I	I	I	I	I	1	I	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	1	VBUSVDIF	0000
U10TGIE ⁽²⁾	0482	I	I	1	I	I	I	1	I	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	I	VBUSVDIE	0000
U10TGSTAT ²⁾	0484	I	I	1	I	I	I	I	Ι	₽	Ι	LSTATE	Ι	SESVD	SESEND	I	VBUSVD	0000
U10TGCON ⁽²⁾	0486	I	Ι	1	I	I	I	I	I	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	-	OTGEN	VBUSCHG	VBUSDIS	0000
U1PWRC	0488	I	1	1	I	I	I		I	UACTPND	Ι	Ι	USLPGRD	I	Ι	UNASUSU	USBPWR	0000
U1IR	048A ⁽¹⁾	I	I	1	1	I	I		I	STALLIF	Ι	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
		I	1	1	1	1	I	I	I	STALLIF	ATTACHIF ⁽¹⁾	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF ⁽¹⁾	0000
U1IE	048C ⁽¹⁾	I	1	1	1	1	I		I	STALLIE	I	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
		1	1	1	1	1	Ι	I		STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE ⁽¹⁾	0000
U1EIR	048E ⁽¹⁾	I	1	1	I	I			I	BTSEF	I	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	0000
		I	1	1	I	I	I	1	I	BTSEF	I	DMAEF	BTOEF	DFN8EF	CRC16EF	EOFEF ⁽¹⁾	PIDEF	0000
U1EIE	0490 ⁽¹⁾	I	I	1	I	I	I	I	Ι	BTSEE	-	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	0000
		I		1	I	I	I	I	Ι	BTSEE	Ι	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE ⁽¹⁾	PIDEE	0000
U1STAT	0492	I	1	1	I	I	I	1	I	ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI	I	I	0000
U1CON	0494 ⁽¹⁾	I	Ι	1	Ι	I	Ι	I	Ι	I	0 SEO	PKTDIS	Ι	HOSTEN	RESUME	PPBRST	USBEN	0000
		I	1	1	I	I			I	JSTATE ⁽¹⁾	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN ⁽¹⁾	0000
U1ADDR	0496	I	Ι	1	I	I	Ι	I	Ι	LSPDEN ⁽¹⁾			USB Device A	ddress (DEVA	USB Device Address (DEVADDR) Register			0000
U1BDTP1	0498	Ι	Ι		Ι	Ι	-	Ι	Ι		_	Buffer Descripto	Buffer Descriptor Table Base Address Register	ddress Regist	9r		-	0000
U1FRML	049A	Ι	Ι		Ι	I	Ι	Ι	Ι			-	Frame Count Register Low Byte	egister Low By	/te			0000
U1FRMH	049C	Ι	Ι		Ι	I	Ι	Ι	Ι	Ι	Ι	I	Ι	I	Frame (Frame Count Register High Byte	High Byte	0000
U1TOK ⁽²⁾	049E	Ι	Ι		Ι	Ι	Ι	Ι	Ι	PID3	PID2	PID1	PID0	EP3	EP2	EP1	EP0	0000
U1SOF ⁽²⁾	04A0	Ι	Ι		Ι	I	Ι	Ι	Ι				Start-of-Frame Count Register	Count Regist	эг			0000
U1CNFG1	04A6	Ι	Ι		Ι	I	Ι	Ι	Ι	UTEYE	NOEMON	Ι	USBSIDL	Ι	I	PPB1	PPB0	0000
U1CNFG2	04A8	Ι			Ι		Ι	Ι	Ι	Ι	Ι	UVCMPSEL	PUVBUS	EXTI2CEN	UVBUSDIS	UVCMPDIS	UTRDIS	0000
U1EP0	04AA	I	Ι		I		I	I	I	LSPD ⁽¹⁾	RETRYDIS ⁽¹⁾	Ι	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP1	04AC	Ι	Ι		Ι	I	Ι	Ι	Ι	Ι	Ι	I	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP2	04AE	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP3	04B0	I	Ι		Ι	I	I		Ι	I	Ι	Ι	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP4	04B2	I	Ι	1	I	I	Ι	I	Ι	Ι	Ι	Ι	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP5	04B4	Ι			Ι	I		Ι		Ι	Ι	Ι	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP6	04B6	Ι	Ι		Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP7	04B8	I	I		I	I		I	Ι	I	Ι	I	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP8	04BA	I	Ι		Ι	I		I	I	Ι	Ι	Ι	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP9	04BC		I						ļ	I	I		FPCONDIS	FPRXFN	EPTXEN	EPSTALL	FPHSHK	0000

© 2010 Microchip Technology Inc.

查询PIC24FJ256GB206供应商

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1EP10	04BE	1		1	I	I	I	Ι		1	I	I	EPCONDIS EPRXEN	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP11	04C0	I	I		I		Ι	I	-	I	I	I	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP12	04C2	Ι			Ι		Ι			I	I	I	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP13	04C4	I	I		I	Ι	Ι	I		I		I	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP14	04C6	Ι			Ι	-	Ι		-	Ι	I	I	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP15	04C8	I			Ι		Ι			Ι	I	I	EPCONDIS EPRXEN	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1PWMRRS	04CC			USB Pow	er Supply F	USB Power Supply PWM Duty Cycle Register	ycle Registe	L.				USB P	USB Power Supply PWM Period Register	WM Period F	Register			0000
U1PWMCON	04CE	PWMEN		Ι	Ι	Ι	Ι	PWMPOL CNTEN	CNTEN	Ι	Ι	Ι	-	Ι	Ι	-	-	0000
Legend: Note 1: 2:	— = unirr Altemate This regis	 — = unimplemented, read as '0'. Reset valuations when the Alternate register or bit definitions when the This register is available in Host mode only. 	l, read as bit definiti able in Ho	^{0'.} Reset ons when st mode c	values are the modul mly.	= unimplemented, read as '0'. Reset values are shown in hexadecimal. Alternate register or bit definitions when the module is operating in Host mode. This register is available in Host mode only.	exadecimal ng in Host n	node.										

Bit 0	VBGEN
Bit 1	VBG2EN
Bit 2	VBG6EN
Bit 3	Ι
Bit 4	Ι
Bit 5	Ι
Bit 6	Ι
Bit 7	1
Bit 8	1
Bit 9	1
Bit 10	Ι
Bit 11	I
Bit 12	1
Bit 13	1
Bit 14	Ι
Bit 15	I
Addr	04DE
File Name	ANCFG

All Resets 0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal Legend:

ANCFG REGISTER MAP

TABLE 4-24:

ANSEL REGISTER MAP TABLE 4-25:

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets ⁽²⁾
ANSA ⁽¹⁾	04E0	I	I	I	I	I	ANSA10 ⁽¹⁾	ANSA9 ⁽¹⁾	I	ANSA7 ⁽¹⁾ ANSA6 ⁽¹⁾	ANSA6 ⁽¹⁾	I	I	I	I	I	I	0 6 C O
ANSB	04E2	ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSBO	FFFF
ANSC	04E4	I	ANSC14	ANSC13	Ι		I	I	I	I	I	I	ANSC4 ⁽¹⁾		I	I	I	6010
ANSD	04E6	I	Ι	Ι	Ι	-	Ι	I	I	ANSD7	ANSD6	I		1	I	Ι	I	0 000
ANSE ⁽¹⁾	04E8	I	I	Ι	Ι		Ι	ANSE9 ⁽¹⁾	I	I	I	I	I	I	I	I	I	0200
ANSF	04EA	I	I	Ι	Ι	-	Ι	I	I	I	I	I	I	I	I	Ι	ANSF0	0001
ANSG	04EC	I	Ι	Ι	Ι	-	Ι	ANSG9	ANSG8	ANSG7	ANSG6	I		1	I	Ι	I	0300
Legend: Note 1:		implemented mented in 64	— = unimplemented, read as '0'. Reset value: Unimplemented in 64-pin devices, read as '0'.	= unimplemented, read as '0'. Reset values are shown in Unimplemented in 64-pin devices, read as '0'.	re shown in h	hexadecimal.												

Reset values are valid for 100-pin devices only.

ä

USB OTG REGISTER MAP (CONTINUED)

TABLE 4-23:

Bit 1 Bit 3 Bit 3 <t< th=""><th>TABLE 4-26: ENHANCED PARALLEL MASTER/SL</th><th></th><th></th><th></th><th></th><th></th><th>AVE PO</th><th>SLAVE PORT REGISTER MAP</th><th>GISTE</th><th>R MAP</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	TABLE 4-26: ENHANCED PARALLEL MASTER/SL						AVE PO	SLAVE PORT REGISTER MAP	GISTE	R MAP								
PSIDL ADRMUX1 ADRMUX0 — MODE1 CSF0 AL ALMODE — BUSKEEP IROM1 IROM0 0000 ERROR TIMEOUT r	Bit 15		Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ERROR TimeOUT r r r RADDR23 RADDR21 RADDR20 RADDR20 RADDR16 RADDR16 RADDR16 RADDR16 RADDR17 RADDR16 RADDR16 RADDR16 RADDR16 RADDR17 RADDR16 RADDR16 RADDR17 RADDR16 PTEN16 ¹ </th <th>PMPEN</th> <th>Ι</th> <th></th> <th>PSIDL</th> <th>ADRMUX1</th> <th>ADRMUX0</th> <th>I</th> <th>MODE1</th> <th>MODE0</th> <th>CSF1</th> <th>CSF0</th> <th>ALP</th> <th>ALMODE</th> <th>I</th> <th>BUSKEEP</th> <th>IRQM1</th> <th>IRQM0</th> <th>0000</th>	PMPEN	Ι		PSIDL	ADRMUX1	ADRMUX0	I	MODE1	MODE0	CSF1	CSF0	ALP	ALMODE	I	BUSKEEP	IRQM1	IRQM0	0000
PTBETEIN PTBEDEN	BUSY	Ι		ERROR	TIMEOUT	L	L	L	L	RADDR23	RADDR22	RADDR21	RADDR20		RADDR18	RADDR17	RADDR16	0000
PTENI3 PTENI4 PTENI4<	PTWREN PTRDEN	PTRD	N	PTBE1EN	PTBE0EN	I	AWAITM1	AWAITMO	AWAITE	I	PTEN22 ⁽¹⁾	PTEN21 ⁽¹⁾	PTEN20 ⁽¹⁾	PTEN19 ⁽¹⁾	PTEN18 ⁽¹⁾	PTEN17 ⁽¹⁾	PTEN16 ⁽¹⁾	0000
CSPTEN BEP WRSP RDSP BM ACKP PTSZ0 000 BASEZ1 BASE10 BASE19 BASE16 BASE16 BASE16 BASE16 BASE17 T <td>PTEN15 PTEN14</td> <td>PTEI</td> <td>V14</td> <td>PTEN13</td> <td>PTEN12</td> <td>PTEN11</td> <td>PTEN10</td> <td>PTEN9</td> <td>PTEN8</td> <td>PTEN7</td> <td>PTEN6</td> <td>PTEN5</td> <td>PTEN4</td> <td>PTEN3</td> <td>PTEN2</td> <td>PTEN1</td> <td>PTEN0</td> <td>0000</td>	PTEN15 PTEN14	PTEI	V14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	0000
BASE1 BASE10 BASE10 BASE16 BASE16 BASE16 BASE16 BASE16 BASE16 BASE16 BASE16 BASE17 D. I.	CSDIS C	ö	CSP	CSPTEN	BEP	I	WRSP	RDSP	SM	ACKP	PTSZ1	PTSZ0	I		I	I	I	0000
r r - - - - Dwarted Dwarted </td <td>BASE23 BA</td> <td>BA:</td> <td>BASE22</td> <td>BASE21</td> <td>BASE20</td> <td>BASE19</td> <td>BASE18</td> <td>BASE17</td> <td>BASE16</td> <td>BASE15</td> <td>I</td> <td>I</td> <td>I</td> <td>BASE 11</td> <td>I</td> <td>I</td> <td>I</td> <td>0200</td>	BASE23 BA	BA:	BASE22	BASE21	BASE20	BASE19	BASE18	BASE17	BASE16	BASE15	I	I	I	BASE 11	I	I	I	0200
CSPTEN BEP WRSP RDSP SM ACKP FTSZ1 PTSZ0 000 BASE21 BASE19 BASE19 BASE16 BASE15 BASE17 D/- BASE17 0 <td< td=""><td>ACKM1 AC</td><td>AC</td><td>ACKMO</td><td>L</td><td>L</td><td>L</td><td>I</td><td>I</td><td>I</td><td>DWAITB1</td><td>DWAITB0</td><td>DWAITM3</td><td>DWAITM2</td><td>DWAITM1</td><td>DWAITMO</td><td>DWAITE1</td><td>DWAITE0</td><td>0000</td></td<>	ACKM1 AC	AC	ACKMO	L	L	L	I	I	I	DWAITB1	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITMO	DWAITE1	DWAITE0	0000
BASE21 BASE10 BASE18 BASE17 BASE17<	CSDIS (0	CSP	CSPTEN	BEP	I	WRSP	RDSP	SM	ACKP	PTSZ1	PTSZ0	I		I	I	I	0000
r r - - DWAITED DWAITM3 <	BASE23 B/	B∕	BASE22	BASE21	BASE20	BASE19	BASE18	BASE17	BASE16	BASE15	I	I	I	BASE 11	I	I	1	0600
EPMP Data Out Register 1<15:8> EPMP Data Out Register 1<7:0- EPMP Data Out Register 2<15:8> EPMP Data Out Register 2<7:0-	ACKM1 A	Ā	ACKM0	L	L	L	I	I	I	DWAITB1	DWAITB0	DWAITM3	DWAITM2		DWAITMO	DWAITE1	DWAITE0	0000
EPMP Data Out Register 2<15:8> EPMP Data Out Register 2<7:0> EPMP Data In Register 1<15:8> EPMP Data In Register 1<7:0> EPMP Data In Register 2<15:8> EPMP Data In Register 1<7:0> EPMP Data In Register 2<15:8> EPMP Data In Register 1<7:0>				Ш	MP Data Out F	Register 1<15:8	<u>ہ</u>					EPI	MP Data Out	Register 1<7	<0;			XXXX
EPMP Data In Register 1<7:0> EPMP Data In Register 1<7:0> EPMP Data In Register 2<15:8> EPMP Data In Register 2<7:0> — — IB3F IB1F IB0F OBUF — OB3E OB3E OB1E OB0E OB0E				EP	MP Data Out F	Register 2<15:8	\$					EPI	MP Data Out	Register 2<7	<0;			XXXX
EPMP Data in Register 2<15:8> EPMP Data in Register 2<7:0> - - IB3F IB1F IB0F OBLF - OB3E OB3E OB1E OB0E				Ξ	PMP Data In R	egister 1<15:8:	^					Ш	MP Data In F	Register 1<7:	~0			XXXX
IB3F IB2F IB1F IB0F OBE OBUF - OB3E OB2E OB1E OB0E				Ξ	PMP Data In R	egister 2<15:8:						Ш	MP Data In F	Register 2<7:	6			XXXX
	IBF I	-	IBOV		Ι	IB3F	IB2F	IB1F	IBOF	OBE	OBUF	I	I	OB3E	OB2E	OB1E	OB0E	008F

REAL-TIME CLOCK AND CALENDAR REGISTER MAP TABLE 4-27:

Addr	Bit 15 Bit 14	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	1					Alarm	Value Registe	Alarm Value Register Window Based on ALRMPTR<1:0>	ed on ALRN	1PTR<1:0>							XXXX
LRME	z	CHIME	LCFGRPT 0622 ALRMEN CHIME AMASK3 AMASK2		AMASK1	AMASKO	ALRMPTR1	AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1		0000
						RTCC	: Value Regist	RTCC Value Register Window Based on RTCPTR<1:0>	sed on RTC	PTR<1:0>							XXXX
CFGCAL 0626 RTCEN	z	Ι	RTCWREN	- RTCWREN RTCSYNC	HALFSEC	RTCOE	RTCPTR1	HALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6	CAL7	CAL6	CAL5	CAL4	CAL4 CAL3	CAL2	CAL2 CAL1	CAL0 (Note 1)	(Note 1)
lemei of the	nted, BCF	read as '0' GCAL reg	. Reset value ister on POR	— = unimplemented, read as '0'. Reset values are shown in The status of the RCFGCAL register on POR is '0000' and σ	n hexadecimal. on other Resets is unchanged.	al. sets is unch	anged.										

PIC24FJ256GB210 FAMILY

© 2010 Microchip Technology Inc.

查询PIC24FJ256GB206供应商

		_			
All Resets	0000	0000	0000	0000	0000
Bit 0	C10UT	CVR0	CCHO	CCHO	CCH0
Bit 1	C3OUT C2OUT C1OUT	CVR1	CCH1	CCH1	CCH1
Bit 2	C3OUT	CVR2			I
Bit 3	I	CVR3	-	—	Ι
Bit 4	I	CVRSS	CREF	CREF	CREF
Bit 5	T	CVRR	Ι	Ι	I
Bit 6	I		EVPOL0	EVPOL0	EVPOL0
Bit 7	I	CVREFP CVREFM1 CVREFM0 CVREN CVROE	EVPOL1 EVPOL0	EVPOL1 EVPOL0	COUT EVPOL1 EVPOL0
Bit 8	C1EVT	CVREFM0	COUT	COUT	COUT
Bit 9	C2EVT	CVREFM1	CEVT	CEVT	CEVT
Bit 10	C3EVT	CVREFP	Ι		I
Bit 11		Ι	Ι	-	I
Bit 12	I	-	Ι	Ι	Ι
Bit 13	I	I	CPOL	CPOL	CPOL
Bit 14		Ι	COE	COE	COE
Bit 15	CMIDL	I	CON	CON	CON
Addr	0630	0632	0634	0636	0638
File Name	CMSTAT	CVRCON	CM1CON	CM2CON	CM3CON

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	1	CSIDL	VWORD4	WORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	1	1	1	0040
CRCCON2	0642	1	I	I	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	I	I	I	PLEN4	PLEN3	PLEN2	PLEN1	PLENO	0000
CRCXORL	0644	X15	X14	X13	X12	X11	X10	6X	X8	٤X	9X	3X5	X4	£Х	X2	X1	I	0000
CRCXORH	0646	X31	0EX	62X	X28	X27	X26	X25	X24	X23	X22	X21	X20	X19	X18	X17	X16	0000
CRCDATL	0648								CRC Data Input Register Low	ut Register	-0W							0000
CRCDATH	064A							0	CRC Data Input Register High	ut Register I	High							0000
CRCWDATL	064C								CRC Result	CRC Result Register Low	Ŵ							0000
CRCWDATH	064E								CRC Result	CRC Result Register High	ЧĘ							0000
Legend:	— = unim	plemented	l, read as	'0'. Reset	= unimplemented, read as '0'. Reset values are shown in		hexadecimal.											

COMPARATORS REGISTER MAP

TABLE 4-28:

查询PIC										Бц	ц	0	0	ц	Б	Бц	ц	Б	Гц	Ľ٩	Ē4	ц	
	All Resets	3F00	3F3F	003F	3F3F	3F3F	3F3F	3F3F	3F3F	3F3F	3F3F	3F00	3F0 0	3F3F	3F3F	3F3F	3F3F	3F3F	003F	3F3F	3F3F	003F	
	Bit 0	I	INT2R0	INT4R0	T2CKR0	T4CKR0	IC1R0	IC3R0	IC5R0	IC7R0	OCFAR0	I	1	U1RXR0	UZRXR0	SDI1R0	SS1R0	SDI2R0	SS2R0	U4RXR0	SDI3R0	SS3R0	
	Bit 1	I	INT2R1	INT4R1	T2CKR1	T4CKR1	IC1R1	IC3R1	IC5R1	IC7R1	OCFAR1	-	I	U1RXR1	12RXR1	SDI1R1	SS1R1	SDI2R1	SS2R1	U4RXR1	SDI3R1	SS3R1	
	Bit 2	I	INT2R2	INT4R2	T2CKR2	T4CKR2	IC1R2	IC3R2	IC5R2	IC7R2	OCFAR2	Ι	I	U1RXR2	U2RXR2	SDI1R2	SS1R2	SD12R2	SS2R2	U4RXR2	SDI3R2	SS3R2	
	Bit 3	I	INT2R3	INT4R3	T2CKR3	T4CKR3	IC1R3	IC3R3	IC5R3	IC7R3	OCFAR3	I	1	U1RXR3	U2RXR3	SDI1R3	SS1R3	SDI2R3	SS2R3	U4RXR3	SDI3R3	SS3R3	
	Bit 4	I	INT2R4	INT4R4	T2CKR4	T4CKR4	IC1R4	IC3R4	IC5R4	IC7R4	OCFAR4	I	I	U1RXR4	U2RXR4	SDI1R4	SS1R4	SDI2R4	SS2R4	U4RXR4	SDI3R4	SS3R4	
	Bit 5	I	INT2R5	INT4R5	T2CKR5	T4CKR5	IC1R5	IC3R5	IC5R5	IC7R5	OCFAR5	I	1	U1RXR5	U2RXR5	SDI1R5	SS1R5	SDI2R5	SS2R5	U4RXR5	SDI3R5	SS3R5	
	Bit 6	I	I	Ι	Ι	I	Ι	Ι	I	Ι	Ι	I	1	Ι	I	Ι	Ι	I	I	I	I	Ι	
	Bit 7	I	I	I	Ι	I	1	I	I	I	I	I	1	I	I	I	I	I	I	I	I	Ι	
	Bit 8	INT1R0	INT3R0	I	T3CKR0	T5CKR0	IC2R0	IC4R0	IC6R0	IC8R0	OCFBR0	IC9R0	U3RXR0	U1CTSR0	UZCTSR0	SCK1R0	U3CTSR0	SCK2R0	I	U4CTSR0	SCK3R0	I	
	Bit 9	INT1R1	INT3R1	I	T3CKR1	T5CKR1	IC2R1	IC4R1	IC6R1	IC8R1	OCFBR1	IC9R1	U3RXR1	U1CTSR1	U2CTSR1	SCK1R1	U3CTSR1	SCK2R1	I	U4CTSR1	SCK3R1	Ι	
ER MAP	Bit 10	INT1R2	INT3R2	I	T3CKR2	T5CKR2	IC2R2	IC4R2	IC6R2	IC8R2	OCFBR2	IC9R2	U3RXR2	U1CTSR2	U2CTSR2	SCK1R2	U3CTSR2	SCK2R2	I	U4CTSR2	SCK3R2	I	nal.
	Bit 11	INT1R3	INT3R3	I	T3CKR3	T5CKR3	IC2R3	IC4R3	IC6R3	IC8R3	OCFBR3	IC9R3	U3RXR3	U1CTSR3	U2CTSR3	SCK1R3	U3CTSR3	SCK2R3	I	U4CTSR3	SCK3R3	I	i in hexadecir
ELECT F	Bit 12	INT1R4	INT3R4	I	T3CKR4	T5CKR4	IC2R4	IC4R4	IC6R4	IC8R4	OCFBR4	IC9R4	U3RXR4	U1CTSR4 1	U2CTSR4 1	SCK1R4	U3CTSR4 1	SCK2R4	I	U4CTSR4	SCK3R4	Ι	es are showr ad as '0'.
PERIPHERAL PIN SELECT REGIST	Bit 13	INT1R5	INT3R5	I	T3CKR5	T5CKR5	IC2R5	IC4R5	IC6R5	IC8R5	OCFBR5	IC9R5	U3RXR5	U1CTSR5 L	U2CTSR5 L	SCK1R5	U3CTSR5 L	SCK2R5	I	U4CTSR5 L	SCK3R5	I	 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Bits are unimplemented in 64-pin devices, read as '0'.
PHERAI	Bit 14	1	I	I			I	I	I	I		I	1		ر ۱				I				sd, read as 'C snted in 64-p
PERII	Bit 15	1	I	I	Ι	I	I	I	I	I	I	I	1	I	I	I	I	I	I	I	1	Ι	nimplemente e unimpleme
4-30:	Addr	0680	0682	0684	0686	0688	068E	0690	0692	0694	9690	3690	06A2	06A4	06A6	06A8	06AA	06AC	06AE	06B6	06B8	06BA	— = u Bits ar
TABLE 4-30 :	File Name	RPINR0	RPINR1	RPINR2	RPINR3	RPINR4	RPINR7	RPINR8	RPINR9	RPINR10	RPINR11	RPINR15	RPINR17	RPINR18	RPINR19	RPINR20	RPINR21	RPINR22	RPINR23	RPINR27	RPINR28	RPINR29	Legend: Note 1:

© 2010 Microchip Technology Inc.

查询PIC24FJ256GB206供应商

All Resets 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 RP30R1⁽¹⁾ RP30R0⁽¹⁾ RP28R0 **RP12R0 RP14R0 RP18R0** RP26R0 RP16R0 **RP20R0** RP22R0 RP24R0 RP4R0 **RP6R0** RP8R0 RP10R0 **RPORO RP2R0** Bit 0 RP16R1 RP18R1 RP28R1 RP12R1 RP14R1 RP8R1 **RP20R1 RP22R1 RP24R1** RP26R1 RP2R1 **RP10R1 RP0R1** RP4R1 RP6R1 Bit 1 RP30R3⁽¹⁾ RP30R2⁽¹⁾ RP28R2 RP12R2 RP14R2 **RP16R2** RP18R2 RP20R2 RP24R2 RP26R2 RP4R2 **RP6R2 RP8R2 RP10R2** RP22R2 **RP0R2 RP2R2** Bit 2 RP28R3 RP18R3 RP26R3 RP2R3 **RP6R3** RP8R3 **RP12R3 RP14R3 RP16R3** RP20R3 RP22R3 RP24R3 RP4R3 **RP10R3 RP0R3** Bit 3 RP30R4⁽¹⁾ **RP16R4 RP18R4** RP28R4 RP6R4 RP8R4 **RP10R4 RP12R4** RP14R4 RP20R4 RP22R4 RP24R4 RP26R4 **RP0R4 RP2R4** RP4R4 Bit 4 RP16R5 RP18R5 RP30R5⁽¹⁾ RP22R5 RP28R5 RP12R5 RP14R5 **RP20R5** RP24R5 RP26R5 RP2R5 **RP10R5** RP4R5 RP6R5 RP8R5 **RP0R5** Bit 5 Bit 6 L L I I 1 I T I Bit 7 I T L I I I L 1 T 1 L RP31R0⁽¹⁾ **RP17R0** RP19R0 **RP29R0** RP15R0⁽¹⁾ RP27R0 RP5R0⁽¹⁾ RP7R0 **RP9R0 RP11R0 RP13R0 RP21R0 RP23R0** RP25R0 RP1R0 **RP3R0** Bit 8 RP15R1⁽¹⁾ RP31R1⁽¹⁾ RP5R1⁽¹⁾ RP13R1 RP19R1 RP29R1 **RP23R1 RP25R1 RP7R1** RP9R1 **RP11R1 RP17R1 RP21R1 RP27R1** RP3R1 RP1R1 Bit 9 RP15R2⁽¹⁾ RP31R2⁽¹⁾ RP17R2 RP29R2 RP9R2 RP19R2 RP5R2⁽¹⁾ RP7R2 **RP21R2** RP1R2 **RP11R2 RP13R2 RP23R2** RP25R2 RP27R2 Bit 10 RP3R2 RP15R3⁽¹⁾ RP31R3⁽¹⁾ RP19R3 RP21R3 RP29R3 RP5R3⁽¹⁾ RP13R3 RP17R3 **RP23R3 RP25R3** RP27R3 RP9R3 RP11R3 RP1R3 RP7R3 Bit 11 **RP3R3** RP15R4⁽¹⁾ RP21R4 RP31R4⁽¹⁾ RP17R4 RP19R4 RP27R4 RP5R4⁽¹⁾ RP9R4 RP11R4 RP13R4 **RP23R4** RP25R4 RP29R4 **RP7R4** RP1R4 Bit 12 **RP3R4** RP15R5⁽¹⁾ RP31R5⁽¹⁾ RP19R5 RP17R5 RP9R5 RP29R5 RP3R5 RP13R5 RP25R5 RP27R5 RP5R5⁽¹⁾ RP7R5 **RP11R5 RP21R5 RP23R5** RP1R5 Bit 13 Bit 14 I I L L Τ I I I I Bit 15 I I I T I I **TABLE 4-30:** 06C2 0606 06C8 06CA 0600 06CE 06D0 06D2 06D4 06D6 06D8 06DA 06DC 06DE Addr 0600 06C4 RPOR15⁽¹⁾ **RPOR12 RPOR10 RPOR13** File Name **RPOR11 RPOR14 RPOR3 RPOR4 RPOR5 RPOR7 RPOR9 RPOR0 RPOR1 RPOR2 RPOR6 RPOR8**

PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Bits are unimplemented in 64-pin devices; read as '0'.

I

I

÷ Legend: Note 1

查询PIC	24FJ	25	60	B2	206	5件	<u> </u>
	All Resets	Note 1	Note 2	0010	0000	0000	
	Bit 0	POR	OSWEN	-	ONUT	-	
	Bit 1	BOR	SOSCEN	Ι	TUN1	I	ion.
	Bit 2	IDLE	POSCEN	Ι	TUN2	I	ore informat
	Bit 3	SLEEP	CF	—	ENNT	-	ation " for m
	Bit 4	WDTO	Ι	L	TUN4	I	shown in hexadecimal. of Reset event. See Section 6.0 "Resets " for more information. he type of Reset event and the device configuration. See Section 8.0 "Oscillator Configuration" for more information.
	Bit 5	SWDTEN	LOCK	PLLEN	TUN5	Ι	8.0 "Oscill
	Bit 6	SWR	IOLOCK	CPDIV0		I	rmation. e Section
	Bit 7	EXTR	CLKLOCK	CPDIV1	I	I	shown in hexadecimal. of Reset event. See Section 6.0 "Resets" for more information. he type of Reset event and the device configuration. See Section
	Bit 8	VREGS	NOSC0	RCDIV0	Ι	RODIVO	.0 "Resets"
	Bit 9	CM	NOSC1	RCDIV1	-	RODIV1	cimal. se Section 6 . svent and the
	Bit 10	Ι	NOSC2	RCDIV2	—	RODIV2	/n in hexade set event. Se oe of Reset e
	Bit 11	I	I	DOZEN	I	RODIV3	
ИАР	Bit 12	Ι	COSCO	DOZE0	I	ROSEL	d. Reset vall endent on th dependent o
ISTER N	Bit 13	Ι	COSC1	DOZE1	-	ROSSLP	, r = Reserve egister is dep N register is
EM REG	Bit 14	IOPUWR	COSC2	DOZE2	I	I	d, read as '0' the RCON re the OSCCOI
SYSTE	Bit 15	TRAPR	I	ROI	I	ROEN	— = unimplemented, read as '0', r = Reserved. Reset values are shown in hexadecimal. The Reset value of the RCON register is dependent on the type of Reset event. See Sec The Reset value of the OSCCON register is dependent on both the type of Reset event.
-31:	Addr	0740	0742	0744	0748	074E	— = ur The Ré The Re
TABLE 4-31: SYSTEM REGISTER MAP	File Name	RCON	OSCCON	CLKDIV	OSCTUN	REFOCON	Legend: Note 1: 2:

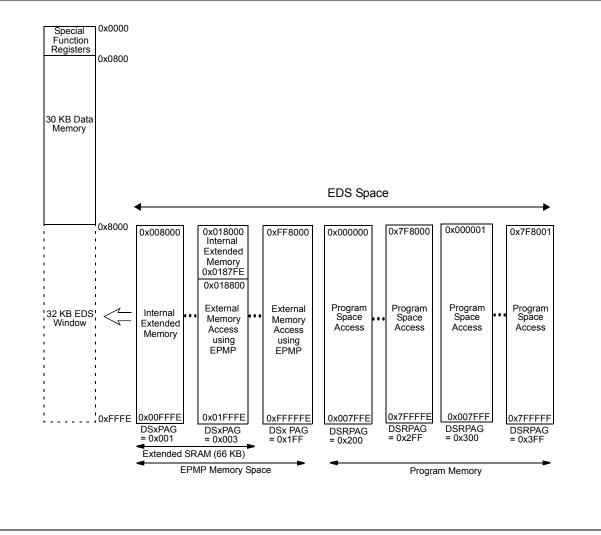
NVM REGISTER MAP TABLE 4-32:

Bit 14	Bit 13 Bi	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WRERR -				1		I		ERASE	1	I	NVMOP3	NVMOP2	NVMOP1	NVMOP0	(1) 0000
1	1	-	1	I	1	1				NVMKEY Register<7:0>	egister<7:0>				0000
	ļ														

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset. Legend: Note 1:

PMD REGISTER MAP TABLE 4-33:

0000	COSIND								ICSINID								0/ /0	
0000	USB1MD	LVDMD	REFOMD CTMUMD LVDMD	REFOMD	I	U4MD	UPWMMD	I	I	I	I	Ι	I	I	I	Ι	0776	PMD4
0000	I				I		I					I				I	1	
0000																	1 2 2 0	
0000	OC1MD	OC2MD	OC3MD	OC4MD	OC6MD OC5MD	OC6MD	OC7MD	OC8MD	IC1MD	IC2MD	IC3MD	IC4MD	IC5MD	IC6MD	IC7MD	IC8MD	0772	PMD2
																	;	
0000	ADC1MD			SPI1MD	SPI2MD	U1MD	UZMD	I2C1MD				T1MD	T2MD	T3MD	T4MD	T5MD	0270	PMD1
Resets	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12	Bit 13	Bit 14	Bit 15	Addr	Name
AII																		File


查询PIC24FJ256GB206供应商 4.2.5 EXTENDED DATA SPACE (EDS)

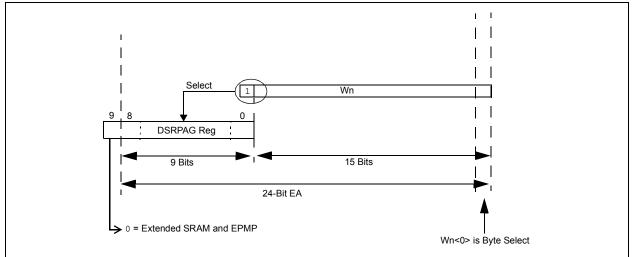
The enhancement of the data space in PIC24FJ256GB210 family devices has been accomplished by a new technique, called the Extended Data Space (EDS).

The EDS includes any additional internal extended data memory not accessible by the lower 32 Kbytes of data address space, any external memory through EPMP and the Program Space Visibility (PSV).

The extended data space is always accessed through the EDS window, which is the upper half of data space. The entire extended data space is organized into EDS pages, each having 32 Kbytes of data. Mapping of the EDS page into the EDS window is done by using the Data Space Read register (DSRPAG<9:0>) for read operations and Data Space Write register (DSWPAG<8:0>) for write operations. Figure 4-4 displays the entire EDS space.

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0x0800 to 0x7FFF, in the lower data space).

FIGURE 4-4: EXTENDED DATA SPACE


查询PIC24FJ256GB206供应商

4.2.5.1 Data Read from EDS Space

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the working register, assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-5 illustrates how the EDS space address is generated for read operations.

FIGURE 4-5: EDS ADDRESS GENERATION FOR READ OPERATIONS

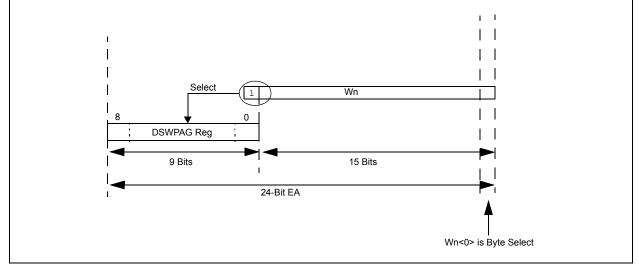
When the Most Significant bit (MSb) of EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double-word from EDS.

Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles is required to complete an EDS read. EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

; Set the EDS	page from where	the data to be read
mov	#0x0002 , w0	
mov	w0 , DSRPAG	;page 2 is selected for read
mov	#0x0800 , w1	;select the location $(0x800)$ to be read
bset	wl , #15	;set the MSB of the base address, enable EDS mode
;Read a byte i	from the selecte	d location
mov.b	[w1++] , w2	;read Low byte
mov.b	[w1++] , w3	;read High byte
;Read a word i	from the selecte	d location
mov	[w1] , w2	;
;Read Double -	- word from the	selected location
mov.d	[w1] , w2	;two word read, stored in w2 and w3


查询PIC24FJ256GB206供应商 4.2.5.2 Data Write into EDS Space

In order to write data to EDS space, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, then the

EDS window is enabled by setting bit 15 of the working register, assigned with the offset address, and the accessed location can be written.

Figure 4-2 illustrates how the EDS space address is generated for write operations.

When the MSb of EA is '1', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double-word to EDS.

EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
          #0x0002 , w0
   mov
          w0 , DSWPAG
                         ;page 2 is selected for write
   mov
   mov
          \#0x0800 , w1 ;select the location (0x800) to be written
   bset
          wl , #15
                         ;set the MSB of the base address, enable EDS mode
;Write a byte to the selected location
   mov
          #0x00A5 , w2
          #0x003C , w3
   mov
   mov.b w2 , [w1++]
                             ;write Low byte
   mov.b w3 , [w1++]
                       ;write High byte
;Write a word to the selected location
          #0x1234 , w2 ;
   mov
   mov
          w2 , [w1]
                         ;
;Write a Double - word to the selected location
          #0x1122 , w2
   mov
   mov
          #0x4455 , w3
   mov.d w2 , [w1]
                         ;2 EDS writes
```

查询PIC24FJ256GB206供应商

The page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary when the rollover happens, from 0xFFFF to 0x8000. While developing code in assembly, care must be taken to update the page registers when an Address Pointer crosses the page boundary. The 'C' compiler keeps track of the addressing and increments or decrements the page registers accordingly while accessing contiguous data memory locations.

Note 1: All write operations to EDS are executed in a single cycle.

- 2: Use of a Read/Modify/Write operation on any EDS location under a REPEAT instruction is not supported. For example: BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f, ASL f.
- 3: Use the DSRPAG register while performing a Read/Modify/Write operation.

TABLE 4-34: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

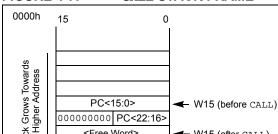
DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address while Indirect Addressing	24-Bit EA Pointing to EDS	Comment
x ⁽¹⁾	x ⁽¹⁾	0x0000 to 0x1FFF	0x000000 to 0x001FFF	Near data space ⁽²⁾
		0x2000 to 0x7FFF	0x002000 to 0x007FFF	
0x001	0x001		0x008000 to 0x00FFFE	
0x002	0x002		0x010000 to 0x017FFE	32 Kbytes on each page
0x003	0x003	0x8000 to 0xFFFF	0x018000 to 0x0187FE	Only 2 Kbytes of extended SRAM on this page
0x004	0x004		0x018800 to 0x027FFE	
•	•		•	EPMP
•	•		•	memory space
0x1FF	0x1FF		0xFF8000 to 0xFFFFFE	
0x000	0x000		Invalid Address	Address error trap ⁽³⁾

Note 1: If the source/destination address is below 0x8000, the DSRPAG and DSWPAG registers are not considered.

2: This data space can also be accessed by Direct Addressing.

3: When the source/destination address is above 0x8000 and DSRPAG/DSWPAG is '0', an address error trap will occur.

查询PIC24FJ256GB206供应商 4.2.6 SOFTWARE STACK


Apart from its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

W15 (before CALL)

W15 (after CALL)

POP : [--W15]

PUSH: [W15++]

PC<15:0>

000000000 PC<22:16>

<Free Word>

FIGURE 4-7: CALL STACK FRAME

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- · Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (program space visibility)

Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

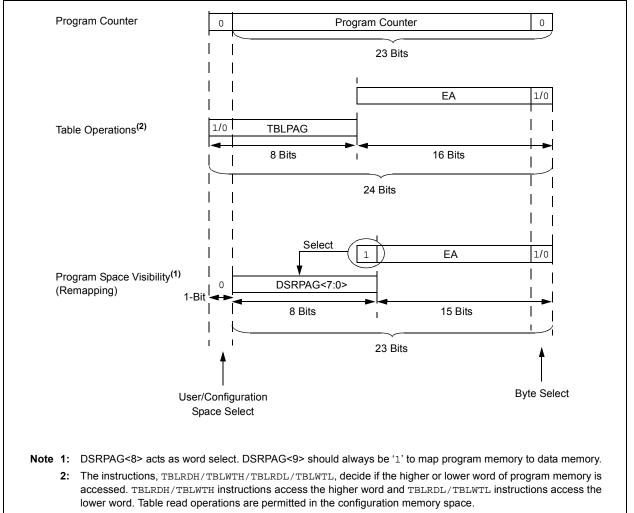
Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSBs of TBLPAG are used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 10-bit Extended Data Space Read register (DSRPAG) is used to define a 16K word page in the program space. When the Most Significant bit (MSb) of the EA is '1', and the MSb (bit 9) of DSRPAG is '1', the lower 8 bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23-bit program space address. The DSRPAG<8> bit decides whether the lower word (when bit is '0') or the higher word (when bit is '1') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.

Table 4-35 and Figure 4-8 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

Stack


查询PIC24FJ256GB206供应商 TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address				
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0 PC<22:1>				0
(Code Execution)			0xx xxxx xxxx xxxx xxxx xxx0			
TBLRD/TBLWT (Byte/Word Read/Write)	User	TBLPAG<7:0> Data EA<15:0>				
		0xxx xxxx xxxx xxxx x		xxx		
	Configuration	TBLPAG<7:0> Data EA<15:0>				
		12	xxx xxxx	xxx	x xxxx xxxx x	xxx
Program Space Visibility	User	0 DSRPAG<7:0> ⁽²⁾ Data EA<1		Data EA<14	:0> ⁽¹⁾	
(Block Remap/Read)		0	xxxx xx	xx	XXX XXXX XXX	x xxxx

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG<0>.

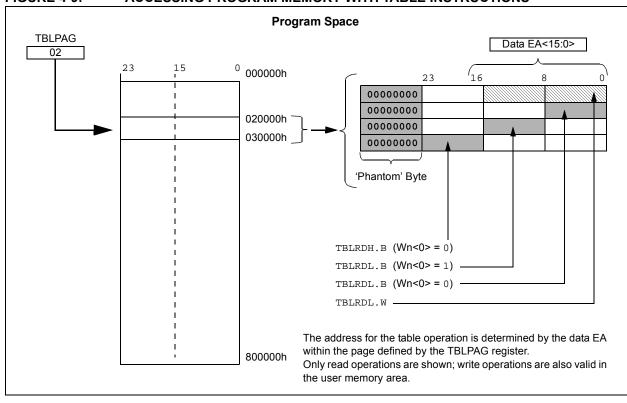
2: DSRPAG<9> is always '1' in this case. DSRPAG<8> decides whether the lower word or higher word of program memory is read. When DSRPAG<8> is '0', the lower word is read and when it is '1', the higher word is read.

查询PIC24FJ256GB206供应商

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, where Device IDs are located. Table write operations are not allowed.

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

查询PIC24FJ256GB206供应商

4.3.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

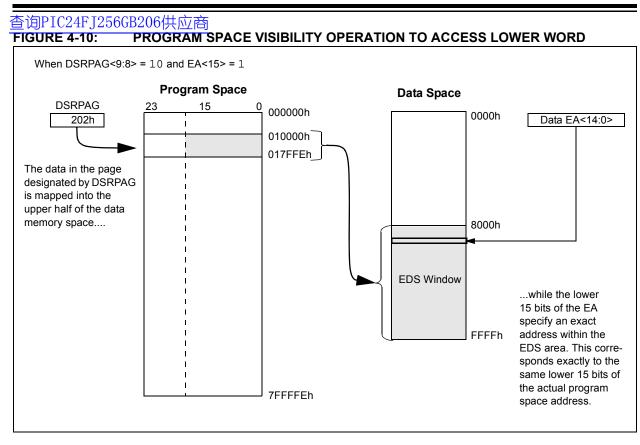
Program space access through the data space occurs when the MSb of EA is '1' and the DSRPAG<9> is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> decides which word should be addressed; when the bit is '0', the lower word and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 0x200 to 0x3FF, each consisting of 16K words of data. Pages, 0x200 to 0x2FF, correspond to the lower words of the program memory, while 0x300 to 0x3FF correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-36 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:


- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

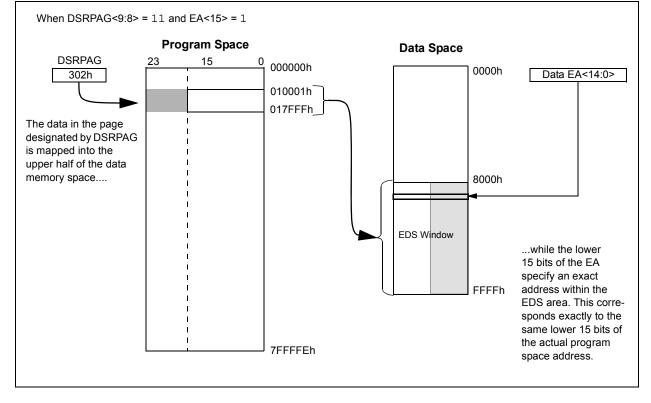

DSRPAG (Data Space Read Register)	Source Address while Indirect Addressing	23-Bit EA Pointing to EDS	Comment	
0x200		0x000000 to 0x007FFE		
•		•	Lower words of 4M	
•		•	program instructions (8 Mbytes) for read	
•		•	operations only.	
0x2FF	0x8000 to 0xFFFF	0x7F8000 to 0x7FFFFE		
0x300		0x000001 to 0x007FFF	Upper words of 4M	
•		•	program instructions	
•		•	(4 Mbytes remaining,	
•		•	4 Mbytes are phantom	
0x3FF		0x7F8001 to 0x7FFFFF	 bytes) for read operations only. 	
0x000		Invalid Address	Address error trap ⁽¹⁾	

TABLE 4-36: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: When the source/destination address is above 0x8000 and DSRPAG/DSWPAG is '0', an address error trap will occur.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS HIGHER WORD

查询PIC24FJ256GB206供应商 EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY ; Set the EDS page from where the data to be read #0x0202 , w0 mov w0 , DSRPAG ;page 0x202, consisting lower words, is selected for read mov ;page UX202, consisting fourt and , ;select the location (0x0A) to be read ;set the MSB of the base address, enable EDS mode #0x000A , w1 mov bset w1 , #15 ;Read a byte from the selected location mov.b [w1++] , w2 mov.b [w1++] , w3 ;read Low byte ;read High byte ;Read a word from the selected location [w1] , w2 mov ; ;Read Double - word from the selected location ;two word read, stored in w2 and w3 mov.d [w1] , w2

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 5.0 FLASH PROGRAM MEMORY

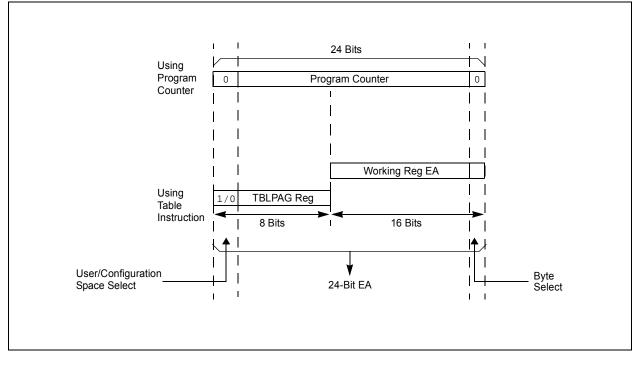
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 4. "Program Memory" (DS39715). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ256GB210 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ256GB210 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

查询PIC24FJ256GB206供应商 5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

R/S-0, HC ⁽¹⁾) R/W-0 ⁽¹⁾	R-0, HSC ⁽¹⁾	U-0	U-0	U-0	U-0	U-(
WR	WREN	WRERR					U-\			
bit 15	, , , , , , , , , , , , , , , , , , ,	, meine and								
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-			
_	ERASE	—	_	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMO			
bit 7										
Legend:		S = Settable bit	t	HSC = Hardw	are Settable/C	learable bit				
R = Readabl	le bit	W = Writable bi	it	U = Unimplem	nented bit, read	1 as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
HC = Hardw	are Clearable b	it								
bit 15	WR: Write Co	ontrol bit(1)								
		a Flash memory	program or	erase operatio	n; the operatio	n is self-timed	and the			
	cleared b	by hardware once	e the operation	n is complete						
	-	or erase operati	on is complet	e and inactive						
bit 14							WREN: Write Enable bit ⁽¹⁾			
	 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations 									
bit 13	0 = Inhibits F		ase operation							
bit 13	0 = Inhibits F WRERR: Wri 1 = An impr	lash program/er te Sequence Err oper program c	ase operation or Flag bit ⁽¹⁾ or erase seq	is uence attempt	, or terminatio	on has occurr	ed (bit i			
bit 13	0 = Inhibits F WRERR: Wri 1 = An impr automati	Tash program/er te Sequence Err oper program o cally on any set a	ase operatior or Flag bit ⁽¹⁾ or erase seq attempt of the	uence attempt WR bit)	, or terminatio	on has occurr	ed (bit i			
	0 = Inhibits F WRERR: Wri 1 = An impr automati 0 = The prog	Tash program/er te Sequence Err oper program o cally on any set a gram or erase op	ase operation or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp	uence attempt WR bit)	, or terminatio	on has occurr	ed (bit i			
bit 12-7	 0 = Inhibits F WRERR: Wri 1 = An imprautomati 0 = The prog Unimplement 	Flash program/er te Sequence Err oper program of cally on any set gram or erase op ted: Read as '0'	ase operatior or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp	uence attempt WR bit)	, or terminatio	on has occurr	ed (bit i			
	 0 = Inhibits F WRERR: Writh 1 = An improvention 0 = The proop Unimplement ERASE: Errors 1 = Performs 	Elash program/en te Sequence Err oper program o cally on any set gram or erase op ited: Read as '0' se/Program Enables the erase operation	ase operation or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp ole bit ⁽¹⁾ ation specified	uence attempt WR bit) leted normally	:0> on the next	t WR command	d			
bit 12-7 bit 6	 0 = Inhibits F WRERR: Wri 1 = An imprautomati 0 = The prog Unimplement ERASE: Erass 1 = Performs 0 = Performs 	Flash program/era te Sequence Err oper program of cally on any set a gram or erase op ited: Read as '0' se/Program Enables the erase operates the program op	ase operation or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp ole bit ⁽¹⁾ ation specified eration specified	uence attempt WR bit) leted normally	:0> on the next	t WR command	d			
bit 12-7 bit 6 bit 5-4	 0 = Inhibits F WRERR: Wri 1 = An imprautomati 0 = The prog Unimplement ERASE: Erass 1 = Performs 0 = Performs Unimplement 	Flash program/era te Sequence Err oper program of cally on any set a gram or erase op nted: Read as '0' se/Program Enate the erase operates the program op nted: Read as '0'	ase operation or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp ole bit ⁽¹⁾ ation specified eration speci	uence attempt e WR bit) leted normally d by NVMOP<3 fied by NVMOP	:0> on the next	t WR command	d			
bit 12-7 bit 6	 0 = Inhibits F WRERR: Writh 1 = An impression in the progenetic of the prog	Flash program/era te Sequence Err oper program of cally on any set a gram or erase op ited: Read as '0' se/Program Enate is the erase operations the program op ited: Read as '0' >: NVM Operations	ase operation or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp ole bit ⁽¹⁾ ation specified eration specified	uence attempt WR bit) leted normally d by NVMOP<3 fied by NVMOP	:0> on the next <3:0> on the n	t WR command ext WR comma	d			
bit 12-7 bit 6 bit 5-4	 0 = Inhibits F WRERR: Writh 1 = An improved automatice 0 = The proop Unimplement ERASE: Erass 1 = Performs 0 = Performs Unimplement NVMOP<3:00 1111 = Ment 0011 = Ment 	Flash program/era te Sequence Err oper program of cally on any set a gram or erase oper ited: Read as '0' se/Program Enables the erase operate the program op ited: Read as '0' >: NVM Operation nory bulk erase operate on ory word program	ase operation or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp ole bit ⁽¹⁾ ation specified eration specified on Select bits ⁽ operation (ER im operation	uence attempt WR bit) leted normally by NVMOP<3 fied by NVMOP 1,2) ASE = 1) or no (ERASE = 0) or	:0> on the next <3:0> on the n operation (ER	t WR command ext WR comma ASE = 0) ⁽³⁾ (ERASE = 1)	d			
bit 12-7 bit 6 bit 5-4	0 = Inhibits F WRERR: Wri 1 = An impr automati 0 = The prog Unimplemen ERASE: Eras 1 = Performs 0 = Performs Unimplemen NVMOP<3:00 1111 = Men 0011 = Men 0010 = Men	Flash program/era te Sequence Err oper program of cally on any set a gram or erase oper ted: Read as '0' se/Program Enables the erase operates the program op ted: Read as '0' >: NVM Operation nory bulk erase operates	ase operation or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp ole bit ⁽¹⁾ ation specified eration specified eration specified operation (ER im operation (ER	uence attempt WR bit) leted normally by NVMOP<3 fied by NVMOP 1,2) ASE = 1) or no (ERASE = 0) or RASE = 1) or no	:0> on the next <3:0> on the n operation (ER no operation (operation (EF	t WR command ext WR comma (ASE = 0) ⁽³⁾ (ERASE = 1) RASE = 0)	d			
bit 12-7 bit 6 bit 5-4 bit 3-0	 0 = Inhibits F WRERR: Writh 1 = An improved automatice 0 = The proop Unimplement ERASE: Erassistic 1 = Performs 0 = Performs Unimplement NVMOP<3:00 1111 = Ment 0011 = Ment 0001 = Ment 0001 = Ment 	Flash program/era te Sequence Err oper program of cally on any set a gram or erase oper ited: Read as '0' se/Program Enate s the erase operation is the program op ited: Read as '0' >: NVM Operation nory bulk erase of nory word program nory page erase	ase operation or Flag bit ⁽¹⁾ or erase seq attempt of the eration comp ole bit ⁽¹⁾ ation specified eration specified operation (ER im operation (ER in operation (ER	uence attempt WR bit) leted normally by NVMOP<3 fied by NVMOP 1,2) ASE = 1) or no (ERASE = 0) or RASE = 1) or no	:0> on the next <3:0> on the n operation (ER no operation (operation (EF	t WR command ext WR comma (ASE = 0) ⁽³⁾ (ERASE = 1) RASE = 0)	d			

查询PIC24FJ256GB206供应商

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-3).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-4.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)

; Set up NVMCON for block erase open	ration
MOV #0x4042, W0 ;	
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize Program Memory (PM) Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA<15:0> pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV.B #0x55, W0	
MOV W0, NVMKEY	; Write the 0x55 key
MOV.B #0xAA, W1 ;	
MOV W1, NVMKEY	; Write the OxAA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

查询PIC24FI256GB206供应商 EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB C30 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory location to	be written
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	// Initialize lower word of address
builtin_tblwtl(offset, 0x0000);	// Set base address of erase block
	// with dummy latch write
$NVMCON = 0 \times 4042;$	// Initialize NVMCON
asm("DISI #5");	// Block all interrupts with priority <7
	// for next 5 instructions
builtin_write_NVM();	// check function to perform unlock
	// sequence and set WR

EXAMPLE 5-3: LOADING THE WRITE BUFFERS

; Set up NVMCON for row programming operation	
MOV #0x4001, W0	
MOV W0, NVMCON	; Initialize NVMCON
; Set up a pointer to the first program memor	-
; program memory selected, and writes enabled	
MOV #0x0000, W0	i
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #0x6000, W0	; An example program memory address
; Perform the TBLWT instructions to write the	latches
; Oth_program_word	
MOV #LOW_WORD_0, W2	i
MOV #HIGH_BYTE_0, W3	i
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; lst_program_word	
MOV #LOW_WORD_1, W2	i
MOV #HIGH_BYTE_1, W3	i
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2	i
MOV #HIGH_BYTE_2, W3	i
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
•	
•	
•	
; 63rd_program_word	
MOV #LOW_WORD_63, W2	;
MOV #HIGH_BYTE_63, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0]	; Write PM high byte into program latch

EXAMPLE 5-4: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV.B	#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV.B	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the OxAA key
BSET	NVMCON, #WR	; Start the programming sequence
NOP		; Required delays
NOP		
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

查询PIC24FJ256GB206供应商

5.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes (MSB) of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOP bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-5). An equivalent procedure in 'C' compiler, using the MPLAB C30 compiler and built-in hardware functions, is shown in Example 5-6.

EXAMPLE 5-5: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

; Setup a p MOV MOV	pointer to data Program Memory #tblpage(PROG_ADDR), W0 W0, TBLPAG	; ;Initialize PM Page Boundary SFR
MOV		;Initialize a register with program memory address
MOV	#LOW_WORD_N, W2	i
MOV	#HIGH_BYTE_N, W3	;
TBLWTL	W2, [W0]	; Write PM low word into program latch
TBLWTH	W3, [W0++]	; Write PM high byte into program latch
; Setup NVN MOV MOV	4CON for programming one word to #0x4003, W0 W0, NVMCON	o data Program Memory ; ; Set NVMOP bits to 0011
DISI	#5	; Disable interrupts while the KEY sequence is written
MOV.B	#0x55, W0	; Write the key sequence
MOV	W0, NVMKEY	
MOV.B	#0xAA, WO	
MOV	W0, NVMKEY	
BSET	NVMCON, #WR	; Start the write cycle
NOP		; Required delays
NOP		

EXAMPLE 5-6: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

// C example using MPLAB C30	
unsigned int offset;	
unsigned long progAddr = 0xXXXXXX;	// Address of word to program
unsigned int progDataL = 0xXXXX;	// Data to program lower word
unsigned char progDataH = 0xXX;	// Data to program upper byte
//Set up NVMCON for word programming	
NVMCON = 0x4003;	// Initialize NVMCON
//Set up pointer to the first memory locatio	n to be written
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	// Initialize lower word of address
//Perform TBLWT instructions to write latche	S
<pre>builtin_tblwtl(offset, progDataL);</pre>	// Write to address low word
<pre>builtin_tblwth(offset, progDataH);</pre>	// Write to upper byte
asm("DISI #5");	// Block interrupts with priority <7
	// for next 5 instructions
<pre>builtin_write_NVM();</pre>	// C30 function to perform unlock
	// sequence and set WR

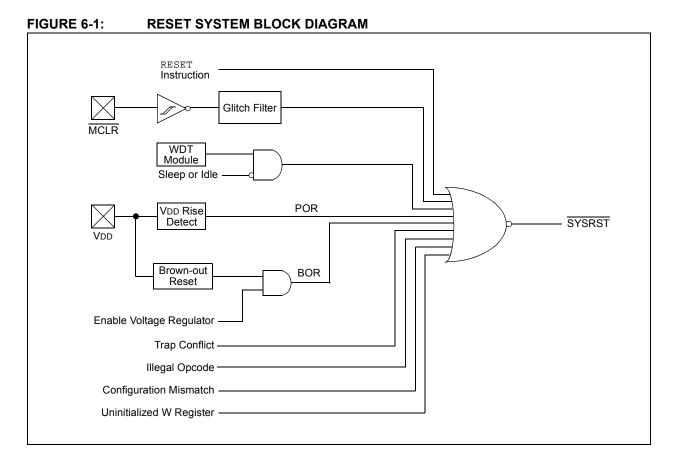
查询PIC24FJ256GB206供应商 6.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 7. "Reset" (DS39712). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.


Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A POR will clear all bits, except for the BOR and POR (RCON<1:0>) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

查询PIC24FJ256GB206供应商

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0
TRAPR	IOPUWR	—	—	—	—	СМ	VREGS ⁽³⁾
bit 15							bit 8

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0

Legend:	HS = Hardware Set	ttable bit					
R = Read	able bit W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value	e at POR '1' = Bit is set	'0' = Bit is cleared x = Bit is unknown					
bit 15	TRAPR: Trap Reset Flag bit						
	 1 = A Trap Conflict Reset has occ 0 = A Trap Conflict Reset has not 						
bit 14							
 1 = An illegal opcode of offinitialized W Access Reset hag bit 1 = An illegal opcode detection, an illegal address mode or uninitialized W register is used as ar Address Pointer and caused a Reset 0 = An illegal opcode or uninitialized W Reset has not occurred 							
bit 13-10	Unimplemented: Read as '0'						
bit 9	CM: Configuration Word Mismatch	n Reset Flag bit					
	 1 = A Configuration Word Mismat 0 = A Configuration Word Mismat 						
bit 8	C C						
bit 0	VREGS: Voltage Regulator Standby Enable bit ⁽³⁾ 1 = Program memory and regulator remain active during Sleep/Idle						
		moved and regulator goes to standby during Seep/Idle					
bit 7	EXTR: External Reset (MCLR) Pir	n bit					
	1 = A Master Clear (pin) Reset ha						
h :+ C	0 = A Master Clear (pin) Reset ha						
bit 6	SWR: Software Reset (Instruction 1 = A RESET instruction has been						
	0 = A RESET Instruction has been of being the set of the set						
bit 5	SWDTEN: Software Enable/Disab	le of WDT bit ⁽²⁾					
	1 = WDT is enabled						
	0 = WDT is disabled						
bit 4	WDTO: Watchdog Timer Time-out	t Flag bit					
	 1 = WDT time-out has occurred 0 = WDT time-out has not occurred 	ad					
bit 3	SLEEP: Wake From Sleep Flag bi						
Site	1 = Device has been in Sleep mo						
	0 = Device has not been in Sleep	mode					
Note 1:	-	or cleared in software. Setting one of these bits in software does not					
•	cause a device Reset.						
2:	SWDTEN bit setting.	(unprogrammed), the WDT is always enabled, regardless of the					

3: Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.

查询PIC24FI256GB206供应商 REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 **IDLE:** Wake-up From Idle Flag bit
 - 1 = Device has been in Idle mode
 - 0 = Device has not been in Idle mode
- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 Note that BOR is also set after a Power-on Reset.
 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	CLRWDT, PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #0 Instruction	POR
IDLE (RCON<2>)	PWRSAV #1 Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

查询PIC24FJ256GB206供应商

6.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in Flash Configuration Word 2 (CW2) (see Table 6-2). The RCFGCAL and NVMCON registers are only affected by a POR.

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the system Reset signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

6.3 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 8.0 "Oscillator Configuration"** for further details.

TABLE 6-2:	OSCILLATOR SELECTION vs.		
	TYPE OF RESET (CLOCK		
	SWITCHING ENABLED)		

Reset Type	Clock Source Determinant
POR	FNOSC Configuration bits
BOR	(CW2<10:8>)
MCLR	
WDTO	COSC Control bits (OSCCON<14:12>)
SWR	(000001(14.12))

查询PIC24FJ256GB206供应商 TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes	
POR ⁽⁷⁾	EC	TPOR + TSTARTUP + TRST	_	1, 2, 3	
	ECPLL	TPOR + TSTARTUP + TRST	Тьоск	1, 2, 3, 5	
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	1, 2, 3, 4	
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	TOST + TLOCK	1, 2, 3, 4, 5	
	FRC, FRCDIV	TPOR + TSTARTUP + TRST	TFRC	1, 2, 3, 6, 7	
	FRCPLL	TPOR + TSTARTUP + TRST	TFRC + TLOCK	1, 2, 3, 5, 6	
	LPRC	TPOR + TSTARTUP + TRST	TLPRC	1, 2, 3, 6	
BOR	EC	TSTARTUP + TRST	_	2, 3	
	ECPLL	TSTARTUP + TRST	Тьоск	2, 3, 5	
	XT, HS, SOSC	TSTARTUP + TRST	Tost	2, 3, 4	
	XTPLL, HSPLL	TSTARTUP + TRST	TOST + TLOCK	2, 3, 4, 5	
	FRC, FRCDIV	TSTARTUP + TRST	TFRC	2, 3, 6, 7	
	FRCPLL	TSTARTUP + TRST	TFRC + TLOCK	2, 3, 5, 6	
	LPRC	TSTARTUP + TRST	TLPRC	2, 3, 6	
MCLR	Any Clock	Trst	_	3	
WDT	Any Clock	Trst	—	3	
Software	Any clock	Trst	_	3	
Illegal Opcode	Any Clock	TRST	—	3	
Uninitialized W	Any Clock	TRST	—	3	
Trap Conflict	Any Clock	Trst	_	3	

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

2: TSTARTUP = TVREG (10 μs nominal when VREGS = 1 and when VREGS = 0; depends upon WUTSEL<1:0> bits setting).

- 3: TRST = Internal State Reset time (32 µs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL lock time.
- 6: TFRC and TLPRC = RC Oscillator start-up times.
- 7: If Two-speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid. It switches to the primary oscillator after its respective clock delay.

查询PIC24FJ256GB206供应商 6.3.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.3.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

查询PIC24FJ256GB206供应商 7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 8. "Interrupts" (DS39707). The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- · Up to 8 processor exceptions and software traps
- · Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ256GB210 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. The ALTIVT (INTCON2<15>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

查询PIC24FJ256GB206供应商 FIGURE 7-1: FIG24F INTERRUPT VECTOR TABLE

Reset – GOTO Address	
Reset - Goro Address	000002h
Reserved	000004h
Oscillator Fail Trap Vector	
Address Error Trap Vector	
Stack Error Trap Vector	
Math Error Trap Vector	
Reserved	
Reserved	
Reserved	
Interrupt Vector 0	000014h
Interrupt Vector 1	
—	
—	
Interrupt Vector 52	00007Ch
	00007Eh / Interrupt Vector Table (IVT) ⁽¹⁾
Interrupt Vector 54	000080h
Interrupt Vector 116	0000FCh
Interrupt Vector 117	0000FEh
Reserved	000100h
Reserved	000102h
Reserved	
Oscillator Fail Trap Vector	
Stack Error Trap Vector	
Math Error Trap Vector	
Reserved	
Reserved	
Reserved	
Interrupt Vector 0	000114h
Interrupt Vector 1	
Interrupt Vector 52	00017Ch
Interrupt Vector 53	00017Eh > Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
Interrupt Vector 54	000180h
_	1
Interrupt Vector 116	1
Interrupt Vector 117	0001FEh
Start of Code	000200h
	Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 — — — — — — — — — — — — — — — — — — —

TABLE 7-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

查询PIC24FJ256GB206供应商 TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

lataren t o rena	Vector	IVT	AIVT	Interrupt Bit Locations			
Interrupt Source	Number	Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
CTMU Event	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
External Interrupt 3	53	00007Eh	00017Eh	IFS3<5>	IEC3<5>	IPC13<6:4>	
External Interrupt 4	54	000080h	000180h	IFS3<6>	IEC3<6>	IPC13<10:8>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
I2C3 Master Event	85	0000BEh	0001BEh	IFS5<5>	IEC5<5>	IPC21<6:4>	
I2C3 Slave Event	84	0000BCh	0001BCh	IFS5<4>	IEC5<4>	IPC21<2:0>	
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>	
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>	
Input Capture 6	40	000064h	000164h	IFS2<8>	IEC2<8>	IPC10<2:0>	
Input Capture 7	22	000040h	000140h	IFS1<6>	IEC1<6>	IPC5<10:8>	
Input Capture 8	23	000042h	000142h	IFS1<7>	IEC1<7>	IPC5<14:12>	
Input Capture 9	93	0000CEh	0001CEh	IFS5<13>	IEC5<13>	IPC23<6:4>	
Input Change Notification (ICN)	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
Low-Voltage Detect (LVD)	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>	
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>	
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>	
Output Compare 6	42	000068h	000168h	IFS2<10>	IEC2<10>	IPC10<10:8>	
Output Compare 7	43	00006Ah	00016Ah	IFS2<11>	IEC2<11>	IPC10<14:12>	
Output Compare 8	44	00006Ch	00016Ch	IFS2<12>	IEC2<12>	IPC11<2:0>	
Output Compare 9	92	0000CCh	0001CCh	IFS5<12>	IEC5<12>	IPC23<2:0>	
Enhanced Parallel Master Port (EPMP)	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>	
Real-Time Clock and Calendar (RTCC)	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>	
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>	
SPI3 Error	90	0000C8h	0001C8h	IFS5<10>	IEC5<10>	IPC22<10:8>	
SPI3 Event	91	0000CAh	0001CAh	IFS5<11>	IEC5<11>	IPC22<14:12>	

查询PIC24FJ256GB206供应商

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	IVT	AIVT	Interrupt Bit Locations			
Interrupt Source	Number	Address	Address	Flag	Enable	Priority	
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>	
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>	
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>	
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>	
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>	
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>	
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>	
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>	
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>	
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>	
UART3 Error	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>	
UART3 Receiver	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>	
UART3 Transmitter	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>	
UART4 Error	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>	
UART4 Receiver	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>	
UART4 Transmitter	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>	
USB Interrupt	86	0000C0h	0001C0h	IFS5<6>	IEC5<6>	IPC21<10:8>	

7.3 Interrupt Control and Status Registers

The PIC24FJ256GB210 family of devices implements a total of 37 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS5
- IEC0 through IEC5
- IPC0 through IPC23 (except IPC14 and IPC17)
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or an external signal and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPCx registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Priority Level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

查询PIC24FJ256GB206供应商

The CORCON register contains the IPL3 bit, which, together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

The interrupt controller has the Interrupt Controller Test register, INTTREG, which displays the status of the interrupt controller. When an interrupt request occurs, it's associated vector number and the new interrupt priority level are latched into INTTREG. This information can be used to determine a specific interrupt source if a generic ISR is used for multiple vectors (such as when ISR remapping is used in bootloader applications) or to check if another interrupt is pending while in an ISR.

All interrupt registers are described in Register 7-1 through Register 7-38 in the succeeding pages.

REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	_	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	0V ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9 Unimplemented: Read as '0'

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU interrupt priority level is 7 (15); user interrupts are disabled 110 = CPU interrupt priority level is 6 (14) 101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12) 011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9) 000 = CPU interrupt priority level is 0 (8) Note 1: See Register 3-1 for the description of the remaining bits (bits 8, 4, 3, 2, 1 and 0) that are not dedicated to

- interrupt control functions.2: The IPL bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU interrupt priority level.
 - The value in parentheses indicates the interrupt priority level if IPL3 = 1.
 - **3:** The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

查询PIC24FJ256GB206供应商 REGISTER 7-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	-	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	r-1	U-0	U-0
—	—	_	—	IPL3 ⁽¹⁾	r	—	—
bit 7							bit 0

Legend:	r = Reserved bit	C = Clearable bit	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented b	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-4 Unimplemented: Read as '0'

- bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾
 - 1 = CPU interrupt priority level is greater than 7
 - 0 = CPU interrupt priority level is 7 or less
- bit 2 Reserved: Read as '1'
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level; see Register 3-2 for bit description.

查询PIC24FJ256GB206供应商 REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS		—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	NSTDIS: Interrupt Nesting Disable bit
	1 = Interrupt nesting is disabled
	0 = Interrupt nesting is enabled
bit 14-5	Unimplemented: Read as '0'
bit 4	MATHERR: Arithmetic Error Trap Status bit
	 1 = Overflow trap has occurred
	0 = Overflow trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	 Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

查询PIC24FJ256GB206供应商 REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_	—			
bit 15							bit
			DAMO	DAMO	DAMO	DAMA	R/W-0
U-0	U-0	U-0	R/W-0 INT4EP	R/W-0 INT3EP	R/W-0 INT2EP	R/W-0	INT0EP
 bit 7	—			INTSEF	INTZEF		bit
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 14	0 = Use stand DISI: DISI In 1 = DISI inst	nate Interrupt \ dard (default) v struction Status truction is activ truction is not a	ector table s bit e				
bit 13-5	Unimplement	ted: Read as ')'				
bit 4	1 = Interrupt	rnal Interrupt 4 on negative ed on positive edg	ge	Polarity Select b	bit		
bit 3	1 = Interrupt	rnal Interrupt 3 on negative ed on positive edg	ge	Polarity Select b	bit		
bit 2	1 = Interrupt	rnal Interrupt 2 on negative ed on positive edg	ge	Polarity Select b	bit		
bit 1	1 = Interrupt	rnal Interrupt 1 on negative ed on positive edg	ge	Polarity Select b	Dit		
bit 0	1 = Interrupt	rnal Interrupt 0 on negative ed on positive edg	ge	Polarity Select b	bit		

查询PIC24FJ256GB206供应商 REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS				
		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF				
bit 15			UTIXII	Univi	01 m	01111	bit 8				
R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS				
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF				
bit 7							bit 0				
Legend:		HS = Hardwa	re Settable bit								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-14	Unimplomon	ted: Read as '	י,								
bit 13	-			t Flag Status bit	÷						
DIL 15		request has oc	-	I Flay Status Di	L						
	•	•									
bit 12	 Interrupt request has not occurred U1TXIF: UART1 Transmitter Interrupt Flag Status bit 										
		request has oc									
	-	request has no									
bit 11	U1RXIF: UART1 Receiver Interrupt Flag Status bit										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 10											
	SPI1IF: SPI1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 9	SPF1IF: SPI1 Fault Interrupt Flag Status bit										
		request has oc									
	•	request has no									
bit 8	T3IF: Timer3 Interrupt Flag Status bit										
		request has occ request has not									
bit 7	T2IF: Timer2 Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
		request has no									
bit 6	OC2IF: Output Compare Channel 2 Interrupt Flag Status bit										
	 Interrupt request has occurred Interrupt request has not occurred 										
bit 5		-		lag Status bit							
	IC2IF: Input Capture Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred										
		request has no									
bit 4	Unimplemen	ted: Read as '	כי								
bit 3		Interrupt Flag S									
		request has oc request has no									
bit 2	•	•		pt Flag Status t	oit						
	-	request has oc									
	0 = Interrupt	request has no	t occurred								

查询PIC24FJ256GB206供应商

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0				
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF					
bit 15							bit 8				
R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS				
IC8IF	IC7IF		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF				
bit 7							bit 0				
			0 11 1 1 1								
Legend:			re Settable bit								
R = Readable		W = Writable			nented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
6:4 <i>4</i> F				Chatura hit							
bit 15		T2 Transmitter request has oc		Status Dit							
		request has no									
bit 14	•	·		atus bit							
	U2RXIF: UART2 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 13	INT2IF: Exter	2IF: External Interrupt 2 Flag Status bit									
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred										
	•	•									
bit 12		Interrupt Flag S									
	•	request has oc request has no									
bit 11	-	Interrupt Flag S									
bit II		request has oc									
		request has no									
bit 10	OC4IF: Outpu	C4IF: Output Compare Channel 4 Interrupt Flag Status bit									
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 9	OC3IF: Output Compare Channel 3 Interrupt Flag Status bit										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
h :+ 0	-	-									
bit 8	•	ted: Read as '		laa Otatua hit							
bit 7	-	Capture Channe request has oc	-	ay sialus dil							
		request has oc									
bit 6	-	Capture Channe		lag Status bit							
		request has oc									
		request has no									

查询FIC24FJ256GB206供应商 REGISTER 7-6: IFS12 INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 5	Unimplemented: Read as '0'
bit 4	INT1IF: External Interrupt 1 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 3	CNIF: Input Change Notification Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: Master I2C1 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0, HS					
—		PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15							bit 8

R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
IC5IF	IC4IF	IC3IF	—	—	—	SPI2IF	SPF2IF
bit 7 bit 0							

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	PMPIF: Parallel Master Port Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 12	OC8IF: Output Compare Channel 8 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 11	OC7IF: Output Compare Channel 7 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 10	OC6IF: Output Compare Channel 6 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 9	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

	J256GB206供应商 -7: IFS2: INTER RUPT FLAG STATUS REGISTER 2 (CONTINUED)
bit 8	IC6IF: Input Capture Channel 6 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 7	IC5IF: Input Capture Channel 5 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 6	IC4IF: Input Capture Channel 4 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 4-2	Unimplemented: Read as '0'
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SPF2IF: SPI2 Fault Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

查询PIC24FJ256GB206供应商 REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
_	RTCIF	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0, HS	R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	INT4IF	INT3IF	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-7	Unimplemented: Read as '0'
bit 6	INT4IF: External Interrupt 4 Flag Status bit
	 1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 5	INT3IF: External Interrupt 3 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4-3	Unimplemented: Read as '0'
bit 2	MI2C2IF: Master I2C2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

查询PIC24FJ256GB206供应商 REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS	
—	—	CTMUIF	—	—	—	—	LVDIF	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	
	—	—	—	CRCIF	U2ERIF	U1ERIF		
bit 7							bit 0	
Legend:		HS = Hardwar	e Settable bit					
R = Readab	le bit	W = Writable b	pit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-14	Unimplemented: Read as '0'							
bit 13	CTMUIF: CTMU Interrupt Flag Status bit							
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 							
bit 12-9	-	ted: Read as '0						
bit 8	-			Statue bit				
DILO		/oltage Detect In request has occ		bialus bil				
		request has not						
bit 7-4	•	Unimplemented: Read as '0'						
bit 3	CRCIF: CRC	Generator Inter	rupt Flag State	us bit				
	1 = Interrupt request has occurred							
	0 = Interrupt	request has not	occurred					
bit 2	U2ERIF: UAF	RT2 Error Interru	upt Flag Status	s bit				
		request has occ						
L:1. A		request has not		- I- :+				
bit 1		RT1 Error Interru		S DIT				
		request has occ request has not						
bit 0	•	ted: Read as '0						

查询PIC24FJ256GB206供应商 REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 	bit 8 HS U-0 F — bit 0									
R/W-0, HS R/R/Relifier R/B	HS U-0 F — bit (
U4ERIF USB1IF MI2C3IF SI2C3IF U3TXIF U3RXIF U3ERI bit 7 Legend: HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is bit 15-14 Unimplemented: Read as '0' bit 15 IC9IF: Input Capture Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has not occurred	F — bit (
U4ERIF USB1IF MI2C3IF SI2C3IF U3TXIF U3RXIF U3ERI bit 7 Legend: HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is bit 15-14 Unimplemented: Read as '0' bit 15 IC9IF: Input Capture Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred	F — bit (
bit 7 Legend: HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is bit 15-14 Unimplemented: Read as '0' bit 15-14 Unimplemented: Read as '0' bit 13 IC9IF: Input Capture Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred	bit (
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is bit 15-14 Unimplemented: Read as '0' bit 13 IC9IF: Input Capture Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPF3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred	unknown									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is bit 15-14 Unimplemented: Read as '0' bit 13 IC9IF: Input Capture Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred	unknown									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is bit 15-14 Unimplemented: Read as '0' bit 13 IC9IF: Input Capture Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred	unknown									
bit 13IC9IF: Input Capture Channel 9 Interrupt Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has not occurredbit 12OC9IF: Output Compare Channel 9 Interrupt Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has not occurredbit 11SPI3IF: SPI3 Event Interrupt Flag Status bit1 = Interrupt request has occurredbit 11SPI3IF: SPI3 Event Interrupt Flag Status bit1 = Interrupt request has not occurredbit 10SPF3IF: SPI3 Fault Interrupt Flag Status bit1 = Interrupt request has not occurredbit 10SPF3IF: SPI3 Fault Interrupt Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has not occurredbit 10SPF3IF: SPI3 Fault Interrupt Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has not occurredbit 10										
bit 13 IC9IF: Input Capture Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred										
1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 0 = Interrupt request has not occurred 0 bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 0 = Interrupt request has not occurred										
bit 12 OC9IF: Output Compare Channel 9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has occurred										
1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred										
bit 11 SPI3IF: SPI3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred										
1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 0 = Interrupt request has not occurred										
bit 10 SPF3IF: SPI3 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred										
 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
0 = Interrupt request has not occurred										
bit 9 U4TXIF: UART4 Transmitter Interrupt Flag Status bit										
	1 = Interrupt request has occurred									
0 = Interrupt request has not occurred										
bit 8 U4RXIF: UART4 Receiver Interrupt Flag Status bit										
	1 = Interrupt request has occurred									
0 = Interrupt request has not occurred										
	U4ERIF: UART4 Error Interrupt Flag Status bit									
0 = Interrupt request has not occurred	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 6 USB1IF: USB1 (USB OTG) Interrupt Flag Status bit										
1 = Interrupt request has occurred	1 = Interrupt request has occurred									
0 = Interrupt request has not occurred										
bit 5 MI2C3IF: Master I2C3 Event Interrupt Flag Status bit										
 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 4 SI2C3IF: Slave I2C3 Event Interrupt Flag Status bit										
 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 3 U3TXIF: UART3 Transmitter Interrupt Flag Status bit										
1 = Interrupt request has occurred										
0 = Interrupt request has not occurred										
bit 2 U3RXIF: UART3 Receiver Interrupt Flag Status bit										
 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										

查询PIC24FJ256GB206供应商 REGISTER 7-10: IFS5: INTER RUPT FLAG STATUS REGISTER 5 (CONTINUED)

bit 1	U3ERIF: UART3 Error Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 7-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE				
bit 7							bit 0				
Legend:											
R = Readab		W = Writable		U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 15-14	Unimplomon	ted: Read as '	o'								
bit 13	-	Conversion Cor		t Enable bit							
bit 15		request is enal									
		request is not e									
bit 12	U1TXIE: UART1 Transmitter Interrupt Enable bit										
	1 = Interrupt request is enabled										
	0 = Interrupt request is not enabled										
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit										
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 										
bit 10	-	-		Enchlo hit							
DICTU		Transfer Comp request is enal	•	Enable bit							
	•	request is enal									
bit 9		l Fault Interrup									
		request is enal									
	0 = Interrupt	request is not e	enabled								
bit 8		Interrupt Enab									
		request is enal									
L:1 7	-	request is not o									
bit 7		Interrupt Enab									
		 Interrupt request is enabled Interrupt request is not enabled 									
bit 6		•		ipt Enable bit							
	OC2IE: Output Compare Channel 2 Interrupt Enable bit 1 = Interrupt request is enabled										
		request is not e									
bit 5	IC2IE: Input C	Capture Chann	el 2 Interrupt E	nable bit							
		request is enal									
	-	request is not e									
bit 4	Unimplement	ted: Read as '	0'								

查询PIC24FJ256GB206供应商 REGISTER 7-11: IECO: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 3	T1IE: Timer1 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	—
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE	—	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7						•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	U2TXIE: UART2 Transmitter Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 14	U2RXIE: UART2 Receiver Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 13	INT2IE: External Interrupt 2 Enable bit ⁽¹⁾ 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 12	<pre>T5IE: Timer5 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled</pre>
bit 11	T4IE: Timer4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 10	<pre>OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled</pre>

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx pin. See **Section 10.4 "Peripheral Pin Select (PPS)**" for more information.

查询PIC24FJ256GB206供应商 REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 9	OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 8	Unimplemented: Read as '0'
bit 7	 IC8IE: Input Capture Channel 8 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 6	IC7IE: Input Capture Channel 7 Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 5	Unimplemented: Read as '0'
bit 4	INT1IE: External Interrupt 1 Enable bit ⁽¹⁾
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 3	CNIE: Input Change Notification Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	MI2C1IE: Master I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	SI2C1IE: Slave I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx pin. See **Section 10.4 "Peripheral Pin Select (PPS)**" for more information.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-			
_	_	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6I			
bit 15										
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-			
IC5IE	IC4IE	IC3IE	_	—	—	SPI2IE	SPF2			
bit 7										
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15-14	Unimplemer	nted: Read as 'o)'							
bit 13	PMPIE: Parallel Master Port Interrupt Enable bit									
1 = Interrupt request is enabled0 = Interrupt request is not enabled										
bit 12	•	•		unt Enable bit						
DIL 12		OC8IE: Output Compare Channel 8 Interrupt Enable bit 1 = Interrupt request is enabled								
		request is not e								
bit 11	OC7IE: Output Compare Channel 7 Interrupt Enable bit									
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 									
bit 10	 0 = Interrupt request is not enabled OC6IE: Output Compare Channel 6 Interrupt Enable bit 									
		request is enab								
	•	request is not e								
bit 9		ut Compare Cha		upt Enable bit						
		request is enab request is not e								
bit 8		Capture Channe		Enable bit						
		request is enab								
bit 7		Capture Channe		Enable bit						
	•	request is enab								
	•	request is not e								
bit 6		Capture Channe	-	Enable bit						
		request is enab request is not e								
bit 5		Capture Channe		Enable bit						
		request is enab								
	-	request is not e								
bit 4-2	-	nted: Read as '								
bit 1		2 Event Interrupt request is enabled								
	•	request is enaction is enaction in the second se								
	-	2 Fault Interrupt								

查询PIC24FJ256GB206供应商 REGISTER 7-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
_	RTCIE		_			_	_
bit 15							bit 8
U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
	INT4IE ⁽¹⁾	INT3IE ⁽¹⁾	_		MI2C2IE	SI2C2IE	
bit 7							bit C
Legend:	1.1.1						
R = Readab		W = Writable b	DIT	•	nented bit, read		
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	-	ted: Read as '0					
bit 14		Time Clock/Cal	•	t Enable bit			
		request is enab					
	•	request is not e					
bit 13-7	-	ted: Read as '0					
bit 6		nal Interrupt 4 I					
		request is enab request is not e					
bit 5	•	nal Interrupt 3 I					
		request is enab					
		request is not e					
bit 4-3	Unimplemen	ted: Read as '0	,				
bit 2	MI2C2IE: Ma	ster I2C2 Event	Interrupt Enal	ble bit			
		request is enab	•				
		request is not e					
bit 1	SI2C2IE: Slav	ve I2C2 Event li	nterrupt Enabl	e bit			
		request is enab	-				
	0 = Interrupt	request is not e	nabled				
bit 0	Unimplemen	ted: Read as 'o	,				
Note 1:	f an external inte	rrupt is enabled	the interrupt	input must also	o be configured	to an available	RPv or RPIv

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

	56GB206供应 7-15: IEC4	立商 F: INTERRUPT	ENABLE C	ONTROL RE	GISTER 4			
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	
_	_	CTMUIE	_		_	—	LVDIE	
bit 15	•							
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	
	—	—		CRCIE	U2ERIE	U1ERIE		
bit 7								
Legend:								
R = Readab	le bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set		-			unknown	
bit 12-9 bit 8	0 = Interrup Unimpleme LVDIE: Low 1 = Interrup	t request is enab t request is not e nted: Read as '0 -Voltage Detect II t request is enab t request is not e	nabled , nterrupt Enab led	le bit				
bit 7-4	Unimpleme	nted: Read as '0	,					
bit 3	1 = Interrup	C Generator Inter t request is enab t request is not e	led	bit				
bit 2	1 = Interrup	RT2 Error Interru t request is enab t request is not e	led	:				
bit 1	1 = Interrup	 0 = Interrupt request is not enabled U1ERIE: UART1 Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 						
	0 = Interrup	t request is not e	nabled					

查询PIC24FJ256GB206供应商 REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC9IE OC9IE SPI3IE SPF3IE U4TXIE U4RXIE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 **U4ERIE** USB1IE MI2C3IE SI2C3IE **U3TXIE U3RXIE U3ERIE** bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 IC9IE: Input Capture Channel 9 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 OC9IE: Output Compare Channel 9 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 SPI3IE: SPI3 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 SPF3IE: SPI3 Fault Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 U4TXIE: UART4 Transmitter Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 U4RXIE: UART4 Receiver Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 **U4ERIE:** UART4 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled USB1IE: USB1 (USB OTG) Interrupt Enable bit bit 6 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 MI2C3IE: Master I2C3 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 SI2C3IE: Slave I2C3 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 **U3TXIE:** UART3 Transmitter Interrupt Enable bit

- 1 = Interrupt request enabled
 0 = Interrupt request not enabled
 bit 2 U3RXIE: UART3 Receiver Interrupt Enable bit
 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

查询PIC24FJ256GB206供应商 REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 (CONTINUED)

- bit 1 U3ERIE: UART3 Error Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'

REGISTER 7-17: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0
bit 7			•				bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	T1IP<2:0>: Timer1 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 11	Unimplemented: Read as '0'
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 7	Unimplemented: Read as '0'
	•
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
bit 6-4	-
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1
	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled
bit 6-4 bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1
	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled
bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0'
bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' INTOIP<2:0>: External Interrupt 0 Priority bits
bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' INTOIP<2:0>: External Interrupt 0 Priority bits
bit 3	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' INTOIP<2:0>: External Interrupt 0 Priority bits

查询PIC24FJ256GB206供应商 REGISTER 7-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—	IC2IP2	IC2IP1	IC2IP0	—	—					
bit 7							bit 0			
Legend:										
R = Readab	le hit	W = Writable	hit	LI = Linimpler	mented bit, read	1 as 'O'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr				
					areu		IOWI			
bit 15	Unimplemer	nted: Read as '	0'							
bit 14-12	-	Timer2 Interrupt								
		upt is priority 7 (•	(interrupt)						
	•		(nighest phone)	(interrupt)						
	•									
	•									
		upt is priority 1	a b la d							
L:1 44		upt source is dis								
bit 11	-	Inimplemented: Read as '0'								
bit 10-8	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	111 = Interru	upt is priority 7 ((highest priority	/ interrupt)						
	•									
	•									
		upt is priority 1								
		upt source is dis								
bit 7	•	nted: Read as '								
bit 6-4		Input Capture 0			S					
	111 = Interru	upt is priority 7 ((highest priority	/ interrupt)						
	•									
	•									
	001 = Interru	upt is priority 1								
		upt source is dis	sabled							
bit 3-0	Unimplemer	nted: Read as '	0'							

REGISTER	(7-19. IPO2.		PRIORITY								
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-				
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1I				
bit 15	·										
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W				
_	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP				
bit 7											
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits										
		pt is priority 7 (
	•		0								
	•										
	• 001 = Interru	pt is priority 1									
		pt source is dis	abled								
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	SPI1IP<2:0>:	SPI1 Event In	terrupt Priority	bits							
	111 = Interru	1 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-4	SPF1IP<2:0>	: SPI1 Fault In	terrupt Priority	bits							
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)							
	•										
	•										
	001 = Interru										
		pt source is dis									
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0		imer3 Interrupt	-								
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)							
	•										
	•										

查询PIC24FJ256GB206供应商 REGISTER 7-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	_	_	—	—	—	—				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0				
bit 7							bit (
Logondu											
Legend: R = Reada	ble hit	W = Writable	hit		pented hit read	l ac 'O'					
-n = Value at POR		'1' = Bit is set		U = Unimplemented bit, reac '0' = Bit is cleared		x = Bit is unknown					
	alPOR				areu		IOWII				
bit 15-7	Unimplemen	ted: Read as '	0'								
bit 6-4	-	AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits									
511 0-4		111 = Interrupt is priority 7 (highest priority interrupt)									
		perio priority i v	ingricer priority								
	•			,							
	•			,							
	• • • • 001 = Interru	nt is priority 1		,							
	• • 001 = Interru 000 = Interru		abled								
bit 3	000 = Interru	pt source is dis		,,							
bit 3 bit 2-0	000 = Interru Unimplemen	pt source is dis ted: Read as '	0'								
bit 3 bit 2-0	000 = Interru Unimplemen U1TXIP<2:0>	pt source is dis ted: Read as ' UART1 Trans	^{0'} smitter Interrup	ot Priority bits							
	000 = Interru Unimplemen U1TXIP<2:0>	pt source is dis ted: Read as '	^{0'} smitter Interrup	ot Priority bits							
	000 = Interru Unimplemen U1TXIP<2:0>	pt source is dis ted: Read as ' UART1 Trans	^{0'} smitter Interrup	ot Priority bits							
	000 = Interru Unimplemen U1TXIP<2:0>	pt source is dis ted: Read as ' •: UART1 Trans pt is priority 7 (^{0'} smitter Interrup	ot Priority bits							

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-			
_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP			
bit 15										
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-			
	MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1I			
bit 7					01201112	01201111	012011			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	-	ted: Read as '								
bit 14-12		nput Change N			ts					
	111 = Interru	pt is priority 7 (highest priority	interrupt)						
	•									
	•									
		pt is priority 1								
		ipt source is dis								
bit 11	-	ted: Read as '								
bit 10-8		MIP<2:0>: Comparator Interrupt Priority bits								
	111 = Interru	1 = Interrupt is priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interrupt is priority 1									
		pt source is dis								
bit 7	-	ted: Read as '								
bit 6-4		>: Master I2C1	•							
	111 = Interru	ipt is priority 7 (highest priority	interrupt)						
	•									
	• •									
		pt is priority 1								
	000 = Interru	ipt source is dis								
bit 3	000 = Interru Unimplemen	ipt source is dis ited: Read as '(כי							
	000 = Interru Unimplemen SI2C1IP<2:0	ipt source is dis ited: Read as '(>: Slave I2C1 E	o' Event Interrupt F	-						
bit 3	000 = Interru Unimplemen SI2C1IP<2:0	ipt source is dis ited: Read as '(o' Event Interrupt F	-						
bit 3	000 = Interru Unimplemen SI2C1IP<2:0	ipt source is dis ited: Read as '(>: Slave I2C1 E	o' Event Interrupt F	-						
bit 3	000 = Interru Unimplemen SI2C1IP<2:0 111 = Interru	ipt source is dis ited: Read as '(>: Slave I2C1 E	o' Event Interrupt F	-						

查询PIC24FJ256GB206供应商 REGISTER 7-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 IC8IP2 IC8IP1 IC8IP0 ____ IC7IP2 IC7IP1 IC7IP0 bit 15 bit 8 R/W-0 U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 INT1IP2 INT1IP1 INT1IP0 ____ ____ _ ___ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7-3 Unimplemented: Read as '0' bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP			
bit 15										
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	OC3IP2	OC3IP1	OC3IP0							
bit 7										
Legend:										
R = Readat	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as '	n'							
bit 14-12	-	imer4 Interrupt								
DIL 14-12		pt is priority 7 (•	(interrunt)						
	•		nighest phone	y interrupt)						
	• 001 - Interru	pt is priority 1								
		pt is priority i pt source is dis	abled							
bit 11		ted: Read as '								
bit 10-8	•			Interrupt Priority	/ bits					
		pt is priority 7 (
	•									
	•									
	001 = Interru	pt is priority 1								
		pt source is dis	abled							
bit 7	Unimplemen	ted: Read as '	0'							
bit 6-4	OC3IP<2:0>:	Output Compa	are Channel 3	Interrupt Priority	/ bits					
л 0-4	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
		pt is priority 1								
bit 3-0	000 = Interru	pt is priority 1 pt source is dis ted: Read as '								

查询PIC24FJ256GB206供应商 REGISTER 7-24: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0		
bit 15							bit		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
0-0	INT2IP2	INT2IP1	INT2IP0	0-0	T5IP2	T5IP1	T5IP0		
bit 7				_	10112	1311 1	bit		
Legend:									
R = Readab		W = Writable		-	mented bit, read	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown		
bit 15	-	ted: Read as '							
bit 14-12		: UART2 Trans	-	-					
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is dis	abled						
bit 11	Unimplemented: Read as '0'								
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits								
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)					
	•								
	•								
	• 001 = Interru	pt is priority 1							
		ipt source is dis	abled						
bit 7		ited: Read as '							
bit 6-4	-	: External Interi		oits					
		pt is priority 7 (-						
	•		ingricor priority	, interrupt)					
	•								
	• 001 - Internu	unt in priority 1							
		pt is priority 1 pt source is dis	bled						
bit 3		ited: Read as '							
	-								
bit 2-0		imer5 Interrupt		(interment)					
	⊥⊥⊥ = Interru •	pt is priority 7 (nignest priority	/ interrupt)					
	•								
	•								
	001 = Interru 000 = Interru	pt is priority 1							

查询PIC24FJ256GB206供应商

REGISTER 7-25: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-7 bit 6-4	Unimplemented: Read as '0' SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
	001 = Interrupt is priority 1 000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>
	• 001 = Interrupt is priority 1 000 = Interrupt source is disabled

© 2010 Microchip Technology Inc.

查询PIC24FJ256GB206供应商 REGISTER 7-26: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9 U-0 R/W-1 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 IC5IP2 IC5IP1 IC5IP0 ____ IC4IP2 IC4IP1 IC4IP0 bit 15 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0 U-0 IC3IP2 IC3IP1 IC3IP0 _ ___ ____ _ bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1

	000 = Interrupt source is disabled
bit 7	Unimplemented: Read as '0'
bit 6-4	IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

bit 8

bit 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-			
_	OC7IP2	OC7IP1	OC7IP0	_	OC6IP2	OC6IP1	OC6II			
bit 15										
	D 444 4	5444.0				5444.0				
U-0	R/W-1 OC5IP2	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-			
 bit 7	0051P2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP			
Legend: R = Readat	la hit		hit		mantad hit raa					
-n = Value a		W = Writable '1' = Bit is set		'0' = Bit is cle	mented bit, read	x = Bit is unkr				
					aleu	X – DILIS ULIKI	IOWIT			
bit 15	Unimplemer	nted: Read as '	0'							
bit 14-12	-			nterrupt Priori	ty bits					
	OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	:									
	•									
	001 = Interrupt is priority 1									
		upt source is dis								
bit 11	Unimplemer	nted: Read as '	0'							
bit 10-8		: Output Compa		-	ty bits					
	111 = Interru	upt is priority 7	(highest priority	interrupt)						
	•									
	•									
		upt is priority 1	la la al							
hit 7		upt source is dis								
bit 7	-	nted: Read as '			L . L . L .					
bit 6-4		: Output Compa		-	iy dits					
	 111 = Interrupt is priority 7 (highest priority interrupt) . 									
	•									
	• 001 = Interrupt is priority 1									
		upt is priority 1	sabled							
bit 3		nted: Read as '								
bit 2-0	-	Input Capture (runt Priority hi	ts					
		upt is priority 7								
	•									
	•									

查询PIC24FJ256GB206供应商 REGISTER 7-28: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—		—			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	PMPIP2	PMPIP1	PMPIP0	—	OC8IP2	OC8IP1	OC8IP0			
bit 7							bit 0			
Legend:										
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown			
bit 15-7	Unimplemen	Unimplemented: Read as '0'								
bit 6-4			er Port Interrup	•						
	111 = Interru	pt is priority 7	(highest priority	vinterrupt)						
	•									
		pt is priority 1	sabled							
bit 3	Unimplemen	ted: Read as '	0'							
bit 2-0	OC8IP<2:0>:	Output Compa	are Channel 8 I	Interrupt Priority	/ bits					
		OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)								
	•	•								
	•									
	001 = Interru	pt is priority 1								
		pt source is dis	sabled							

查询PIC24FJ256GB206供应商 REGISTER 7-29: **IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12** U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0 MI2C2IP2 MI2C2IP1 MI2C2IP0 ___ ____ ____ ___ ___ bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 SI2C2IP2 SI2C2IP1 SI2C2IP0 _ ____ ____ ___ _ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10-8 MI2C2IP<2:0>: Master I2C2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 SI2C2IP<2:0>: Slave I2C2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' bit 3-0

查询PIC24FJ256GB206供应商 REGISTER 7-30: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

			-				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_		—	_	INT4IP2	INT4IP1	INT4IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	INT3IP2	INT3IP1	INT3IP0		—	_	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable		U = Unimplei	mented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 10-8 bit 7	111 = Interru 001 = Interru 000 = Interru Unimplemen	External Intern pt is priority 7 (pt is priority 1 pt source is dis ited: Read as '	highest priorit	y interrupt)			
bit 6-4		: External Interr pt is priority 7 (

查询PIC24FJ256GB206供应商 REGISTER 7-31: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—	RTCIP2	RTCIP1	RTCIP0
bit 15	bit 15			•	•	·	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unkr	nown
bit 15-11	Unimplemer	nted: Read as ')'				
bit 10-8	RTCIP<2:0>	: Real-Time Clo	ck and Calend	ar Interrupt Pric	ority bits		
	111 = Interrupt is priority 7 (highest priority interrupt)						
	•						
	•						
	001 = Intern	upt is priority 1					
		upt source is dis	abled				
bit 7-0		nted: Read as '(
	•						

查询PIC24FJ256GB206供应商 REGISTER 7-32: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 CRCIP2 CRCIP1 CRCIP0 U2ERIP2 U2ERIP1 U2ERIP0 bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U1ERIP2 U1ERIP1 U1ERIP0 ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CRCIP<2:0>: CRC Generator Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 U2ERIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 U1ERIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as '0'

查询PIC24FJ256GB206供应商 REGISTER 7-33: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	LVDIP2	LVDIP1	LVDIP0
bit 7							bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) . . 001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-34: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	CTMUIP<2:0>: CTMU Interrupt Priority bits

```
111 = Interrupt is priority 7 (highest priority interrupt)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```

查询PIC24FJ256GB206供应商 REGISTER 7-35: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20 U-0 R/W-1 U-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 U3TXIP2 U3TXIP1 U3TXIP0 ____ U3RXIP2 U3RXIP1 U3RXIP0 bit 15 U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 ____ U3ERIP2 U3ERIP1 U3ERIP0 ____ ____ ___ ____ bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 U3TXIP<2:0>: UART3 Transmitter Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) •

•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled
Unimplemented: Read as '0'
U3RXIP<2:0>: UART3 Receiver Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled
Unimplemented: Read as '0'
U3ERIP<2:0>: UART3 Error Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled
Unimplemented: Read as '0'

bit 8

bit 0

查询PIC24FJ256GB206供应商 REGISTER 7-36: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21 U-0 U-0 R/W-1 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 U4ERIP2 U4ERIP1 U4ERIP0 USB1IP2 USB1IP1 USB1IP0 bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 MI2C3IP2 MI2C3IP1 MI2C3IP0 SI2C3IP2 SI2C3IP1 SI2C3IP0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 U4ERIP<2:0>: UART4 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 USB1IP<2:0>: USB1 (USB OTG) Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 MI2C3IP<2:0>: Master I2C3 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 SI2C3IP<2:0>: Slave I2C3 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled

查询PIC24FJ256GB206供应商 REGISTER 7-37: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 SPI3IP2 SPI3IP1 SPI3IP0 SPF3IP2 SPF3IP1 SPF3IP0 bit 15 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 U4TXIP2 U4TXIP1 U4TXIP0 U4RXIP2 U4RXIP1 U4RXIP0 bit 7 Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 SPI3IP<2:0>: SPI3 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 SPF3IP<2:0>: SPI3 Fault Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 U4TXIP<2:0>: UART4 Transmitter Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 U4RXIP<2:0>: UART4 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)

DS39975A-page 132

001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 8

bit 0

查询PIC24FJ256GB206供应商 REGISTER 7-38: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC9IP2	IC9IP1	IC9IP0	—	OC9IP2	OC9IP1	OC9IP0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 bit 6-4	Unimplemented: Read as '0' IC9IP<2:0>: Input Capture Channel 9 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
	•
	• 001 = Interrupt is priority 1 000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	OC9IP<2:0>: Output Compare Channel 9 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1
	000 = Interrupt source is disabled

查询PIC24FJ256GB206供应商 REGISTER 7-39: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

R-0, HSC	U-0	R/W-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8
U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
			0 11 1 10				
Legend:			are Settable/C				
R = Readable		W = Writable	bit		nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
					L 1		
bit 15		errupt Request	•				
		upt request has CPU priority is				ed by the CPU	; this happens
		upt request is u	•		iity		
bit 14		ted: Read as '(-				
bit 13	VHOLD: Vect	or Number Cap	oture Configura	ition bit			
	1 = The VEC	NUM bits conta	ain the value of	the highest pri	ority pending ir	nterrupt	
		NUM bits conta rred with highe			•	• •	•
bit 12		ted: Read as 'd				1 02	,
bit 11-8	•	w CPU Interrup		l bits			
		Interrupt Priorit	•				
	•		-				
	•						
	0001 = CPU	Interrupt Priorit	v Level is 1				
		Interrupt Priorit	•				
bit 7	Unimplemen	ted: Read as 'd)'				
bit 6-0	VECNUM<5:0	0>: Vector Num	ber of Pending	Interrupt or La	ast Acknowledg	ed Interrupt bit	ts
	VHOLD = 1: VHOLD = 0:	The VECNUM The VECNUM currently being	bits indicate the bits indicate the	e vector numbe	er (from 0 to 118	B) of the last inte	errupt to occur

查询PIC24FJ256GB206供应商 7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS (INTCON1<15>) control bit if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are
	initialized, such that all user interrupt
	sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

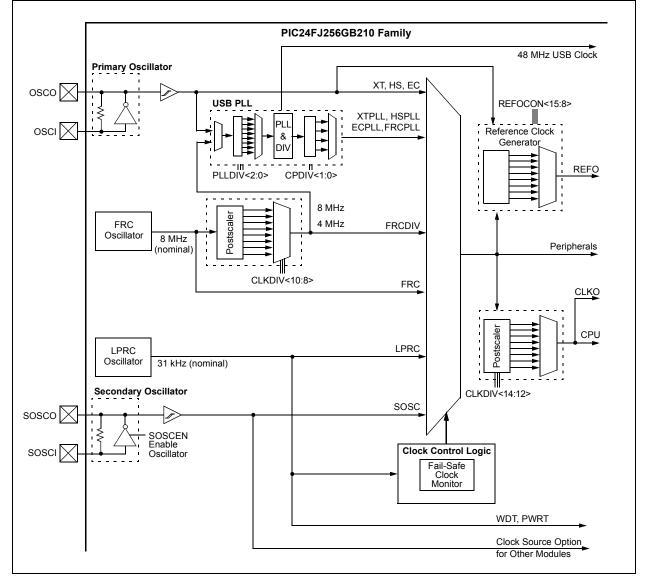
- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value 0Eh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels, 1-6, for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

查询PIC24FJ256GB206供应商 NOTES:


查询PIC24FJ256GB206供应商 8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 6. "Oscillator" (DS39700). The information in this data sheet supersedes the information in the FRM.

The oscillator system for PIC24FJ256GB210 family devices has the following features:

 A total of four external and internal oscillator options as clock sources, providing 11 different clock modes

- An on-chip PLL block to boost internal operating frequency on select internal and external oscillator sources, and to provide a precise clock source for peripherals, such as USB
- Software controllable switching between various clock sources
- Software controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- A separate and independently configurable system clock output for synchronizing external hardware
- A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: PIC24FJ256GB210 FAMILY CLOCK DIAGRAM

查询PIC24FJ256GB206供应商 8.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- · Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The primary oscillator and FRC sources have the option of using the internal 24x PLL block, which generates the USB module clock, and a separate system clock through the 96 MHZ PLL. Refer to **Section 8.5 "96 MHz PLL Block"** for additional information.

The internal FRC provides an 8 MHz clock source. It can optionally be reduced by the programmable clock divider to provide a range of system clock frequencies.

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FcY. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, Fosc/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

8.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to **Section 26.1** "**Configuration Bits**" for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>) and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a POR. The FRC primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The secondary oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, shown in Table 8-1.

8.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
FRC Oscillator/16 (500 KHz)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
Fast RC Oscillator (FRC)	Internal	11	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

查询PIC24FJ256GB206供应商 8.3 Control Registers

The following four Special Function Registers control the operation of the oscillator:

- OSCCON
- CLKDIV
- OSCTUN
- REFOCON

The OSCCON register (Register 8-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. The CLKDIV register (Register 8-2) controls the features associated with Doze mode, as well as the postscaler for the FRC oscillator.

The OSCTUN register (Register 8-3) allows the user to fine tune the FRC oscillator over a range of approximately $\pm 1.5\%$.

The REFOCON register (Register 8-5) controls the frequency of the reference clock out.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-x, HSC ⁽¹⁾	R-x, HSC ⁽¹⁾	R-x, HSC ⁽¹⁾	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/S-0	R/W-0	R-0, HSC ⁽³⁾	U-0	R/C-0, HS	R/W-0	R/W-0	R/W-0
CLKLOCK	IOLOCK ⁽²⁾	LOCK	_	CF	POSCEN	SOSCEN	OSWEN
bit 7							bit 0

Legend: C = Clearable bit		S = Settable bit	HSC = Hardware Settable/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
HS = Hardware Settab	ole bit		

bit 15 Unimplemented: Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits⁽¹⁾

- 111 = Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = Fast RC/16 Oscillator
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = Fast RC Oscillator (FRC)
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾
 - 111 = Fast RC Oscillator with Postscaler (FRCDIV)
 - 110 = Fast RC/16 Oscillator
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Reset values for these bits are determined by the FNOSC Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
 - 3: Also resets to '0' during any valid clock switch or whenever a non PLL Clock mode is selected.

查询PIC24FJ256GB206供应商 REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enabled bit
	If FSCM is enabled (FCKSM1 = 1):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	POSCEN: Primary Oscillator Sleep Enable bit
	1 = Primary Oscillator continues to operate during Sleep mode
	0 = Primary Oscillator is disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enable the Secondary Oscillator
	0 = Disable the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiate an oscillator switch to the clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSC Configuration bits.

- 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
- 3: Also resets to '0' during any valid clock switch or whenever a non PLL Clock mode is selected.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDI
bit 15					•		I
R/W-0	R/W-0	R/W-0	r-0	U-0	U-0	U-0	U-0
CPDIV1	CPDIV0	PLLEN	Reserved	_			
bit 7							
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15	1 = Interrupt 0 = Interrupt	r on Interrupt bi s clear the DOZ s have no effect CPU Periphera	EN bit and reat t on the DOZE	N bit	ipheral clock r	atio to 1:1	
	111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1						
bit 11	DOZEN: DO 1 = DOZE<2	ZE Enable bit ⁽¹⁾ 2:0> bits specify ripheral clock ra	the CPU peri		0		
bit 10-8	111 = 31.25 110 = 125 k 101 = 250 k 100 = 500 k 011 = 1 MH 010 = 2 MH 001 = 4 MH	FRC Postscale kHz (divide-by-6 Hz (divide-by-3 Hz (divide-by-3) z (divide-by-8) z (divide-by-4) z (divide-by-4) z (divide-by-2) z (divide-by-1)	-256) 4) 2)				
bit 7-6	11 = 4 MHz 10 = 8 MHz 01 = 16 MH	: System Clock (divide-by-8) ⁽²⁾ (divide-by-4) ⁽²⁾ z (divide-by-2) z (divide-by-1)	Select bits (po	ostscaler select	from 32 MHz o	clock branch)	
bit 5	PLLEN: 96 M The 96 MHz by the PLL96 1 = Enable t	MHZ PLL Enable PLL must be ena MHZ (Configura he 96 MHZ PLL the 96 MHZ PLL	abled when th ation Word 2 < for USB or H	<11>) Configura	tion bit.		be overri
bit 4	Reserved: R	eserved bit; do	not use				
bit 3-0	Unimplemer		.1				

2: This setting is not allowed while the USB module is enabled.

查询PIC24FJ256GB206供应商 REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—		—	—	_	—				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value a	-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown							
bit 15-6	Unimplemented: Read as '0'										
bit 5-0	TUN<5:0>: FRC Oscillator Tuning bits ⁽¹⁾										
	011111 = Maximum frequency deviation										
	011110 =										
	000001 =										
	000000 = Center frequency, oscillator is running at factory calibrated frequency										
	111111 =										
	•										
	•										
	100001 =										
		nimum frequer	ncy deviation								
			,								

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

查询PIC24FJ256GB206供应商 8.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

8.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in CW2 must be programmed to '0'. (Refer to **Section 26.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSCx (OSCCON<10:8>) control bits do not control the clock selection when clock switching is disabled. However, the COSCx (OSCCON<14:12>) control bits will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN (OSCCON<0>) control bit has no effect when clock switching is disabled; It is held at '0' at all times.

8.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- If desired, read the COSCx (OSCCON<14:12>) control bits to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSCx (OSCCON<10:8>) control bits for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or SOSC (if SOSCEN remains set).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL modes are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

查询PIC24FJ256GB206供应商

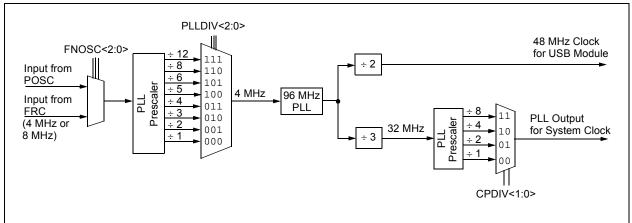
A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 8-1.

EXAMPLE 8-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING IN ASSEMBLY

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON,#0


8.5 96 MHz PLL Block

The 96 MHz PLL block is implemented to generate the stable 48 MHz clock required for full-speed USB operation and the system clock from the same oscillator source. The 96 MHz PLL block is shown in Figure 8-2.

The 96 MHz PLL block requires a 4 MHz input signal; it uses this to generate a 96 MHz signal from a fixed, 24x PLL. This is, in turn, divided into two branches. The first branch generates the USB clock and the second branch generates the system clock. The 96 MHz PLL block can be enabled and disabled using the PLL96MHZ Configuration bit (Configuration Word<11>) or through the PLLEN (CLKDIV<5>) control bit when the PLL96MHZ Configuration bit is not set. Note that the PLL96MHZ Configuration bit and PLLEN register bit are available only for PIC24F devices with USB.

The 96 MHz PLL prescaler does not automatically sense the incoming oscillator frequency. The user must manually configure the PLL divider to generate the required 4 MHz output, using the PLLDIV<2:0> Configuration bits (Configuration Word 2<14:12> in most devices).

查询PIC24FJ256GB206供应商 FIGURE 8-2: 96 MHz PLL BLOCK

8.5.1 SYSTEM CLOCK GENERATION

The system clock is generated from the 96 MHz branch using a configurable postscaler/divider to generate a range of frequencies for the system clock multiplexer. The output of the multiplexer is further passed through a fixed divide-by-3 divider and the final output is used as the system clock. Figure 8-2 shows this logic in the system clock sub-block. Since the source is a 96 MHz signal, the possible system clock frequencies are listed in Table 8-2. The available system clock options are always the same, regardless of the setting of the PLLDIV Configuration bits.

TABLE 8-2: SYSTEM CLOCK OPTIONS FOR 96 MHz PLL BLOCK

MCU Clock Division (CPDIV<1:0>)	System Clock Frequency (Instruction Rate in MIPS)
None (00)	32 MHz (16)
÷2 (01)	16 MHz (8)
÷4 (10)	8 MHz (4) ⁽¹⁾
÷8 (11)	4 MHz (2) ⁽¹⁾

Note 1: These options are not compatible with USB operation. They may be used whenever the PLL branch is selected and the USB module is disabled.

查询PIC24FJ256GB206供应商 8.5.2 USB CLOCK GENERATION

In the USB-On-The-Go module in the PIC24FJ256GB210 family of devices, the primary oscillator with the PLL block can be used as a valid clock source for USB operation. The FRC oscillator (implemented with ±1.0% accuracy) can be combined with a PLL block, providing another option for a valid USB clock source. There is no provision to provide a separate external 48 MHz clock to the USB module.

The USB module sources its clock signal from a 96 MHz PLL. Due to the requirement that a 4 MHz input must be provided to generate the 96 MHz signal, the oscillator operation is limited to a range of possible values. Table 8-3 shows the valid oscillator configurations (i.e., ECPLL, HSPLL, XTPLL and FRCPLL) for USB operation. This sets the correct PLLDIV configuration for the specified oscillator frequency and the output frequency of the USB clock branch is always 48 MHz.

TABLE 8-3 :	VALID OSCILLATOR CONFIGURATIONS FOR USB OPERATIONS

Input Oscillator Frequency	Clock Mode	PLL Division (PLLDIV<2:0>)
48 MHz	ECPLL	÷12 (111)
32 MHz	HSPLL, ECPLL	÷8 (110)
24 MHz	HSPLL, ECPLL	÷6 (101)
20 MHz	HSPLL, ECPLL	÷5 (100)
16 MHz	HSPLL, ECPLL	÷4 (011)
12 MHz	HSPLL, ECPLL	÷3 (010)
8 MHz	ECPLL, HSPLL, XTPLL, FRCPLL	÷2(001)
4 MHz	ECPLL, HSPLL, XTPLL, FRCPLL	÷1 (000)

Note: For USB devices, the use of a primary oscillator or external clock source, with a frequency above 32 MHz, does not imply that the device's system clock can be run at the same speed when the USB module is not used. The maximum system clock for all PIC24F devices is 32 MHz.

查询PIC24FJ256GB206供应商 8.5.3 CONSIDERATIONS FOR USB OPERATION

When using the USB On-The-Go module in PIC24FJ256GB210 family devices, users must always observe these rules in configuring the system clock:

- For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- The Primary Oscillator/PLL modes are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module.
- While the FRCPLL Oscillator mode is used for USB applications, users must always ensure that the FRC source is configured to provide a frequency of 4 MHz or 8 MHz (RCDIV<2:0> = 001 or 000) and that the USB PLL prescaler is configured appropriately.

All other oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is sleeping and waiting for a bus attachment).

8.6 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FJ256GB210 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 8-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSCI and OSCO, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the POSCEN bit is not also set, the oscillator on OSCI and OSCO will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

询PIC24FJ256GB206供应商 **REFOCON:** REFERENCE OSCILLATOR CONTROL REGISTER RÉGISTER 8-4: R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ROSEI⁽¹⁾ ROEN ROSSI P RODIV3 RODIV1 RODIV2 **RODIV0** ____ bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 7 bit 0 Leaend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled bit 14 Unimplemented: Read as '0' bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep bit 12 **ROSEL:** Reference Oscillator Source Select bit⁽¹⁾ 1 = Primary oscillator is used as the base clock 0 = System clock is used as the base clock; base clock reflects any clock switching of the device bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 16,384 1101 = Base clock value divided by 8,192 1100 = Base clock value divided by 4,096 1011 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 128 0110 = Base clock value divided by 64 0101 = Base clock value divided by 32 0100 = Base clock value divided by 16 0011 = Base clock value divided by 8 0010 = Base clock value divided by 4 0001 = Base clock value divided by 2 0000 = Base clock value bit 7-0 Unimplemented: Read as '0'

Note 1: Note that the crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

查询PIC24FJ256GB206供应商 9.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 10. "Power-Saving Features" (DS39698). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ256GB210 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 9-1.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

9.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode. Users can opt to make the voltage regulator enter standby mode on entering Sleep mode by clearing the VREGS bit (RCON<8>). This will decrease current consumption but will add a delay, TVREG, to the wake-up time. For this reason, applications that do not use the voltage regulator should set this bit.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1:	PWRSAV INSTRUCTION
	SYNTAX

PWRSAV	#0	;	Put	the	device	into	SLEEP	mode
PWRSAV	#1	;	Put	the	device	into	IDLE 1	mode

查询PIC24FJ256GB206供应商 9.2.2 IDLE MODE

Idle mode has these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

9.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

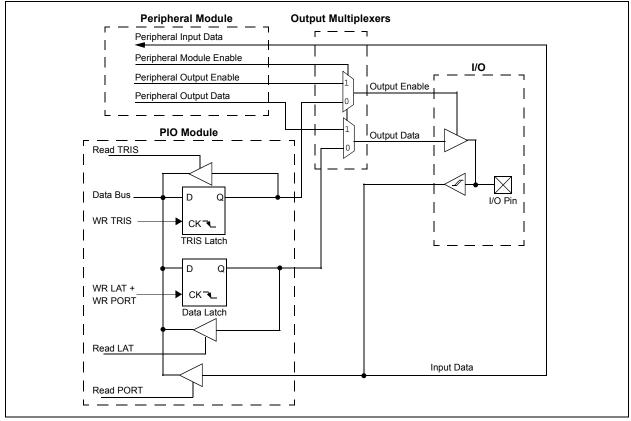
To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

查询PIC24FJ256GB206供应商 10.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 12. *"I/O Ports with Peripheral Pin Select (PPS)"* (DS39711). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports


A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and it is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but it is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O and one register associated with their operation as analog input. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the port pins; writes to the port pins; writes to the port pins, write to the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

查询PIC24FJ256GB206供应商 10.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

10.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.1.3 CONFIGURING D+ AND D- PINS (RG2 AND RG3)

The input buffers of the RG2 and RG3 pins are, by default, tri-stated. To use these pins as input pins, the UTRDIS bit (U1CNFG2<0>) should be set, which enables the input buffers on these pins.

10.2 Configuring Analog Port Pins (ANSEL)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANS bits (see Register 10-1 through Register 10-7), which decides if the pin function should be analog or digital. Refer to Table 10-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

10.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided. Table 10-2 summarizes the input capabilities. Refer to **Section 29.1 "DC Characteristics"** for more details.

Pin Function	ANSx Setting	TRISx Setting	Comments			
Analog Input	1	1	It is recommended to keep ANSx = 1.			
Analog Output	1	1	It is recommended to keep ANSx = 1.			
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.			
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.			

TABLE 10-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

TABLE 10-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description
PORTA ⁽¹⁾ <10:9, 7:6>		
PORTB<15:0>	7	
PORTC ⁽¹⁾ <15:12, 4>		
PORTD<7:6>	VDD	Only VDD input levels are tolerated.
PORTE ⁽¹⁾ <9>	7	
PORTF<0>	7	
PORTG<9:6, 3:2>	-	
PORTA ⁽¹⁾ <15:14, 5:0>		
PORTC ⁽¹⁾ <3:1>	7	
PORTD ⁽¹⁾ <15:8, 5:0>	E E) (Tolerates input levels above VDD, useful
PORTE ⁽¹⁾ <8:0>	- 5.5V	for most standard logic.
PORTF ⁽¹⁾ <13:12, 8:7, 5:1>	7	
PORTG ⁽¹⁾ <15:12, 1:0>	7	

Note 1: Not all of the pins of these PORTS are implemented in 64-pin devices (PIC24FJXXXGB206); refer to the device pinout diagrams for the details.

查询PIC24FJ256GB206供应商 REGISTER 10-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	U-0
_	—	—	—	—	ANSA10	ANSA9	_
bit 15							bit 8
R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSA7	ANSA6	—	_	—	—	—	—
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-9	ANSA<10:9>	: Analog Funct	ion Selection b	its			
	1 = Pin is co	nfigured in Ana	log mode; I/O p	oort read is disa	abled		
	0 = Pin is co	nfigured in Digi	tal mode; I/O p	ort read is enat	bled		
1.1.0			a 1				

- bit 8 Unimplemented: Read as '0'
- bit 7-6 ANSA<7:6>: Analog Function Selection bits 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
- bit 5-0 Unimplemented: Read as '0'
- **Note 1:** This register is not available on 64-pin devices (PIC24FJXXXGB206).

查询PIC24FJ256GB206供应商 REGISTER 10-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8
bit 15							bit 8

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ANSB7 | ANSB6 | ANSB5 | ANSB4 | ANSB3 | ANSB2 | ANSB1 | ANSB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 ANSB<15:0>: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER REGISTER 10-3:

U-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0
_	ANSC14	ANSC13	_	—	—	_	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0
_	—	—	ANSC4 ⁽¹⁾	—	—	—	
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is se			'0' = Bit is cleared x = Bit is unknown			nown	
bit 15	-	ted: Read as '() ¹				

DIC 15	Unimplemented: Read as 0
bit 14-13	ANSC<14:13>: Analog Function Selection bits
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 12-5	Unimplemented: Read as '0'
bit 4	ANSC4: Analog Function Selection bit ⁽¹⁾
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 3-0	Unimplemented: Read as '0'

Note 1: This bit is not available on 64-pin devices (PIC24FJXXXGB206).

查询PIC24FJ256GB206供应商 REGISTER 10-4: ANSD: PORTD ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSD7	ANSD6	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-6	ANSD<7:6>: Analog Function Selection bits
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 5-0	Unimplemented: Read as '0'

REGISTER 10-5: ANSE: PORTE ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	U-0
—	—	—	—	—	—	ANSE9	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9 ANSE9: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

- 0 = Pin is configured in Digital mode; I/O port read is enabled
- bit 8-0 Unimplemented: Read as '0'

Note 1: This register is not available in 64-pin devices (PIC24FJXXXGB206).

查询PIC24FJ256GB206供应商 REGISTER 10-6: ANSF: PORTF ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1
—	—	—	—	—	—		ANSF0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

bit 9-6

ANSF0: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

REGISTER 10-7: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
_	—	—	—		—	ANSG9	ANSG8
bit 15							bit 8
R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSG7	ANSG6	—	—	—	—	—	—
bit 7	·	-					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	
=							

bit 15-10 Unimplemented: Read as '0'

ANSG<9:6>: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled

bit 5-0 Unimplemented: Read as '0'

查询PIC24FJ256GB206供应商 **10.3 Input Change Notification**

The input change notification function of the I/O ports allows the PIC24FJ256GB210 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 84 external inputs that may be selected (enabled) for generating an interrupt request on a Change-of-State.

Registers, CNEN1 through CNEN6, contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin has a both a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source that is connected to the pin, while the pull-downs act as a current sink that is connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are separately enabled using the CNPU1 through CNPU6 registers (for pull-ups), and the CNPD1 through CNPD6 registers (for pull-downs). Each CN pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

When the internal pull-up is selected, the pin pulls up to VDD - 1.1V (typical). When the internal pull-down is selected, the pin pulls down to Vss.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

Note: To use CN83 and CN84, which are on the D+ and D- pins, the UTRDIS bit (U1CNFG2<0>) should be set.

EXAMPLE 10-1: PORT WRITE/READ IN ASSEMBLY

MOV 0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV W0, TRISB	; and PORTB<7:0> as outputs
NOP	; Delay 1 cycle
BTSS PORTB, #13	; Next Instruction

	PORT WRITE/READ IN 'C'
EXAMPLE 10-2:	

TRISB = 0xFF00;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
Nop();	//Delay 1 cycle
<pre>If (PORTBbits.RB13) { };</pre>	//Next Instruction

查询PIC24FJ256GB206供应商 10.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

10.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ256GB210 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 32 remappable input/output pins, depending on the pin count of the particular device selected; these are numbered, RP0 through RP31. Remappable input only pins are numbered above this range, from RPI32 to RPI43 (or the upper limit for that particular device).

See Table 1-1 for a summary of pinout options in each package offering.

10.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

PPS is not available for I²C, change notification inputs, RTCC alarm outputs, EPMP signals or peripherals with analog inputs.

A key difference between pin select and non pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

10.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., OC, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs, such as USB functionality, will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

10.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

10.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-8 through Register 10-28). Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

查询PIC24FJ256GB206供应商 TABLE 10-3: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Input Name	Function Name	Register	Function Mapping Bits
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
External Interrupt 3	INT3	RPINR1	INT3R<5:0>
External Interrupt 4	INT4	RPINR2	INT4R<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Input Capture 2	IC2	RPINR7	IC2R<5:0>
Input Capture 3	IC3	RPINR8	IC3R<5:0>
Input Capture 4	IC4	RPINR8	IC4R<5:0>
Input Capture 5	IC5	RPINR9	IC5R<5:0>
Input Capture 6	IC6	RPINR9	IC6R<5:0>
Input Capture 7	IC7	RPINR10	IC7R<5:0>
Input Capture 8	IC8	RPINR10	IC8R<5:0>
Input Capture 9	IC9	RPINR15	IC9R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11	OCFBR<5:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<5:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21	SS1R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<5:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23	SS2R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28	SCK3R<5:0>
SPI3 Data Input	SDI3	RPINR28	SDI3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29	SS3R<5:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<5:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<5:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<5:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<5:0>
UART2 Receive	U2RX	RPINR19	U2RXR<5:0>
UART3 Clear To Send	U3CTS	RPINR21	U3CTSR<5:0>
UART3 Receive	U3RX	RPINR17	U3RXR<5:0>
UART4 Clear To Send	U4CTS	RPINR27	U4CTSR<5:0>
UART4 Receive	U4RX	RPINR27	U4RXR<5:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

查询PIC24FJ256GB206供应商 10.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 10-29 through Register 10-44). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-4).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TABLE 10-4:	SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)

Output Function Number ⁽¹⁾	Function	Output Name		
0	NULL ⁽²⁾	Null		
1	C1OUT	Comparator 1 Output		
2	C2OUT	Comparator 2 Output		
3	U1TX	UART1 Transmit		
4	U1RTS ⁽³⁾	UART1 Request To Send		
5	U2TX	UART2 Transmit		
6	U2RTS ⁽³⁾	UART2 Request To Send		
7	SDO1	SPI1 Data Output		
8	SCK10UT	SPI1 Clock Output		
9	SS1OUT	SPI1 Slave Select Output		
10	SDO2	SPI2 Data Output		
11	SCK2OUT	SPI2 Clock Output		
12	SS2OUT	SPI2 Slave Select Output		
18	OC1	Output Compare 1		
19	OC2	Output Compare 2 Output Compare 3		
20	OC3			
21	OC4	Output Compare 4		
22	OC5	Output Compare 5		
23	OC6	Output Compare 6		
24	OC7	Output Compare 7		
25	OC8	Output Compare 8		
28	U3TX	UART3 Transmit		
29	U3RTS ⁽³⁾	UART3 Request To Send		
30	U4TX	UART4 Transmit		
31	U4RTS ⁽³⁾	UART4 Request To Send		
32	SDO3	SPI3 Data Output		
33	SCK3OUT	SPI3 Clock Output		
34	SS3OUT	SPI3 Slave Select Output		
35	OC9	Output Compare 9		
36	C3OUT	Comparator 3 Output		
37-63	(unused)	NC		

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLK functionality uses this output.

查询PIC24FJ256GB206供应商 10.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention, caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

10.4.3.4 Mapping Exceptions for PIC24FJ256GB210 Devices

Although the PPS registers theoretically allow for up to 64 remappable I/O pins, not all of these are implemented in all devices. For PIC24FJ256GB210 family devices, the maximum number of remappable pins available are 44, which includes 12 input only pins. In addition, some pins in the RP and RPI sequences are unimplemented in lower pin count devices. The differences in available remappable pins are summarized in Table 10-5.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid. The corresponding module will not have an input mapped to it. For all PIC24FJ256GB210 family devices, this includes all values greater than 43 ('101011').
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented. Writing to these fields will have no effect.

10.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- · Continuous state monitoring
- Configuration bit remapping lock

10.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

TABLE 10-5: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ256GB210 FAMILY DEVICES

Device Pin Count		RP Pins (I/O)	RPI Pins		
Device Fill Coulit	Total	Unimplemented	Total	Unimplemented	
64-Pin (PIC24FJXXXGB206)	28	RP5, RP15, RP30, RP31	1	RPI32-36, RPI38-43	
100/121-Pin (PIC24FJXXXGB210)	32	_	12	_	

查询PIC24FJ256GB206供应商 10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss and all Peripheral Pin Select outputs are disconnected.

Note:	In tying Peripheral Pin Select inputs to
	RP63, RP63 need not exist on a device for
	the registers to be reset to it.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation, and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a Peripheral Pin Select.

Example 10-3 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 10-3: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

// Unlock Registers
asm volatile("MOV #OSCCON, w1 \n"
"MOV #0x46, w2 \n"
"MOV #0x57, w3 ∖n"
"MOV.b w2, [w1] \n"
"MOV.b w3, [w1] \n"
"BCLR OSCCON, #6");
// or use C30 built-in macro:
<pre>// _builtin_write_OSCCONL (OSCCON & 0xbf);</pre>
// Configure Input Functions (Table
Table 10-2))
// Assign UlRX To Pin RPO
RPINR18bits.U1RXR = 0;
// Assign UlCTS To Pin RP1
RPINR18bits.U1CTSR = 1;
<pre>// Configure Output Functions (Table 10-4)</pre>
// Assign UlTX To Pin RP2
RPOR1bits.RP2R = 3;
// Assign U1RTS To Pin RP3
RPOR1bits.RP3R = 4;
// Tank Davistan
// Lock Registers asm volatile ("MOV #OSCCON, w1 \n"
as volatile ("MOV #OSCCON, wi n " "MOV #0x46, w2 n "
"MOV #0x46, w2 \n" "MOV #0x57, w3 \n"
"MOV #0x57, w3 \n" "MOV.b w2, [w1]\ n"
"MOV.b w2, [w1] \ n"
"BSET OSCCON, #6") ;
// or use C30 built-in macro:
<pre>// of use coordination macro. // _builtin_write_OSCCONL (OSCCON 0x40);</pre>
// _Dallelli_willee_obccolve (obccolv 0x10//

查询PIC24FJ256GB206供应商

10.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ256GB210 family of devices implements a total of 37 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (21)
- Output Remappable Peripheral Registers (16)

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 10-8: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7			•	•	•	bit 0	
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT1R<5:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn or RPIn Pin bits
bit 7-0	Unimplemented: Read as '0'

REGISTER 10-9: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15				-		- -	bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7		·		•			bit
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			าดพท	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT3R<5:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT2R<5:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商

REGISTER 10-10: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-6 Unimplemented: Read as '0'

bit 5-0 INT4R<5:0>: Assign External Interrupt 4 (INT4) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-11: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-14 Unimplemented: Read as '0'

bit 13-8 T3CKR<5:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 T2CKR<5:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商 REGISTER 10-12: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	T5CKR<5:0>: Assign Timer5 External Clock (T5CK) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	T4CKR<5:0>: Assign Timer4 External Clock (T4CK) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-13: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC2R<5:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC1R<5:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商 REGISTER 10-14: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7							bit 0
Legend:							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC4R<5:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC3R<5:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-15: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0	
bit 15	-						bit 8	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	pit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15-14	Unimplemen	ted: Read as '(,					

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC6R<5:0>: Assign Input Capture 6 (IC6) to the Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC5R<5:0>: Assign Input Capture 5 (IC5) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商 REGISTER 10-16: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC8R5	IC8R4	IC8R3	IC8R2	IC8R1	IC8R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
U-0	U-0	R/W-1 IC7R5	R/W-1 IC7R4	R/W-1 IC7R3	R/W-1 IC7R2	R/W-1 IC7R1	R/W-1 IC7R0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC8R<5:0>: Assign Input Capture 8 (IC8) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
	•
bit 5-0	IC7R<5:0>: Assign Input Capture 7 (IC7) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-17: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **OCFBR<5:0>:** Assign Output Compare Fault B (OCFB) to the Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商_____

REGISTER 10-18: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

-n = Value at POR		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7			•		L		bit (
_	—	—	—	—	_	_	_	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
bit 15	•			•			bit	
—	—	IC9R5	IC9R4	IC9R3	IC9R2	IC9R1	IC9R0	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 IC9R<5:0>: Assign Input Capture 9 (IC9) to the Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

REGISTER 10-19: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	as '0'	

'0' = Bit is cleared

bit 15-14 Unimplemented: Read as '0'

'1' = Bit is set

bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to the Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

-n = Value at POR

x = Bit is unknown

查询PIC24FJ256GB206供应商 REGISTER 10-20: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	t U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear to Send (U1CTS) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U1RXR<5:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-21: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear to Send (U2CTS) to the Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商

REGISTER 10-22: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-23: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **U3CTSR<5:0>:** Assign UART3 Clear to Send (U3CTS) to the Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商 REGISTER 10-24: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-25: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商 REGISTER 10-26: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U4CTSR<5:0>: Assign UART4 Clear to Send (U4CTS) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U4RXR<5:0>: Assign UART4 Receive (U4RX) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-27: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to the Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商 REGISTER 10-28: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7			•	•	•		bit 0

bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS3R<5:0>: Assign SPI3 Slave Select Input (SS31IN) to the Corresponding RPn or RPIn Pin bits

查询PIC24FJ256GB206供应商 REGISTER 10-29: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8**RP1R<5:0>:** RP1 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP1 (see Table 10-4 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-4 for peripheral function numbers).

REGISTER 10-30: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP3 (see Table 10-4 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP2 (see Table 10-4 for peripheral function numbers).

查询PIC24FJ256GB206供应商 REGISTER 10-31: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R<5:0>: RP5 Output Pin Mapping bits ⁽¹⁾
	Peripheral output number n is assigned to pin, RP5 (see Table 10-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP4R<5:0>: RP4 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP4 (see Table 10-4 for peripheral function numbers).

Note 1: Unimplemented in 64-pin devices; read as '0'.

REGISTER 10-32: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP7R<5:0>:** RP7 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP7 (see Table 10-4 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP6 (see Table 10-4 for peripheral function numbers).

查询PIC24FJ256GB206供应商 REGISTER 10-33: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as 'd)'				
bit 13-8	RP9R<5:0>:	RP9 Output Pir	Mapping bits				

- bit 7-6
 c and a single for peripheral function numbers).
- bit 5-0 **RP8R<5:0>:** RP8 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP8 (see Table 10-4 for peripheral function numbers).

REGISTER 10-34: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP11 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP10 (see Table 10-4 for peripheral function numbers).

查询PIC24FJ256GB206供应商 REGISTER 10-35: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: RP13 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP13 (see Table 10-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: RP12 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP12 (see Table 10-4 for peripheral function numbers).

REGISTER 10-36: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** RP15 Output Pin Mapping bits⁽¹⁾

Peripheral output number n is assigned to pin, RP0 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP14 (see Table 10-4 for peripheral function numbers).

Note 1: Unimplemented in 64-pin devices; read as '0'.

查询PIC24FJ256GB206供应商 REGISTER 10-37: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 RP17R<5:0>: RP17 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP17 (see Table 10-4 for peripheral function numbers). bit 7-6 Unimplemented: Read as '0'
- bit 5-0 RP16R<5:0>: RP16 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP16 (see Table 10-4 for peripheral function numbers).

REGISTER 10-38: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP19R<5:0>: RP19 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP19 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

RP18R<5:0>: RP18 Output Pin Mapping bits bit 5-0 Peripheral output number n is assigned to pin, RP18 (see Table 10-4 for peripheral function numbers).

查询PIC24FJ256GB206供应商 REGISTER 10-39: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8**RP21R<5:0>:** RP21 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP21 (see Table 10-4 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP20R<5:0>:** RP20 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP20 (see Table 10-4 for peripheral function numbers).

REGISTER 10-40: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP23R<5:0>: RP23 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP23 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP22R<5:0>:** RP22 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP22 (see Table 10-4 for peripheral function numbers).

查询PIC24FJ256GB206供应商 REGISTER 10-41: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8**RP25R<5:0>:** RP25 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP25 (see Table 10-4 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP24R<5:0>:** RP24 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP24 (see Table 10-4 for peripheral function numbers).

REGISTER 10-42: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

— — RP27R5 RP27R4 RP27R3 RP27R2 RP27R1 RP27R0 bit 15 bit 8	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15 bit 8	—	—	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0
	bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP27R<5:0>:** RP27 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP27 (see Table 10-4 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP26R<5:0>:** RP26 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP26 (see Table 10-4 for peripheral function numbers).

查询PIC24FJ256GB206供应商 REGISTER 10-43: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 13-8**RP29R<5:0>:** RP29 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP29 (see Table 10-4 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'bit 5-0**RP28R<5:0>:** RP28 Output Pin Mapping bits
 - Peripheral output number n is assigned to pin, RP28 (see Table 10-4 for peripheral function numbers).

REGISTER 10-44: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5	RP31R4	RP31R3	RP31R2	RP31R1	RP31R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾

Peripheral output number n is assigned to pin, RP31 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP30R<5:0>:** RP30 Output Pin Mapping bits⁽¹⁾ Peripheral output number n is assigned to pin, RP30 (see Table 10-4 for peripheral function numbers).

Note 1: Unimplemented in 64-pin devices; read as '0'.

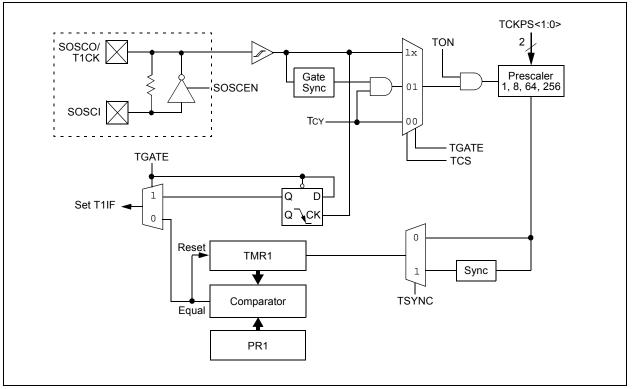
查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 11.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

查询PIC24FJ256GB206供应商 REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾ R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON TSIDL bit 15 bit 8 U-0 R/W-0 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 TGATE TCKPS1 TCKPS0 TSYNC TCS _ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' bit 13 TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:25610 = 1:64 01 = 1:8 00 = 1:1bit 3 Unimplemented: Read as '0' bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronize external clock input 0 = Do not synchronize external clock input When TCS = 0: This bit is ignored.

- bit 1 **TCS:** Timer1 Clock Source Select bit 1 = External clock from T1CK pin (on the rising edge) 0 = Internal clock (Fosc/2) bit 0 **Unimplemented:** Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

查询PIC24FJ256GB206供应商 12.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 14. "Timers" (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two independent 16-bit timers with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer
- Single 32-bit synchronous counter

They also support these features:

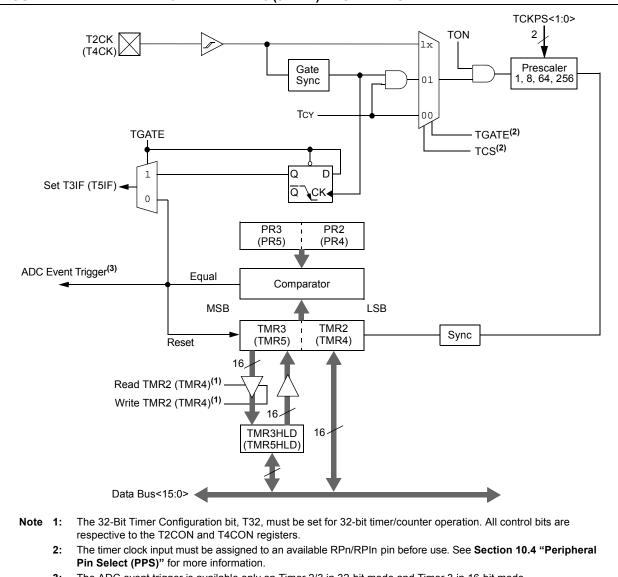
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- ADC Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above except for the ADC Event Trigger. The trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1; T3CON and T5CON are shown in generic form Register 12-2.

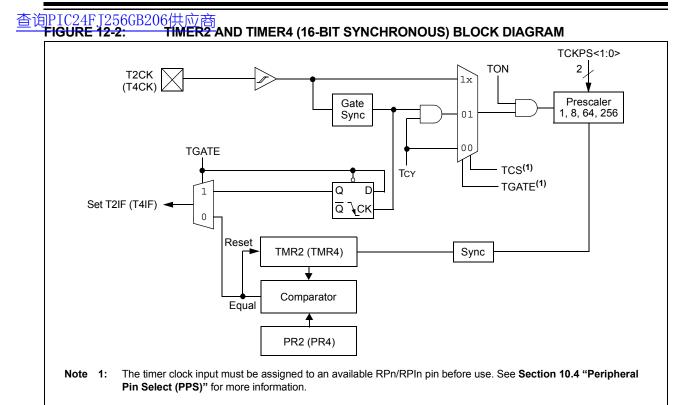
For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer4 are the most significant word of the 32-bit timers.

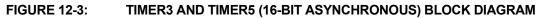
Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags. To configure Timer2/3 or Timer4/5 for 32-bit operation:

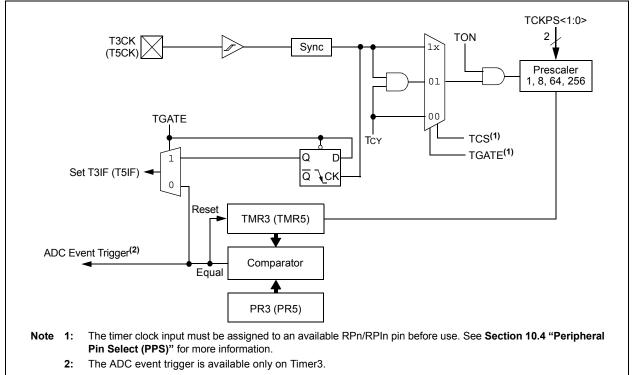
- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
- Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value while PR2 (or PR4) contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE; use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).


The timer value, at any point, is stored in the register pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:


- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.


查询PIC24FJ256GB206供应商


FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

3: The ADC event trigger is available only on Timer 2/3 in 32-bit mode and Timer 3 in 16-bit mode.

				CONTROL R			
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	_	_			
oit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
—	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾	_	TCS ⁽²⁾	_
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable I	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	0 = Stops 3 <u>When TxC0</u> 1 = Starts 7	$\frac{DN<3> = 1:}{32-bit Timerx/y}$ $\frac{32-bit Timerx/y}{DN<3> = 0:}$ $16-bit Timerx$					
		16-bit Timerx	.1				
bit 14	•	ented: Read as '(
bit 13		p in Idle Mode bit tinue module ope		vice enters Idl	amode		
	0 = Continu	ue module operat	ion in Idle mod	le	mode		
bit 12-7	Unimpleme	ented: Read as 'o)'				
bit 6	When TCS This bit is ig When TCS 1 = Gated	nored.	n is enabled	Enable bit			
bit 5-4	TCKPS<1:	0>: Timerx Input (Clock Prescale	Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	1 = Timerx 0 = Timerx	Timer Mode Sele and Timery form and Timery act a ode, T3CON contri	a single 32-bit s two 16-bit tin	ners	er operation.		
bit 2		ented: Read as 'o					
oit 1	-	x Clock Source S					
		al clock from pin, al clock (Fosc/2)	TxCK (on the	rising edge)			
bit 0		ented: Read as 'o)'				
		T45 bit is impleme bits do not affect			32-bit mode.	In 32-bit mode, th	ne T3CON c
		NRx (TxCK) mus Peripheral Pin S			e RPn/RPIn p	in. For more info	rmation, see
3 : (Changing the v	alue of TxCON w	hile the timer is	s runnina (TON	= 1) causes	the timer prescal	e counter to

3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽¹⁾		_	_	_	_
bit 15							
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
0-0	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	0-0	0-0	TCS ^(1,2)	0-0
bit 7	TOAL					100	
Lagandi							
Legend: R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit. rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	wn
bit 15	TON: Timery 1 = Starts 16 0 = Stops 16	-bit Timery					
bit 14	•	ted: Read as '	0'				
bit 13	-	in Idle Mode bit					
	1 = Discontir		eration when de	evice enters Idle de	e mode		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽¹⁾			
		ored.					
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescale	e Select bits ⁽¹⁾			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	TCS: Timery	Clock Source S	Select bit ^(1,2)				
		clock from pin, clock (Fosc/2)	TyCK (on the I	rising edge)			
bit 0	Unimplemen	ted: Read as '	0'				
	Vhen 32-bit oper peration; all time					s have no effect o	on Timery
2: If	•	Rx (TxCK) must	be configured			See Section 10.4	"Periphe

- Pin Select (PPS)" for more information.3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to
- **3:** Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 **13.0 INPUT CAPTURE WITH**

DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 34. "Input Capture with Dedicated Timer" (DS39722). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GB210 family comprise nine independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

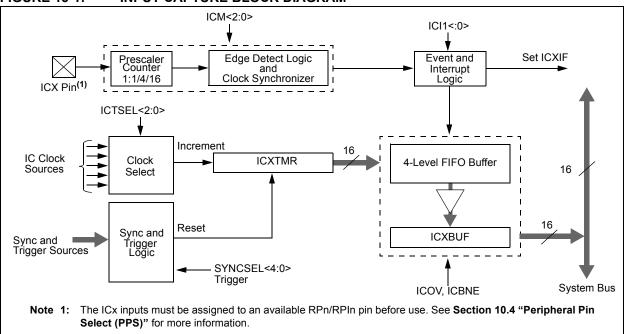
Key features of the input capture module include:

- Hardware configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable sync/trigger sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 13-1) and ICxCON2 (Register 13-2). A general block diagram of the module is shown in Figure 13-1.

13.1 General Operating Modes

13.1.1 SYNCHRONOUS AND TRIGGER MODES


When the input capture module operates in a free-running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSEL bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.

When the SYNCSEL bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

查询PIC24FJ256GB206供应商 13.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

13.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4^{th} or 16^{th}). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSEL bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSEL bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICI bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSEL bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG, and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICM bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8>) and (ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSEL and SYNCSEL bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSEL and SYNCSEL settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICI bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- Note: For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICM bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.

The module is ready to capture events when the time base and the sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the lsw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

杳询PIC24FJ256GB206供应商 REGISTER 13-1: ICXCON1: INPUT CAPTURE x CONTROL REGISTER 1 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ICSIDL ICTSEL2 **ICTSEL1 ICTSEL0** bit 15 bit 8 R/W-0 R/W-0 R-0, HSC R-0, HSC R/W-0 R/W-0 R/W-0 U-0 ICM0⁽¹⁾ ICOV **ICBNE** ICM2⁽¹⁾ ICM1⁽¹⁾ ICI1 ICI0 bit 7 bit 0 Legend: HSC = Hardware Settable/Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 ICSIDL: Input Capture x Module Stop in Idle Control bit 1 = Input capture module halts in CPU Idle mode 0 = Input capture module continues to operate in CPU Idle mode bit 12-10 ICTSEL<2:0>: Input Capture Timer Select bits 111 = System clock (Fosc/2) 110 = Reserved 101 = Reserved 100 = Timer1011 = Timer5 010 = Timer4001 = Timer2000 = Timer3bit 9-7 Unimplemented: Read as '0' bit 6-5 ICI<1:0>: Select Number of Captures Per Interrupt bits 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event bit 4 **ICOV:** Input Capture x Overflow Status Flag bit (read-only) 1 = Input capture overflow occurred 0 = No input capture overflow occurred bit 3 ICBNE: Input Capture x Buffer Empty Status bit (read-only) 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty ICM<2:0>: Input Capture Mode Select bits⁽¹⁾ bit 2-0 111 = Interrupt mode: input capture functions as an interrupt pin only when the device is in Sleep or Idle mode (rising edge detect only, all other control bits are not applicable) 110 = Unused (module disabled) 101 = Prescaler Capture mode: capture on every 16th rising edge 100 = Prescaler Capture mode: capture on every 4th rising edge 011 = Simple Capture mode: capture on every rising edge 010 = Simple Capture mode: capture on every falling edge 001 = Edge Detect Capture mode: capture on every edge (rising and falling); ICI<1:0> bits do not control interrupt generation for this mode 000 = Input capture module is turned off

Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".

查询PIC24FJ256GB206供应商 REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—		IC32
bit 15							bit 8
-							

R/W-0	R/W-0 HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:		HS = Hardware Settabl	le bit	
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-9	•	mented: Read as '0'		
bit 8		scade Two IC Modules Enab	,	
		and ICy operate in cascade a functions independently as a	is a 32-bit module (this bit mus 16-bit module	st be set in both modules)
bit 7	ICTRIG:	ICx Sync/Trigger Select bit		
			nated by the SYNCSELx bits designated by the SYNCSELx	bits
bit 6	TRIGST	AT: Timer Trigger Status bit		
		er source has been triggered er source has not been trigge	and is running (set in hardwar red and is being held clear	e, can be set in software)
bit 5	Unimple	mented: Read as '0'		
bit 4-0	<pre>11111 = 11110 = 11101 = 11100 = 11011 = 11000 = 10011 = 10010 = 10110 = 10010 = 10010 = 10010 = 10010 = 10010 = 10010 = 01111 = 01110 = 01101 = 01101 = 01101 = 01001 = 01011 = 01001 = 000001 = 000001 = 000001 = 000001 = 000001 = 000000 = 0000000000</pre>	Comparator 3 ⁽¹⁾ Comparator 2 ⁽¹⁾ Comparator 1 ⁽¹⁾ Input Capture 4 ⁽²⁾ Input Capture 3 ⁽²⁾ Input Capture 2 ⁽²⁾ Input Capture 1 ⁽²⁾ Input Capture 8 ⁽²⁾ Input Capture 7 ⁽²⁾ Reserved Timer5 Timer4 Timer3 Timer2		
		Output Compare 2		
	00001 =	Output Compare 1		

- 00000 = Not synchronized to any other module Note 1: Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an IC module as its own trigger source by selecting this mode.

查询PIC24FJ256GB206供应商

14.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 35. "Output Compare with Dedicated Timer" (DS39723). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GB210 family feature all of the 9 independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce pulse-width modulated waveforms for driving power applications.

Key features of the output compare module include:

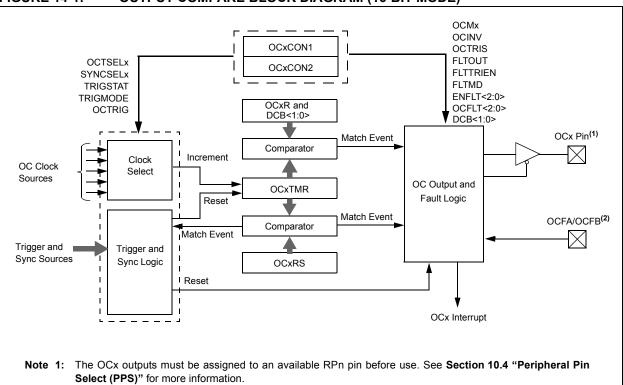
- Hardware configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable trigger/sync sources available
- Two separate period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a free-running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow, with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the period registers occurs.

In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.


Free-running mode is selected by default or any time that the SYNCSEL bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSEL bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit timer and duty cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs and the even module (OCy) provides the Most Significant 16 bits. Wrap-arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more details on cascading, refer to the "*PIC24F Family Reference Manual*", **Section 35.** "**Output Compare with Dedicated Timer**".

查询PIC24FJ256GB206供应商 FIGURE 14-1: OUTPUT COMPARE BLOCK DIAGRAM (16-BIT MODE)

2: The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

14.2 Compare Operations

In Compare mode (Figure 14-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSEL bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bits for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

查询PIC24FJ256GB206供应商

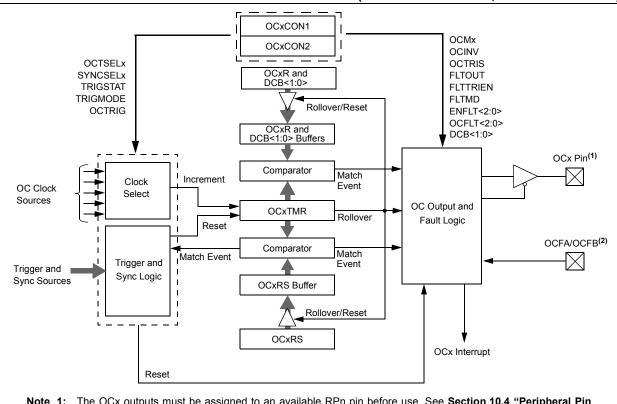
For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8> and OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2) so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSEL (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

14.3 Pulse-Width Modulation (PWM) Mode


In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON<12:10>).
- Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 14-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer, and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

查询PIC24FJ256GB206供应商 FIGURE 14-2: OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

- Note 1: The OCx outputs must be assigned to an available RPn pin before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

14.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[(PRy) + 1 \bullet TCY \bullet (Timer Prescale Value)]$

where:

PWM Frequency = 1/[PWM Period]

Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.

Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register will yield a period consisting of 8 time base cycles.

查询PIC24FJ256GB206供应商 14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS, and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

 $Maximum PWM Resolution (bits) = \underbrace{\left(\frac{FCY}{FPWM \cdot (Timer Prescale Value)}\right)}_{\log_{10}(2)} \text{ bits}$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

$$TCY = 2 * TOSC = 62.5 \text{ ns}$$

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

 $19.2 \text{ ms} = \text{PR2} + 1) \cdot 62.5 \text{ ns} \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

 $= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$

= 8.3 bits

Note 1: Based on Tcy = 2 * Tosc; Doze mode and PLL are disabled.

TABLE 14-1. EXAMPLE PWM PREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY – 4 MHz) $^{\circ}$							
PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

查询PIC24FJ256GB206供应高 REGISTER 14-1: OCXCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2 ⁽²⁾	ENFLT1 ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT0 ⁽²⁾	OCFLT2 ⁽²⁾	OCFLT1 ⁽²⁾	OCFLT0 ⁽²⁾	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	-14	Unimplemented: Read as '0'
bit 13		OCSIDL: Stop Output Compare x in Idle Mode Control bit
		1 = Output Compare x halts in CPU Idle mode
		0 = Output Compare x continues to operate in CPU Idle mode
bit 12	-10	OCTSEL<2:0>: Output Compare x Timer Select bits
		111 = Peripheral clock (FCY)
		110 = Reserved 101 = Reserved
		100 = Timer1 clock (only the synchronous clock is supported)
		011 = Timer5 clock
		010 = Timer4 clock
		001 = Timer3 clock
h:+ 0		000 = Timer2 clock
bit 9		ENFLT2: Fault Input 2 Enable bit ⁽²⁾
		 1 = Fault 2 (Comparator 1/2/3 out) is enabled⁽³⁾ 0 = Fault 2 is disabled
bit 8		ENFLT1: Fault Input 1 Enable bit ⁽²⁾
		1 = Fault 1 (OCFB pin) is enabled ⁽⁴⁾
		0 = Fault 1 is disabled
bit 7		ENFLT0: Fault Input 0 Enable bit ⁽²⁾
		1 = Fault 0 (OCFA pin) is enabled ⁽⁴⁾
		0 = Fault 0 is disabled
bit 6		OCFLT2: PWM Fault 2 (Comparator 1/2/3) Condition Status bit ^(2,3)
		1 = PWM Fault 2 has occurred
		0 = No PWM Fault 2 has occurred
bit 5		OCFLT1: PWM Fault 1 (OCFB pin) Condition Status bit ^(2,4)
		1 = PWM Fault 1 has occurred 0 = No PWM Fault 1 has occurred
bit 4		OCFLT0: PWM Fault 0 (OCFA pin) Condition Status bit ^(2,4)
511 4		1 = PWM Fault 0 has occurred
		0 = No PWM Fault 0 has occurred
Note	1.	The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4
NOLE		"Peripheral Pin Select (PPS)".
	2:	The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
	3:	The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6 channels. Comparator 3 output controls the OC7-OC9 channels.

4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".

查询PIC24FI256GB206供应商 REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on OCx⁽²⁾
 - 110 = Edge-Aligned PWM Mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initialize the OCx pin low, the toggle OCx state is continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize the OCx pin low, toggle the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high, compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6 channels. Comparator 3 output controls the OC7-OC9 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".

查询PIC24FJ256GB206供应商 REGISTER 14-2: OCxCON2:OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15							bit 8

R/W-0	R/W-0 HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Reada	ble bit W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	FLTMD: Fault Mode Select bit		
	1 = Fault mode is maintained until the Faul	source is removed and	d the corresponding OCFLT0 bit is
	cleared in software 0 = Fault mode is maintained until the Fault	source is removed and	a new PWM period starts
bit 14	FLTOUT: Fault Out bit		
	1 = PWM output is driven high on a Fault		
	0 = PWM output is driven low on a Fault		
bit 13	FLTTRIEN: Fault Output State Select bit		
	1 = Pin is forced to an output on a Fault cor		
	0 = Pin I/O condition is unaffected by a Fau	lt	
bit 12	OCINV: OCMP Invert bit		
	 1 = OCx output is inverted 0 = OCx output is not inverted 		
bit 11	Unimplemented: Read as '0'		
bit 10-9	DCB<11:0>: PWM Duty Cycle Least Signific	ant hits(3)	
	$11 = \text{Delay OCx falling edge by } \frac{3}{4} of the instance of the second s$		
	10 = Delay OCx falling edge by 1/2 of the ins		
	$01 = \text{Delay OCx falling edge by } \frac{1}{4} \text{ of the ins}$		
h :+ 0	00 = OCx falling edge occurs at the start of	-	
bit 8	OC32: Cascade Two OC Modules Enable b 1 = Cascade module operation is enabled	t (32-bit operation)	
	0 = Cascade module operation is disabled		
bit 7	OCTRIG: OCx Trigger/Sync Select bit		
	1 = Trigger OCx from the source designate	by the SYNCSELx bit	S
	0 = Synchronize OCx with the source desig	nated by the SYNCSEL	_x bits
bit 6	TRIGSTAT: Timer Trigger Status bit		
	1 = Timer source has been triggered and is		
L:1 F	0 = Timer source has not been triggered an	•	
bit 5	OCTRIS: OCx Output Pin Direction Select b 1 = OCx pin is tri-stated	IL	
	0 = Output compare peripheral x is connected	ed to an OCx pin	
	Never use an OC module as its own trigger sou SYNCSEL setting.	rce, either by selecting	this mode or another equivalent

- 2: Use these inputs as trigger sources only and never as sync sources.
- 3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

查询PIC24FJ256GB206供应商 REGISTER 14-2: OCXCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 **SYNCSEL<4:0>:** Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = Input Capture 9⁽²⁾
 - 11101 = Input Capture 6⁽²⁾
 - 11100 = CTMU⁽²⁾
 - 11011 = A/D⁽²⁾
 - 11010 = Comparator 3⁽²⁾
 - 11001 = Comparator 2⁽²⁾
 - 11000 = Comparator 1⁽²⁾
 - 10111 = Input Capture 4⁽²⁾
 - 10110 = Input Capture 3⁽²⁾
 - 10101 = Input Capture 2⁽²⁾
 - 10100 = Input Capture 1⁽²⁾
 - 10011 = Input Capture 8⁽²⁾
 - 10010 = Input Capture 7⁽²⁾
 - 1000x = Reserved
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = Input Capture 5⁽²⁾
 - 01001 = Output Compare 9⁽¹⁾
 - 01000 = Output Compare 8⁽¹⁾
 - 00111 = Output Compare 7⁽¹⁾
 - 00110 = Output Compare 6⁽¹⁾
 - 00101 = Output Compare $5^{(1)}$
 - 00100 = Output Compare $4^{(1)}$
 - 00011 = Output Compare $3^{(1)}$
 - 00010 = Output Compare $2^{(1)}$
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 23. "Serial Peripheral Interface (SPI)" (DS39699). The information in this data sheet supersedes the information in the FRM.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the SPI and SIOP Motorola[®] interfaces. All devices of the PIC24FJ256GB210 family include three SPI modules.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note:	Do not perform read-modify-write opera-			
	tions (such as bit-oriented instructions) on			
	the SPIxBUF register in either Standard or			
	Enhanced Buffer mode.			

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The SPI serial interface consists of four pins:

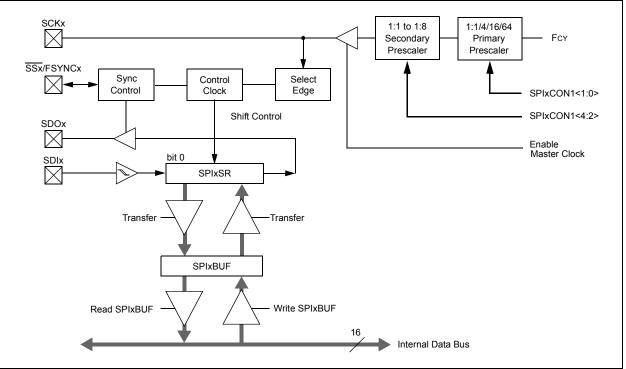
- · SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, SSx is not used. In the 2-pin mode, both SDOx and SSx are not used.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 15-1 and Figure 15-2.

Note: In this section, the SPI modules are referred to together as SPIx or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the 3 SPI modules.

查询PIC24FJ256GB206供应商


To set up the SPI module for the Standard Master mode of operation:

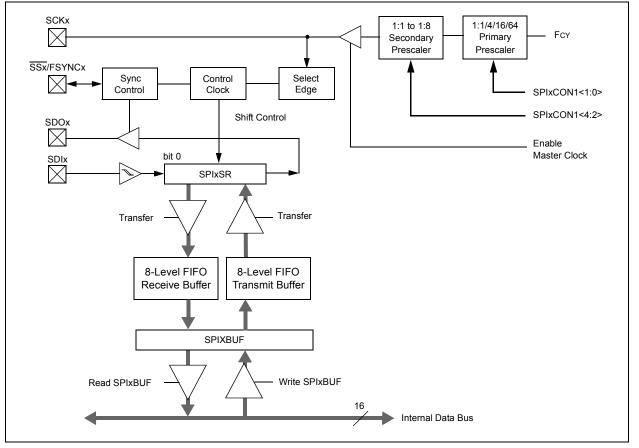
- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1<8>) is set, then the SSEN bit (SPIxCON1<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

查询PIC24FJ256GB206供应商 To set up the SPI module for the Enhanced Buffer


To set up the SPI module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 5. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- 6. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-2: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

查询PIC24FJ256GB206供应商 REGISTER 15-1: SPIXSTAT: SPIX STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC				
SPIEN ⁽¹⁾		SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0				
bit 15		OFICIDE			OF IDE02	OFIDEOT	bit 8				
							bit 0				
R-0, HSC	R/C-0, HS	R-0, HSC	R/W-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC				
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF				
bit 7						•	bit 0				
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit						
R = Readab	ole bit	W = Writable b	it	U = Unimpler	nented bit, read	d as '0'					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown				
HSC = Hard	ware Settable/	Clearable bit									
h # 45		(Enable bit ⁽¹⁾									
bit 15		the module and	oonfiguroo Si		$\frac{1}{2}$	oorial part ping					
	0 = Disables		connyures o	CRX, SDOX, SL		senai port pins)				
bit 14		nted: Read as '0	2								
bit 13	•	op in Idle Mode b									
		1 = Discontinue module operation when device enters Idle mode									
		e module operati									
bit 12-11	Unimpleme	nted: Read as '0	,								
bit 10-8	SPIBEC<2:0	PIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)									
		Master mode:									
		PI transfers pend	ling.								
	Slave mode: Number of S	PI transfers unre	ad								
bit 7		ft Register (SPIx		t (valid in Enhai	nced Buffer mo	de)					
		lift register is emp		-		(de)					
		ift register is not									
bit 6	SPIROV: Re	ceive Overflow F	lag bit								
	1 = A new byte/word is completely received and discarded										
	(The user software has not read the previous data in the SPIxBUF register.) 0 = No overflow has occurred										
			-		r						
bit 5		eceive FIFO Emp	oty bit (valid ir	h Enhanced Bu	ffer mode)						
		FIFO is empty FIFO is not emp	tv								
bit 4-2		: SPIx Buffer Inte	•	its (valid in Enh	anced Buffer n	node)					
511 7-2		upt when the SP	-			nouc)					
		upt when the last		,	,	TX FIFO is emp	oty				
		upt when the last									
		upt when one da				e TX FIFO has	one open spot				
		upt when the SP upt when the SP									
		upt when data is				s set)					
	000 = Interru	upt when the last					npty (SRXMPT				
	bit set	t)									
Note 1: If	f SPIEN = 1 the	ese functions mus	st he assigned	d to available R	Pn/RPIn nins h	efore use. See	Section 10.4				

Note 1: If SPIEN = 1, these functions must be assigned to available RPn/RPIn pins before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

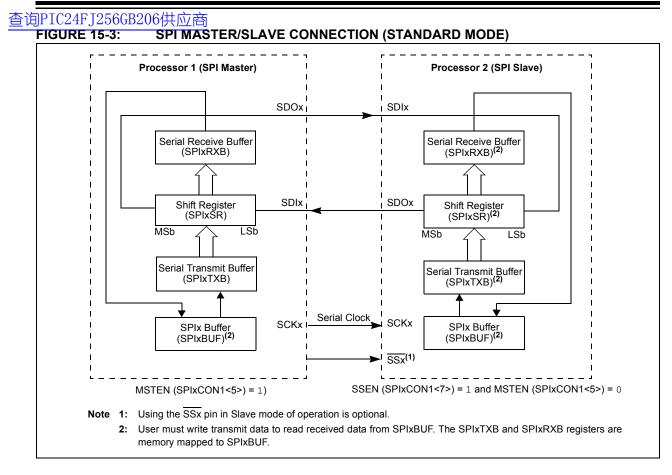
查询PIC24FJ256GB206供应商

REGISTER 15-1: SPIXSTAT: SPIX STATUS AND CONTROL REGISTER (CONTINUED)

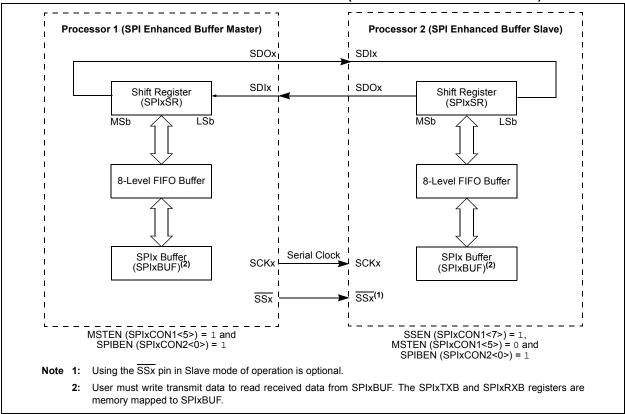
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	1 = Transmit has not yet started, SPIxTXB is full
	0 = Transmit has started, SPIxTXB is empty
	In Standard Buffer mode:
	Automatically set in hardware when the CPU writes to the SPIxBUF location, loading SPIxTXB.
	Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.
	In Enhanced Buffer mode:
	Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location.
	Automatically cleared in hardware when a buffer location is available for a CPU write.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	1 = Receive is complete, SPIxRXB is full
	0 = Receive is not complete, SPIxRXB is empty
	In Standard Buffer mode:
	Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.
	Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.
	In Enhanced Buffer mode:
	Automatically set in hardware when SPIx transfers data from the SPIxSR to the buffer, filling the last unread buffer location.
	Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.
Note 1:	If SPIEN = 1, these functions must be assigned to available RPn/RPIn pins before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

查询PIC24FJ256GB206供应商 REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1

r										
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	—	DISSCK ⁽¹⁾	DISSDO ⁽²⁾	MODE16	SMP	CKE ⁽³⁾			
bit 15							bit 8			
DAMA	5444.0	544/0	D 444 0	544/0	5444.0	D444				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽⁴⁾	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value a		'1' = Bit is set		0' = Bit is cleared x = Bit is unknown						
							J			
bit 15-13	Unimplement	ted: Read as '	0'							
bit 12	DISSCK: Disable SCKx Pin bit (SPI Master modes only) ⁽¹⁾									
	1 = Internal SPI clock is disabled; pin functions as I/O									
	 0 = Internal SPI clock is enabled 11 DISSDO: Disable SDOx Pin bit⁽²⁾ 									
bit 11				in functions as	1/0					
	 1 = SDOx pin is not used by the module; pin functions as I/O 0 = SDOx pin is controlled by the module 									
bit 10										
1 = Communication is word-wide (16 bits)										
	0 = Communication is byte-wide (8 bits)									
bit 9	SMP: SPIx Data Input Sample Phase bit									
	<u>Master mode:</u> 1 = Input data is sampled at the end of data output time 0 = Input data is sampled at the middle of data output time									
	Slave mode:									
bit 8	SMP must be cleared when SPIx is used in Slave mode. CKE: SPIx Clock Edge Select bit ⁽³⁾									
DILO		•		n from active cl	ock state to Id	e clock state (s	see bit 6)			
	 1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) 									
bit 7										
	1 = \overline{SSx} pin is used for Slave mode 0 = \overline{SSx} pin is not used by the module; pin is controlled by the port function									
bit 6 CKP: Clock Polarity Select bit										
		-		ctive state is a	low level					
	0 = Idle state	for the clock is	s a low level; ad	ctive state is a h	nigh level					
bit 5		ter Mode Enat	ole bit							
	1 = Master m 0 = Slave mo									
Note 1: If	DISSCK = 0, S	CKy must be a	onfigured to an	available PPn	nin Son Sacti	on 10 4 "Dorin	boral Din			
	Select (PPS)" for				pin. See Secu	on io.4 Fenp				
2: If	f DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.									
S	The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).									
	SSEN = 1, <u>SSx</u> Select (PPS)" for			ilable RPn/PRI	n pin. See Sec	tion 10.4 "Per	ipheral Pin			


查询PIC24FJ256GB206供应商 REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode) 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - .


 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **3:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 4: If SSEN = 1, SSx must be configured to an available RPn/PRIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

查询PIC24FJ256GB206供应商 REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	SPIFPOL	_		-	-	-	
bit 15		11					bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	—	—	—	—	—	SPIFE	SPIBEN	
bit 7							bit	
Legend:								
R = Readab		W = Writable b	it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 14	 1 = Framed SPIx support is enabled 0 = Framed SPIx support is disabled SPIFSD: Frame Sync Pulse Direction Control on SSx Pin bit 1 = Frame sync pulse input (slave) 0 = Frame sync pulse output (master) 							
bit 13	 SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only) 1 = Frame sync pulse is active-high 0 = Frame sync pulse is active-low 							
bit 12-2	Unimplemented: Read as '0'							
bit 1	 SPIFE: Frame Sync Pulse Edge Select bit 1 = Frame sync pulse coincides with the first bit clock 0 = Frame sync pulse precedes the first bit clock 							
bit 0	1 = Enhance	nanced Buffer Er d buffer is enabl d buffer is disab	ed	mode)				

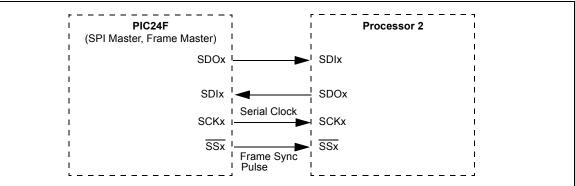
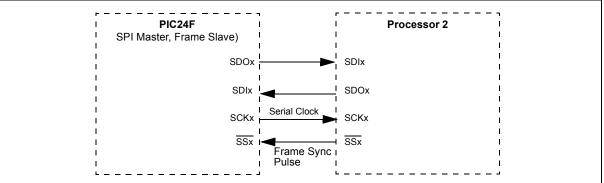
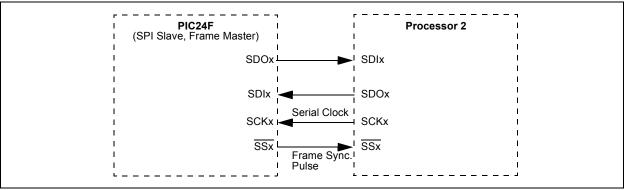


FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)



查询PIC24FJ256GB206供应商


FIGURE 15-5: SPI MASTER, FRAME MASTER CONNECTION DIAGRAM

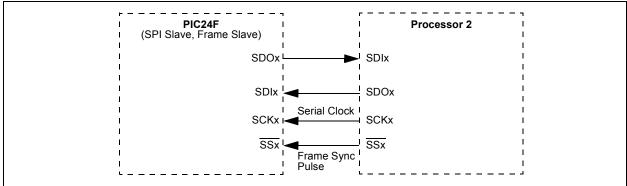


FIGURE 15-7: SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 15-8: SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM

查询PIC24FJ256GB206供应商

EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED⁽¹⁾

 $FSCK = \frac{1001}{Primary Prescaler x Secondary Prescaler}$

FCY

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-1: SAMPLE SCKx FREQUENCIES^(1,2)

Fcy = 16 MHz	Secondary Prescaler Settings					
	1:1	2:1	4:1	6:1	8:1	
	1:1	Invalid	8000	4000	2667	2000
Drimer / Dresseler Cettings	4:1	4000	2000	1000	667	500
Primary Prescaler Settings	16:1	1000	500	250	167	125
	64:1	250	125	63	42	31
Fcy = 5 MHz						
	1:1	5000	2500	1250	833	625
Drimer / Dresseler Cettings	4:1	1250	625	313	208	156
Primary Prescaler Settings	16:1	313	156	78	52	39
	64:1	78	39	20	13	10

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: SCKx frequencies shown in kHz.

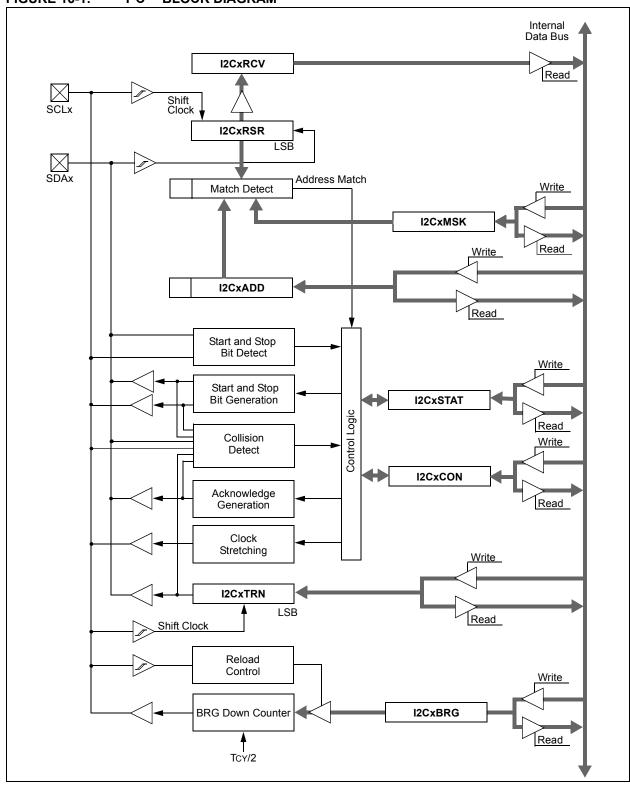
查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 16.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated CircuitTM (I²CTM) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:


- Independent master and slave logic
- · 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- · Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 16-1.

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

查询PIC24FJ256GB206供应商 FIGURE 16-1: I²C™ BLOCK DIAGRAM

查询PIC24FJ256GB206供应商 16.2 Setting Baud Rate When **Operating as a Bus Master**

To compute the Baud Rate Generator reload value, use Equation 16-1.

EQUATION 16-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2)

$$FSCL = \frac{FCY}{I2CxBRG + 1 + \frac{FCY}{10,000,000}}$$

or:
$$I2CxBRG = \left(\frac{FCY}{FSCL} - \frac{FCY}{10,000,000} - 1\right)$$

Note 1: Based on FCY = Fosc/2; Doze mode and PLL are disabled.

> 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system level parameters. The actual clock rate should be measured in its intended application.

16.3

The I2CxMSK register (Register 16-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses, '0000000' and '0100000'.

Slave Address Masking

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2CxCON<11>).

As a result of changes in the I²C[™] proto-Note: col, the addresses in Table 16-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Deguined Suptom Fool	For	I2CxB	RG Value	Actual FscL
Required System Fsc∟	FCY	(Decimal)	(Hexadecimal)	
100 kHz	16 MHz	157	9D	100 kHz
100 kHz	8 MHz	78	4E	100 kHz
100 kHz	4 MHz	39	27	99 kHz
400 kHz	16 MHz	37	25	404 kHz
400 kHz	8 MHz	18	12	404 kHz
400 kHz	4 MHz	9	9	385 kHz
400 kHz	2 MHz	4	4	385 kHz
1 MHz	16 MHz	13	D	1.026 MHz
1 MHz	8 MHz	6	6	1.026 MHz
1 MHz	4 MHz	3	3	0.909 MHz

TARI E 16-1. I²C[™] CLOCK RATES(1.2)

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

These clock rate values are for guidance only. The actual clock rate can be affected by various system 2: level parameters. The actual clock rate should be measured in its intended application.

TABLE 16-2: I²C[™] RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	CBus Address
0000 01x	x	Reserved
0000 1xx	x	HS Mode Master Code
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	x	Reserved

Note 1: The address bits listed here will never cause an address match, independent of address mask settings.

- 2: The address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

查询PIC24FJ256GB206供应商 REGISTER 16-1: IZCXCON: I2CX CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN			
bit 15						•	bit			
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7							bit (
Legend:		UC - Hardwa	ire Clearable bi	+						
R = Readat	blo bit	W = Writable			nented bit, read					
-n = Value a		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$		x = Bit is unkn				
	alfor				areu		IOWIT			
bit 15	12CEN: 12Cx	Enable bit								
	-		le and configure	es the SDAx ar	nd SCLx pins a	s serial port pir	าร			
	0 = Disables	the I2Cx modu	ıle; all l ² C™ pir	is are controlle	d by port functi	ons				
bit 14	Unimplemen	ted: Read as '	0'							
bit 13		p in Idle Mode								
		1 = Discontinues module operation when device enters an Idle mode								
bit 12		0 = Continues module operation in Idle mode								
DIL 12		SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Releases SCLx clock								
		1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch)								
	If STREN = 1	If STREN = 1:								
		Bit is R/W (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware is clear at the beginning of slave transmission. Hardware is clear at the end of slave reception.								
	If STREN = 0	-				ave reception.				
			only write '1' to	release clock)	. Hardware is c	lear at the beg	inning of slav			
	transmission.	-	-	-		-	-			
bit 11		IPMIEN: Intelligent Platform Management Interface (IPMI) Enable bit								
	 1 = IPMI Support mode is enabled; all addresses are Acknowledged 0 = IPMI mode is disabled 									
bit 10			ving hit							
	A10M: 10-Bit Slave Addressing bit 1 = I2CxADD is a 10-bit slave address									
	0 = 12CxADD is a 7-bit slave address 0 = 12CxADD is a 7-bit slave address									
	-									
bit 9	0 = 12CxADE		e address							
bit 9	0 = I2CxADE DISSLW: Disa) is a 7-bit slav	e address e Control bit							
	0 = I2CxADE DISSLW: Disa 1 = Slew rate 0 = Slew rate) is a 7-bit slav able Slew Rate control is disa control is ena	e address e Control bit ibled bled							
bit 9 bit 8	0 = I2CxADE DISSLW: Diss 1 = Slew rate 0 = Slew rate SMEN: SMBU) is a 7-bit slav able Slew Rate control is disa control is ena us Input Levels	e address e Control bit bled bled bit							
	0 = I2CxADE DISSLW: Diss 1 = Slew rate 0 = Slew rate SMEN: SMBu 1 = Enables) is a 7-bit slav able Slew Rate control is disa control is ena us Input Levels I/O pin thresho	e address e Control bit bled bled bit lds compliant w	vith SMBus spe	cifications					
	0 = I2CxADE DISSLW: Diss 1 = Slew rate 0 = Slew rate SMEN: SMBu 1 = Enables 0 = Disables) is a 7-bit slav able Slew Rate control is disa control is ena us Input Levels I/O pin thresho the SMBus inp	e address e Control bit bled bled bit lds compliant w out thresholds	-						
bit 8	0 = I2CxADE DISSLW: Disa 1 = Slew rate 0 = Slew rate SMEN: SMBu 1 = Enables 0 = Disables GCEN: Gene) is a 7-bit slav able Slew Rate control is disa control is ena us Input Levels I/O pin thresho the SMBus inp ral Call Enable	e address e Control bit bled bled bit lds compliant w	ating as I ² C sla	ive)	xRSR (module	is enabled fo			
bit 8	0 = I2CxADE DISSLW: Dist 1 = Slew rate 0 = Slew rate SMEN: SMBu 1 = Enables 0 = Disables GCEN: Gene 1 = Enables reception	 b) is a 7-bit slav able Slew Rate control is disa control is ena us Input Levels I/O pin thresho the SMBus inp ral Call Enable interrupt when b) 	e address e Control bit bled bit lds compliant w but thresholds bit (when open a general call a	ating as I ² C sla	ive)	xRSR (module	is enabled fo			
bit 8 bit 7	0 = I2CxADE DISSLW: Diss 1 = Slew rate 0 = Slew rate SMEN: SMBu 1 = Enables 0 = Disables GCEN: Gene 1 = Enables reception 0 = General) is a 7-bit slav able Slew Rate control is disa control is ena us Input Levels I/O pin thresho the SMBus inp ral Call Enable interrupt when) call address dis	e address e Control bit bled bit lds compliant w but thresholds bit (when oper a general call a sabled	ating as I ² C sla address is rece	ive) ived in the I2C	xRSR (module	is enabled fo			
bit 8	0 = I2CxADE DISSLW: Diss 1 = Slew rate 0 = Slew rate SMEN: SMBu 1 = Enables 0 = Disables GCEN: Gene 1 = Enables reception 0 = General of STREN: SCL) is a 7-bit slav able Slew Rate control is disa control is ena us Input Levels I/O pin thresho the SMBus inp ral Call Enable interrupt when call address dis x Clock Stretch	e address e Control bit bled bit lds compliant w but thresholds bit (when oper a general call a sabled n Enable bit (wh	ating as I ² C sla address is rece	ive) ived in the I2C	xRSR (module	is enabled fo			
bit 8 bit 7	0 = I2CxADE DISSLW: Diss 1 = Slew rate 0 = Slew rate SMEN: SMBu 1 = Enables 0 = Disables GCEN: Gene 1 = Enables reception 0 = General 0 STREN: SCL Used in conju) is a 7-bit slav able Slew Rate control is disa control is ena us Input Levels I/O pin thresho the SMBus inp ral Call Enable interrupt when call address dis x Clock Stretch unction with the	e address e Control bit bled bit lds compliant w but thresholds bit (when oper a general call a sabled n Enable bit (wh	ating as I ² C sla address is rece ien operating a	ive) ived in the I2C	xRSR (module	is enabled fo			

查询PIC24FJ2 REGISTER	256GB206供应商 R 16-1: 12CxCO N: I2Cx CONTROL REGISTER (CONTINUED)
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master. Applicable during master receive.) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master; applicable during master receive) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiates Stop condition on the SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence. 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enabled bit (when operating as I²C master) 1 = Initiates Repeated Start condition on the SDAx and SCLx pins. Hardware is clear at the end of the master Repeated Start sequence 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enabled bit (when operating as I²C master) 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at end of the master Start sequence. 0 = Start condition is not in progress

查询PIC24FJ256GB206供应商

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF
bit 7		•	·				bit (
Legend:		C = Clearat	ole bit	HS = Hardware	Settable bit		
R = Readable bit W = Writable bit				U = Unimpleme	nted bit, read as	s 'O'	
-n = Value at POR '1' = Bit is set			et	'0' = Bit is cleared x = Bit is unknown			
HSC = Hard	ware Settable	/Clearable bit					
bit 15	ACKSTAT:	Acknowledge	e Status bit				
	0 = ACK wa	was detected as detected la set or clear	ast	Acknowledae.			
bit 14	Hardware is set or clear at the end of Acknowledge. TRSTAT: Transmit Status bit (When operating as I ² C™ master. Applicable to master transmit operation.)						
	0 = Master	transmit is no	progress (8 b ot in progress ginning of mas	,	hardware is clea	r at the end of slav	ve Acknowledge
bit 13-11	Hardware is set at the beginning of master transmission; hardware is clear at the end of slave Acknowled 3-11 Unimplemented: Read as '0'					C	
bit 10	BCL: Maste	r Bus Collisio	on Detect bit				
	0 = No colli	sion		during a master	operation		
			etection of a b	us collision.			
bit 9	GCSIAI: G	eneral Call S	tatus bit				

- 1 = General call address was received
- 0 = General call address was not received

Hardware is set when the address matches the general call address; hardware is clear at Stop detection.

- bit 8 ADD10: 10-Bit Address Status bit
 1 = 10-bit address was matched
 0 = 10-bit address was not matched
 Hardware is set at the match of the 2nd byte of the matched 10-bit address; hardware is clear at Stop detection.
 bit 7 IWCOL: Write Collision Detect bit
 1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy
- An attempt to while to the I2CXTRN register failed because the FC module is busy 0 = No collision
 Hardware is set at an occurrence of write to I2CxTRN while busy (cleared by software).

 I2COV: Receive Overflow Flag bit
 1 = A byte was received while the I2CxRCV register is still holding the previous byte
 0 = No overflow
 Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

 bit 5
 D/A: Data/Address bit (when operating as I²C slave)

 1 = Indicates that the last byte received was data
 0 = Indicates that the last byte received was a device address
 Hardware is clear at the device address match. Hardware is set after a transmission finishes or by

查询PIC24FJ256GB206供应商 REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
bit 4	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as l^2C slave)
	1 = Read – indicates data transfer is output from the slave 0 = Write – indicates data transfer is input to the slave Hardware is set or clear after the reception of an I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware is set when I2CxRCV is written with the received byte; hardware is clear when the software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full 0 = Transmit is complete, I2CxTRN is empty

Hardware is set when software writes to I2CxTRN; hardware is clear at the completion of data transmission.

查询PIC24FJ256GB206供应商 REGISTER 16-3: 12CxMSK:12Cx SLAVE MODE ADDRESS MASK REGISTER

- - - - AMSK9 AMSK8 bit 15 bit 8 bit 8 bit 8 bit 8	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
bit 15 bit 8	—	—		—	—		AMSK9	AMSK8
	bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enable masking for bit x of the incoming message address; bit match is not required in this position

0 = Disable masking for bit x; bit match is required in this position

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 21. "UART" (DS39708). The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 15 bps to 1 Mbps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA $^{\ensuremath{\mathbb{R}}}$ Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 17-1. The UART module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 17-1: UART SIMPLIFIED BLOCK DIAGRAM

查询PIC24FJ256GB206供应商

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate =
$$\frac{FCY}{16 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock frequency (FOSC/2).

2: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH BRGH = $1^{(1,2)}$

Baud Rate =
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{4 \cdot Baud Rate} - 1$

- **Note 1:** FCY denotes the instruction cycle clock frequency.
 - **2:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate Solving for BRGx V	= FCY/(16 (BRGx + 1)) alue:
BRGx BRGx BRGx	= ((FCY/Desired Baud Rate)/16) - 1 = ((4000000/9600)/16) - 1 = 25
Calculated Baud Rate	= 4000000/(16 (25 + 1)) = 9615
Error	 = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 – 9600)/9600
Note: Based or	n FCY = FOSC/2; Doze mode and PLL are disabled.

查询PIC24FJ256GB206供应商 17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write a data byte to the lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

17.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

17.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UART module is enabled. It can be used to support the IrDA codec chip.

17.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

查询PIC24FJ256GB206供应商 REGISTER 17-1: UxMODE: UARTx MODE REGISTER R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 UARTEN⁽¹⁾ IREN⁽²⁾ USIDL UEN1 RTSMD ___ bit 15 R/W-0, HC R/W-0 R/W-0, HC R/W-0 R/W-0 R/W-0 R/W-0 WAKE LPBACK ABAUD RXINV BRGH PDSEL1 PDSEL0 bit 7

Legend:	HC = Hardware Cleara	ble bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	UARTEN: UARTx Enable bit ⁽¹⁾
	 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾
	 1 = IrDA encoder and decoder are enabled 0 = IrDA encoder and decoder are disabled
bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	 1 = UxRTS pin is in Simplex mode 0 = UxRTS pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits
	 11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by port latches
bit 7	WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit
	 1 = UARTx will continue to sample the UxRX pin; interrupt is generated on the falling edge, bit is cleared in hardware on the following rising edge 0 = No wake-up is enabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	 1 = Enable Loopback mode 0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enable baud rate measurement on the next character – requires reception of a sync field (55h); cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
Note 1	If LIARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See

- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0

UEN0

R/W-0

STSEL

bit 8

bit 0

查询PIC24FJ256GB206供应商 REGISTER 17-1: UXMODE: UARTx MODE REGISTER (CONTINUED) bit 4 RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1' bit 3 BRGH: High Baud Rate Enable bit 1 = High-Speed mode (4 BRG clock cycles per bit) 0 = Standard-Speed mode (16 BRG clock cycles per bit)

bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits

- 11 = 9-bit data, no parity
- 10 = 8-bit data, odd parity
- 01 = 8-bit data, even parity
- 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

查询PIC24FI256GB206供应商 REGISTER 17-2: UXSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	—	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	C = Clearable bit HSC = Hardware Settable/Clearable bit		learable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
HS = Hardware Settable bit	HC = Hardware Clearable bit			

bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾

IREN = 0:

	INEN = 0.
	1 = UxTX is Idle '0'
	0 = UxTX is Idle '1'
	IREN = 1:
	1 = UxTX is Idle '1'
	0 = UxTX is Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: Transmit Break bit
	 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: Transmit Enable bit ⁽²⁾
	1 = Transmit is enabled, UxTX pin controlled by UARTx
	0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by port.
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	 1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)

- 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- **Note 1:** Value of bit only affects the transmit properties of the module when the $IrDA^{\textcircled{R}}$ encoder is enabled (IREN = 1).
 - 2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

查询PIC24FJ256GB206供应商 REGISTER 17-2: UXSTA: UARTX STATUS AND CONTROL REGISTER (CONTINUED) bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters bit 5 **ADDEN:** Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode is disabled bit 4 RIDLE: Receiver Idle bit (read-only) 1 =Receiver is Idle 0 = Receiver is active bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected OERR: Receive Buffer Overrun Error Status bit (clear/read-only) bit 1 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 \rightarrow 0 transition); will reset the receiver buffer and the RSR to the empty state bit 0 **URXDA:** Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

- **Note 1:** Value of bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
 - 2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

查询PIC24FJ256GB206供应商 NOTES:

18.0 UNIVERSAL SERIAL BUS WITH ON-THE-GO SUPPORT (USB OTG)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 27. "USB On-The-Go (OTG)" (DS39721). The information in this data sheet supersedes the information in the FRM.

PIC24FJ256GB210 family devices contain a full-speed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act either as a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP).

For more details on OTG operation, refer to the "On-The-Go Supplement" to the "USB 2.0 Specification", published by the USB-IF. For more details on USB operation, refer to the "Universal Serial Bus Specification", v2.0.

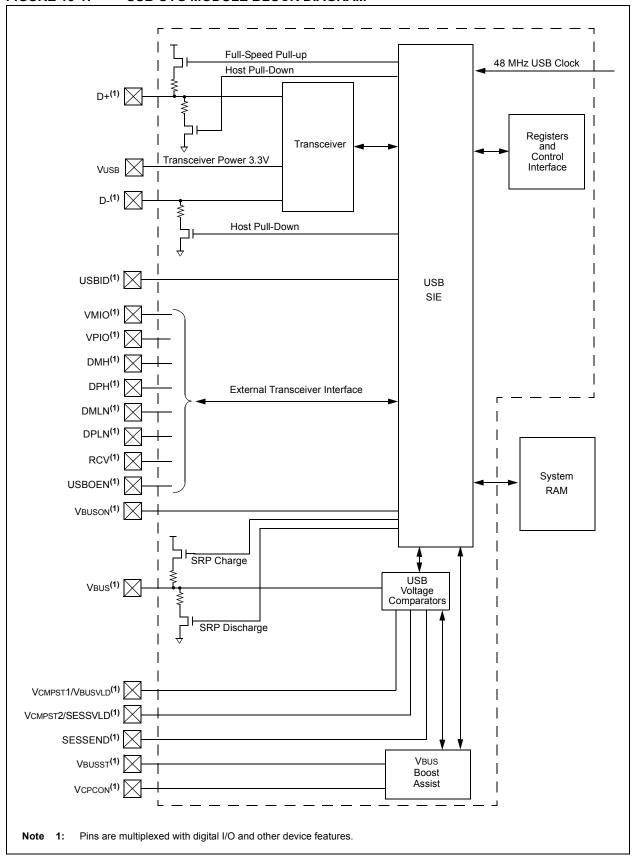
The USB OTG module offers these features:

- USB functionality in Device and Host modes, and OTG capabilities for application-controlled mode switching
- Software-selectable module speeds of full speed (12 Mbps) or low speed (1.5 Mbps, available in Host mode only)
- Support for all four USB transfer types: control, interrupt, bulk and isochronous
- 16 bidirectional endpoints for a total of 32 unique endpoints
- DMA interface for data RAM access
- Queues up to sixteen unique endpoint transfers without servicing
- Integrated, on-chip USB transceiver with support for off-chip transceivers via a digital interface
- Integrated VBUS generation with on-chip comparators and boost generation, and support of external VBUS comparators and regulators through a digital interface
- Configurations for on-chip bus pull-up and pull-down resistors

A simplified block diagram of the USB OTG module is shown in Figure 18-1.

The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and Buffer Descriptors (BDs) are used for the transmission and reception of data.

In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. RX (Receive) will be used to describe transfers that move data from the USB to the microcontroller and TX (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 18-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.


TABLE 18-1:CONTROLLER-CENTRIC
DATA DIRECTION FOR USB
HOST OR TARGET

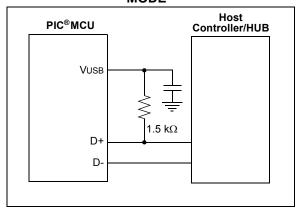
USB Mode	Direc	ction		
USB WOUL	RX	ТХ		
Device	OUT or SETUP	IN		
Host	IN OUT or SETU			

This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol.

Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to <u>www.microchip.com/usb</u> for the latest firmware and driver support.

查询PIC24FJ256GB206供应商 FIGURE 18-1: USB OTG MODULE BLOCK DIAGRAM

查询PIC24FI256CB206供应。 18.1⁻¹Hardware Configuration


18.1.1 DEVICE MODE

18.1.1.1 D+ Pull-up Resistor

PIC24FJ256GB210 family devices have a built-in 1.5 k Ω resistor on the D+ line that is available when the microcontroller is operating in Device mode. This is used to signal an external Host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON<0>). If the OTGEN bit (U1OTGCON<2>) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON<7>).

Alternatively, an external resistor may be used on D+, as shown in Figure 18-2.

FIGURE 18-2: EXTERNAL PULL-UP FOR FULL-SPEED DEVICE MODE

18.1.1.2 Power Modes

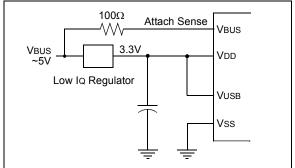
Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- · Bus Power Only mode
- Self-Power Only mode
- Dual Power with Self-Power Dominance

Bus Power Only mode (Figure 18-3) is effectively the simplest method. All power for the application is drawn from the USB.

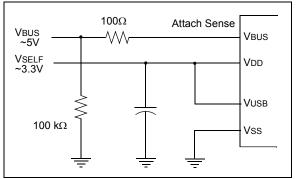
To meet the inrush current requirements of the "USB 2.0 OTG Specification", the total effective capacitance appearing across VBUS and ground must be no more than 10 µF.

In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable. During the USB Suspend mode, the D+ or Dpull-up resistor must remain active, which will consume some of the allowed suspend current.


In Self-Power Only mode (Figure 18-4), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable.


The Dual Power mode with Self-Power Dominance (Figure 18-5) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBUS is driven high.

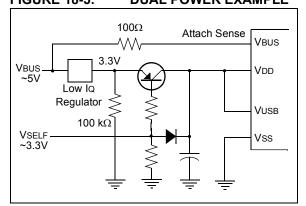


FIGURE 18-4:

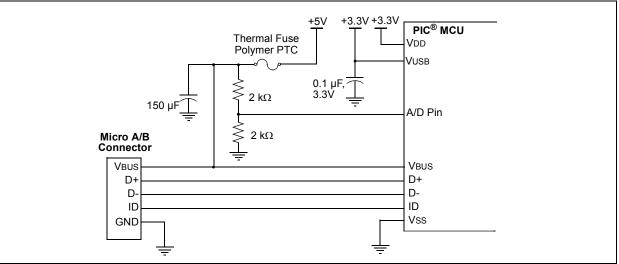
SELF-POWER ONLY

查询PIC24FJ256GB206供应商 FIGURE 18-5: DUAL POWER EXAMPLE

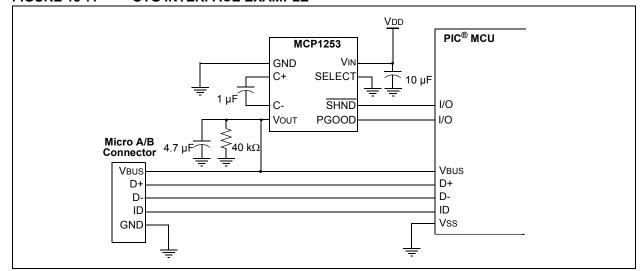
18.1.2 HOST AND OTG MODES

18.1.2.1 D+ and D- Pull-Down Resistors

PIC24FJ256GB210 family devices have a built-in 15 k Ω pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the micro-


FIGURE 18-6: HOST INTERFACE EXAMPLE

controller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).


18.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-The-Go operation, the *"USB 2.0 OTG Specification"* requires that the host application should supply power on VBUS. Since the microcontroller is running below VBUS, and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 18-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 18-7.

查询PIC24FJ256GB206供应商 FIGURE 18-7: OTG INTERFACE EXAMPLE

18.1.2.3 VBUS Voltage Generation with External Devices

When operating as a USB host, either as an A-device in an OTG configuration or as an embedded host, VBUS must be supplied to the attached device. PIC24FJ256GB210 family devices have an internal VBUS boost assist to help generate the required 5V VBUS from the available voltages on the board. This is comprised of a simple PWM output to control a Switch mode power supply, and built-in comparators to monitor output voltage and limit current.

To enable voltage generation:

- Verify that the USB module is powered (U1PWRC<0> = 1) and that the VBUS discharge is disabled (U1OTGCON<0> = 0).
- 2. Set the PWM period (U1PWMRRS<7:0>) and duty cycle (U1PWMRRS<15:8>) as required.
- 3. Select the required polarity of the output signal based on the configuration of the external circuit with the PWMPOL bit (U1PWMCON<9>).
- 4. Select the desired target voltage using the VBUSCHG bit (U1OTGCON<1>).
- 5. Enable the PWM counter by setting the CNTEN bit to '1' (U1PWMCON<8>).
- 6. Enable the PWM module by setting the PWMEN bit (U1PWMCON<15>) to '1'.
- 7. Enable the VBUS generation circuit (U10TGCON<3> = 1).
- **Note:** This section describes the general process for VBUS voltage generation and control. Please refer to the "*PIC24F Family Reference Manual*" for additional examples.

18.1.3 USING AN EXTERNAL INTERFACE

Some applications may require the USB interface to be isolated from the rest of the system. PIC24FJ256GB210 family devices include a complete interface to communicate with and control an external USB transceiver, including the control of data line pull-ups and pull-downs. The VBUS voltage generation control circuit can also be configured for different VBUS generation topologies.

Refer to the "*PIC24F Family Reference Manual*", **Section 27. "USB On-The-Go (OTG)**" for information on using the external interface.

18.1.4 CALCULATING TRANSCEIVER POWER REQUIREMENTS

The USB transceiver consumes a variable amount of current depending on the characteristic impedance of the USB cable, the length of the cable, the VUSB supply voltage and the actual data patterns moving across the USB cable. Longer cables have larger capacitances and consume more total energy when switching output states. The total transceiver current consumption will be application-specific. Equation 18-1 can help estimate how much current actually may be required in full-speed applications.

Refer to the "*PIC24F Family Reference Manual*", **Section 27. "USB On-The-Go (OTG)**" for a complete discussion on transceiver power consumption.

查询PIC24FJ256GB206供应商 EQUATION 18-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION

 $\mathsf{IXCVR} = \frac{40 \text{ mA} \cdot \mathsf{VUSB} \cdot \mathsf{PZERO} \cdot \mathsf{PIN} \cdot \mathsf{LCABLE}}{3.3 \mathsf{V} \cdot \mathsf{5m}} + \mathsf{IPULLUP}$

Legend: VUSB – Voltage applied to the VUSB pin in volts (3.0V to 3.6V).

PZERO – Percentage (in decimal) of the IN traffic bits sent by the PIC[®] microcontroller that are a value of '0'.

PIN – Percentage (in decimal) of total bus bandwidth that is used for IN traffic.

LCABLE – Length (in meters) of the USB cable. The *"USB 2.0 OTG Specification"* requires that full-speed applications use cables no longer than 5m.

 $\mbox{IPULLUP}$ – Current which the nominal, 1.5 k Ω pull-up resistor (when enabled) must supply to the USB cable.

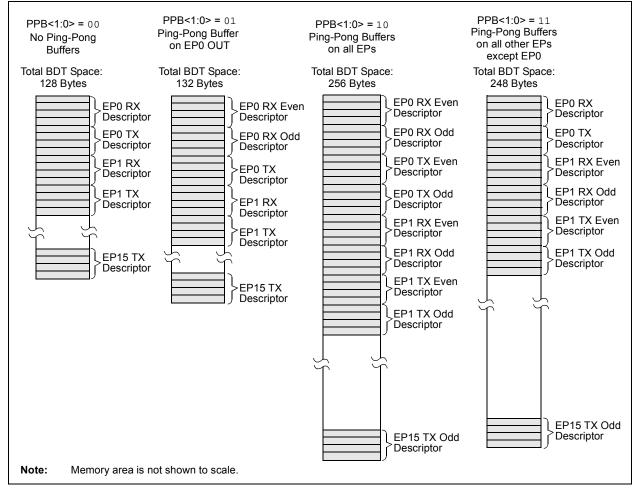
18.2 USB Buffer Descriptors and the BDT

Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations.

The BDT can be located in any available, 512-byte aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location.

The BDT is composed of Buffer Descriptors (BDs) which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two, 16-bit "soft" (non-fixed-address) registers, BDnSTAT and BDnADR, where n represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.

Note: Since BDnADR is a 16-bit register, only the first 64 Kbytes of RAM can be accessed by the USB module. Depending on the endpoint buffering configuration used, there are up to 64 sets of Buffer Descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least 8 bytes long. This is because the *"USB 2.0 OTG Specification"* mandates that every device must have Endpoint 0 with both input and output for initial setup.


Endpoint mapping in the BDT is dependent on three variables:

- Endpoint number (0 to 15)
- Endpoint direction (RX or TX)
- Ping-pong settings (U1CNFG1<1:0>)

Figure 18-8 illustrates how these variables are used to map endpoints in the BDT.

In Host mode, only Endpoint 0 Buffer Descriptors are used. All transfers utilize the Endpoint 0 Buffer Descriptor and Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT<3:0> in the USB status register (U1STAT<7:4>). For transmitted packets, the attached device's destination endpoint is indicated by the value written to the Token register (U1TOK).

FIGURE 18-8: BDT MAPPING FOR ENDPOINT BUFFERING MODES

查询PIC24FT256GB206供应商 BDs have a fixed relationship to a particular endpoint,

bus have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 18-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This, theoretically, means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating BD addresses is implemented.

18.2.1 BUFFER OWNERSHIP

Because the buffers and their BDs are shared between the CPU and the USB module, a simple semaphore mechanism is used to distinguish which is allowed to update the BD and associated buffers in memory. This is done by using the UOWN bit as a semaphore to distinguish which is allowed to update the BD and associated buffers in memory. UOWN is the only bit that is shared between the two configurations of BDnSTAT.

When UOWN is clear, the BD entry is "owned" by the microcontroller core. When the UOWN bit is set, the BD entry and the buffer memory are "owned" by the USB peripheral. The core should not modify the BD or its

corresponding data buffer during this time. Note that the microcontroller core can still read BDnSTAT while the SIE owns the buffer and vice versa.

The Buffer Descriptors have a different meaning based on the source of the register update. Register 18-1 and Register 18-2 show the differences in BDnSTAT depending on its current "ownership".

When UOWN is set, the user can no longer depend on the values that were written to the BDs. From this point, the USB module updates the BDs as necessary, overwriting the original BD values. The BDnSTAT register is updated by the SIE with the token PID and the transfer count is updated.

18.2.2 DMA INTERFACE

The USB OTG module uses a dedicated DMA to access both the BDT and the endpoint data buffers. Since part of the address space of the DMA is dedicated to the Buffer Descriptors, a portion of the memory connected to the DMA must comprise a contiguous address space properly mapped for the access by the module.

TABLE 18-2: ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT BUFFERING MODES

				BDs Ass	igned to Endpoi	int		
Endpoint	Mode 0Mode 1Mode 2(No Ping-Pong)(Ping-Pong on EP0 OUT)(Ping-Pong on all E		•			(Ping-Pong on	de 3 all other EPs, t EP0)	
	Out	In	Out	In	Out	In	Out	In
0	0	1	0 (E), 1 (O)	2	0 (E), 1 (O)	2 (E), 3 (O)	0	1
1	2	3	3	4	4 (E), 5 (O)	6 (E), 7 (O)	2 (E), 3 (O)	4 (E), 5 (O)
2	4	5	5	6	8 (E), 9 (O)	10 (E), 11 (O)	6 (E), 7 (O)	8 (E), 9 (O)
3	6	7	7	8	12 (E), 13 (O)	14 (E), 15 (O)	10 (E), 11 (O)	12 (E), 13 (O)
4	8	9	9	10	16 (E), 17 (O)	18 (E), 19 (O)	14 (E), 15 (O)	16 (E), 17 (O)
5	10	11	11	12	20 (E), 21 (O)	22 (E), 23 (O)	18 (E), 19 (O)	20 (E), 21 (O)
6	12	13	13	14	24 (E), 25 (O)	26 (E), 27 (O)	22 (E), 23 (O)	24 (E), 25 (O)
7	14	15	15	16	28 (E), 29 (O)	30 (E), 31 (O)	26 (E), 27 (O)	28 (E), 29 (O)
8	16	17	17	18	32 (E), 33 (O)	34 (E), 35 (O)	30 (E), 31 (O)	32 (E), 33 (O)
9	18	19	19	20	36 (E), 37 (O)	38 (E), 39 (O)	34 (E), 35 (O)	36 (E), 37 (O)
10	20	21	21	22	40 (E), 41 (O)	42 (E), 43 (O)	38 (E), 39 (O)	40 (E), 41 (O)
11	22	23	23	24	44 (E), 45 (O)	46 (E), 47 (O)	42 (E), 43 (O)	44 (E), 45 (O)
12	24	25	25	26	48 (E), 49 (O)	50 (E), 51 (O)	46 (E), 47 (O)	48 (E), 49 (O)
13	26	27	27	28	52 (E), 53 (O)	54 (E), 55 (O)	50 (E), 51 (O)	52 (E), 53 (O)
14	28	29	29	30	56 (E), 57 (O)	58 (E), 59 (O)	54 (E), 55 (O)	56 (E), 57 (O)
15	30	31	31	32	60 (E), 61 (O)	62 (E), 63 (O)	58 (E), 59 (O)	60 (E), 61 (O)

Legend: (E) = Even transaction buffer, (O) = Odd transaction buffer

查询PIC24FJ256GB206供应商 REGISTER 18-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	R/W-x, HSC					
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	it U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 **UOWN:** USB Own bit

- 1 = The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or the buffer
- bit 14 DTS: Data Toggle Packet bit
 - 1 = Data 1 packet
 - 0 = Data 0 packet

bit 13-10 **PID<3:0>:** Packet Identifier bits (written by the USB module)

In Device mode: Represents the PID of the received token during the last transfer.

In Host mode:

Represents the last returned PID or the transfer status indicator.

bit 9-0 BC<9:0>: Byte Count bits

This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

查询PIC24FJ256GB206供应商

REGISTER 18-2: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	r-0	r-0	R/W-x	R/W-x	R/W-x, HSC	R/W-x, HSC
UOWN	DTS ⁽¹⁾	Reserved	Reserved	DTSEN	BSTALL	BC9	BC8
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/C	learable bit	r = Reserved bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'r' = Reserved bit	x = Bit is unknown

bit 15 **UOWN:** USB Own bit

- 0 = The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all other fields in the BD
- bit 14 **DTS:** Data Toggle Packet bit⁽¹⁾
 - 1 = Data 1 packet
 - 0 = Data 0 packet

bit 13-12 **Reserved:** Maintain as '0'

bit 11 DTSEN: Data Toggle Synchronization Enable bit

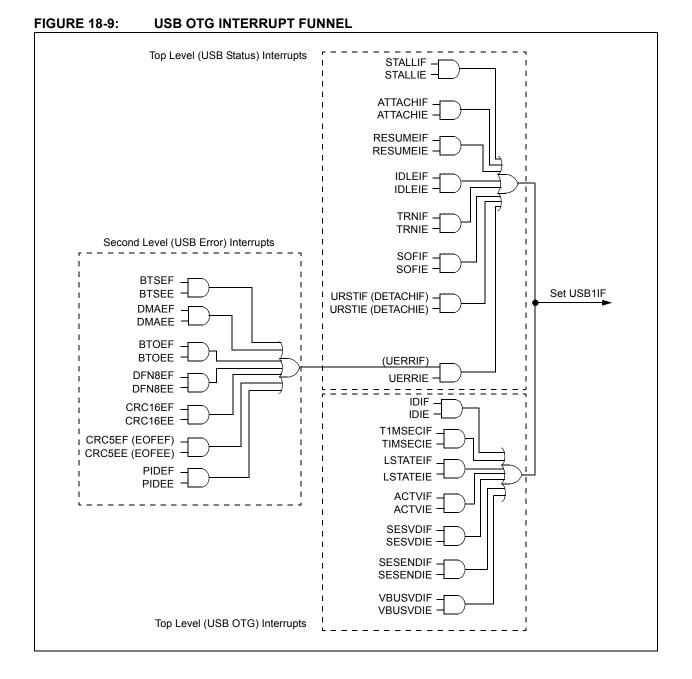
- 1 = Data toggle synchronization is enabled; data packets with incorrect sync value will be ignored
- 0 = No data toggle synchronization is performed

bit 10 BSTALL: Buffer Stall Enable bit

- 1 = Buffer STALL enabled; STALL handshake issued if a token is received that would use the BD in the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit will get set on any STALL handshake
- 0 = Buffer STALL disabled
- bit 9-0 BC<9:0>: Byte Count bits

This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

Note 1: This bit is ignored unless DTSEN = 1.

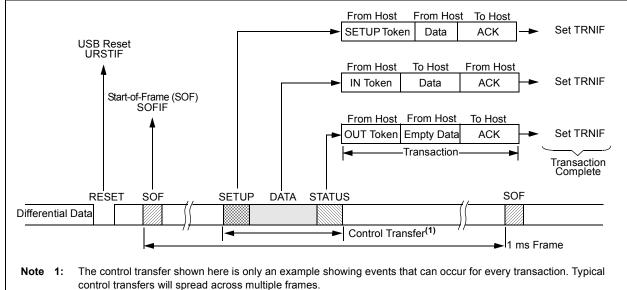

查询PIC24FJ256GB206供应商 18.3 USB Interrupts

The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector.

Figure 18-9 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second

level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers. An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level.

Interrupts may be used to trap routine events in a USB transaction. Figure 18-10 provides some common events within a USB frame and their corresponding interrupts.



查询PIC24FJ256GB206供应商 18.3.1 CLEARING USB OTG INTERRUPTS

Unlike device level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a MOV type instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a '1' to its location is referred to as "Write 1 to clear". In register descriptions, this function is indicated by the descriptor, "K".

FIGURE 18-10: EXAMPLE OF A USB TRANSACTION AND INTERRUPT EVENTS

18.4 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

18.4.1 ENABLING DEVICE MODE

- Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit, PPBRST (U1CON<1>).
- 2. Disable all interrupts (U1IE and U1EIE = 00h).
- 3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
- Verify that VBUS is present (non OTG devices only).

- 5. Enable the USB module by setting the USBEN bit (U1CON<0>).
- 6. Set the OTGEN bit (U1OTGCON<2>) to enable OTG operation.
- Enable the endpoint zero buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1).
- 8. Power up the USB module by setting the USBPWR bit (U1PWRC<0>).
- 9. Enable the D+ pull-up resistor to signal an attach by setting DPPULUP bit (U1OTGCON<7>).

18.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Complete Interrupt Flag, TRNIF (U1IR<3>).

18.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Complete Interrupt Flag, TRNIF (U1IR<3>).

18.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

18.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

- Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U10TGCON<5:4>). Disable the D+ and Dpull-up resistors by clearing the DPPULUP and DMPULUP bits (U10TGCON<7:6>).
- At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-of-Frame packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE<6>).
- Wait for the device attached interrupt (U1IR<6> = 1). This is signaled by the USB device changing the state of D+ or D- from '0' to '1' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
- Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON<7>) is '0', the connecting device is low speed. If the connecting device is low speed, set the low LSPDEN and LSPD bits (U1ADDR<7>, and U1EP0<7>) to enable low-speed operation.
- Reset the USB device by setting the USBRST bit (U1CON<4>) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by Chapter 9 of the "USB 2.0 Specification".

18.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE

- 1. Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device.
- Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN and EPHSHK bits).
- 3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the *"USB 2.0 Specification"* for information on the device framework command set.
- Initialize the Buffer Descriptor (BD) for the current (even or odd) TX EP0 to transfer the eight bytes of command data for a device framework command (i.e., GET DEVICE DESCRIPTOR):
 - a) Set the BD data buffer address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command.
 - b) Write 8008h to BD0STAT (this sets the UOWN bit and sets a byte count of 8).
- Set the USB device address of the target device in the address register (U1ADDR<6:0>). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127.
- 6. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a transfer done interrupt is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction as referenced in Chapter 9 of the "USB 2.0 Specification".
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.

- 8. Initialize the current (even or odd) RX or TX (RX for IN, TX for OUT) EP0 BD to transfer the data.
 - a) Write C040h to BD0STAT. This sets the UOWN, configures Data Toggle (DTS) to DATA1 and sets the byte count to the length of the data buffer (64 or 40h in this case).
 - b) Set BD0ADR to the starting address of the data buffer.
- 9. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus followed by a data packet from the device to the host. When the data packet completes, the BD0STAT is written and a transfer done interrupt is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction as referenced in Chapter 9 of the "USB 2.0 Specification". If more data needs to be transferred, return to step 8.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (even or odd) TX EP0 BD to transfer the status data:
 - a) Set the BDT buffer address field to the start address of the data buffer.
 - b) Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0 and set byte count to 0).
- 12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the handshake from the device and a transfer done interrupt is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction as described in Chapter 9 of the "USB 2.0 Specification".

Note: Only one control transaction can be performed per frame.

18.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" and Section 18.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0<7>) bit. If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
- 3. Set up the BD for the current (even or odd) TX EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR<6:0>).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Transfer Done Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the retry disable bit is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 μs), then the target has detached (U1IR<0> is set).
- 7. Once the transfer done interrupt occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to step 2.
- Note: USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

18.6 OTG Operation

18.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). Software may do this by clearing VBUSON (U10TGCON<3>). When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or embedded host may repower the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

1. VBUS supply is below the session valid voltage, and

2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for Condition 2.

Note:	When the A-device powers down the VBUS
	supply, the B-device must disconnect its
	pull-up resistor from power. If the device is
	self-powered, it can do this by clearing
	DPPULUP (U1OTGCON<7>) and
	DMPULUP (U1OTGCON<6>).

The B-device may aid in achieving Condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON<7>). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by either setting VBUSON (U1OTGCON<3>) or by setting the I/O port controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U10TGIR<3>) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP).

The A-device must complete the SRP by driving USB Reset signaling.

查询PIC24FJ256GB206供应商

18.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the "On-The-Go Supplement" to the "USB 2.0 Specification" for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF (U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

1

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power-down the VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

18.6.3 EXTERNAL VBUS COMPARATORS

The external VBUS comparator option is enabled by setting the UVCMPDIS bit (U1CNFG2<1>). This disables the internal VBUS comparators, removing the need to attach VBUS to the microcontroller's VBUS pin.

The external comparator interface uses either the VCMPST1 and VCMPST2 pins, or the VBUSVLD, SESSVLD and SESSEND pins, based upon the setting of the UVCMPSEL bit (U1CNFG2<5>). These pins are digital inputs and should be set in the following patterns (see Table 18-3), based on the current level of the VBUS voltage.

VBUS > VBUS VLD

TABLE 18-3:	EXTERNAL VBUS COMPARATOR STATES
IABLE IV V.	

If UVCMPSEL =	= 0		
VCMPST1	VCMPST2		Bus Condition
0	0		VBUS < VB_SESS_END
1	0		VB_SESS_END < VBUS < VA_SESS_VLD
0	1		VA_SESS_VLD < VBUS < VA_VBUS_VLD
1	1		VBUS > VBUS_VLD
If UVCMPSEL =	= 1		
VBUSVLD	SESSVLD	SESSEND	Bus Condition
0	0	1	VBUS < VB_SESS_END
0	0	0	VB_SESS_END < VBUS < VA_SESS_VLD
0	1	0	VA_SESS_VLD < VBUS < VA_VBUS_VLD

0

1

查询PIC24FJ256GB206供应商 18.7 USB OTG Module Registers

There are a total of 37 memory mapped registers associated with the USB OTG module. They can be divided into four general categories:

- USB OTG Module Control (12)
- USB Interrupt (7)
- USB Endpoint Management (16)
- USB VBUS Power Control (2)

This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 18-1 and Register 18-2, are shown separately in **Section 18.2 "USB Buffer Descriptors and the BDT"**. With the exception of U1PWMCON and U1PWMRRS, all USB OTG registers are implemented in the Least Significant Byte of the register. Bits in the upper byte are unimplemented and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.

The registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1: Specifies the 256-word page in data RAM used for the BDT; 8-bit value with Bit 0 fixed as '0' for boundary alignment.
- U1FRML and U1FRMH: Contains the 11-bit byte counter for the current data frame.
- U1PWMRRS: Contains the 8-bit value for PWM duty cycle bits<15:8> and PWM period bits<7:0> for the VBUS boost assist PWM module.

查询PIC24FI256GB206供应商 18.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 18-3: U10TGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD
bit 7							bit 0

Legend:	U = Unimplemented bit, rea	d as '0'	
R = Readable bit	W = Writable bit	HSC = Hardware Settable/0	Clearable bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	 1 = No plug is attached or a type B cable has been plugged into the USB receptacle 0 = A type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	1 = The VBUS voltage is above VA_SESS_VLD (as defined in the "USB 2.0 OTG Specification") on the A or B-device
	0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	 1 = The VBUS voltage is below VB_SESS_END (as defined in the "USB 2.0 OTG Specification") on the B-device
	0 = The VBUS voltage is above VB_SESS_END on the B-device
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVD: A VBUS Valid Indicator bit
	1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the "USB 2.0 OTG Specification") on the A-device
	0 = The VBUS voltage is below VA_VBUS_VLD on the A-device

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-(
	_	_	—		_	—			
bit 15									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W		
DPPULUP	DMPULUP	DPPULDWN ⁽¹⁾	DMPULDWN ⁽¹⁾	VBUSON ⁽¹⁾	OTGEN ⁽¹⁾	VBUSCHG ⁽¹⁾	VBUSE		
bit 7									
Legend:									
R = Readab	le bit	W = Writable bit	t	U = Unimplen	nented bit, re	ad as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15-8	Unimpleme	nted: Read as '0	,						
bit 7	DPPULUP:	D+ Pull-up Enabl	e bit						
		line pull-up resis							
	0 = D + data	line pull-up resis	tor is disabled						
bit 6		D- Pull-up Enable							
		L = D- data line pull-up resistor is enabled D = D- data line pull-up resistor is disabled							
L:1 F									
bit 5		I: D+ Pull-Down I							
		line pull-down re line pull-down re	sistor is disabled						
bit 4		N: D- Pull-Down E							
		line pull-down res							
	0 = D- data line pull-down resistor is disabled								
bit 3	VBUSON: V	BUS Power-on bit	.(1)						
	1 = VBUS lin								
		e is not powered	(1)						
bit 2		G Features Enab							
			D+/D- pull-up and p +/D- pull-up and p				v the se		
			3EN (U1CON<3,0				y une se		
bit 1		VBUS Charge Se	·	,					
		e is set to charge							
		e is set to charge							
bit 0		/BUS Discharge E							
5.11 0			hrough a resistor						

查询PIC24FJ256GB206供应商 REGISTER 18-5: U1PWRC: USB POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0, HS	U-0	U-0	R/W-0	U-0	U-0	R/W-0, HC	R/W-0
UACTPND	—	—	USLPGRD	—	—	USUSPND	USBPWR
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable	e bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	UACTPND: USB Activity Pending bit
	 1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set) 0 = Module may be suspended or powered down
bit 6-5	Unimplemented: Read as '0'
bit 4	USLPGRD: Sleep/Suspend Guard bit
	1 = Indicate to the USB module that it is about to be suspended or powered down
	0 = No suspend
bit 3-2	Unimplemented: Read as '0'
bit 1	USUSPND: USB Suspend Mode Enable bit
bit 1	 USUSPND: USB Suspend Mode Enable bit 1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state
bit 1	1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a
bit 1 bit 0	1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state
	 1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state 0 = Normal USB OTG operation USBPWR: USB Operation Enable bit 1 = USB OTG module is enabled
	 1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state 0 = Normal USB OTG operation USBPWR: USB Operation Enable bit

Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON<3,0> and U1OTGCON<2>) are all cleared.

			TUS REGIST				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							b
R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0
	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI ⁽¹⁾		

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8 Unimplemented: Read as '0'

	•
bit 7-4	ENDPT<3:0>: Number of the Last Endpoint Activity bits
	(Represents the number of the BDT updated by the last USB transfer.)
	1111 = Endpoint 15
	1110 = Endpoint 14
	•
	0001 = Endpoint 1
	0000 = Endpoint 0
bit 3	DIR: Last BD Direction Indicator bit
	1 = The last transaction was a transmit transfer (TX)
	0 = The last transaction was a receive transfer (RX)
bit 2	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾
	1 = The last transaction was to the odd BD bank
	0 = The last transaction was to the even BD bank
bit 1-0	Unimplemented: Read as '0'

Note 1: This bit is only valid for endpoints with available even and odd BD registers.

	U-0 —								
- -	—								
U-0 R-x, HSC R/W-0 U-0 R/W-0 R/W-0 — SE0 PKTDIS — HOSTEN RESUME PPBRST									
U-0 R-x, HSC R/W-0 U-0 R/W-0 R/W-0 R/W-0 — SE0 PKTDIS — HOSTEN RESUME PPBRST	bit 8								
- SEO PKTDIS - HOSTEN RESUME PPBRST	bit 15 bit 8								
- SEO PKTDIS - HOSTEN RESUME PPBRST									
	R/W-0								
bit 7	USBEN								
	bit 0								
Legend: U = Unimplemented bit, read as '0'									
R = Readable bitW = Writable bitHSC = Hardware Settable/Clearable bit									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un	known								
bit 15-7 Unimplemented: Read as '0'									
bit 6 SE0: Live Single-Ended Zero Flag bit									
1 = Single-ended zero is active on the USB bus									
 0 = No single-ended zero is detected bit 5 PKTDIS: Packet Transfer Disable bit 									
1 = SIE token and packet processing are disabled; automatically set when a SETUP to	oken is received								
0 = SIE token and packet processing are enabled									
bit 4 Unimplemented: Read as '0'									
bit 3 HOSTEN: Host Mode Enable bit									
1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardwar	e								
0 = USB host capability is disabled									
bit 2 RESUME: Resume Signaling Enable bit									
1 = Resume signaling is activated									
 0 = Resume signaling is disabled bit 1 PPBRST: Ping-Pong Buffers Reset bit 									
bit 1 PPBRST: Ping-Pong Buffers Reset bit 1 = Reset all Ping-Pong Buffer Pointers to the even BD banks									
0 = Ping-Pong Buffer Pointers are not reset									
bit 0 USBEN: USB Module Enable bit									
1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activ	ated in hardware								
0 = USB module and supporting circuitry are disabled (device detached)									

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_	_	_	—	—	—						
bit 15						1						
R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-					
JSTATE	JSTATE SE0 TOKBUSY USBRST HOSTEN RESUME PPBRST SOFEN											
bit 7												
1				1 (0)								
Legend:	a hit	-	nented bit, read		ora Cattable/C	laarahla hit						
R = Readable		W = Writable			vare Settable/C		-					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15-8	Unimplemen	ted: Read as '	۱'									
bit 7	-	e Differential Re		Elac hit								
		lifferential '0' in		•	ull sneed) is de	tected on the L	ISB					
	0 = No J-stat		low speed, diff									
bit 6	SE0: Live Sin	gle-Ended Zero	o Flag bit									
	1 = Single-er	nded zero is act	tive on the USE	3 bus								
	0 = No single	e-ended zero is	detected									
bit 5	TOKBUSY: T	oken Busy Stat	us bit									
		being executed		odule in On-Th	ne-Go state							
		•	ted				0 = No token is being executed					
1	USBRST: Module Reset bit											
bit 4			an availand favora	fluere Deset	annlighting mu	at a at this hit fo						
bit 4	1 = USB Res	set has been g	enerated for so	oftware Reset;	application mu	st set this bit fo	or 50 ms,					
bit 4	1 = USB Res clear it			oftware Reset;	application mu	st set this bit fo	or 50 ms,					
bit 4 bit 3	1 = USB Res clear it 0 = USB Res	set has been g	t	oftware Reset;	application mu	st set this bit fo	or 50 ms,					
	1 = USB Res clear it 0 = USB Res HOSTEN: Ho	set has been ge set is terminated	d e bit				or 50 ms,					
	1 = USB Res clear it 0 = USB Res HOSTEN: Ho 1 = USB hos 0 = USB hos	set has been go set is terminated ist Mode Enable t capability is e t capability is d	d e bit nabled; pull-do isabled				or 50 ms,					
	1 = USB Res clear it 0 = USB Res HOSTEN: Ho 1 = USB hos 0 = USB hos RESUME: Re	set has been go set is terminated ast Mode Enable t capability is e t capability is d esume Signaling	d e bit nabled; pull-do isabled g Enable bit	wns on D+ and	I D- are activate	ed in hardware						
bit 3	1 = USB Res clear it 0 = USB Res HOSTEN: Ho 1 = USB hos 0 = USB hos RESUME: Re 1 = Resume	set has been go set is terminated ist Mode Enable t capability is e t capability is d	d e bit nabled; pull-do isabled g Enable bit	wns on D+ and	I D- are activate	ed in hardware						
bit 3	1 = USB Res clear it 0 = USB Res HOSTEN: Ho 1 = USB hos 0 = USB hos RESUME: Re 1 = Resume wake-up	set has been go set is terminated ast Mode Enable t capability is e t capability is d esume Signaling signaling is act	d e bit nabled; pull-do isabled g Enable bit tivated; softwar	wns on D+ and	I D- are activate	ed in hardware						
bit 3 bit 2	1 = USB Res clear it 0 = USB Res HOSTEN: Ho 1 = USB hos 0 = USB hos RESUME: Re 1 = Resume wake-up 0 = Resume	set has been go set is terminated ist Mode Enable t capability is e t capability is d esume Signaling signaling is dis	d e bit nabled; pull-do isabled g Enable bit tivated; softwar abled	wns on D+ and	I D- are activate	ed in hardware						
bit 3	1 = USB Res clear it 0 = USB Res HOSTEN: Ho 1 = USB hos 0 = USB hos RESUME: Re 1 = Resume wake-up 0 = Resume PPBRST: Pin	set has been go set is terminated ast Mode Enable t capability is en t capability is d sume Signaling signaling is ac signaling is dis g-Pong Buffers	d nabled; pull-do isabled g Enable bit tivated; softwar abled Reset bit	wns on D+ and re must set bit	I D- are activate for 10 ms and	ed in hardware						
bit 3 bit 2	 1 = USB Rescience it 0 = USB Rescience HOSTEN: Hot 1 = USB hos 0 = USB hos RESUME: Rescience 1 = Resume wake-up 0 = Resume PPBRST: Pin 1 = Reset al 	set has been go set is terminated ist Mode Enable t capability is e t capability is d esume Signaling signaling is dis	d a bit nabled; pull-do isabled g Enable bit tivated; softwar abled Reset bit ffer Pointers to	wns on D+ and re must set bit the even BD b	I D- are activate for 10 ms and	ed in hardware						
bit 3 bit 2	1 = USB Res clear it 0 = USB Res HOSTEN: Ho 1 = USB hos 0 = USB hos RESUME: Re 1 = Resume wake-up 0 = Resume PPBRST: Pin 1 = Reset al 0 = Ping-Po	set has been go set is terminated ast Mode Enable t capability is en t capability is d sume Signaling signaling is ac signaling is dis g-Pong Buffers I Ping-Pong Bu	d a bit nabled; pull-do isabled g Enable bit tivated; softwar abled Reset bit ffer Pointers to ers are not rese	wns on D+ and re must set bit the even BD b	I D- are activate for 10 ms and	ed in hardware						

查询PIC24F REGISTER 1		拉商 DR: U SB AD					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	_	—	_	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPDEN ⁽¹⁾	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-8	Unimplemented: Read as '0'					
bit 7	LSPDEN: Low-Speed Enable Indicator bit ⁽¹⁾					
	1 = USB module operates at low speed0 = USB module operates at full speed					
bit 6-0	ADDR<6:0>: USB Device Address bits					

Note 1: Host mode only. In Device mode, this bit is unimplemented and read as '0'.

REGISTER 18-10: U1TOK: USB TOKEN REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	_		—
bit 15		•					bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PID3 | PID2 | PID1 | PID0 | EP3 | EP2 | EP1 | EP0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-4PID<3:0>: Token Type Identifier bits1101 = SETUP (TX) token type transaction⁽¹⁾1001 = IN (RX) token type transaction⁽¹⁾0001 = OUT (TX) token type transaction⁽¹⁾bit 3-0EP<3:0>: Token Command Endpoint Address bits

This value must specify a valid endpoint on the attached device.

Note 1: All other combinations are reserved and are not to be used.

查询PIC24FJ256GB206供应商 REGISTER 18-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
bit 7				•			bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **CNT<7:0>:** Start-of-Frame Size bits Value represents 10 + (packet size of n bytes). For example: 0100 1010 = 64-byte packet 0010 1010 = 32-byte packet 0001 0010 = 8-byte packet

REGISTER 18-12: U1CNFG1: USB CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_		_	_	—	—
bit 15				·			bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
UTEYE	UOEMON ⁽¹⁾		USBSIDL		—	PPB1	PPB0
bit 7							bit C
Legend:	ala hit		L:4		a a sata al la itu na		
R = Readat		W = Writable		U = Unimplen			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '	ר,				
bit 7	•	Eye Pattern Te					
		ern test is enab					
		ern test is disab					
bit 6	UOEMON: U	SB OE Monitor	Enable bit ⁽¹⁾				
			dicates interval	Is during which	the D+/D- lin	es are driving	
	$0 = \overline{OE}$ signa						
bit 5	•	ted: Read as '					
bit 4		SB OTG Stop in			ldla mada		
		module operation		ie device enters de			
bit 3-2		ted: Read as '					
bit 1-0	PPB<1:0>: P	ing-Pong Buffe	rs Configuratio	on bits			
			•	abled for Endpo	pints 1 to 15		
	10 = Even/C	dd Ping-Pong	Buffers are ena	abled for all end	dpoints		
				abled for OUT I	Endpoint 0		
	00 = Even/C	dd Ping-Pong	Duilers are dis	auleu			
Note 1:	This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.						

查询PIC24FJ256GB206供应商

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	UVCMPSEL	PUVBUS	EXTI2CEN	UVBUSDIS ⁽¹⁾	UVCMPDIS ⁽¹⁾	UTRDIS ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readat		W = Writable b	bit	•	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-6	•	nted: Read as '0					
bit 5		: VBUS Compara					
		JSVLD, SESSVLD				15	
bit 4		BUS Pull-Up Enal	•				
		on VBUS pin is er					
	0 = Pull-up o	on VBUS pin is di	sabled				
bit 3		I ² C™ Interface F					
		module(s) is co			e		
		module(s) contr		•	(1)		
		On-Chip 5V Boo					
bit 2							
dit 2		boost regulator			put control inte		1
	0 = On-chip	boost regulator	builder is activ	'e	put control inte		1
bit 2 bit 1	0 = On-chip UVCMPDIS:	boost regulator On-Chip Vвus (builder is activ Comparator Di	re sable bit ⁽¹⁾			
	0 = On-chip UVCMPDIS: 1 = On-chip	boost regulator	builder is activ Comparator Di mparator is dia	re sable bit ⁽¹⁾ sabled; digital i			
bit 1	0 = On-chip UVCMPDIS: 1 = On-chip 0 = On-chip	boost regulator On-Chip VBUS C charge VBUS co	builder is activ Comparator Di mparator is di mparator is ac	re sable bit ⁽¹⁾ sabled; digital i tive			
	0 = On-chip UVCMPDIS: 1 = On-chip 0 = On-chip UTRDIS: On 1 = On-chip	boost regulator On-Chip VBUS C charge VBUS co charge VBUS co	builder is activ Comparator Di mparator is dia mparator is ac er Disable bit ^{(*} sabled; digital	e sable bit ⁽¹⁾ sabled; digital i tive I)	nput status inte	rface is enabled	

REGISTER 18-13: U1CNFG2: USB CONFIGURATION REGISTER 2

Note 1: Never change these bits while the USBPWR bit is set (U1PWRC<0> = 1).

查询PIC24FJ256GB206供应商 18.7.2 USB INTERRUPT REGISTERS

REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF
bit 7							bit 0

Legend:	U = Unimplemented bit, rea	d as '0'	
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state is detected
	0 = No ID state change is detected
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from
	the last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS is detected
	0 = No activity on the D+/D- lines or VBUS is detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	 1 = VBUS has crossed VA_SESS_END (as defined in the "USB 2.0 OTG Specification")⁽¹⁾ 0 = VBUS has not crossed VA_SESS_END
h:+ 0	
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	 VBUS change on B-device detected; VBUS has crossed VB_SESS_END (as defined in the "USB 2.0 OTG Specification")⁽¹⁾
	0 = VBUS has not crossed VA SESS END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF: A-Device VBUS Change Indicator bit
bit o	1 = VBUS change on A-device is detected; VBUS has crossed VA VBUS VLD
	(as defined in the "USB 2.0 OTG Specification") ⁽¹⁾
	0 = No VBUS change on A-device is detected
Note 1	VBUS threshold crossings may be either rising or falling.
NOLE I.	voos un conou orosonigo may be cluici nong or lainny.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

查询PIC24FJ256GB206供应商 REGISTER 18-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	—	_	_	_	_
pit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE
pit 7		·				·	bit
_egend:							
R = Readat	ole bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unl	known
oit 15-8	-	ted: Read as '0)'				
oit 7		rupt Enable bit					
	1 = Interrupt 0 = Interrupt						
oit 6	•	Millisecond Tir	ner Interrunt F	nable bit			
	1 = Interrupt						
	0 = Interrupt						
oit 5	LSTATEIE: Li	ne State Stable	Interrupt Enal	ble bit			
	1 = Interrupt 0 = Interrupt						
oit 4	ACTVIE: Bus	Activity Interru	pt Enable bit				
	1 = Interrupt 0 = Interrupt						
oit 3	•	ession Valid Inte	errupt Enable b	oit			
	1 = Interrupt						
	0 = Interrupt	is disabled					
pit 2	•	is disabled 3-Device Sessio	on End Interrup	ot Enable bit			
bit 2	•	3-Device Session is enabled	on End Interru	ot Enable bit			
bit 2 bit 1	SESENDIE: E 1 = Interrupt 0 = Interrupt	3-Device Session is enabled		ot Enable bit			
	SESENDIE: E 1 = Interrupt 0 = Interrupt Unimplemen	3-Device Session is enabled is disabled)'				
pit 1	SESENDIE: E 1 = Interrupt 0 = Interrupt Unimplemen	B-Device Session is enabled is disabled ted: Read as 'of A-Device VBUS is enabled)'				

查询PIC24FJ256GB206供应商

REGISTER 18-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	—				_
bit 15							bit 8
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R-0	R/K-0, HS
STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7							bit
Legend:		U = Unimplem	ented bit, read	d as '0'			
R = Readabl	le bit	K = Write '1' to	o clear bit	HS = Hardwa	re Settable bit		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimplemer	nted: Read as 'o)'				
bit 7		TALL Handshake	•				
	1 = A STALL Device r	_ handshake wa	s sent by the p	eripheral durin	g the handshal	ke phase of the	e transaction i
		handshake ha	s not been sen	t			
bit 6	Unimplemer	nted: Read as 'd)'				
bit 5	-	Resume Interru					
	1 = A K-state	e is observed on	the D+ or D- p	oin for 2.5 μs (d	ifferential '1' fo	r low speed, dit	fferential '0' fo
	full spee						
bit 4		ate is observed	hit				
DIL 4		Detect Interrupt dition is detected		e state of 3 ms	or more)		
		condition is dete			or more)		
bit 3	TRNIF: Toke	n Processing Co	omplete Interru	ıpt bit			
		ing of the currer					
		ing of the currer AT (clearing this				egister or load	the next toke
bit 2		of-Frame Toker			,		
		of-Frame token i	•	he peripheral c	or the Start-of-F	rame threshold	d is reached b
	the host				1		
hit 1		-of-Frame token			nea		
bit 1		B Error Condition B Error Condition	-		states enabled	in the LI1EIE r	egister can se
	this bit			fred, only crior			
	0 = No unma	asked error cond	dition has occu	irred			
bit 0	URSTIF: US	B Reset Interrup	ot bit				
		B Reset has oc	curred for at le	east 2.5 μs; Re	set state must	be cleared before	ore this bit ca
	be reass 0 = No USB	Reset has occu	rred. Individua	al bits can only	be cleared by	writing a '1' to t	the bit positio
	as part o	of a word write o	peration on the	e entire register	. Using Boolea	n instructions c	or bitwise oper
	ations to cleared.	o write to a singl	e bit position v	vill cause all se	et bits at the mo	oment of the w	rite to becom
		in only be cleare					
		Ising Boolean in moment of the			ns to write to a	single bit posi	tion will caus

查询PIC24FI256GB206供应商 REGISTER 18-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	R-0	R/K-0, HS					
STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF
bit 7							bit 0

Legend:	U = Unimplemented bit, rea	id as '0'	
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	 1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode A STALL handshake has not been cent
1.1.0	0 = A STALL handshake has not been sent
bit 6	ATTACHIF: Peripheral Attach Interrupt bit
	 1 = A peripheral attachment has been detected by the module; it is set if the bus state is not SE0 and there has been no bus activity for 2.5 μs 0 = No peripheral attacement has been detected
bit 5	RESUMEIF: Resume Interrupt bit
	 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed)
	0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token not complete; clear the U1STAT register or load the next token from U1STAT
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	 1 = A Start-of-Frame token received by the peripheral or the Start-of-Frame threshold reached by the host 0 = No Start-of-Frame token received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	DETACHIF: Detach Interrupt bit
	 1 = A peripheral detachment has been detected by the module; Reset state must be cleared before this bit can be reasserted
	0 = No peripheral detachment is detected. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bit- wise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the
	entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

查询PIC24FJ256GB206供应商 REGISTER 18-18: U1IE: USB INTERRUPT ENABLE REGISTER (ALL USB MODES)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE
							DETACHIE
bit 7							bit 0

Legend:				
R = Readat	ble bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
h# 45 0	Unimala	mented. Deed op (o)		
bit 15-8	-	mented: Read as '0'	4 F	
bit 7		: STALL Handshake Interrup	t Enable bit	
		rupt is enabled rupt is disabled		
bit 6	ATTACH	IE: Peripheral Attach Interrup	ot bit (Host mode only) ⁽¹⁾	
		rrupt is enabled		
		rupt is disabled		
bit 5		EIE: Resume Interrupt bit		
		rupt is enabled rupt is disabled		
bit 4	IDLEIE:	Idle Detect Interrupt bit		
		rupt is enabled		
	0 = Inter	rupt is disabled		
bit 3		Token Processing Complete In	nterrupt bit	
		rupt is enabled		
hit 0		rupt is disabled	t b.it	
bit 2		Start-of-Frame Token Interrup rupt is enabled	L DIL	
		rupt is disabled		
bit 1		USB Error Condition Interru	ot bit	
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 0	URSTIE Enable b		Interrupt (Device mode) or U	SB Detach Interrupt (Host mode)
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
Note 1: Ս	Unimplemen	ted in Device mode, read as	0'.	

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15						-	bit 8
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS
BTSEF	_	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF EOFEF	PIDEF
bit 7							bit C
Legend:		-	nented bit, read				
R = Readab		K = Write '1' to		HS = Hardwa			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimplomor	ted: Dood oo '	`				
bit 7	-	i ted: Read as 'd Stuff Error Flag b					
		error has been of					
		uff error has be					
bit 6	Unimplemen	ted: Read as '	כ'				
bit 6 bit 5	-	nted: Read as 'd A Error Flag bit					
	DMAEF: DM 1 = A USB D than the	A Error Flag bit MA error condi number of rece	ition is detected			he BD byte cou	unt field is less
bit 5	DMAEF: DM. 1 = A USB D than the 0 = No DMA	A Error Flag bit DMA error condi number of rece error	ition is detected ived bytes, the	e received data		he BD byte cou	unt field is less
	DMAEF: DM. 1 = A USB E than the 0 = No DMA BTOEF: Bus	A Error Flag bit DMA error condi number of rece error Turnaround Tir	ition is detected ived bytes, the ne-out Error FI	e received data		he BD byte cou	unt field is less
bit 5	DMAEF: DM. 1 = A USB D than the 0 = No DMA BTOEF: Bus 1 = Bus turns	A Error Flag bit DMA error condi number of rece error Turnaround Tir around time-out	ition is detected ived bytes, the ne-out Error FI t has occurred	e received data		he BD byte cou	unt field is less
bit 5	DMAEF: DM. 1 = A USB D than the 0 = No DMA BTOEF: Bus 1 = Bus turns 0 = No bus t	A Error Flag bit DMA error condi number of rece error Turnaround Tir around time-out urnaround time-	ition is detecter ived bytes, the ne-out Error Fl t has occurred -out	e received data		he BD byte cou	unt field is less
bit 5 bit 4	 DMAEF: DM. 1 = A USB I than the 0 = No DMA BTOEF: Bus 1 = Bus turn: 0 = No bus ti DFN8EF: Da 1 = Data field 	A Error Flag bit DMA error condi number of rece error Turnaround Tir around time-out	ition is detected ived bytes, the ne-out Error Fl t has occurred -out ror Flag bit tegral number o	e received data ag bit of bytes		he BD byte cou	unt field is less
bit 5 bit 4	 DMAEF: DM. 1 = A USB D than the 0 = No DMA BTOEF: Bus 1 = Bus turns 0 = No bus to DFN8EF: Da 1 = Data field 0 = Data field 	A Error Flag bit DMA error condi number of rece error Turnaround Tir around time-out urnaround time- ta Field Size Er d was not an inf	ition is detected ived bytes, the ne-out Error Fl t has occurred -out ror Flag bit tegral number of by	e received data ag bit of bytes		he BD byte cou	unt field is less
bit 5 bit 4 bit 3	 DMAEF: DM. 1 = A USB D than the 0 = No DMA BTOEF: Bus 1 = Bus turns 0 = No bus to DFN8EF: Da 1 = Data field 0 = Data field 	A Error Flag bit DMA error condi number of rece error Turnaround Tirr around time-out urnaround time- ta Field Size Er d was not an int d was an integra RC16 Failure F ailed	ition is detected ived bytes, the ne-out Error Fl t has occurred -out ror Flag bit tegral number of by	e received data ag bit of bytes		he BD byte cou	unt field is less
bit 5 bit 4 bit 3	DMAEF: DM. 1 = A USB I than the 0 = No DMA BTOEF: Bus 1 = Bus turn: 0 = No bus t DFN8EF: Da 1 = Data field 0 = Data field CRC16EF: C 1 = CRC16 f 0 = CRC16 g	A Error Flag bit DMA error condi number of rece error Turnaround Tim around time-out urnaround time- ta Field Size Er d was not an int d was an integra RC16 Failure F failed bassed	ition is detected ived bytes, the ne-out Error FI t has occurred -out ror Flag bit tegral number of by flag bit	e received data ag bit of bytes		he BD byte cou	unt field is less
bit 5 bit 4 bit 3 bit 2	DMAEF: DM. 1 = A USB D than the 0 = No DMA BTOEF: Bus 1 = Bus turns 0 = No bus tr DFN8EF: Da 1 = Data field 0 = Data field CRC16EF: CF 1 = CRC16 f 0 = CRC16 p For Device m CRC5EF: CF 1 = Token pa	A Error Flag bit DMA error condi number of rece error Turnaround Tir around time-out urnaround time- ta Field Size Er d was not an int d was an integra RC16 Failure F failed bassed tode:	ition is detected ived bytes, the ne-out Error FI t has occurred -out ror Flag bit tegral number of by Flag bit Flag bit	e received data ag bit of bytes ytes error		he BD byte cou	unt field is les
bit 5 bit 4 bit 3 bit 2	DMAEF: DM. 1 = A USB C than the 0 = No DMA BTOEF: Bus 1 = Bus turn 0 = No bus tr DFN8EF: Da 1 = Data field 0 = Data field 0 = Data field 0 = CRC16 field 0 = CRC5EF: CF 1 = Token pa 0 = Token pa 0 = Token pa	A Error Flag bit DMA error condi number of rece error Turnaround Tim around time-out urnaround time- ta Field Size Er d was not an int d was an integra RC16 Failure F failed bassed bassed code: RC5 Host Error f acket is rejected acket is accepted te:	ition is detected ived bytes, the ne-out Error Fl t has occurred -out ror Flag bit tegral number of by Flag bit Flag bit due to CRC5 er	e received data ag bit of bytes ytes error		he BD byte cou	unt field is les
bit 5 bit 4 bit 3 bit 2	DMAEF: DM. 1 = A USB D than the 0 = No DMA BTOEF: Bus 1 = Bus turn: 0 = No bus ti DFN8EF: Da 1 = Data field 0 = Data field CRC16EF: C 1 = CRC16 f 0 = CRC16 g For Device m CRC5EF: CF 1 = Token pa 0 = Token pa EOFEF: End	A Error Flag bit DMA error condi number of rece error Turnaround Time- around time-out urnaround time- ta Field Size Er d was not an inte d was an integra RC16 Failure F failed bassed backet is rejected acket is rejected acket is accepte de: -of-Frame Error	ition is detected ived bytes, the ne-out Error Fl t has occurred -out ror Flag bit tegral number of by flag bit flag bit due to CRC5 en Flag bit	e received data ag bit of bytes ytes error		he BD byte cou	unt field is les
bit 5 bit 4 bit 3 bit 2	DMAEF: DM. 1 = A USB C than the 0 = No DMA BTOEF: Bus 1 = Bus turn: 0 = No bus to DFN8EF: Da 1 = Data field 0 = Data field 0 = Data field CRC16EF: C 1 = CRC16 f 0 = CRC16 g For Device m CRC5EF: CF 1 = Token pa 0 = Token pa 5 or Host moor EOFEF: End: 1 = End-of-F	A Error Flag bit DMA error condi number of rece error Turnaround Time- around time-out urnaround time- ta Field Size Er d was not an inte d was an integra RC16 Failure F failed bassed backet is rejected acket is rejected acket is accepte de: -of-Frame Error frame error has	ition is detected ived bytes, the ne-out Error Fl t has occurred -out ror Flag bit tegral number of by flag bit due to CRC5 en Flag bit occurred	e received data ag bit of bytes ytes error		he BD byte cou	unt field is les
bit 5 bit 4 bit 3 bit 2	 DMAEF: DM. 1 = A USB D than the 0 = No DMA BTOEF: Bus 1 = Bus turn: 0 = No bus to DFN8EF: Da 1 = Data field 0 = Data field CRC16EF: CI 1 = CRC16 field 0 = CRC16 field CRC5EF: CF 1 = Token pa 0 = Token pa For Host mode EOFEF: End- 1 = End-of-Field 0 = End-of-Field 	A Error Flag bit DMA error condi number of rece error Turnaround Time- around time-out urnaround time- ta Field Size Er d was not an inte d was an integra RC16 Failure F failed bassed backet is rejected acket is rejected acket is accepte de: -of-Frame Error	ition is detected ived bytes, the ne-out Error FI t has occurred -out ror Flag bit tegral number of by flag bit Flag bit due to CRC5 en Flag bit occurred is disabled	e received data ag bit of bytes ytes error		he BD byte cou	unt field is less
bit 5 bit 4 bit 3 bit 2 bit 1	 DMAEF: DM. 1 = A USB D than the 0 = No DMA BTOEF: Bus 1 = Bus turn: 0 = No bus to DFN8EF: Da 1 = Data field 0 = Data field CRC16EF: CI 1 = CRC16 field 0 = CRC16 field CRC5EF: CF 1 = Token pa 0 = Token pa For Host mode EOFEF: End- 1 = End-of-Field 0 = End-of-Field 	A Error Flag bit DMA error condi number of rece error Turnaround Tim around time-out urnaround time- ta Field Size Er d was not an int d was an integra RC16 Failure F failed bassed code: RC5 Host Error I acket is rejected acket is accepted de: -of-Frame Error frame error has frame interrupt in Check Failure F ck failed	ition is detected ived bytes, the ne-out Error FI t has occurred -out ror Flag bit tegral number of by flag bit Flag bit due to CRC5 en Flag bit occurred is disabled	e received data ag bit of bytes ytes error		he BD byte cou	unt field is less

entire register. Using Boolean instructions or bitwise operations to write to a single bit positio all set bits at the moment of the write to become cleared.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	_	_	_	_	—		—			
bit 15										
D /// 0		DAMO	D 444 0	D 444 0	DAALO	DMMO	D (14)			
R/W-0 BTSEE	U-0	R/W-0	R/W-0 BTOEE	R/W-0 DFN8EE	R/W-0	R/W-0 CRC5EE	R/W-			
DISEE	_	DIVIALE	BIUEE	DFINOEE	CRC16EE	EOFEE	PIDE			
bit 7						20122				
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
bit 15-8	Unimpleme	ented: Read as '	0'							
bit 7	BTSEE: Bit	Stuff Error Interr	upt Enable bit							
		ot is enabled								
	-	ot is disabled								
bit 6	-	ented: Read as '								
bit 5		MA Error Interrup	ot Enable bit							
		ot is enabled ot is disabled								
bit 4	-	is Turnaround Ti	me-out Error In	terrunt Enable	bit					
		ot is enabled			bit					
		ot is disabled								
bit 3	DFN8EE: D	ata Field Size Ei	ror Interrupt E	nable bit						
		ot is enabled								
	-	ot is disabled								
bit 2		CRC16 Failure I	nterrupt Enable	e bit						
		ot is enabled ot is disabled								
bit 1	-									
	For Device mode: CRC5EE: CRC5 Host Error Interrupt Enable bit									
		ot is enabled								
	0 = Interrupt is disabled									
	For Host m			-1						
		id-of-Frame Erro ot is enabled	r interrupt Enat	DIE DIT						
		ot is disabled								
bit 0	-	Check Failure I	nterrupt Enable	e bit						
		ot is enabled								
	0 = Interru									

查询PIC24FJ256GB206供应商 18.7.3 USB ENDPOINT MANAGEMENT REGISTERS

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—		—	—	—			
pit 15							bit			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
LSPD ⁽¹⁾	RETRYDIS ⁽¹⁾		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK			
pit 7							bit			
_egend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unki	nown			
			<i>.</i> .							
bit 15-8	Unimplement									
pit 7	-		onnection Enab	-	only)("					
			ow-speed devic ow-speed devic							
oit 6			•							
	RETRYDIS: Retry Disable bit (U1EP0 only) ⁽¹⁾ 1 = Retry NAK transactions is disabled									
			s is enabled; retr	y is done in ha	rdware					
oit 5	Unimplement	ed: Read as	'O'							
oit 4	EPCONDIS: E	Bidirectional E	ndpoint Control	bit						
	If EPTXEN and									
			n control transfe							
		-	control (SETUP)		and RX transfe	ers are also allo	owed			
	For all other combinations of EPTXEN and EPRXEN: This bit is ignored.									
oit 3	EPRXEN: End		e Enable bit							
	1 = Endpoint	-								
	0 = Endpoint									
pit 2	EPTXEN: End	lpoint Transm	it Enable bit							
	1 = Endpoint									
	0 = Endpoint									
pit 1	EPSTALL: En	•	tatus bit							
	1 = Endpoint 0 = Endpoint		llad							
oit O	•		nake Enable bit							
	1 = Endpoint	•								

ire available only for U1EP0 and only in Host mode. For all other U1EPn registers, these bits are always unimplemented and read as '0'.

查询PIC24FJ256GB206供应商 18.7.4 USB VBUS POWER CONTROL REGISTER

REGISTER 18-22: U1PWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
PWMEN	—	—	—	—		PWMPOL	CNTEN
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_		_	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PWMEN: PWM Enable bit
	 1 = PWM generator is enabled 0 = PWM generator is disabled; output is held in the Reset state specified by PWMPOL
bit 14-10	Unimplemented: Read as '0'
bit 9	PWMPOL: PWM Polarity bit
	 1 = PWM output is active-low and resets high 0 = PWM output is active-high and resets low
bit 8	CNTEN: PWM Counter Enable bit
	1 = Counter is enabled0 = Counter is disabled
bit 7-0	Unimplemented: Read as '0'

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 19.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 42. "Enhanced Parallel Master Port (EPMP)" (DS39730). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel 4-bit (Master mode only), 8-bit (Master and Slave modes) or 16-bit (Master mode only) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus. For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each chip select, and then assigning each chip select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU should simply perform a write or read within the address range assigned for EPMP.

Key features of the EPMP module are:

- Extended Data Space (EDS) Interface allows Direct Access from the CPU
- Up to 23 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Up to 2 Acknowledgement Lines (one per chip select)
- · 4-Bit, 8-Bit or 16-Bit Wide Data Bus
- Programmable Strobe Options (per chip select)
 Individual Read and Write Strobes or;
- Read/Write Strobe with Enable Strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per chip select)
- Programmable Polarity on Control Signals (per chip select)
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer

19.1 ALTPMP Setting

Many of the lower order EPMP address pins are shared with ADC inputs. This is an untenable situation for users that need both the ADC channels and the EPMP bus. If the user does not need to use all the address bits, then by clearing the ALTPMP (CW3<12>) Configuration bit, the lower order address bits can be mapped to higher address pins, which frees the ADC channels.

Note: The alternate PMP pin selection is not available in 64-pin devices (PIC24FJXXXGB206) and so the Configuration bit, ALTPMP, is also not available.

Pin	ALTPMP = 0	ALTPMP = 1
RA14	PMCS2	PMA22
RC4	PMA22	PMCS2
RF12	PMA5	PMA18
RG6	PMA18	PMA5
RG7	PMA20	PMA4
RA3	PMA4	PMA20
RG8	PMA21	PMA3
RA4	PMA3	PMA21

TABLE 19-1: ALTERNATE EPMP PINS⁽¹⁾

Note 1: The alternate EPMP pins are valid only for 100-pin devices (PIC24FJXXXGB210).

查询PIC24FJ256GB206供应商 TABLE 19-2: PARALLEL MASTER PORT PIN DESCRIPTION

Pin Name	Туре	Description
PMA<22:16> ⁽¹⁾	0	Address Bus Bits<22-16>
	0	Address Bus Bit<15>
PMA<15>, PMCS2	0	Chip Select 2 (alternate location)
	I/O	Data Bus Bit<15> when port size is 16 bits and address is multiplexed
	0	Address Bus Bit<14>
PMA<14>, PMCS1	0	Chip Select 1 (alternate location)
	I/O	Data Bus Bit<14> when port size is 16-bit and address is multiplexed
	0	Address Bus Bits<13-8>
PMA<13:8>	I/O	Data Bus Bits<13-8> when port size is 16 bits and address is multiplexed
PMA<7:3>	0	Address Bus Bits<7-3>
PMA<2>, PMALU ⁽¹⁾	0	Address Bus Bit<2>
	0	Address latch upper strobe for multiplexed address
	I/O	Address Bus Bit<1>
PMA<1>, PMALH	0	Address latch high strobe for multiplexed address
	I/O	Address Bus Bit<0>
PMA<0>, PMALL	0	Address latch low strobe for multiplexed address
PMD<15:8>	I/O	Data Bus Bits<15-8> when address is not multiplexed
	I/O	Data Bus Bits<7-4>
PMD<7:4>	0	Address Bus Bits<7-4> when port size is 4 bits and address is multiplexed with 1 address phase
PMD<3:0>	I/O	Data Bus Bits<3-0>
PMCS1	I/O	Chip Select 1
PMCS2	0	Chip Select 2
PMWR, PMENB	I/O	Write strobe or enable signal depending on Strobe mode
PMRD, PMRD/PMWR	I/O	Read strobe or Read/Write signal depending on Strobe mode
PMBE1 ⁽¹⁾	0	Byte indicator
PMBE0	0	Nibble or byte indicator
PMACK1	I	Acknowledgment 1
PMACK2		Acknowledgment 2

Note 1: Available only in 100-pin devices (PIC24FJXXXGB210).

REGISTER								
R/W-0	U-0 R/W-0 R/W-0	R/W-0	U-0	R/W-0	R/W-0			
PMPEN	- PSIDL ADRMUX1 A	ADRMUX0	—	MODE1	MODE			
bit 15								
R/W-0	R/W-0 R/W-0 R/W-0	U-0	R/W-0	R/W-0	R/W-			
CSF1	CSF0 ALP ALMODE	— E	BUSKEEP	IRQM1	IRQM			
bit 7								
Legend:								
R = Readabl	e bit W = Writable bit U	= Unimplement	ted bit. read	d as '0'				
-n = Value at		' = Bit is cleared		x = Bit is unkı	nown			
bit 15	PMPEN: Parallel Master Port Enable bit							
	1 = EPMP is enabled							
	0 = EPMP is disabled							
bit 14	Unimplemented: Read as '0'							
bit 13	PSIDL: Stop in Idle Mode bit							
	 1 = Discontinue module operation when device 0 = Continue module operation in Idle mode 	e enters idie me	ode					
bit 12-11	ADRMUX<1:0>: Address/Data Multiplexing Se	ection hits						
	11 = Lower address bits are multiplexed with		3 address i	hases				
	10 = Lower address bits are multiplexed with							
	01 = Lower address bits are multiplexed with	•						
	00 = Address and data appear on separate pi	ns						
bit 10	Unimplemented: Read as '0'							
bit 9-8	MODE<1:0>: Parallel Port Mode Select bits							
	11 = Master mode				_			
	10 = Enhanced PSP; pins used are PMRD, P 01 = Buffered PSP; pins used are PMRD, PM				>			
	00 = Legacy Parallel Slave Port; PMRD, PMV				l			
bit 7-6	CSF<1:0>: Chip Select Function bits							
	11 = Reserved							
	10 = PMA<15> used for Chip Select 2, PMA<	14> used for C	hip Select	1				
	01 = PMA<15> used for Chip Select 2, PMCS1 used for Chip Select 1							
6.4 <i>C</i>	00 = PMCS2 used for Chip Select 2, PMCS1	used for Chip S	Select 1					
bit 5	ALP: Address Latch Polarity bit	`						
	1 = Active-high (PMALL, PMALH and PMALU 0 = Active-low (PMALL, PMALH and PMALU)							
bit 4	ALMODE: Address Latch Strobe Mode bit							
	1 = Enable "smart" address strobes (each add	dress phase is	only preser	t if the current	t access w			
	cause a different address in the latch than		• •					
	0 = Disable "smart" address strobes							
bit 3	Unimplemented: Read as '0'							
bit 2	BUSKEEP: Bus Keeper bit							
	 1 = Data bus keeps its last value when not act 0 = Data bus is in high-impedance state when 							
bit 1-0	IRQM<1:0>: Interrupt Request Mode bits	2	-					
	11 = Interrupt generated when Read Buffer 3	is read or Write	Buffer 3 is	written (Buffere	ed PSP mo			
	or on a read or write operation when PM							
	10 = Reserved							
	01 = Interrupt generated at the end of a read/							

查询PIC2 REGISTE	24FJ256GB2(R 19-2: P M	06供 <u>应商</u> ACON2: E PM	P CONTROL	REGISTER 2			
R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0
BUSY	_	ERROR	TIMEOUT	—	_	—	_
bit 15			•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RADDR23	B RADDR22	RADDR21	RADDR20	RADDR19	RADDR18	RADDR17	RADDR16
bit 7							bit 0
Legend:		HS = Hardwar	e Settable bit	HSC = Hardwar	e Settable/Clearat	ole bit	
R = Reada	able bit	W = Writable I	bit	U = Unimplemen	nted bit, read as '0'	C = Clearabl	e bit
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unk	nown
bit 15 bit 14 bit 13 bit 12	1 = Port is b 0 = Port is no Unimplement ERROR: Error 1 = Transact 0 = Transact 1 = Transact 0 = Transact 0 = Transact 0 = Transact	ot busy nted: Read as ' or bit tion error (illega tion completed me-Out bit tion timed out tion completed	^{0'} Il transaction w successfully successfully	vas requested)			
bit 11-8 bit 7-0	-	nted: Read as ' 16>: Parallel M		erved Address S	Space bits ⁽¹⁾		
					for Chip Select 2 v	vill be 0xFFFF	FF.

REGISTER	19-3. FIVICO	ON3: EPMP C		EGISTER 3			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	—	AWAITM1	AWAITM0	AWAI
bit 15							
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-
_	PTEN22 ⁽¹⁾	PTEN21 ⁽¹⁾	PTEN20 ⁽¹⁾	PTEN19 ⁽¹⁾	PTEN18 ⁽¹⁾	PTEN17 ⁽¹⁾	PTEN1
bit 7							
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cl		x = Bit is unkno	wn
bit 15	PTWREN: W	rite/Enable Stro	be Port Enable	e bit			
	1 = PMWR/F	MENB port is e	enabled				
		MENB port is o					
bit 14	PTRDEN: Re	ad/Write Strobe	e Port Enable b	bit			
	1 = PMRD/P	MWR port is er	abled				
	0 = PMRD/P	MWR port is dis	sabled				
bit 13	PTBE1EN: H	igh Nibble/Byte	Enable Port E	nable bit			
	1 = PMBE1 p	oort is enabled					
	0 = PMBE1 p	port is disabled					
bit 12	PTBE0EN: L	ow Nibble/Byte	Enable Port E	nable bit			
		port is enabled					
	-	port is disabled					
bit 11	•	ted: Read as '0					
bit 10-9		>: Address Lat	ch Strobe Wait	States bits			
	11 = Wait of						
	10 = Wait of						
	01 = Wait of 00 = Wait of						
bit bit 8		dress Hold After	Address Late	h Strobe Wait	States hits		
	1 = Wait of 1		AUUICSS LdlU	IT OUT OUT WAIL			
	$0 = Wait of \frac{1}{2}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
bit 7		ted: Read as ')'				
bit 6-0	-	>: EPMP Addre		e bits ⁽¹⁾			
		:16> function as					
			s port I/Os	55 11163			

	FJ256GB206						
REGISTER	19-4: PMCC	ON4: EPMP (CONTROL R	EGISTER 4			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0
bit 7							bit
Legend:							
R = Readab		W = Writable		•	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15		A15 Port Enab	lo hit				
bit 15				ne 15 or Chip S	alaat 2		
		unctions as end		ne is or chip s			
bit 14		A14 Port Fnab					
				ne 14 or Chip S	elect 1		
		unctions as por					
bit 13-3		: EPMP Addres		bits			
	1 = PMA<13	:3> function as	EPMP addres	slines			
	0 = PMA<13	:3> function as	port I/Os				
bit 2-0	PTEN<2:0>:	PMALU/PMAL	H/PMALL Strol	be Enable bits			
	1 = PMA<2:0)> function as e	either address	lines or address	latch strobes		
	0 = PMA<2:0	> function as p	ort I/Os				

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W
CSDIS	CSP	CSPTEN	BEP	—	WRSP	RDSP	SM
bit 15	•	•		•		•	
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-(
ACKP	PTSZ1	PTSZ0					
bit 7	_						
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimp	lemented bit, re	ad as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is o		x = Bit is unkn	own
iii valao at i				<u> </u>		X Bit lo uniti	•
bit 15	CSDIS: Chip	o Select x Disabl	e bit				
		the Chip Select the Chip Select					
bit 14		Select x Polarity	-				
	1 = Active-h	nigh <u>(PMCS</u> x) ow (PMCSx)					
bit 13	CSPTEN: P	MCSx Port Enat	ole bit				
		port is enabled port is disabled					
bit 12	BEP: Chip S	Select x Nibble/B	yte Enable Po	plarity bit			
		Byte enable is ac Byte enable is ac					
bit 11	Unimpleme	nted: Read as '	כי				
bit 10	WRSP: Chip	o Select x Write	Strobe Polarity	y bit			
	1 = Write st	odes and Maste robe is active-hig robe is active-lo	gh <u>(</u> PMWR)	<u>SM = 0:</u>			
	1 = Enable	node when SM : strobe is active- strobe is active-l	nigh (PMENB)			
bit 9		Select x Read S	,	/ bit			
	-	odes and Maste	-				
	1 = Read st	robe is active-hi robe is active-lo	gh <u>(PMRD</u>)				
	1 = Read/w	node when SM : rite strobe is act /rite strobe is act	ive-high (PMF				
bit 8		elect x Strobe Mo		,			
	1 = Read/W	/rite and enable nd write strobes	strobes (PMR		d PMENB)		
bit 7	ACKP: Chip	Select x Acknow	wledge Polarit	ty bit			
		active-high <u>(PM/</u> active-low (PMA					
bit 6-5	PTSZ<1:0>:	Chip Select x P	ort Size bits				
	01 = 4-bit p	port size (PMD- oort size (PMD-3	3:0>)				
	uu = o - Dit p	ort size (PMD<7	.0~)				

查询PIC24F	J256GB206	供应商					
REGISTER	19-6: PMC	SxBS: CHIF	SELECT x	BASE ADD	RESS REGIST	ER	
R/W ⁽¹⁾							
BASE23	BASE22	BASE21	BASE20	BASE19	BASE18	BASE17	BASE16
bit 15							bit 8
R/W ⁽¹⁾	U-0	U-0	U-0	R/W ⁽¹⁾	U-0	U-0	U-0
BASE15	—	—	—	BASE11		—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkno	wn

bit 15-7 BASE<23:15>: Chip Select x Base Address bits⁽²⁾

bit 6-4 Unimplemented: Read as '0'

bit 3 BASE<11>: Chip Select x Base Address bits⁽²⁾

bit 2-0 Unimplemented: Read as '0'

Note 1: Value at POR is 0x0200 for PMCS1BS and 0x0600 for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for the Chip Select 1 will be 0xFFFFFF. In this case, the Chip Select 2 should not be used. PMCS1BS has no such feature.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ACKM1	ACKM0						_
bit 15							b
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DWAITB1	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE
bit 7							b
Legend:							
R = Readab	le bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
	01 = PMAC If DWA	CKx is used to d CKx is used to d AITM<3:0> = 00 CKx is not used	etermine wher	n a read/write o	peration is com	plete with time	
bit 13-8		nted: Read as					
bit 7-6	-	0>: Chip Select		Before Read/M	/rite Strobe Wai	it States bits	
	11 = Wait o 10 = Wait o 01 = Wait o 00 = Wait o	f 2¼ TCY f 1¼ TCY f ¼ TCY					
bit 5-2	DWAITM<3 : For Write op 1111 = Wait		t x Data Read/	Write Strobe W	ait States bits		
	0001 = Wait 0000 = Wait						
	<u>For Read op</u> 1111 = Wait						
	0001 = Wait 0000 = Wait						
bit 1-0	DWAITE<1:0	0>: Chip Select	x Data Hold A	fter Read/Write	e Strobe Wait St	tates bits	
	For Write ope 11 = Wait of 10 = Wait of 01 = Wait of 00 = Wait of	3¼ Tcy 2¼ Tcy 1¼ Tcy					
	For Read op 11 = Wait of 10 = Wait of 01 = Wait of	3 TCY 2 TCY					

查询PIC24FJ256GB206供应商 REGISTER 19-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY) R-0, HSC R-0, HSC R/W-0 HS U-0 U-0 R-0, HSC R-0, HSC R-0, HSC IBF **IBOV** IB3F IB0F IB2F IB1F bit 15 bit 8 R-1, HSC R/W-0 HS U-0 U-0 R-1, HSC R-1, HSC R-1, HSC R-1, HSC OBE OBUF OB3E OB2E OB1E OB0E bit 7 bit 0 Legend: HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 14 **IBOV:** Input Buffer Overflow Status bit 1 = A write attempt to a full input register occurred (must be cleared in software) 0 = No overflow occurred bit 13-12 Unimplemented: Read as '0' **IBxF:** Input Buffer x Status Full bit⁽¹⁾ bit 11-8 1 = Input buffer contains unread data (reading buffer will clear this bit) 0 = Input buffer does not contain unread data bit 7 **OBE:** Output Buffer Empty Status bit 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full **OBUF:** Output Buffer Underflow Status bit bit 6 1 = A read occurred from an empty output register (must be cleared in software) 0 = No underflow occurred bit 5-4 Unimplemented: Read as '0' bit 3-0 **OBxE:** Output Buffer x Status Empty bit 1 = Output buffer is empty (writing data to the buffer will clear this bit) 0 = Output buffer contains untransmitted data

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the Word (Byte 0 and 1, or Byte 2 and 3) gets cleared even on byte reading.

查询PIC24FJ256GB206供应商 REGISTER 19-9: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
11.0	11.0	11.0	11.0	11.0	11.0		

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1

RTSECSEL: RTCC Seconds Clock Output Select bit⁽¹⁾ 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin

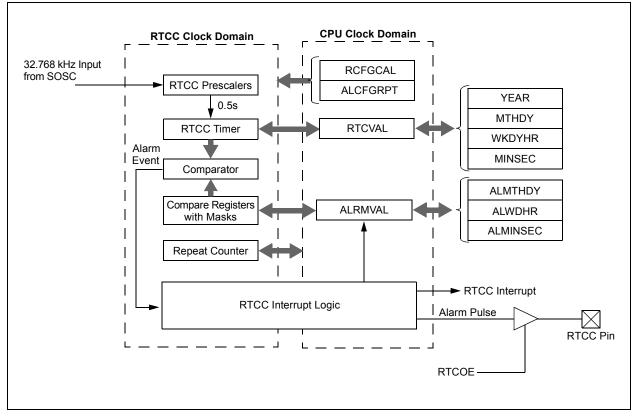
bit 0 PMPTTL: EPMP Module TTL Input Buffer Select bit 1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 20.0 REAL-TIME CLOCK AND CALENDAR (RTCC)


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696). The information in this data sheet supersedes the information in the FRM.

The Real-Time Clock and Calendar (RTCC) provides a function that can be calibrated.

Key features of the RTCC module are:

- · Operates in Sleep mode
- Provides hours, minutes and seconds using 24-hour format
- FIGURE 20-1: RTCC BLOCK DIAGRAM

- · Visibility of half of one second period
- Provides calendar weekday, date, month and year
- Alarm configurable for half a second, one second,10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- Alarm repeat with decrementing counter
- Alarm with indefinite repeat chime
- Years, 2000 to 2099, leap year correction
- BCD format for smaller software overhead
- · Optimized for long-term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
 - Calibration to within ±2.64 seconds error per month
 - Calibrates up to 260 ppm of crystal error

查询PIC24FJ256GB206供应商 20.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- · Alarm Value Registers

20.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through the corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 20-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 20-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Re	egister Window
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>
00	MINUTES	SECONDS
01	WEEKDAY	HOURS
10	MONTH	DAY
11		YEAR

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 20-2).

By writing the ALRMVALH byte, the Alarm Pointer value bits, ALRMPTR<1:0>, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

EXAMPLE 20-1: SETTING THE RTCWREN BIT

```
asm volatile("disi #5");
asm volatile("mov #0x55, w7");
asm volatile("mov w7, _NVMKEY");
asm volatile("mov #0xAA, w8");
asm volatile("mov w8, _NVMKEY");
asm volatile("bset _RCFGCAL, #13");
```

TABLE 20-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Re	gister Window
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>
00	ALRMMIN	ALRMSEC
01	ALRMWD	ALRMHR
10	ALRMMNTH	ALRMDAY
11	_	_

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, they will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

20.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN (RCFGCAL<13>) bit must be set (refer to Example 20-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the unlock sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 20-1.

For applications written in C, the unlock sequence should be implemented using in-line assembly.

//set the RTCWREN bit

查询PIC24FJ256GB206供应商

20.1.3 RTCC CONTROL REGISTERS

REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0, HSC	R/W-0, HSC
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
pit 15							bit 8
DAMO							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0
oit 7							bit
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit, rea	d as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	iown
		00 5					
oit 15		CC Enable bit ⁽²⁾ nodule is enable	d				
		nodule is disable					
oit 14	Unimpleme	nted: Read as '0)'				
oit 13	-	RTCC Value Re		Enable bit			
	1 = RTCVAL	_H and RTCVAL	L registers car	be written to b	y the user		
		_H and RTCVAL _H and RTCVAL				n to by the user	
pit 12	0 = RTCVAL		L registers are	locked out from	n being writter	n to by the user	
bit 12	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL	₋H and RTCVAL RTCC Value Reo ₋H, RTCVALL ar	L registers are gisters Read S nd ALCFGRPT	locked out from ynchronization registers can c	n being writter bit hange while r	eading due to a	
oit 12	0 = RTCVAL RTCSYNC: I 1 = RTCVAL resulting	∟H and RTCVAL RTCC Value Ree ∟H, RTCVALL ar g in an invalid da	L registers are gisters Read S nd ALCFGRPT ta read. If the i	locked out from ynchronization registers can c	n being writter bit hange while r	eading due to a	
pit 12	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a	₋H and RTCVAL RTCC Value Reo ₋H, RTCVALL ar	L registers are gisters Read S nd ALCFGRPT ta read. If the r alid.	locked out from ynchronization registers can c register is read	h being written bit hange while r twice and res	eading due to a ults in the same	data, the dat
pit 12 pit 11	0 = RTCVAL RTCSYNC : 1 1 = RTCVAL resulting can be a 0 = RTCVAL	LH and RTCVAL RTCC Value Reg LH, RTCVALL ar g in an invalid da assumed to be v	L registers are gisters Read S nd ALCFGRPT ta read. If the alid. ALCFGRPT r	locked out from ynchronization registers can c register is read	h being written bit hange while r twice and res	eading due to a ults in the same	data, the dat
	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: 1	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be v H, RTCVALL or	L registers are gisters Read S nd ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾	locked out from ynchronization registers can c register is read	h being written bit hange while r twice and res	eading due to a ults in the same	data, the dat
	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: 1 1 = Second	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be v H, RTCVALL or Half-Second Stat	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second	locked out from ynchronization registers can c register is read	h being written bit hange while r twice and res	eading due to a ults in the same	data, the data
	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit	locked out from ynchronization registers can c register is read	h being written bit hange while r twice and res	eading due to a ults in the same	data, the data
pit 11	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab utput is enabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit	locked out from ynchronization registers can c register is read	h being written bit hange while r twice and res	eading due to a ults in the same	data, the data
pit 11	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit	locked out from ynchronization registers can c register is read egisters can be	h being written bit hange while r twice and rest read without	eading due to a ults in the same	data, the data
pit 11 pit 10	 0 = RTCVAL RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: I 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the 	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab output is enabled output is disabled	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read egisters can be dow Pointer bits gisters when rea	h being written bit hange while r twice and rest read without	eading due to a ults in the same concern over a t	data, the dat
pit 11 pit 10	 0 = RTCVAL RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: I 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the 	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read egisters can be dow Pointer bits gisters when rea	h being written bit hange while r twice and rest read without	eading due to a ults in the same concern over a t	data, the dat rollover ripple /ALL registers
pit 11 pit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 11 = Reservent	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ved	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read egisters can be dow Pointer bits gisters when rea	h being written bit hange while r twice and rest read without	eading due to a ults in the same concern over a t	data, the dat rollover ripple /ALL registers
pit 11 pit 10	0 = RTCVAL RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: I 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF RTCVAL<15 11 = Reser 10 = MONT	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab output is enabled output is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ved 'H	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read egisters can be dow Pointer bits gisters when rea	h being written bit hange while r twice and rest read without	eading due to a ults in the same concern over a t	data, the dat rollover ripple /ALL registers
pit 11 pit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 11 = Reservent	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enabled utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec :8>: ved 'H (DAY	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read egisters can be dow Pointer bits gisters when rea	h being written bit hange while r twice and rest read without	eading due to a ults in the same concern over a t	data, the dat rollover ripple /ALL registers
pit 11 pit 10	0 = RTCVAL RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: I 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 11 = Resen 10 = MONT 01 = WEEK	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be v -H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec :8>: ved TH CDAY TES	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read egisters can be dow Pointer bits gisters when rea	h being written bit hange while r twice and rest read without	eading due to a ults in the same concern over a t	data, the dat rollover ripple /ALL registers
pit 11 pit 10	0 = RTCVAL RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: I 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 11 = Resen 10 = MONT 01 = WEEK 00 = MINU ⁻ <u>RTCVAL<7:C</u> 11 = YEAR	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be v H, RTCVALL or Half-Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0 >: RTCC Value corresponding R R<1:0> value dec :8>: ved H CDAY TES)>:	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read egisters can be dow Pointer bits gisters when rea	h being written bit hange while r twice and rest read without	eading due to a ults in the same concern over a t	data, the dat rollover ripple /ALL registers
pit 11 pit 10	0 = RTCVAL RTCSYNC: I 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: I 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 11 = Resen 10 = MONT 01 = WEEK 00 = MINU ^T <u>RTCVAL<7:C</u>	-H and RTCVAL RTCC Value Reg LH, RTCVALL ar g in an invalid da assumed to be v LH, RTCVALL or Half-Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0 >: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ved TH (DAY TES)>:	L registers are gisters Read S ad ALCFGRPT ta read. If the r alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read egisters can be dow Pointer bits gisters when rea	h being written bit hange while r twice and rest read without	eading due to a ults in the same concern over a t	data, the dat rollover ripple /ALL registers

Note 1: The RCFGCAL register is only affected by a POR.

- **2**: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

查询PIC24FJ256GB206供应商 REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

bit 7-0		TC Drift Calibration bits Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	0000001 =	Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute Minimum positive adjustment; adds 4 RTC clock pulses every one minute No adjustment
	: 10000000 =	Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 20-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

-n = Value at POR '1' = Bit is set		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
Legend:							
bit 7							bit
_	_	—	_	—		RTSECSEL ⁽¹⁾	PMPTTL
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
bit 15							bit
—		—	—	_		—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

DIL 15-2	Onimplemented. Read as 0
bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: EPMP Module TTL Input Buffer Select bit
	 1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers 0 = EPMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/W-0, I
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMP
bit 15	OTIMIE		/ 11// 10/12		7 11/1 10/10		
R/W-0, HSC	-	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, I
ARPT7 bit 7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARP1
Legend:		HSC = Hardw	are Settable/Cl	earable bit			
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	Iown
bit 15	ALRMEN: Ala 1 = Alarm is CHIME = 0 = Alarm is o	enabled (clear 0)	ed automatical	lly after an ala	rm event whe	never ARPT<7	:0> = 00h
bit 14		enabled; ARP1	「<7:0> bits are Γ<7:0> bits sto			to FFh	
	1001 = Once 1000 = Once 0111 = Once 0110 = Once 0101 = Ever 0100 = Ever 0011 = Ever 0011 = Ever 0011 = Ever 0010 = Ever 0001 = Ever 0000 = Ever	e a month e a week e a day y hour y 10 minutes y minute y 10 seconds y second	t when configu	red for Februar	y 29 th , once e∖	very 4 years)	
bit 9-8			ie Register Wir				
		R<1:0> value de 5:8>: emented 4NTH VD 4IN				ALH and ALRM H until it reache	
	ALRMVAL<7: 11 = Unimple 10 = ALRME 01 = ALRME 00 = ALRME	emented)AY IR					
bit 7-0	11 = Unimple 10 = ALRME 01 = ALRME 00 = ALRMS	emented DAY IR SEC	Counter Value b	pits			
bit 7-0	11 = Unimple 10 = ALRME 01 = ALRME 00 = ALRMS ARPT<7:0>:	emented DAY IR EC Alarm Repeat (Counter Value b eat 255 more ti				

© 2010 Microchip Technology Inc.

查询PIC24FJ256GB206供应商

20.1.4 RTCVAL REGISTER MAPPINGS

REGISTER 20-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 Unimplemented:	Read a	as '0
-------------------------	--------	--------------

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 20-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x, HSC				
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x, HSC					
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

 bit 15-13 Unimplemented: Read as '0'
 bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.
 bit 11.8 MTHONE

bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.

bit 7-6 Unimplemented: Read as '0'

- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

查询PIC24FJ256GB206供应商 REGISTER 20-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x, HSC	R/W-x, HSC	R/W-x, HSC
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x, HSC					
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x, HSC						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x, HSC						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

查询PIC24FJ256GB206供应商 20.1.5 ALRMVAL RECISTER MAPPINGS

REGISTER 20-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	_	_	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	_	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7					-	_	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
	-			'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-13	Unimplemen	ited: Read as '	0'			x = Bit is unkr	iown
	Unimplemen MTHTEN0: B	ited: Read as '	0'	ʻ0' = Bit is clea f Month's Tens		x = Bit is unkr	IOWN
bit 15-13 bit 12	Unimplemen MTHTEN0: B Contains a va	ited: Read as ' linary Coded Do alue of 0 or 1.	₀ ' ecimal Value o	f Month's Tens	Digit bit	x = Bit is unkr	iown
bit 15-13	Unimplemen MTHTEN0: B Contains a va MTHONE<3:	ited: Read as ' linary Coded Do alue of 0 or 1. 0>: Binary Cod	₀ ' ecimal Value o ed Decimal Va		Digit bit	x = Bit is unkr	iown
bit 15-13 bit 12	Unimplemen MTHTEN0: B Contains a va MTHONE<3: Contains a va	ited: Read as ' inary Coded De alue of 0 or 1. 0>: Binary Cod alue from 0 to 9	₀ ' ecimal Value o ed Decimal Va	f Month's Tens	Digit bit	x = Bit is unkr	iown
bit 15-13 bit 12 bit 11-8 bit 7-6	Unimplemen MTHTEN0: B Contains a va MTHONE<3: Contains a va Unimplemen	ated: Read as 'd linary Coded Do alue of 0 or 1. 0>: Binary Cod alue from 0 to 9 lited: Read as 'd	^{0'} ecimal Value o ed Decimal Va ₀ '	f Month's Tens	Digit bit Ones Digit bits	x = Bit is unkr	iown
bit 15-13 bit 12 bit 11-8	Unimplemen MTHTEN0: B Contains a va MTHONE<3: Contains a va Unimplemen DAYTEN<1:0	ated: Read as 'd linary Coded Do alue of 0 or 1. 0>: Binary Cod alue from 0 to 9 lited: Read as 'd	0' ecimal Value o ed Decimal Va 0' ed Decimal Valu	f Month's Tens	Digit bit Ones Digit bits	x = Bit is unkr	iown
bit 15-13 bit 12 bit 11-8 bit 7-6	Unimplement MTHTEN0: B Contains a va MTHONE<3: Contains a va Unimplement DAYTEN<1:0 Contains a va	ated: Read as ' binary Coded Do alue of 0 or 1. 0>: Binary Cod alue from 0 to 9 bited: Read as ' 0>: Binary Code alue from 0 to 3	^{0'} ecimal Value o ed Decimal Va 0' ed Decimal Valu	f Month's Tens	Digit bit Ones Digit bits s Digit bits	x = Bit is unkr	iown

查询PIC24FJ256GB206供应商 REGISTER 20-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	_	—	_	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'		l as '0'	
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		ared	x = Bit is unknown	

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8
U-0	R/W-x						
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

查询PIC24FJ256GB206供应商 20.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses for one minute and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the following steps for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute and loaded into the RCFGCAL register.

EQUATION 20-1: RTCC CALIBRATION

Error (clocks per minute) = (Ideal Frequency \dagger – Measured Frequency) x 60

†Ideal Frequency = 32,768H

3. a) If the oscillator is faster then ideal (negative result form Step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower then ideal (positive result from Step 2), the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be added to the timer counter, once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL value and load the RCFGCAL register with the correct value.

(Each 1-bit increment in CAL adds or subtracts 4 pulses).

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse.

Note: It is up to the user to include in the error value the initial error of the crystal, drift due to temperature and drift due to crystal aging.

20.3 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 20-3)
- One-time alarm and repeat alarm options available

20.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 20-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT bits, ARPT<7:0> (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

20.3.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note:	Changing any of the registers, other then the RCFGCAL and ALCFGRPT registers and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be
	changed when $RTCSYNC = 0$.

]PIC24FJ256GB206供应商 FIGURE 20-2: ALARM MASK	SETTINGS		
Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours Minutes Seconds
0000 – Every half second 0001 – Every second			
0010 - Every 10 seconds			
0011 – Every minute			
0100 – Every 10 minutes			m:ss
0101 – Every hour			
0110 – Every day			h h : m m : s s
0111 – Every week	d		h h : m m : s s
1000 – Every month		/ d_ d	h h ; m m ; s s
1001 – Every year ⁽¹⁾		m m / d d	h h : m m : s s
Note 1: Annually, except when a	configured for F	ebruary 29.	

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商

21.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

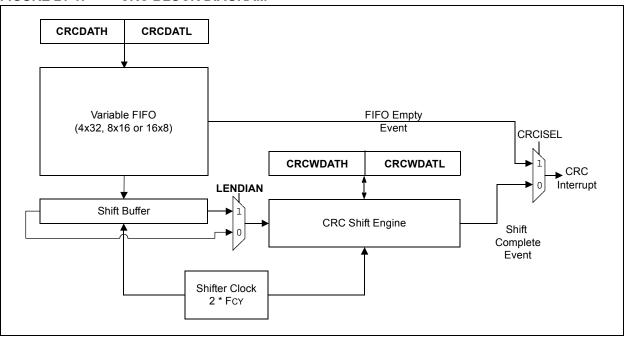
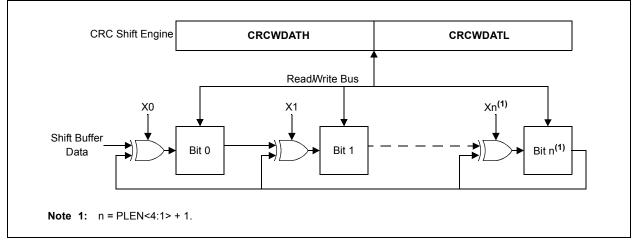

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729). The information in this data sheet supersedes the information in the FRM.

FIGURE 21-1:	CRC BLOCK DIAGRAM


The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

Figure 21-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 21-2.

查询PIC24FJ256GB206供应商 21.1 User Interface

21.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up of up the 32^{nd} order, using up to 32 bits.

Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit and the other a 32-bit equation.

EQUATION 21-1: 16-BIT, 32-BIT CRC POLYNOMIALS

X16 + X12 + X5 + 1

and

 $\begin{array}{c} X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + \\ X8 + X7 + X5 + X4 + X2 + X + 1 \end{array}$

To program these polynomials into the CRC generator, set the register bits as shown in Table 21-1.

Note that the appropriate positions are set to '1' to indicate they are used in the equation (for example, X26 and X23). The '0' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32, it is assumed that the 32^{nd} bit will be used. Therefore, the X<31:1> bits do not have the 32^{nd} bit.

21.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between one and 32 bits using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is four words deep. When the DWITDH bits are between 15 and 8, the FIFO is 8 words deep. When the DWIDTH bits are less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is one byte. For example, if DWIDTH is five, then the size of the data is DWIDTH + 1 or six. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if DWIDTH is 24, the VWORD bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit is set and the value of VWORD is greater than zero.

Each word is copied out of the FIFO into a buffer register, which decrements VWORD. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until VWORD reaches zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When VWORD reaches the maximum value for the configured value of DWIDTH (4, 8 or 16), the CRCFUL bit becomes set. When VWORD reaches zero, the CRCMPT bit becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

CRC Control Bits	Bit Values				
	16-Bit Polynomial	32-Bit Polynomial			
PLEN<4:0>	01111	11111			
X<31:16>	0000 0000 0000 0001	0000 0100 1100 0001			
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x			

TABLE 21-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS

查询PIC24FJ256GB206供应商 21.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

21.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLEN + 1)/2 clock cycles after the interrupt is generated until the CRC calculation is finished.

21.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- Configure the module for desired operation:

 a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTH and LENDIAN bits.

c) Select the desired interrupt mode using the CRCISEL bit.

- Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.
- Clear old results by writing 00h to CRCWDATL and CRCWDATH. The CRCWDAT registers can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 21-1 and Register 21-2) control the operation of the module and configure the various settings.

The CRCXOR registers (Register 21-3 and Register 21-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data, and CRC processed output, respectively.

查询PIC24FJ256GB206供应商

REGISTER 21-1: CRCCON1: CRC CONTROL 1 REGISTER

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15		<u> </u>	·	<u> </u>	·		bit 8
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—
bit 7							bit 0
Legend:		HC = Hardware	e Clearable bit	HSC = Hardwa	are Settable/Cle	earable bit	
R = Readable	e bit	W = Writable b	it	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15	CRCEN: CRO	C Enable bit					
	1 = Enables 0 = Disables NOT res	module; all stat	te machines, po	pinters and CR	CWDAT/CRCD	ATH reset; oth	ner SFRs are
bit 14	Unimplemen	ted: Read as '0	3				
bit 13	-	Stop in Idle Mo					
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 						
bit 12-8	VWORD<4:0	>: Pointer Value	bits				
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> \ge 7 (16 when PLEN<4:0> \le 7.						l<4:0> ≥ 7 or
bit 7	CRCFUL: FIF	FO Full bit					
	1 = FIFO is f 0 = FIFO is r						
bit 6	CRCMPT: FI	O Empty bit					
	1 = FIFO is e 0 = FIFO is r						
bit 5	CRCISEL: CI	RC Interrupt Sel	ection bit				
	1 = Interrupt c	n FIFO is empty	; the final word o	of data is still shif	fting through the	e CRC	
	0 = Interrupt c	on shift is comple	te and results ar	e ready			
bit 4	CRCGO: Sta	rt CRC bit					
		C serial shifter ial shifter is turn	ed off				
bit 3	LENDIAN: D	ata Shift Directio	on Select bit				
		d is shifted into d is shifted into					
bit 2-0		ted: Read as '0			(big chulan)		
	Sumplemen						

查询PIC24FJ256GB206供应商

REGISTER 21-2: CRCCON2: CRC CONTROL 2 REGISTER

-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
Legend:							
bit 7							bit 0
—	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 12-8	DWIDTH<4:0>: Data Word Width Configuration bits
	Configures the width of the data word (data word width – 1).
bit 7-5	Unimplemented: Read as '0'
bit 4-0	PLEN<4:0>: Polynomial Length Configuration bits
	Configures the length of the polynomial (polynomial length – 1).

REGISTER 21-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X15	X14	X13	X12	X11	X10	X9	X8
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
X7	X6	X5	X4	X3	X2	X1	_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-1 X<15:1>: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

查询PIC24FI256GB206供应商 REGISTER 21-4: CRCXORH: CRC XOR HIGH REGISTER

DAMO			D/// 0				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X31	X30	X29	X28	X27	X26	X25	X24
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X23	X22	X21	X20	X19	X18	X17	X16
bit 7	•		•	•	•		bit C
Legend:							

Legenu.						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 X<31:16>: XOR of Polynomial Term xⁿ Enable bits

REGISTER 21-5: CRCDATL: CRC DATA LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DATA7 | DATA6 | DATA5 | DATA4 | DATA3 | DATA2 | DATA1 | DATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns '0'.

REGISTER 21-6: CRCDATH: CRC DATA HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8
bit 15				- -			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
bit 7	•					•	bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns '0'.

查询PIC24FJ256GB206供应商

REGISTER 21-7: CRCWDATL: CRC SHIFT LOW REGISTER

| R/W-0, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| SDATA15 | SDATA14 | SDATA13 | SDATA12 | SDATA11 | SDATA10 | SDATA9 | SDATA8 |
| bit 15 | | | | | | | bit 8 |

| R/W-0, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| SDATA7 | SDATA6 | SDATA5 | SDATA4 | SDATA3 | SDATA2 | SDATA1 | SDATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/0	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15-0 **SDATA<15:0>:** CRC Shift Register bits Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this register reads the CRC read bus.

REGISTER 21-8: CRCWDATH: CRC SHIFT HIGH REGISTER

| R/W-0, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| SDATA31 | SDATA30 | SDATA29 | SDATA28 | SDATA27 | SDATA26 | SDATA25 | SDATA24 |
| bit 15 | | | | | | | bit 8 |

| R/W-0, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| SDATA23 | SDATA22 | SDATA21 | SDATA20 | SDATA19 | SDATA18 | SDATA17 | SDATA16 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 SDATA<31:16>: CRC Input Data bits

Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this register reads the CRC read bus.

查询PIC24FJ256GB206供应商 NOTES:

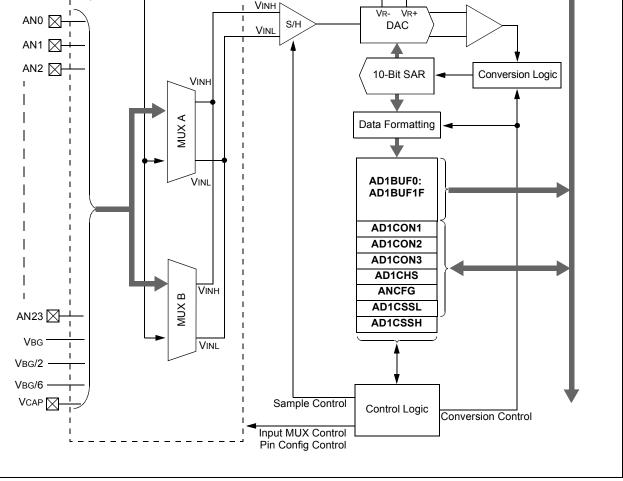
查询PIC24FJ256GB206供应商

22.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705). The information in this data sheet supersedes the information in the FRM.

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- · Conversion speeds of up to 500 ksps
- 24 analog input pins (PIC24FJXXXGBX10 devices) and 16 analog input pins (PIC24FJXXXGBX06 devices)
- External voltage reference input pins
- · Internal band gap reference inputs
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- 32-word conversion result buffer
- Selectable Buffer Fill modes
- · Four result alignment options
- · Operation during CPU Sleep and Idle modes


On all PIC24FJ256GB210 family devices, the 10-bit A/D Converter has 24 analog input pins, designated AN0 through AN23. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 22-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure the port pins as analog inputs and/or select band gap reference inputs (ANCFG registers).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select the interrupt rate (AD1CON2<6:2>).
 - g) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

查询PIC24FJ256GB206供应商 FIGURE 22-1: **10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM** Internal Data Bus AVDD VR+ VR Select AVss VR-VREF+ VREF-Comparator VINH VR-VR+ AN0 🔀 S/H DAC VINL 1 AN1 🖂 AN2 10-Bit SAR VINH MUX A Data Formatting

16

查询PIC24FJ256GB206供应商 REGISTER 22-1: AD1CON1: A/D CONTROL REGISTER 1

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾	—	ADSIDL	—	—	_	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R-0, HSC	R-0, HSC
SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE
bit 7							bit 0

Legend:	HSC = I	Hardware Setta	ble/Clearable bit	
R = Readat	le bit W = Wr	table bit	U = Unimplemented bit	, read as '0'
-n = Value a	t POR '1' = Bit	is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	ADON: A/D Operating 1 = A/D Converter mo 0 = A/D Converter is c	dule is operatir	ng	
bit 14	Unimplemented: Rea	d as '0'		
bit 13	ADSIDL: Stop in Idle M 1 = Discontinue modu 0 = Continue module	le operation wh	nen device enters Idle mode e mode	
bit 12-10	Unimplemented: Rea	-		
bit 9-8	FORM<1:0>: Data Our 11 = Signed fractional 10 = Fractional (dddd 01 = Signed integer (00 = Integer (0000 0	(sddd dddd dddd dd00 ssss sssd d	dd00 0000) 0000) ddd dddd)	
bit 7-5	110 = CTMU event er 101 = Reserved 100 = Timer5 compar 011 = Reserved 010 = Timer3 compar 001 = Active transition	ends sampling ids sampling ar e ends samplin e ends samplin n on INT0 pin e	g and starts conversion (auto-	
bit 4-3	Unimplemented: Rea	d as '0'		
bit 2	ASAM: A/D Sample A 1 = Sampling begins i 0 = Sampling begins v	mmediately after	er the last conversion complet ? bit is set	es; the SAMP bit is auto-set.
bit 1	SAMP: A/D Sample Ei 1 = A/D sample/hold a 0 = A/D sample/hold a	mplifier is sam		
bit 0	DONE: A/D Conversio 1 = A/D conversion is 0 = A/D conversion is	n Status bit done		
Noto 1:	be values of the ADC1RI	IEx registers wi	ill not retain their values once t	the ADON bit is cleared. Read out

Note 1: The values of the ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

查询PIC24FJ256GB206供应商 REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—
bit 15							bit 8

R-0, HSC	R/W-0						
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:	r = Reserved bit	HSC = Hardware Setta	ble/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVDD	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
1xx	AVdd	AVss

- bit 12 Reserved: Maintain as '0'
- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Scan Input Selections for the CH0+ S/H Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 **BUFS:** Buffer Fill Status bit (valid only when BUFM = 1)
 - 1 = A/D is currently filling buffer, 10-1F, user should access data in 00-0F
 - 0 = A/D is currently filling buffer, 00-0F, user should access data in 10-1F
- bit 6-2 **SMPI<4:0>:** Sample/Convert Sequences Per Interrupt Selection bits
 - 11111 = Interrupts at the completion of conversion for each 32nd sample/convert sequence
 - 11110 = Interrupts at the completion of conversion for each 31st sample/convert sequence
 - •
 - . 00001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 00000 = Interrupts at the completion of conversion for each sample/convert sequence **BUFM:** Buffer Mode Select bit
 - 1 = Buffer is configured as two 16-word buffers (ADC1BUFn<31:16> and ADC1BUFn<15:0>)
 - 0 = Buffer is configured as one 32-word buffer (ADC1BUFn<31:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for the first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses the MUX A input multiplexer settings

bit 1

查询PIC24FJ256GB206供应商 REGISTER 22-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	r	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADRC: A/D Conversion Clock Source bit
	1 = A/D internal RC clock
	0 = Clock is derived from the system clock
bit 14-13	Reserved: Maintain as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time bits
	11111 = 31 T AD
	•
	· · · · · · · · · · · · · · · · · · ·
	00001 = 1 TAD
	00000 = 0 TAD (not recommended)
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits
	11111111 = 256 * Tcy
	00000001 = 2 * TCY
	00000000 = Tcy

R/W-0	F T256GB2064 22-4: AD10 U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB	—	—	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾			
bit 15							bit			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NA		—	CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾			
bit 7							bit			
Legend:										
R = Readab	le hit	W = Writable	bit	LI = Unimplem	nented bit, read	1 as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown			
			•	o Dicio cioc		X Dit io di itali				
bit 15	CH0NB: Cha	annel 0 Negativ	e Input Select f	or MUX B Multi	plexer Setting	bit				
		0 negative inp								
		0 negative inp								
bit 14-13	•	nted: Read as '			1)					
bit 12-8	CH0SB<4:0>: Channel 0 Positive Input Select for MUX B ⁽¹⁾ Other = Not available; do not use									
	Other = Not available; do not use 11111 = No channel used; all inputs are floating; used for CTMU									
	11111 = No channel used; all inputs are floating; used for CTMO 11011 = Channel 0 positive input is the band gap divided-by-six reference (VBG/6)									
	11010 = Channel 0 positive input is the core voltage (VCAP)									
	11001 = Channel 0 positive input is the band gap reference (VBG)									
	11000 = Channel 0 positive input is the band gap divided-by-two reference (VBG/2) 10111 = Channel 0 positive input is AN23 ⁽²⁾									
	00001 = Channel 0 positive input is AN1									
	00000 = Channel 0 positive input is AN0									
bit 7	CH0NA: Cha	annel 0 Negativ	e Input Select f	or MUX A Multi	plexer Setting	bit				
		0 negative input 0 negative input								
bit 6-5	Unimplemer	nted: Read as '	0'							
bit 4-0	CH0SA<4:0>	-: Channel 0 Po	ositive Input Se	lect for MUX ⁽¹⁾						
	Other = Not available; do not use									
	11111 = No Channel used; all inputs are floating; used for CTMU									
	11011 = Channel 0 positive input is the band gap divided-by-six reference (VBG/6)									
	11010 = Channel 0 positive input is the core voltage (VCAP) 11001 = Channel 0 positive input is the band gap reference (VBG)									
	11001 = Channel 0 positive input is the band gap felerence (VBG) 11000 = Channel 0 positive input is the band gap divided-by-two reference (VBG/2)									
	10111 = Ch a	annel 0 positive	input is AN23 ⁽²	2)						
		annel 0 positive annel 0 positive								

- **Note 1:** Combinations not shown here (11100 to 11110) are unimplemented; do not use.
 - 2: Channel 0 positive inputs, AN16 through AN23, are not available on 64-pin devices (PIC24FJXXXGB206).

查询PIC24FJ256GB206供应商 REGISTER 22-5: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—			VBG6EN	VBG2EN	VBGEN
bit 7							bit 0

Legend

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3	Unimplemented: Read as '0'
bit 2	VBG6EN: A/D Input VBG/6 Enable

- VBG6EN: A/D Input VBG/6 Enable bit
 - 1 = Band gap voltage divided-by-six reference (VBG/6) is enabled
 0 = Band gap divided-by-six reference (VBG/6) is disabled
- bit 1 VBG2EN: A/D Input VBG/2 Enable bit
 - 1 = Band gap voltage divided-by-two reference (VBG/2) is enabled
 - 0 = Band gap divided-by-two reference (VBG/2) is disabled

bit 0 VBGEN: A/D Input VBG Enable bit

- 1 = Band gap voltage reference (VBG) is enabled
- 0 = Band gap reference (VBG) is disabled

REGISTER 22-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSSL7 | CSSL6 | CSSL5 | CSSL4 | CSSL3 | CSSL2 | CSSL1 | CSSL0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSSL<15:0>: A/D Input Pin Scan Selection bits

1 = Corresponding analog channel is selected for input scan

0 = Analog channel is omitted from input scan

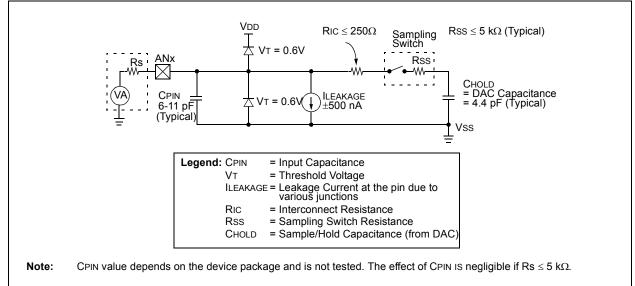
查询PIC24FJ256GB206供应商 REGISTER 22-7: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	—	CSSL27	CSSL26	CSSL25	CSSL24
bit 15							bit 8

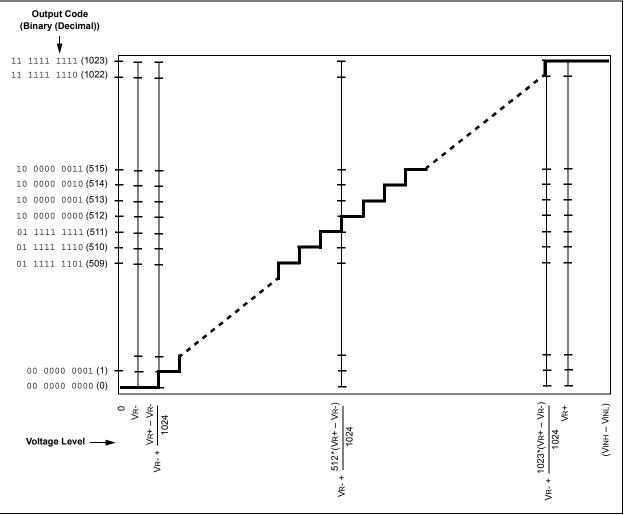
| R/W-0 |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| CSSL23 ⁽¹⁾ | CSSL22 ⁽¹⁾ | CSSL21 ⁽¹⁾ | CSSL20 ⁽¹⁾ | CSSL19 ⁽¹⁾ | CSSL18 ⁽¹⁾ | CSSL17 ⁽¹⁾ | CSSL16 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'
bit 11	CSSL27: A/D Input Band Gap Scan Selection bit
	 1 = Band gap divided-by-six reference (VBG/6) is selected for input scan 0 = Analog channel is omitted from input scan
bit 10	CSSL26: A/D Input Band Gap Scan Selection bit
	 1 = Internal core voltage (VCAP) is selected for input scan 0 = Analog channel is omitted from input scan
bit 9	CSSL25: A/D Input Half Band Gap Scan Selection bit
	 1 = Band gap reference (VBG) is selected for input scan 0 = Analog channel is omitted from input scan
bit 8	CSSL24: A/D Input Band Gap Scan Selection bit
	 1 = Band gap divided-by-two reference (VBG/2) is selected for input scan 0 = Analog channel is omitted from input scan
bit 7-0	CSSL<23:16>: Analog Input Pin Scan Selection bits ⁽¹⁾
	 1 = Corresponding analog channel is selected for input scan 0 = Analog channel is omitted from input scan
Note 1:	Unimplemented in 64-pin devices, read as '0'.


EQUATION 22-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$ADCS = \frac{TAD}{TCY} - 1$$


 $TAD = TCY \bullet (ADCS = 1)$

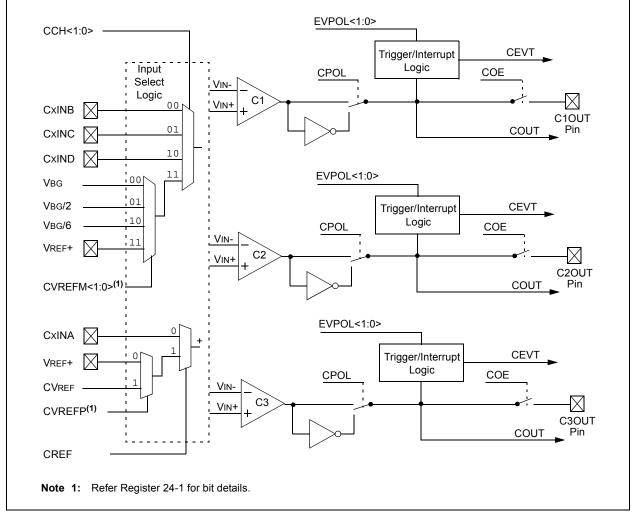
Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

查询PIC24FI256GB206供应商 FIGURE 22-2: 19-BIT A/D CONVERTER ANALOG INPUT MODEL

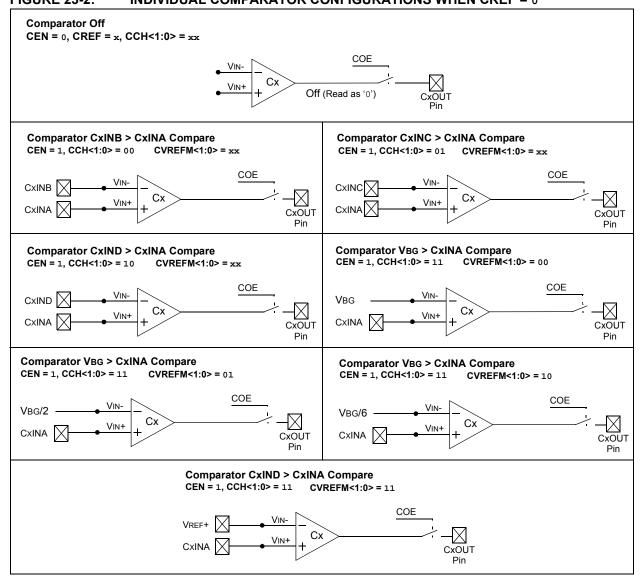
查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商

23.0 TRIPLE COMPARATOR MODULE


Note:	This data sheet summarizes the features							
	of this group of PIC24F devices. It is not							
	intended to be a comprehensive reference							
	source. For more information, refer to the							
	associated "PIC24F Family Reference							
	Manual".							

The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and VREF+) and a voltage reference input from one of the internal band gap references or the comparator voltage reference generator (VBG, VBG/2, VBG/6 and CVREF). The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.


A simplified block diagram of the module in shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

查询PIC24FJ256GB206供应商 FIGURE 23-2: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 0

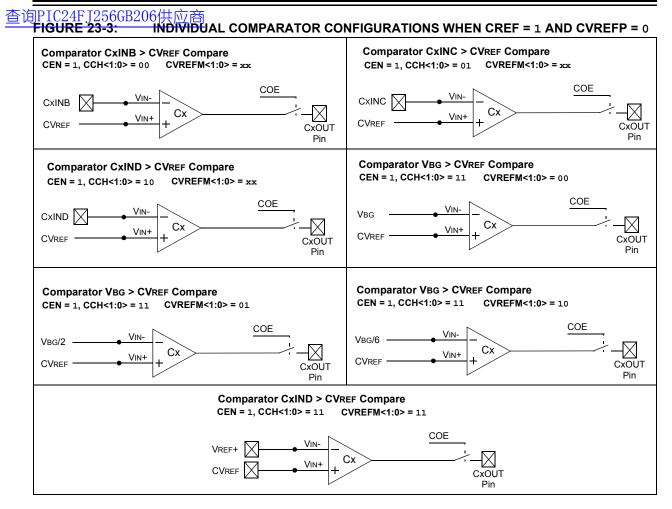
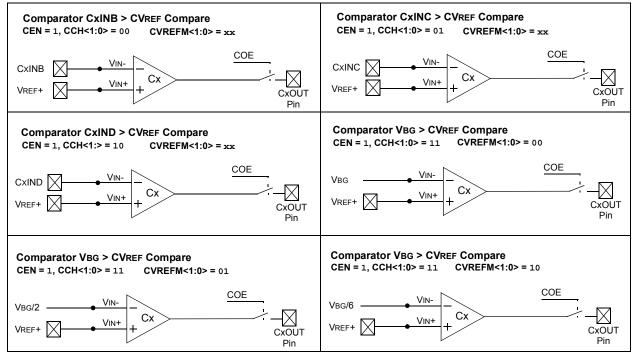



FIGURE 23-4: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 1

查询PIC24FJ256GB206供应商

REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

DAMA	D 44/ 0	DAMA		11.0							
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC				
CEN	COE	CPOL		—	_	CEVT	COUT				
bit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
EVPOL1	EVPOL0	0-0	CREF	0-0	0-0	CCH1	CCH0				
bit 7	LVIOLO		CILLI		_	Com	bit 0				
							bit 0				
Legend:		HS = Hardware	Settable bit	HSC = Hardy	vare Settable/	Clearable bit					
R = Readab	le bit	W = Writable b			nented bit, rea						
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	CEN: Compa	arator Enable bit									
	-	ator is enabled									
		ator is disabled									
bit 14	COE: Compa	arator Output En	able bit								
		ator output is pre		OUT pin							
		ator output is inte	3								
bit 13	•	parator Output P	•	t							
		ator output is investor output is not									
bit 12-10	•	nted: Read as '0									
bit 9	-	arator Event bit									
	1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts										
	are disat	oled until the bit i	s cleared								
	-	ator event has no									
bit 8	-	parator Output bi	t								
	$\frac{\text{When CPOL}}{1 = \text{VIN+} > \text{V}}$										
	0 = VIN + < V										
	When CPOL	= 1:									
		$\frac{1}{1 = \text{VIN} + \text{VIN}}$									
	0 = VIN + > V										
bit 7-6		Trigger/Event/	-	-	c 11						
		r/event/interrupt r/event/interrupt					CEVI = 0)				
		L = 0 (non-inver	•			output.					
		b-low transition o									
		L = 1 (inverted p									
		-high transition o	-								
		r/event/interrupt	-	n transition of co	omparator out	put:					
		L = 0 (non-inver -high transition c									
		<u>L = 1 (inverted p</u>	•								
		b-low transition o									
	-	r/event/interrupt	-	sabled							
bit 5	Unimplemen	nted: Read as '0	,								
	-										

查询PIC24FJ256GB206供应商

REGISTER 23-1: CMXCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 **CREF:** Comparator Reference Select bits (non-inverting input)
 - 1 = Non-inverting input connects to the internal CVREF voltage
 - 0 = Non-inverting input connects to the CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to the internal selectable reference voltage specified by the CVREFM<1:0> bits in the CVRCON register
 - 10 = Inverting input of the comparator connects to the CXIND pin
 - 01 = Inverting input of the comparator connects to the CXINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin

REGISTER 23-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0

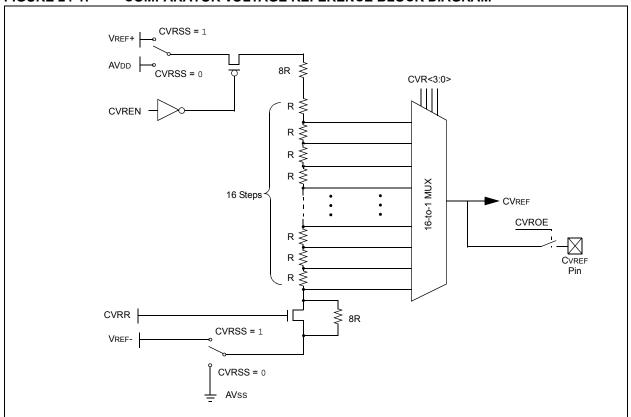
Legend:	HSC = Hardware Setta	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15	CMIDL: Comparator Stop in Idle Mode bit
	 1 = Discontinue operation of all comparators when device enters Idle mode 0 = Continue operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商

24.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 19. "Comparator Module" (DS39710). The information in this data sheet supersedes the information in the FRM.

24.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 24-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 24-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

查询PIC24FJ256GB206供应商

REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
_	—	_	_	_	CVREFP	CVREFM1	CVREFM0					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0					
bit 7							bit (
Legend:												
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
bit 15-11	Unimplemen	ited: Read as '	0'									
bit 10	CVREFP: Vo	Itage Reference	e Select bit (va	lid only when C	CREF is '1')							
		 1 = VREF+ is used as a reference voltage to the comparators 0 = The CVR (4-bit DAC) within this module provides the the reference voltage to the comparators 										
		. ,		•		•	•					
bit 9-8	CVREFM<1:0>: Band Gap Reference Source Select bits (valid only when CCH<1:0> = 11)											
	00 = Band gap voltage is provided as an input to the comparators											
	 01 = Band gap voltage divided-by-two is provided as an input to the comparators 10 = Band gap voltage divided-by-six is provided as an input to the comparators 											
		pin is provided				ipulatoro						
bit 7	CVREN: Con	nparator Voltag	e Reference E	nable bit								
	1 = CVREF circuit is powered on											
	0 = CVREF circuit is powered down											
bit 6	CVROE: Con	nparator VREF (Output Enable	bit								
	1 = CVREF voltage level is output on the CVREF pin											
	0 = CVREF voltage level is disconnected from the CVREF pin											
bit 5		parator VREF Ra	0									
	1 = CVRsRc range should be 0 to 0.625 CVRsRc with CVRsRc/24 step size											
bit 4		0 = CVRsRc range should be 0.25 to 0.719 CVRsRc with CVRsRc/32 step size										
DIL 4		CVRSS: Comparator VREF Source Selection bit										
	 1 = Comparator reference source, CVRSRC = VREF+ – VREF- 0 = Comparator reference source, CVRSRC = AVDD – AVSS 											
bit 3-0	•			tion $0 \le CVR < 3$								
	When CVRR	•										
			CVRSRC)									
	When CVRR	-										
	$\overline{\text{CVREF}} = 1/4 \bullet (\overline{\text{CVRSRC}}) + (\overline{\text{CVR}} < 3:0 > /32) \bullet (\overline{\text{CVRSRC}})$											

查询PIC24FJ256GB206供应商

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the associated "PIC24F Family Reference Manual", Section 11. "Charge Time Measurement Unit (CTMU)" (DS39724). The information in this data sheet supersedes the information in the FRM.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

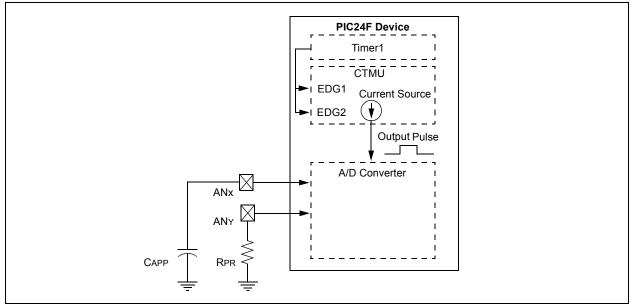
- · Four edge input trigger sources
- Polarity control for each edge source
- Control of edge sequence
- · Control of response to edges
- Time measurement resolution of 1 nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based sensors.

The CTMU is controlled through two registers: CTMUCON and CTMUICON. CTMUCON enables the module, and controls edge source selection, edge

source polarity selection, and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

25.1 Measuring Capacitance


The CTMU module measures capacitance by generating an output pulse with a width equal to the time between edge events on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and two external pins (CTEDG1 and CTEDG2). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

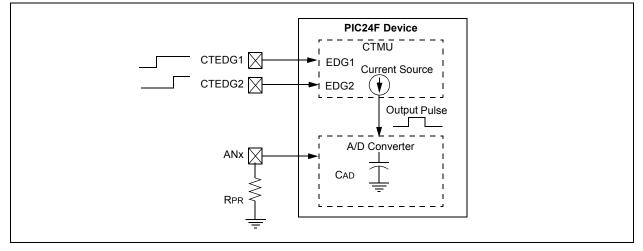
$$C = I \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A precision resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 25-1 shows the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 25-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

查询PIC24FJ256GB206供应商 25.2 Measuring Time


Time measurements on the pulse width can be similarly performed using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 shows the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "PIC24F Family Reference Manual".

25.3 Pulse Generation and Delay

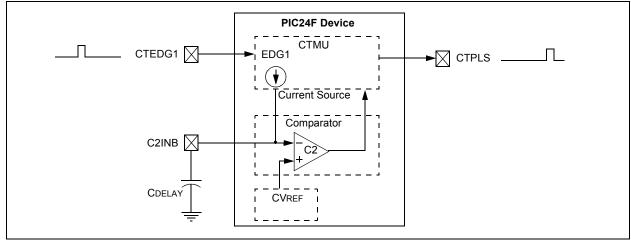

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN (CTMUCON<12>) bit, the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 25-3 shows the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTEDG1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the *"PIC24F Family Reference Manual"*.

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

FIGURE 25-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

查询PIC24FJ256GB206供应商

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/W-0, HSC
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7							bit 0

Legend:		HSC = Hardware Settable/Clearable bit							
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15	CTMUEN: C	TMU Enable bit							
	1 = Module								
L:1 4 4	0 = Module								
bit 14	•	nted: Read as '0'							
bit 13		Stop in Idle Mode bit	on the device entern Idle med						
		e module operation in Idle	en the device enters Idle mod e mode	e					
bit 12	TGEN: Time	Generation Enable bit ⁽¹⁾							
		edge delay generation							
		s edge delay generation							
bit 10	-	EDGEN: Edge Enable bit							
	0	re not blocked re blocked							
bit 10	 0 = Edges are blocked EDGSEQEN: Edge Sequence Enable bit 								
	1 = Edge 1 event must occur before Edge 2 event can occur								
	0 = No edge	sequence is needed	·						
bit 9	IDISSEN: Ar	alog Current Source Cor	ntrol bit						
		current source output is g							
hit 0	C C	current source output is n	iot grounded						
bit 8		gger Control bit output is enabled							
	00	output is disabled							
bit 7	EDG2POL:	Edge 2 Polarity Select bit							
		s programmed for a posi							
	0 = Edge 2 i	s programmed for a nega	ative edge response						
bit 6-5		:0>: Edge 2 Source Sele	ect bits						
	11 = CTED 10 = CTED								
	01 = 0C1 n	•							
	00 = Timer1	module							
bit 4		Edge 1 Polarity Select bit							
	-	s programmed for a posi							
	0 = Edge 1 i	s programmed for a nega	ative edge response						
			tputs must be configured to an	available RPn/RPIn pin. See					
5	Section 10.4 "P	eripheral Pin Select (PF	'S) " for more information.						

查询PIC24FJ256GB206供应商 REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

bit 3-2	EDG1SEL<1:0>: Edge 1 Source Select bits
	11 = CTEDG1 pin
	10 = CTEDG2 pin
	01 = OC1 module
	00 = Timer1 module
bit 1	EDG2STAT: Edge 2 Status bit
	1 = Edge 2 event has occurred
	0 = Edge 2 event has not occurred
bit 0	EDG1STAT: Edge 1 Status bit
	1 = Edge 1 event has occurred0 = Edge 1 event has not occurred

Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 25-2: CTMUICON: CTMU CURRENT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—		—	—	—	_	—				
bit 7							bit C				
Legend:											
R = Readab		W = Writable		-	nented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
	000000 = N										
bit 9-8	 . .										
bit 7-0		t source is disa ted: Read as '									

查询PIC24FJ256GB206供应商 26.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "*PIC24F Family Reference Manual*". The information in this data sheet supersedes the information in the FRMs.
 Section 9. "Watchdog Timer (WDT)"
 - Section 9. "Watchdog Timer (WDT)" (DS39697)
 - Section 32. "High-Level Device Integration" (DS39719)
 - Section 33. "Programming and Diagnostics" (DS39716)

PIC24FJ256GB210 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™]
- In-Circuit Emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location F80000h. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-6.

Note that address F80000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFh) which can only be accessed using table reads and table writes.

26.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256GB210 FAMILY DEVICES

In PIC24FJ256GB210 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 26-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 26-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ256GB210 FAMILY DEVICES

Device	Configuration Word Addresses					
	1	2	3	4		
PIC24FJ128GB2XX	157FEh	157FCh	157FAh	157F8h		
PIC24FJ256GB2XX	2ABFEh	2ABFCh	2ABFAh	2ABF8h		

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	_	_		_	_	_				
bit 23		1					bit 1				
r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1				
reserved	JTAGEN	GCP	GWRP	DEBUG	reserved	ICS1	ICS0				
bit 15							bit				
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1				
FWDTEN	WINDIS	ALTVREF ⁽¹⁾	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0				
bit 7	VIIIUDIO	7,2171,21	11110/1		WBH 62	WBITOT	bit				
Legend:		r = Reserved b	oit								
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value a	It POR	'1' = Bit is set'0' = Bit is clearedx = Bit is unknown									
			,								
bit 23-16 bit 15	•	ted: Read as '1									
		ne value is unkn									
bit 14	JTAGEN: JTAG Port Enable bit										
	 1 = JTAG port is enabled 0 = JTAG port is disabled 										
bit 13	GCP: General Segment Program Memory Code Protection bit										
	1 = Code protection is disabled										
bit 12	0 = Code protection is enabled for the entire program memory space										
DIL 12	GWRP: General Segment Code Flash Write Protection bit 1 = Writes to program memory are allowed										
	 0 = Writes to program memory are not allowed 										
bit 11	DEBUG: Bac	DEBUG: Background Debugger Enable bit									
	1 = Device resets into Operational mode										
		0 = Device resets into Debug mode									
hit 10	Reserved: Always maintain as '1' ICS<1:0>: Emulator Pin Placement Select bits										
	ICS<1:0>: En	nulator Pin Plac		hits							
bit 10 bit 9-8		nulator Pin Plac or functions are s	ement Select								
	11 = Emulato 10 = Emulato	or functions are s	ement Select shared with Pe shared with P	GEC1/PGED1 GEC2/PGED2							
	11 = Emulato 10 = Emulato 01 = Emulato	or functions are s or functions are or functions are	ement Select shared with Pe shared with P	GEC1/PGED1 GEC2/PGED2							
bit 9-8	11 = Emulato 10 = Emulato 01 = Emulato 00 = Reserve	or functions are s or functions are or functions are ed; do not use	ement Select shared with Pe shared with P shared with P	GEC1/PGED1 GEC2/PGED2							
bit 9-8	11 = Emulato 10 = Emulato 01 = Emulato 00 = Reserve FWDTEN: Wa	or functions are s or functions are or functions are ed; do not use atchdog Timer E	ement Select shared with P shared with P shared with P	GEC1/PGED1 GEC2/PGED2							
bit 9-8	11 = Emulato 10 = Emulato 01 = Emulato 00 = Reserve FWDTEN: Wa 1 = Watchdog	or functions are s or functions are or functions are ed; do not use	ement Select shared with P shared with P shared with P inable bit ed	GEC1/PGED1 GEC2/PGED2							
	11 = Emulato 10 = Emulato 01 = Emulato 00 = Reserve FWDTEN: Wa 1 = Watchdog 0 = Watchdog	or functions are s or functions are or functions are ed; do not use atchdog Timer E g Timer is enabl	ement Select shared with P shared with P shared with P finable bit ed led	GEC1/PGED1 GEC2/PGED2 GEC3/PGED3							
bit 9-8 bit 7	11 = Emulato 10 = Emulato 01 = Emulato 00 = Reserve FWDTEN : Wa 1 = Watchdog WINDIS : Wind 1 = Standard	or functions are s or functions are ed; do not use atchdog Timer E g Timer is enabl g Timer is disab dowed Watchdog Watchdog Time	ement Select shared with P shared with P shared with P mable bit ed led g Timer Disater is enabled	GEC1/PGED1 GEC2/PGED2 GEC3/PGED3	st be '1'						
bit 9-8 bit 7	11 = Emulato 10 = Emulato 01 = Emulato 00 = Reserve FWDTEN: Wa 1 = Watchdog 0 = Watchdog WINDIS: Wind 1 = Standard 0 = Windowe	or functions are s or functions are or functions are ed; do not use atchdog Timer E g Timer is enabl g Timer is disab dowed Watchdo	ement Select shared with P shared with P shared with P inable bit ed led og Timer Disat er is enabled ner is enabled	GEC1/PGED1 GEC2/PGED2 GEC3/PGED3 ble bit	st be '1'						

查询PIC24FJ256GB206供应商

REGISTER 26-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

- bit 4 **FWPSA:** WDT Prescaler Ratio Select bit
 - 1 = Prescaler ratio of 1:128
 - 0 = Prescaler ratio of 1:32
- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits
 - 1111 = 1:32,768 1110 = 1:16,384 1101 **= 1:8,192** 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1
- Note 1: Unimplemented in 64-pin devices, maintain at '1' (VREF+ on RB0 and VREF- on RB1).

查询PIC24F REGISTER	`J256GB206{ 26-2: CW2 :	共应商 FLASH CON	FIGURATIO	N WORD 2			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—							
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IESO	PLLDIV2	PLLDIV1	PLLDIV0	PLL96MHZ	FNOSC2	FNOSC1	FNOSC0
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	r-1	R/PO-1	R/PO-1
FCKSM1	FCKSM0	OSCIOFCN	IOL1WAY	reserved	reserved	POSCMD1	POSCMD0
bit 7							bit 0
Legend:		r = Reserved I	oit				
R = Readable	e bit	W = Writable b		U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 23-16	-	ted: Read as '1					
bit 15		I External Swite					
		de (Two-Speed de (Two-Speed					
bit 14-12	 0 = IESO mode (Two-Speed Start-up) is disabled PLLDIV<2:0>: 96 MHz PLL Prescaler Select bits 						
		ator input is divi					
		ator input is dividator input is divid					
		ator input is divid					
		ator input is divid		• •			
		ator input is dividator input is divid					
		ator input is use					
bit 11		96 MHz PLL Sta	•				
		PLL is enabled a PLL is software			setting the PI	LEN bit (CLKE) \/<5>))
bit 10-8		: Initial Oscillat		The chabled by			, (
		C Oscillator wit		FRCDIV)			
	110 = Reserv						
		ower RC Oscill					
	011 = Primar	ry Oscillator with	n PLL module	(XTPLL, HSPLI	L, ECPLL)		
		ry Oscillator (X7 RC Oscillator wit		nd PLL module			
		C Oscillator (FI					
bit 7-6	FCKSM<1:0>	Clock Switchi	ng and Fail-Sa	afe Clock Monito	or Configuratio	n bits	
	1x = Clock switching and Fail-Safe Clock Monitor are disabled						
	 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 						
bit 5		OSCO Pin Con					
	If POSCMD<	1:0> = 11 or 00	<u>:</u>				
		LKO/RC15 fund LKO/RC15 fund					
	If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15.						

查询PIC24FJ256GB206供应商

REGISTER 26-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit

- 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
- 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been completed
- bit 3-2 Reserved: Always maintain as '1'
- bit 1-0 **POSCMD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = EC Oscillator mode is selected

REGISTER 26-3: CW3: FLASH CONFIGURATION WORD 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WPEND	WPCFG	WPDIS	ALTPMP ⁽¹⁾	WUTSEL1	WUTSEL0	SOSCSEL1	SOSCSEL0
bit 15						•	bit 8

| R/PO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| WPFP7 | WPFP6 | WPFP5 | WPFP4 | WPFP3 | WPFP2 | WPFP1 | WPFP0 |
| bit 7 | | | | | | | bit 0 |

Legend:	PO = Program-Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	WPEND: Segment Write Protection End Page Select bit
	 1 = Protected code segment upper boundary is at the last page of program memory; the lower boundary is the code page specified by WPFP<7:0> 0 = Protected code segment lower boundary is at the bottom of the program memory (000000h); upper boundary is the code page specified by WPFP<7:0>
bit 14	WPCFG: Configuration Word Code Page Write Protection Select bit
	 1 = Last page (at the top of program memory) and Flash Configuration Words are not write-protected⁽³⁾ 0 = Last page and Flash Configuration Words are write-protected, provided WPDIS = '0'
bit 13	WPDIS: Segment Write Protection Disable bit
	 1 = Segmented code protection is disabled 0 = Segmented code protection is enabled; protected segment is defined by the WPEND, WPCFG and WPFPx Configuration bits
bit 12	ALTPMP: Alternate EPMP Pin Mapping bit ⁽¹⁾
	1 = EPMP pins are in default location mode
	0 = EPMP pins are in alternate location mode
Note 1:	Unused in 64-pin devices, maintain at '1'.
2:	Ensure that the SCLKI pin is made a digital input while using this configuration, see Table 10-2.
3:	Regardless of WPCFG status, if WPEND = 1 or if WPFP corresponds to the Configuration Word's page,

the Configuration Word's page is protected.

全词PIT 24F 256GB206 年 25 CONFIGURATION WORD 3 (CONTINUED)

- WUTSEL<1:0>: Voltage Regulator Standby Mode Wake-up Time Select bits bit 11-10 11 = Default regulator start-up time is used 01 = Fast regulator start-up time is used x0 = Reserved; do not use bit 9-8 SOSCSEL<1:0>: SOSC Selection Configuration bits 11 = Secondary oscillator is in Default (high drive strength) Oscillator mode 10 = Reserved; do not use 01 = Secondary oscillator is in Low-Power (low drive strength) Oscillator mode 00 = External clock (SCLKI) or Digital I/O mode⁽²⁾ bit 7-0 WPFP<7:0>: Write Protected Code Segment Boundary Page bits Designates the 512 instruction words page boundary of the protected code segment. If WPEND = 1: Specifies the lower page boundary of the code-protected segment; the last page being the last implemented page in the device. If WPEND = 0: Specifies the upper page boundary of the code-protected segment; Page 0 being the lower boundary. Note 1: Unused in 64-pin devices, maintain at '1'.
 - 2: Ensure that the SCLKI pin is made a digital input while using this configuration, see Table 10-2.
 - **3:** Regardless of WPCFG status, if WPEND = 1 or if WPFP corresponds to the Configuration Word's page, the Configuration Word's page is protected.

REGISTER 26-4: CW4: FLASH CONFIGURATION WORD 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	_	—	—
bit 23							bit 16

| r-1 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| reserved |
| bit 15 | | | | | | | bit 8 |

| r-1 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| reserved |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-16 Unimplemented: Read as '0'

bit 15-0 **Reserved:** Always maintain as '1'

	6GB206供应 26-5: DEVII						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bi
R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID
bit 15							
R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7	•	•	•	•	•	•	k

Legend: R = Readable bit	U = Unimplemented bit

- bit 23-16 Unimplemented: Read as '1'
- bit 15-8 **FAMID<7:0>:** Device Family Identifier bits 01000001 = PIC24FJ256GB210 family
- bit 7-0 **DEV<7:0>:** Individual Device Identifier bits 00000000 = PIC24FJ128GB206 00000100 = PIC24FJ128GB210 00000100 = PIC24FJ256GB206 00000110 = PIC24FJ256GB210

REGISTER 26-6: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_
						bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—
						bit 8
U-0	U-0	U-0	R	R	R	R
_	—	—	REV3	REV2	REV1	REV0
		•	•			bit 0
Legend: R = Readable bit U = Unimplemented bit						
	U-0 — U-0 — U-0 — U-0 — — = Readable bit	U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	− − − U-0 U-0 U-0 − − U-0 U-0 − − U-0 U-0 R − − − − REV3	− − − − U-0 U-0 U-0 U-0 − − − U-0 U-0 U-0 − − U-0 U-0 U-0 U-0 R R R R H − − − R R H − − − R R </td <td>- - - - U-0 U-0 U-0 U-0 U-0 - - - - U-0 U-0 U-0 U-0 - - - - U-0 U-0 U-0 R U-0 U-0 U-0 R U-0 U-0 U-0 R U-0 U-0 R R R R R R R R H - -</td>	- - - - U-0 U-0 U-0 U-0 U-0 - - - - U-0 U-0 U-0 U-0 - - - - U-0 U-0 U-0 R U-0 U-0 U-0 R U-0 U-0 U-0 R U-0 U-0 R R R R R R R R H - -

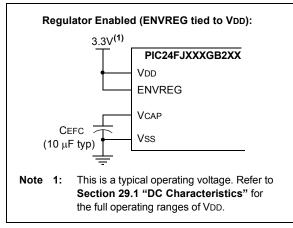
bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Device Revision Identifier bits

查询PIC24FJ256GB206供应商 **26.2 On-Chip Voltage Regulator**

All PIC24FJ256GB210 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GB210 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 29.1 "DC Characteristics"**.


26.2.1 VOLTAGE REGULATOR LOW-VOLTAGE DETECTION

When the on-chip regulator is enabled, it provides a constant voltage of 1.8V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.1V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then the regulator output follows VDD with a typical voltage drop of 300 mV.

To provide information about when the regulator voltage starts reducing, the on-chip regulator includes a simple Low-Voltage Detect circuit, which sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt to trigger an orderly shutdown.

FIGURE 26-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

26.2.2 ON-CHIP REGULATOR AND POR

When the voltage regulator is enabled, it takes approximately 10 μ s for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON<8>) and the WUTSEL Configuration bits (CW3<11:10>). Refer to **Section 29.0 "Electrical Characteristics"** for more information on TVREG.

26.2.3 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ256GB210 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain the output level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR (RCON<1>) flag bit. The brown-out voltage specifications are provided in **Section 7.** "**Reset**" (DS39712) in the "*PIC24F Family Reference Manual*".

Note:	For more information, see Section 29.0
	"Electrical Characteristics". The infor-
	mation in this data sheet supersedes the information in the FRM.

26.2.4 VOLTAGE REGULATOR STANDBY MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON<8>). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

The regulator wake-up time required for Standby mode is controlled by the WUTSEL<1:0> (CW3<11:10>) Configuration bits. The regulator wake-up time is lower when WUTSEL<1:0> = 01, and higher when WUTSEL<1:0> = 11. Refer to the TVREG specification in Table 29-10 for regulator wake-up time.

When the regulator's Standby mode is turned off (VREGS = 1), the device wakes up without waiting for TVREG. However, with the VREGS bit set, the power consumption while in Sleep mode will be approximately 40 μ A higher than what it would be if the regulator was allowed to enter Standby mode.

查询PIC24FJ256GB206供应商 26.3 Watchdog Timer (WDT)

For PIC24FJ256GB210 family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (CW1<3:0>), which allows the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranging from 1 ms to 131 seconds, can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was

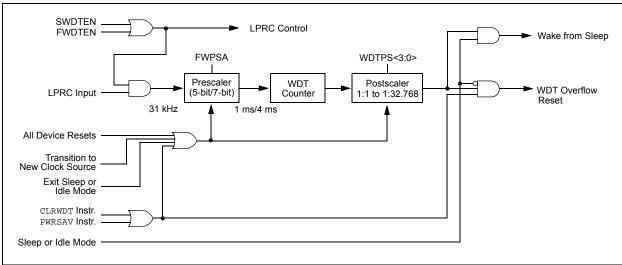


FIGURE 26-2: WDT BLOCK DIAGRAM

executed. The corresponding SLEEP or IDLE (RCON<3:2>) bit will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The CLRWDT and PWRSAV instructions
	clear the prescaler and postscaler counts
	when executed.

26.3.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed-Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<6>) to '0'.

26.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN Control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

查询PIC24FJ256GB206供应商

26.4 Program Verification and Code Protection

PIC24FJ256GB210 family devices provide two complimentary methods to protect application code from overwrites and erasures. These also help to protect the device from inadvertent configuration changes during run time.

26.4.1 GENERAL SEGMENT PROTECTION

For all devices in the PIC24FJ256GB210 family, the on-chip program memory space is treated as a single block, known as the General Segment (GS). Code protection for this block is controlled by one Configuration bit, GCP. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

Write protection is controlled by the GWRP bit in the Configuration Word. When GWRP is programmed to '0', internal write and erase operations to program memory are blocked.

26.4.2 CODE SEGMENT PROTECTION

In addition to global General Segment protection, a separate subrange of the program memory space can be individually protected against writes and erases. This area can be used for many purposes where a separate block of write and erase-protected code is needed, such as bootloader applications. Unlike common boot block implementations, the specially protected segment in the PIC24FJ256GB210 family devices can be located by the user anywhere in the program space and configured in a wide range of sizes.

Code segment protection provides an added level of protection to a designated area of program memory by disabling the NVM safety interlock whenever a write or erase address falls within a specified range. It does not override General Segment protection controlled by the GCP or GWRP bits. For example, if GCP and GWRP are enabled, enabling segmented code protection for the bottom half of program memory does not undo the General Segment protection for the top half. The size and type of protection for the segmented code range are configured by the WPFPx, WPEND, WPCFG and WPDIS bits in Configuration Word 3. Code segment protection is enabled by programming the WPDIS bit (= 0). The WPFP bits specify the size of the segment to be protected by specifying the 512-word code page that is the start or end of the protected segment. The specified region is inclusive, therefore, this page will also be protected.

The WPEND bit determines if the protected segment uses the top or bottom of the program space as a boundary. Programming WPEND (= 0) sets the bottom of program memory (000000h) as the lower boundary of the protected segment. Leaving WPEND unprogrammed (= 1) protects the specified page through the last page of implemented program memory, including the Configuration Word locations.

A separate bit, WPCFG, is used to protect the last page of program space, including the Flash Configuration Words. Programming WPCFG (= 0) protects the last page in addition to the pages selected by the WPEND and WPFP<7:0> bits setting. This is useful in circumstances where write protection is needed for both the code segment in the bottom of the memory and the Flash Configuration Words.

The various options for segment code protection are shown in Table 26-2.

查询PIC24FJ256GB206供应商 26.4.3 CONFIGURATION REGISTER

PROTECTION

The Configuration registers are protected against inadvertent or unwanted changes or reads in two ways. The primary protection method is the same as that of the RP registers – shadow registers contain a complimentary value which is constantly compared with the actual value. To safeguard against unpredictable events, Configuration bit changes resulting from individual cell level disruptions (such as ESD events) will cause a parity error and trigger a device Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the GCP bit is set, the source data for device configuration is also protected as a consequence. Even if General Segment protection is not enabled, the device configuration can be protected by using the appropriate code segment protection setting.

Segment Configuration Bits		tion Bits	Write/Erasa Protection of Code Segment			
WPDIS	WPEND	WPCFG	Write/Erase Protection of Code Segment			
1	Х	x	No additional protection is enabled; all program memory protection is configured by GCP and GWRP.			
0	1	х	Addresses from the first address of the code page are defined by WPFP<7:0> through the end of implemented program memory (inclusive), write/erase protected, including Flash Configuration Words.			
0	0	1	Address 000000h through the last address of the code page is defined by WPFP<7:0> (inclusive), write/erase protected.			
0	0	0	Address 000000h through the last address of code page is defined by WPFP<7:0> (inclusive), write/erase protected and the last page, including Flash Configuration Words are write/erase protected.			

TABLE 26-2: CODE SEGMENT PROTECTION CONFIGURATION OPTIONS

26.5 JTAG Interface

PIC24FJ256GB210 family devices implement a JTAG interface, which supports boundary scan device testing.

26.6 In-Circuit Serial Programming™

PIC24FJ256GB210 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (VSS) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.7 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair designated by the ICS Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

查询PIC24FJ256GB206供应商

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

查询PIC24FJ256GB206供应商 27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

查询PIC24FJ256GB206供应商

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit™ 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

查询PIC24FJ256GB206供应商 28.0 INSTRUCTION SET SUMMARY

Note:	This chapter is a brief summary of the
	PIC24F instruction set architecture and is
	not intended to be a comprehensive
	reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 28-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

查询PIC24FJ256GB206供应商 TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016383}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388607}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers \in {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE,Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ, Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
2011	BSW.C	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BSW.2 BTG	f,#bit4	Bit Toggle f	1	1	None
910	BIG		Bit Toggle Ws	1	1	None
BTSC	BTSC	Ws,#bit4 f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	(2 or 3)	None

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	СОМ	f	f = f	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
	СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
010	CPO	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
CID	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
2010	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
MOV				1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd Move f to f	1	1	N, Z
	MOV					
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	Num
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, 2
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
iuuve	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wud	Wnd = Sign-Extended Ws	1	1	C, N, Z
		f	f = FFFFh	1	1	None
SETM	SETM			1	1	None
	SETM	WREG	WREG = FFFFh	1	1	
GT	SETM	Ws	Ws = FFFFh		1	
SL	SL	f	f = Left Shift f	1		C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, 2
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, 2
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, 2
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, 2
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, 2
SUBB	SUBB	f	f = f - WREG - (C)	1	1	C, DC, N, OV, 2
	SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C, DC, N, OV, 2
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, 2
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, 2
	SUBR	Wb,#lit5,Wd	Wd = lit5 - Wb	1	1	C, DC, N, OV, 2
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1	C, DC, N, OV, 2
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, 2
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

查询PIC24FJ256GB206供应商 NOTES:

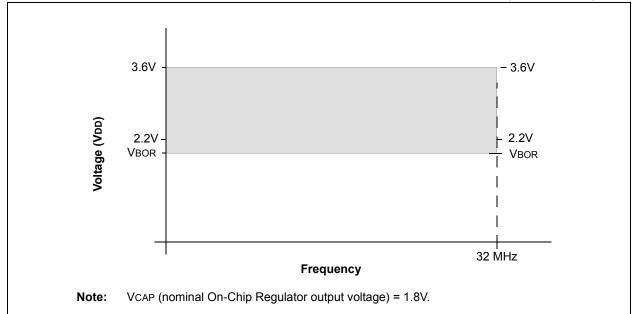
查询PIC24FJ256GB206供应商

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FJ256GB210 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FJ256GB210 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)


Ambient temperature under bias	
Storage temperature	
Voltage on any combined analog and digital pin and \overline{MCLR} , with respect to Vss	
Voltage on any digital only pin with respect to Vss when VDD < 3.0V	
Voltage on any digital only pin with respect to Vss when VDD > 3.0V	
Voltage on VBUS pin with respect to VSS, independent of VDD or VUSB	
Maximum current out of Vss pin	
Maximum current into VDD pin (Note 1)	250 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 1)	200 mA
Nets 4. Meximum ellevielle comentie of unstice of device meximum neuron disciputi	an (a a a Table 20.4)

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 29-1).

†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

查询PIC24FJ256GB206供应商 29.1 DC Characteristics

FIGURE 29-1: PIC24FJ256GB210 FAMILY VOLTAGE FREQUENCY GRAPH (INDUSTRIAL)

TABLE 29-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Мах	Unit
PIC24FJ256GB210 family:					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Power Dissipation (with ENVREG = 1): Internal Chip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	ip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$ ver Dissipation:				W
$PI/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$ Maximum Allowed Power Dissipation	Pdmax	(TJ	max – Ta)/	θJA	W

TABLE 29-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Note
Package Thermal Resistance, 12x12x1 mm TQFP	θJA	69.4	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm TQFP	θJA	76.6	—	°C/W	(Note 1)
Package Thermal Resistance, 9x9x0.9 mm QFN	θJA	28.0	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1.1 mm BGA	θJA	40.2		°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

查询PIC24FJ256GB206供应商 TABLE 29-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CH/	ARACTER	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
Operati	ing Voltag	je					
DC10	Supply V	/oltage					
	Vdd		VBOR	—	3.6	V	Regulator enabled
	VCAP ⁽²⁾		_	1.8V	_	V	Regulator enabled
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—		V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	—	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	—	V/ms	0-3.3V in 66 ms 0-2.5V in 50 ms
	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.10	2.2	V	Regulator enabled
	Vlvd	LVD Trip Voltage	_	VBOR + 0.10		V	

Note 1: This is the limit to which the RAM data can be retained, while the on-chip regulator output voltage starts following the VDD.

2: This is the on-chip regulator output voltage specification.

查询PIC24FJ256GB206供应商

TABLE 29-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions						
Operating Cu	rrent (IDD) ⁽²⁾								
DC20D	0.8	1.3	mA	-40°C					
DC20E	0.8	1.3	mA	+25°C	3.3∨ ⁽³⁾	1 MIPS			
DC20F	0.8	1.3	mA	+85°C					
DC23D	3.0	4.8	mA	-40°C					
DC23E	3.0	4.8	mA	+25°C	3.3∨ ⁽³⁾	4 MIPS			
DC23F	3.0	4.8	mA	+85°C					
DC24D	12.0	18	mA	-40°C					
DC24E	12.0	18	mA	+25°C	3.3∨ ⁽³⁾	16 MIPS			
DC24F	12.0	18	mA	+85°C					
DC31D	55	95	μA	-40°C					
DC31E	55	95	μA	+25°C	3.3∨ ⁽³⁾	LPRC (31 kHz)			
DC31F	135	225	μΑ	+85°C					

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.

查询PIC24FJ256GB206供应商 TABLE 29-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARAC	TERISTICS			Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Max	Units	Units Conditions					
Idle Current (IIDLE) ⁽²⁾		•						
DC40D	170	320	μA	-40°C					
DC40E	170	320	μA	+25°C	3.3∨ ⁽³⁾	1 MIPS			
DC40F	220	380	μA	+85°C					
DC43D	0.6	1.2	mA	-40°C					
DC43E	0.6	1.2	mA	+25°C	3.3∨ ⁽³⁾	4 MIPS			
DC43F	0.7	1.2	mA	+85°C					
DC47D	2.3	4.8	mA	-40°C					
DC47E	2.3	4.8	mA	+25°C	3.3∨ ⁽³⁾	16 MIPS			
DC47F	2.4	4.8	mA	+85°C					
DC50D	0.8	1.8	mA	-40°C		FRC (4 MIPS)			
DC50E	0.8	1.8	mA	+25°C	3.3∨ ⁽³⁾				
DC50F	1.0	1.8	mA	+85°C	7				
DC51D	40.0	85	μA	-40°C		LPRC (31 kHz)			
DC51E	40.0	85	μA	+25°C	3.3∨ ⁽³⁾				
DC51F	120.0	210	μA	+85°C	7				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core off; OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.

查询PIC24FJ256GB206供应商 TABLE 29-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	s Conditions				
Power-Down	Current (IPD) ⁽	2)						
DC60D	20.0	45	μA	-40°C				
DC60E	20.0	45	μA	+25°C	3.3V ⁽³⁾	Deep nower down ourrent(4)		
DC60H	55.0	105	μΑ	+60°C	3.3010	Base power-down current ⁽⁴⁾		
DC60F	95.0	185	μΑ	+85°C				
DC61D	1.0	3.5	μA	-40°C		31 kHz LPRC oscillator with RTCC, WDT or Timer1: ∆ILPRC ⁽⁴⁾		
DC61E	1.0	3.5	μA	+25°C	3.3∨ (3)			
DC61H	1.0	3.5	μA	+60°C	3.3010			
DC61F	2.5	6.5	μA	+85°C				
DC62D	1.5	6	μΑ	-40°C				
DC62E	1.5	6	μΑ	+25°C	3.3∨ ⁽³⁾	Low drive strength, 32 kHz crystal		
DC62H	1.5	6	μA	+60°C	3.30(*)	with RTCC or Timer1: ∆Isosc; SOSCSEL<1:0> = 01 ⁽⁴⁾		
DC62F	8.0	18	μA	+85°C				
DC63D	4.0	18	μA	-40°C				
DC63E	4.0	18	μA	+25°C	3.3∨ ⁽³⁾	32 kHz crystal		
DC63H	6.5	18	μΑ	+60°C	3.30(3)	with RTCC or Timer1: Δ Isosc; SOSCSEL<1:0> = 11 ⁽⁴⁾		
DC63F	12.0	25	μΑ	+85°C	1			

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with the device in Sleep mode (all peripherals and clocks are shut down). All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear and the Peripheral Module Disable (PMD) bits for all unused peripherals are set.

3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.

4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

查询PIC24FJ256GB206供应商 TABLE 29-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

	ARACTER	DC CHARACTERISTICS:					V (unless otherwise
			Operating tempe	erature	-40°C ≤ T	A ≤ +85°	C for Industrial
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽³⁾					
DI10		I/O Pins with ST Buffer	Vss	—	0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss	—	0.15 VDD	V	
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		OSCI (XT mode)	Vss	_	0.2 VDD	V	
DI17		OSCI (HS mode)	Vss	—	0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer:	Vss	—	0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer:	Vss	—	0.8	V	SMBus enabled
	Vih	Input High Voltage ⁽³⁾					
DI20		I/O Pins with ST Buffer: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd 5.5	V V	
DI21		I/O Pins with TTL Buffer: with Analog Functions Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8	_	Vdd 5.5	V V	
DI25		MCLR	0.8 VDD	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V	
DI28		I/O Pins with I ² C™ Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions Digital Only	2.1 2.1		Vdd 5.5	V V	$2.5V \le VPIN \le VDD$
DI30	ICNPU	CNxx Pull-up Current	15	70	150	μA	VDD = 3.3V, VPIN = VSS
DI30A	ICNPD	CNxx Pull-down Current	150	350	550	μA	VDD = 3.3V, VPIN = VDD
DI50	lı∟	Input Leakage Current ⁽²⁾ I/O Ports	_	_	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance
DI51		Analog Input Pins	_	—	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance
DI55		MCLR	_	_	<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI/CLKI	_	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ EC, \ XT \ \text{and} \ HS \ \text{modes} \end{array}$

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-3 for I/O pins buffer types.

查询PIC24FJ256GB206供应商

TABLE 29-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CH	ARACTER	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	Vol	Output Low Voltage					
DO10		I/O Ports	_	_	0.4	V	IOL = 6.6mA, VDD = 3.6V
			_	_	0.4	V	IOL = 5.0 mA, VDD = 2.2V
DO16		OSCO/CLKO	_	—	0.4	V	IOL = 6.6 mA, VDD = 3.6V
			_		0.4	V	IOL = 5.0 mA, VDD = 2.2V
	Vон	Output High Voltage					
DO20		I/O Ports	3.0	—	—	V	Іон = -3.0 mA, Vdd = 3.6V
			2.4	—	—	V	Iон = -6.0 mA, Vdd = 3.6V
			1.65	—	—	V	Іон = -1.0 mA, Vdd = 2.2V
			1.4	—	—	V	IOH = -3.0 mA, VDD = 2.2V
DO26		OSCO/CLKO	2.4	—	—	V	IOH = -6.0 mA, VDD = 3.6V
			1.4	—	_	V	Юн = -1.0 mA, VDD = 2.2V

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-9: DC CHARACTERISTICS: PROGRAM MEMORY

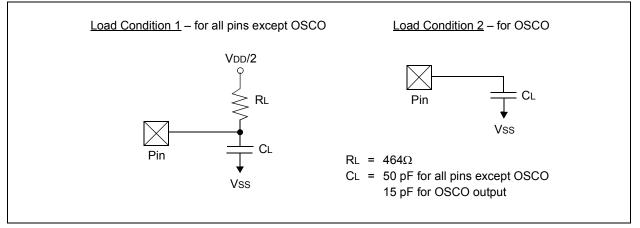
DC CHA	ARACTER	RISTICS	Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	ⁿ Symbol Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	10000		—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN		3.6	V	VMIN = Minimum operating voltage
D132B		VDD for Self-Timed Write	VMIN		3.6	V	VMIN = Minimum operating voltage
D133A	Tiw	Self-Timed Word Write Cycle Time	—	20	—	μS	
		Self-Timed Row Write Cycle Time	—	1.5	—	ms	
D133B	TIE	Self-Timed Page Erase Time	20	—	40	ms	
D134	TRETD	Characteristic Retention	20		—	Year	If no other specifications are violated
D135	IDDP	Supply Current during Programming	—	16		mA	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

查询PIC24FJ256GB206供应商

TABLE 29-10: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operati	ing Condit	ions: -40°C < TA < +85°C (unless	otherwi	se state	d)		
Param No.	ⁿ Symbol Characteristics		Min	Тур	Max	Units	Comments
	Vrgout	Regulator Output Voltage	_	1.8	—	V	
	Vbg	Internal Band Gap Reference		1.2	—	V	
	CEFC	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.
	TVREG		_	10	_	μS	VREGS = 1, VREGS = 0 with WUTSEL<1:0> = 01 or any POR or BOR
				190	—	μS	Sleep wake-up with VREGS = 0 and WUTSEL<1:0> = 11
	Tbg	Band Gap Reference Start-up Time	_	1	—	ms	

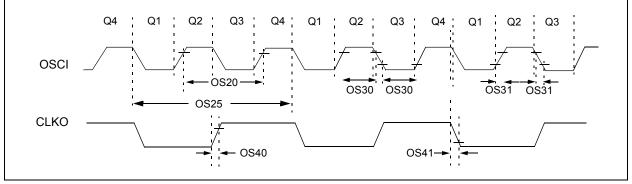

29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ256GB210 family AC characteristics and timing parameters.

TABLE 29-11: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
	Operating voltage VDD range as described in Section 29.1 "DC Characteristics".					

FIGURE 29-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS



查询PIC24FJ256GB206供应商 TABLE 29-12: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Cio	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-3: EXTERNAL CLOCK TIMING

查询PIC24FJ256GB206供应商

TABLE 29-13: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CH	ARACTE	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 48	MHz MHz	EC ECPLL		
		Oscillator Frequency	3.5 4 10 10 31		10 8 32 32 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC		
OS20	Tosc	Tosc = 1/Fosc	_	_	_		See parameter OS10 for Fosc value		
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5		DC	ns			
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	—	ns	EC		
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	_	6	10	ns			
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

AC CH	ARACTE	RISTICS	Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions						
OS50	Fplli	PLL Input Frequency	4	—	48	MHz	ECPLL mode		
		Range ⁽²⁾	4	_	32	MHz	HSPLL mode		
			4	_	8	MHz	XTPLL mode		
OS51	Fsys	PLL Output Frequency Range	95.76	—	96.24	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	_	—	200	μS			
OS53	DCLK	CLKO Stability (Jitter)	-0.25		0.25	%			

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

查询PIC24FJ256GB206供应商

TABLE 29-15: INTERNAL RC ACCURACY

		Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param No. Characteristic		Min	Тур	Мах	Units	Conditions				
F20	FRC Accuracy @ 8 MHz ^(1,2)	-1	±0.15	1	%	$-40^{\circ}C \leq T_A \leq +85^{\circ}C 2.2V \leq V_{DD} \leq 3.6V$				
F21	LPRC @ 31 kHz	-20	—	20	%	$-40^\circ C \le T A \le +85^\circ C$	VCAP (on-chip regulator output voltage) = 1.8V			

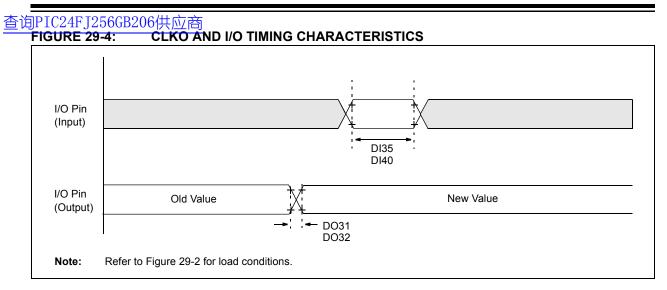

Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.
 To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

TABLE 29-16: RC OSCILLATOR START-UP TIME

		Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Characteristic	Min	Тур	Мах	Units	Conditions			
	TFRC	_	15	_	μS				
	Tlprc	—	50		μS				

TABLE 29-17: RESET AND BROWN-OUT RESET REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol Characteristic			Тур	Max	Units	Conditions		
SY10	TMCL	MCLR Pulse width (Low)	2	—		μs			
SY12	TPOR	Power-on Reset Delay	_	2		μs			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	100	ns			
SY25	TBOR	Brown-out Reset Pulse Width	1			μs	$V \text{DD} \leq V \text{BOR}$		
	Trst	Internal State Reset Time		50		μS			

TABLE 29-18: C	LKO AND I/O TIMING REQUIREMENTS
----------------	---------------------------------

AC CHARACTERISTICS			Standard Operating Conditions: 2.2V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TIOR	Port Output Rise Time	—	10	25	ns		
DO32	TIOF	Port Output Fall Time	_	10	25	ns		
DI35	TINP	INTx Pin High or Low Time (input)	20	—	—	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

查询PIC24FJ256GB206供应商

TABLE 29-19: ADC MODULE SPECIFICATIONS

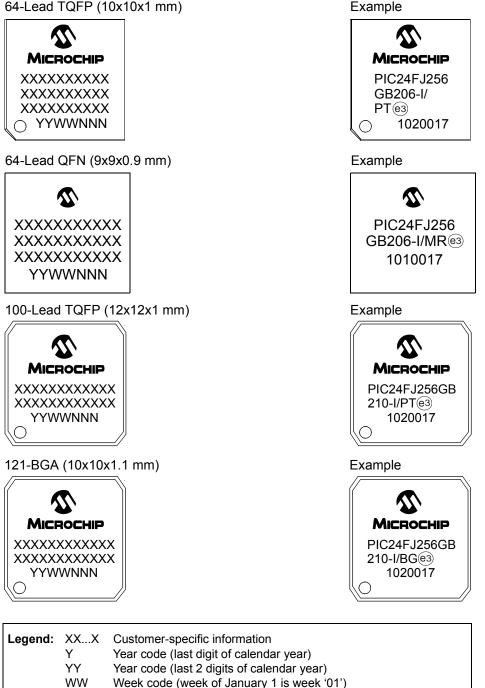
AC CH	ARACTERI	STICS	Standard Operating Conditions: 2.2V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
			Device \$	Supply					
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.2		Lesser of VDD + 0.3 or 3.6	V			
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V			
			Reference	e Inputs					
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V			
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 1.7	V			
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	—	AVDD + 0.3	V			
			Analog	Input					
AD10	VINH-VINL	Full-Scale Input Span	VREFL		VREFH	V	(Note 2)		
AD11	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V			
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3		AVDD/2	V			
AD13		Leakage Current		±1.0	±610	nA	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3V,$ Source Impedance = 2.5 k Ω		
AD17	Rin	Recommended Impedance of Analog Voltage Source	—		2.5K	Ω	10-bit		
			ADC Ac	curacy			·		
AD20B	Nr	Resolution	—	10	—	bits			
AD21B	INL	Integral Nonlinearity	_	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD22B	DNL	Differential Nonlinearity	—	±0.5	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD23B	Gerr	Gain Error	—	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD24B	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD25B		Monotonicity ⁽¹⁾	_			_	Guaranteed		

Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.

查询PIC24FJ256GB206供应商 TABLE 29-20: ADC CONVERSION TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS			Standard Operating Conditions: 2.2V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions					
	Clock Parameters							
AD50	Tad	ADC Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 in default state	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns		
		Con	version R	ate				
AD55	tCONV	Conversion Time	_	12	—	TAD		
AD56	FCNV	Throughput Rate	—	—	500	ksps	AVDD > 2.7V	
AD57	tSAMP	Sample Time	—	1	—	Tad		
		Cloc	k Paramet	ters				
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	Tad		


Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206开放。 30.0 PACKAGING INFORMATION

30.1 **Package Marking Information**

64-Lead TQFP (10x10x1 mm)

Note:

NNN

(e3)

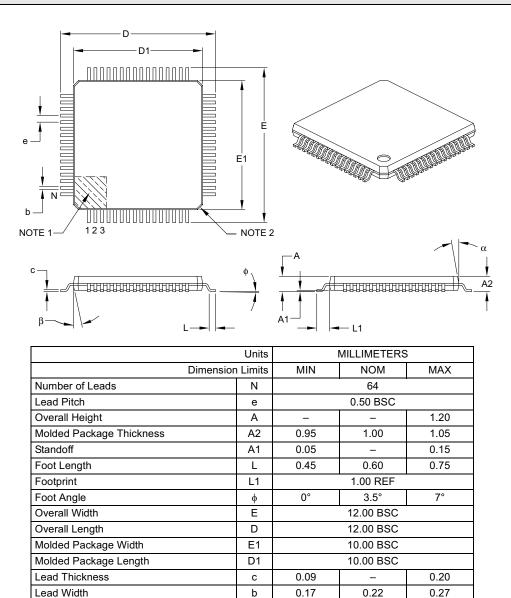
Alphanumeric traceability code

characters for customer-specific information.

Pb-free JEDEC designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available


查询PIC24FJ256GB206供应商

30.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

Mold Draft Angle Top

Mold Draft Angle Bottom

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

α

β

11°

11°

12°

12°

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

13°

13°

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

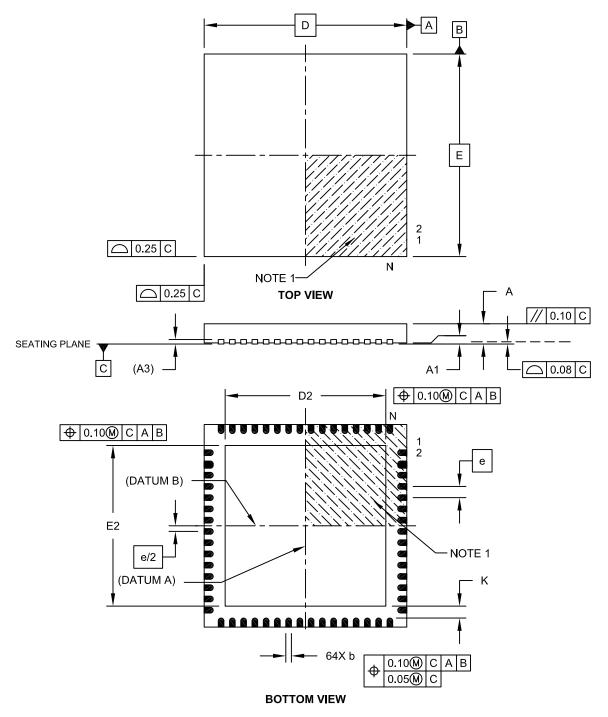
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIM	ETERS	
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

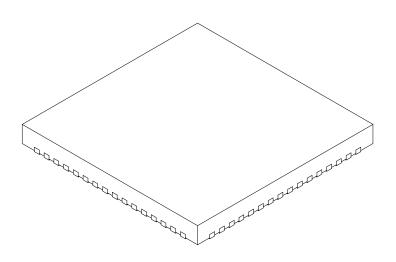
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

查询PIC24FJ256GB206供应商

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

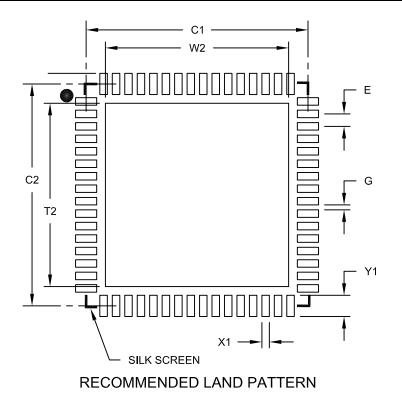
	Units	N	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N	64		
Pitch	е		0.50 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		9.00 BSC	
Exposed Pad Width	E2	7.05	7.15	7.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	7.05	7.15	7.50
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2

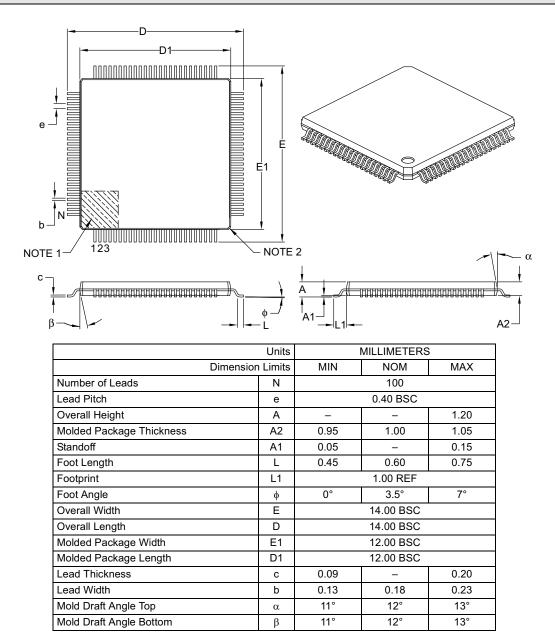
查询PIC24FJ256GB206供应商

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

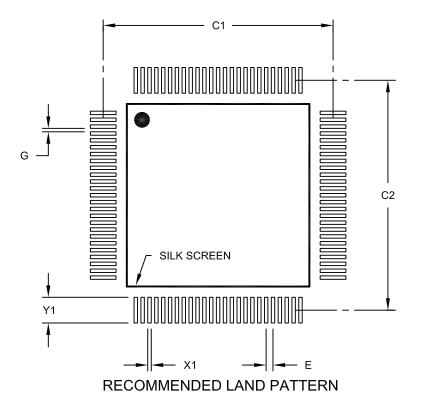
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

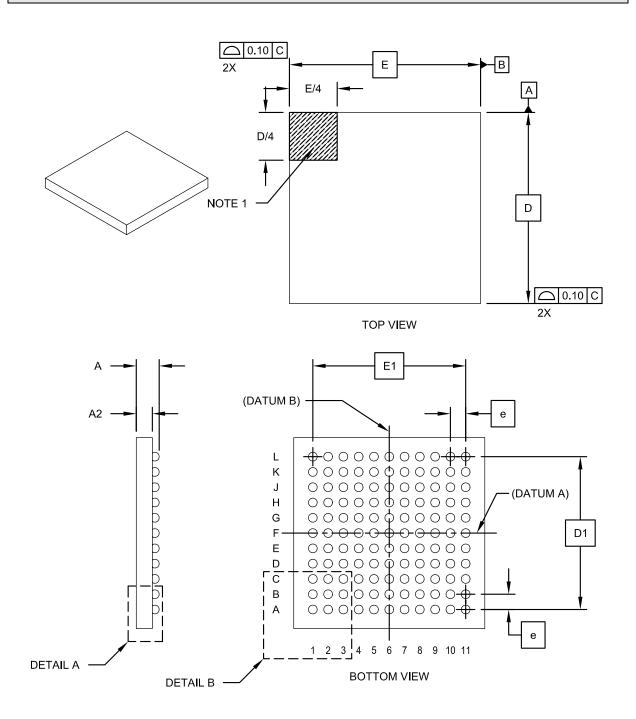
查询PIC24FJ256GB206供应商

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIM	ETERS	
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

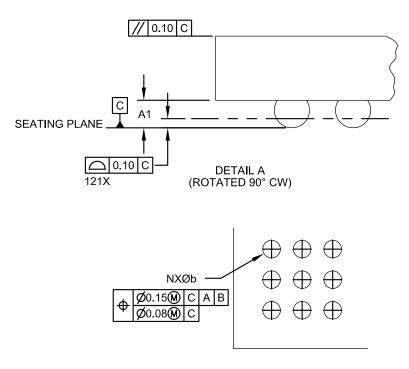
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

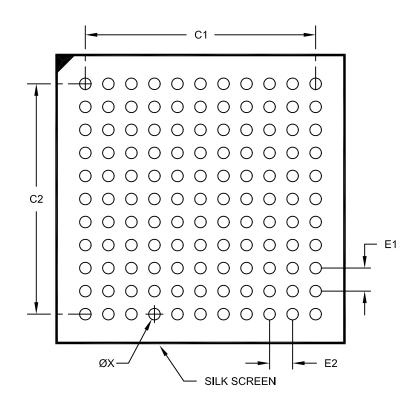
Microchip Technology Drawing C04-148A Sheet 1 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	MILLIMETERS				
Dimensio	Dimension Limits		NOM	MAX	
Number of Contacts	N	N 121			
Contact Pitch	e		0.80 BSC		
Overall Height	Α	1.00	1.10	1.20	
Standoff	A1	0.25	0.30	0.35	
Molded Package Thickness	A2	0.55	0.60	0.65	
Overall Width	Ш	10.00 BSC			
Array Width	E1	8.00 BSC			
Overall Length	D	10.00 BSC			
Array Length	D1	8.00 BSC			
Contact Diameter	b	0.40 TYP			


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.

Microchip Technology Drawing C04-148 Rev A Sheet 2 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimensio	Dimension Limits		NOM	MAX	
Contact Pitch	E1		0.80 BSC		
Contact Pitch	E2		0.80 BSC		
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Diameter (X121)	X			0.40	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148A

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 APPENDIX A: REVISION HISTORY

Revision A (May 2010)

Original data sheet for the PIC24FJ256GB210 family of devices.

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 INDEX

Α	
A/D Conversion	
10-Bit High-Speed A/D Converter	301
A/D Converter	301
Analog Input Model	309
Transfer Function	309
AC Characteristics	
A/D Specifications	360
ADC Conversion Timing Requirements	361
Capacitive Loading on Output Pin	356
CLKO and I/O Timing	359
External Clock Timing	357
Internal RC Accuracy	358
Load Conditions and Requirements for	
Specifications	355
PLL Clock Timing Specifications	357
RC Oscillator Start-up Time	358
Reset and Brown-out Reset Requirements	358
Timing Parameters	355
Alternate Interrupt Vector Table (AIVT)	91
Assembler	
MPASM Assembler	

В

Block Diagram
CRC
Block Diagrams
10-Bit High-Speed A/D Converter
16-Bit Asynchronous Timer3 and Timer5 187
16-Bit Synchronous Timer2 and Timer4 187
16-Bit Timer1 Module183
32-Bit Timer2/3 and Timer4/5 186
96 MHz PLL 145
Accessing Program Space Using Table
Operations74
Addressing for Table Registers
BDT Mapping for Endpoint Buffering Modes
CALL Stack Frame72
Comparator Voltage Reference
CPU Programmer's Model 39
CRC Shift Engine Detail 293
CTMU Connections and Internal Configuration
for Capacitance Measurement
CTMU Typical Connections and Internal
Configuration for Pulse Delay Generation 320
CTMU Typical Connections and Internal
Configuration for Time Measurement
Data Access From Program Space Address
Generation73
EDS Address Generation for Read Operations 69
EDS Address Generation for Write Operations70
Extended Data Space 68
I ² C Module
Individual Comparator Configurations,
CREF = 0
Individual Comparator Configurations,
CREF = 1 and CVREFP = 0
Individual Comparator Configurations,
CREF = 1 and CVREFP = 1
Input Capture 191
On-Chip Regulator Connections
Output Compare (16-Bit Mode)196

Output Compare (Double Buffered	
Output Compare (Double-Buffered, 16-Bit PWM Mode)	100
PIC24F CPU Core	
PIC24FJ256GB210 Family (General)	
PSV Operation (Higher Word)	
PSV Operation (Lower Word) Reset System	
RTCC	
Shared I/O Port Structure	
SPI Master, Frame Master Connection	
SPI Master, Frame Slave Connection	214
SPI Master/Slave Connection (Enhanced	040
Buffer Modes)	
SPI Master/Slave Connection (Standard Mode)	
SPI Slave, Frame Master Connection	
SPI Slave, Frame Slave Connection	
SPIx Module (Enhanced Mode)	
SPIx Module (Standard Mode)	
System Clock	
Triple Comparator Module	
UART (Simplified)	
USB OTG Device Mode Power Modes	
USB OTG Dual Power Example	236
USB OTG External Pull-up for Full-Speed	
Device Mode	
USB OTG Interface Example	
USB OTG Interrupt Funnel	
USB OTG Module	
USB OTG Self-Power Only	
Watchdog Timer (WDT)	331

С

C Compilers	
MPLAB C18	336
Charge Time Measurement Unit (CTMU)	319
Key Features	319
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Basic Sequence for Clock Switching in Assembly.	144
Configuring UART1 I/O Input/Output	
Functions (PPS)	162
EDS Read Code From Program Memory	
in Assembly	77
EDS Read Code in Assembly	69
EDS Write Code in Assembly	
Erasing a Program Memory Block (Assembly)	82
I/O Port Write/Read in 'C'	157
I/O Port Write/Read in Assembly	
Initiating a Programming Sequence	83
PWRSAV Instruction Syntax	
Setting the RTCWREN Bit	282
Single-Word Flash Programming	
Single-Word Flash Programming ('C' Language)	84
Code Protection	332
Code Segment Protection	
Configuration Options	333
Configuration Register Protection	333
Comparator Voltage Reference	
Configuring	317
Configuration Bits	323
Core Features	15

查询PIC24FJ256GB206供应商 CPU

Arithmetic Logic Unit (ALU)4	1
Control Registers4	0
Core Registers	8
Programmer's Model	7
CRC	
32-Bit Programmable Cyclic Redundancy Check 29	3
Polynomials29	4
Setup Examples for 16 and 32-Bit Polynomials 29	4
User Interface	4
CTMU	
Measuring Capacitance	9
Measuring Time	0
Pulse Generation and Delay	0
Customer Change Notification Service	2
Customer Notification Service	2
Customer Support	2

D

Data Memory	
Address Space	45
Extended Data Space (EDS)	68
Memory Map	46
Near Data Space	47
SFR Space	47
Software Stack	
Space Organization, Alignment	47
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current	
Operating Current	
Program Memory	
Temperature and Voltage Specifications	
Thermal Conditions	
Voltage Regulator Specifications	
Development Support	
Device Features	
100/121Pin	18
64-Pin	17
Doze Mode	150

Е

Electrical Characteristics	
Absolute Maximum Ratings	
V/F Graph	
Enhanced Parallel Master Port. See EPMP	
ENVREG Pin	
EPMP	
ALTPMP Setting	
Key Features	
Master Port Pins	
Equations	
16-Bit, 32-Bit CRC Polynomials	
A/D Conversion Clock Period	
Baud Rate Reload Calculation	219
Calculating the PWM Period	
Calculation for Maximum PWM Resolution	
Estimating USB Transceiver Current	
Consumption	
Relationship Between Device and SPI	
Clock Speed	215
RTCC Calibration	
UART Baud Rate with BRGH = 0	
UART Baud Rate with BRGH = 1	

Errata Extended Data Space (EDS)	
F	
Flash Configuration Words	44 323
Flash Program Memory	
Enhanced ICSP Operation	
JTAG Operation	
Programming Algorithm	
RTSP Operation	
Single-Word Programming	
Table Instructions	
I	
I/O Ports	
Analog Port Pins Configuration	
Analog/Digital Function of an I/O Pin	152
Input Change Notification	157
Open-Drain Configuration	152
Parallel (PIO)	151
Peripheral Pin Select	
Pull-ups and Pull-Downs	
Selectable Input Sources	
Write/Read Timing	
I ² C	
Clock Rates	219
Reserved Addresses	219
Setting Baud Rate as Bus Master	
Slave Address Masking	
Idle Mode	
Input Capture	
32-Bit Mode (Cascaded)	102
Operations	
Synchronous and Trigger Modes	
Input Capture with Dedicated Timers	191
Input Voltage Levels for Port or Pin	150
Tolerated Description Input	152
Instruction Set	240
Opcode Symbols	
Overview	
Summary	
Instruction-Based Power-Saving Modes	
Interfacing Program and Data Spaces	72
Inter-Integrated Circuit. See I ² C.	
Internet Address	
Interrupt Vector Table (IVT)	91
Interrupts	
Control and Status Registers	
Implemented Vectors	93
Reset Sequence	
Setup and Service Procedures	135
Trap Vector Details	92
Vector Table	92
J	
JTAG Interface	
K	
Key Features	323

查询PIC24FJ256GB206供应商

141	
Memory Organization	43
Microchip Internet Web Site	
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB Integrated Development Environment	
Software	335
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	
Ν	
Near Data Space	47
0	
0	
Oscillator Configuration	
96 MHz PLL	144
Clock Selection	
Clock Switching	
Sequence	
CPU Clocking Scheme	
Initial Configuration on POR	
USB Operations	
Output Compare	
	405
32-Bit Mode (Cascaded)	
Synchronous and Trigger Modes	
Output Compare with Dedicated Timers	
Р	
•	
Packaging	
Details	
Marking	
Peripheral Enable Bits	150
Peripheral Module Disable Bits	150
Peripheral Pin Select (PPS)	
Available Peripherals and Pins	
Configuration Control	
Considerations for Use	
Input Mapping	
Mapping Exceptions	
Output Mapping	
1 11 0	
Peripheral Priority	
Registers	
Pin Descriptions	
100-Pin Devices	
121-Pin (BGA) Devices	11
64-Pin Devices	6
Pin Diagrams	
100-Pin TQFP	7
121-Pin BGA	10
64-Pin TQFP/QFN	5
Pinout Descriptions	
POR	
and On-Chip Voltage Regulator	330
Power-Saving Features	
Clock Frequency and Clock Switching	
Instruction-Based Modes	
Power-up Requirements	
Product Identification System	
Program Memory	
Access Using Table Instructions	
Address Construction	
Address Space	
Flash Configuration Words	
Memory Maps	
Organization	
Reading From Program Memory Using EDS	
J . J	

Program Verification	
Duty Cycle and Period 198	8
R	
Reader Response 38 Reference Clock Output 14 Register Maps	
A/D Converter	
ANCFG	
Comparators	
CPU Core 48	
CRC	
CTMU	
ICN	
Input Capture	
Interrupt Controller	
NVM	
Pad Configuration	
Peripheral Pin Select 65	
PMD	
PORTA	
PORTC	
PORTD	
PORTE	
PORTF	
RTCC	
SPI	
System6	
Timers	
USB OTG	
Registers	
AD1CHS (A/D Input Select)	
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CSSH (A/D Input Scan Select, High)	
AD1CSSL (A/D Input Scan Select, Low)	
ALCFGRPT (Alarm Configuration)	
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value) 289	
ANCFG (A/D Band Gap Reference	
Configuration)	
ANSA (FORTA Analog Function Selection)	
ANSC (PORTC Analog Function Selection)	
ANSD (PORTD Analog Function Selection)	
ANSE (PORTE Analog Function Selection)	
ANSE (FORTE Analog Function Selection)	
BDnSTAT Prototype (Buffer Descriptor n Status, CPL	
Mode)	2
BDnSTAT Prototype (Buffer Descriptor n Status, USB Mode)24	1
CLKDIV (Clock Divider)	
CMSTAT (Comparator Status) 31	

查询PIC24FJ256GB206供应商 CMXCON (Comparator x Control,

Comparators 1-3) CORCON (CPU Core Control) CRCCON1 (CRC Control 1)	
CRCCON1 (CRC Control 1)	314
CRCCON1 (CRC Control 1)	.41.96
CRCCON2 (CRC Control 2)	
CRCDATH (CRC Data High)	298
CRCDATL (CRC Data Low)	
CRCWDATH (CRC Shift High)	
CRCWDATL (CRC Shift Low)	
CRCXORH (CRC XOR High)	298
CRCXORL (CRC XOR Polynomial, Low Byte)	
CTMUCON (CTMU Control)	321
CTMUICON (CTMU Current Control)	322
CVRCON (Comparator Voltage	
Reference Control)	318
CW4 (Floch Configuration Word 1)	204
CW1 (Flash Configuration Word 1)	
CW2 (Flash Configuration Word 2)	326
CW3 (Flash Configuration Word 3)	327
CW4 (Flash Configuration Word 4)	
DEVID (Device ID)	
DEVREV (Device Revision)	329
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON1 (Input Capture x Control 1)	193
ICxCON2 (Input Capture x Control 2)	
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	109
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IEC5 (Interrupt Enable Control 5)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	103
IFS4 (Interrupt Flag Status 4)	104
IFS5 (Interrupt Flag Status 5)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTTREG (Interrupt Controller Test)	134
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	114
	114
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10)	114 123
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11)	114 123 124
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12)	114 123 124 125
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 13)	114 123 124 125 126
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12)	114 123 124 125 126
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 13) IPC15 (Interrupt Priority Control 15)	114 123 124 125 126 127
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 13) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16)	114 123 124 125 126 127 128
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 13) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18)	114 123 124 125 126 127 128 129
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19)	114 123 124 125 126 127 128 129 129
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19)	114 123 124 125 126 127 128 129 129
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 13) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC2 (Interrupt Priority Control 2)	114 123 124 125 126 127 128 129 129 129 115
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC20 (Interrupt Priority Control 20)	114 123 124 125 126 127 128 129 129 129 130
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC21 (Interrupt Priority Control 20)	114 123 124 125 126 127 128 129 129 129 130 131
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 21) IPC22 (Interrupt Priority Control 22)	114 123 124 125 126 126 127 128 129 129 115 130 131
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC21 (Interrupt Priority Control 20)	114 123 124 125 126 126 127 128 129 129 115 130 131
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 21) IPC23 (Interrupt Priority Control 22) IPC23 (Interrupt Priority Control 23)	114 123 124 125 126 127 128 129 129 129 130 131 132 133
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 21) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3)	114 123 124 125 126 127 128 129 129 129 130 131 132 133 116
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 20) IPC23 (Interrupt Priority Control 22) IPC33 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4)	114 123 124 125 126 127 128 129 129 129 130 131 131 132 133 116 117
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 21) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3)	114 123 124 125 126 127 128 129 129 129 130 131 131 132 133 116 117
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 20) IPC23 (Interrupt Priority Control 21) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3)	114 123 124 125 126 127 128 129 129 129 130 131 131 132 133 116 117 118
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 13) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 20) IPC23 (Interrupt Priority Control 21) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC5 (Interrupt Priority Control 5)	114 123 124 125 126 127 128 129 129 129 130 131 131 132 133 116 117 118 119
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 2) IPC22 (Interrupt Priority Control 20) IPC23 (Interrupt Priority Control 21) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7)	114 123 124 125 126 127 128 129 129 129 130 131 131 133 116 117 118 119 120
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 20) IPC23 (Interrupt Priority Control 21) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 7) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7)	114 123 124 125 126 127 128 129 129 129 129 130 131 131 132 133 116 117 118 119 120 121
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 13) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 20) IPC20 (Interrupt Priority Control 20) IPC21 (Interrupt Priority Control 21) IPC22 (Interrupt Priority Control 22) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC9 (Interrupt Priority Control 9)	114 123 124 125 126 126 127 128 129 129 115 130 131 131 133 116 117 118 119 120
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 13) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 20) IPC20 (Interrupt Priority Control 20) IPC21 (Interrupt Priority Control 21) IPC22 (Interrupt Priority Control 22) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7) IPC9 (Interrupt Priority Control 9)	114 123 124 125 126 126 127 128 129 129 115 130 131 131 133 116 117 118 119 120
IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12) IPC13 (Interrupt Priority Control 12) IPC15 (Interrupt Priority Control 13) IPC16 (Interrupt Priority Control 15) IPC18 (Interrupt Priority Control 16) IPC19 (Interrupt Priority Control 18) IPC20 (Interrupt Priority Control 2) IPC21 (Interrupt Priority Control 20) IPC22 (Interrupt Priority Control 20) IPC23 (Interrupt Priority Control 21) IPC23 (Interrupt Priority Control 23) IPC3 (Interrupt Priority Control 3) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 5) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 7) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 7)	114 123 124 125 126 126 127 128 129 129 115 130 131 131 133 116 117 118 119 120 121 122 287

NVMCON (Flash Memory Control)	
OCxCON1 (Output Compare x Control 1) 2	
OCxCON2 (Output Compare x Control 2) 2	
OSCCON (Oscillator Control) 1	
OSCTUN (FRC Oscillator Tune) 1	
PADCFG1 (Pad Configuration Control) 279, 2	
PMCON1 (EPMP Control 1) 2	
PMCON2 (EPMP Control 2)	
PMCON3 (EPMP Control 3)	
PMCON4 (EPMP Control 4)	
PMCSxBS (Chip Select x Base Address)	
PMCSxCF (Chip Select x Configuration)	
PMCSxMD (Chip Select x Mode)	
PMSTAT (EPMP Status, Slave Mode) 2 RCFGCAL (RTCC Calibration and	10
Configuration)	83
RCON (Reset Control)	
REFOCON (Reference Oscillator Control)	
RPINRn (PPS Input)	
RPORn (PPS Output)	
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (ALU STATUS) 40,	
T1CON (Timer1 Control) 1	
TxCON (Timer2 and Timer4 Control) 1	
TyCON (Timer3 and Timer5 Control) 1	
UIADDR (USB Address) 2	
U1CNFG1 (USB Configuration 1) 2	57
U1CNFG2 (USB Configuration 2) 2	
U1CON (USB Control, Device Mode) 2	54
U1CON (USB Control, Host Mode) 2	55
U1EIE (USB Error Interrupt Enable) 2	
U1EIR (USB Error Interrupt Status) 2	
U1EPn (USB Endpoint n Control) 2	
U1IE (USB Interrupt Enable) 2	
U1IR (USB Interrupt Status, Device Mode)	
U1IR (USB Interrupt Status, Host Mode)	
U10TGCON (USB OTG Control)	51
U1OTGIE (USB OTG Interrupt Enable,	~~
Host Mode)	60
U1OTGIR (USB OTG Interrupt Status, Host Mode)2	50
U10TGSTAT (USB OTG Status, Host Mode)	
U1PWMCON USB (VBUS PWM	50
Generator Control)	67
U1PWRC (USB Power Control)	
U1SOF (USB OTG Start-of-Token Threshold,	52
Host Mode)	57
U1STAT (USB Status)	
U1TOK (USB Token, Host Mode)	
UxMODE (UARTx Mode) 2	
UxSTA (UARTx Status and Control) 2	
WKDYHR (RTCC Weekday and Hours Value) 2	
YEAR (RTCC Year Value) 2	86
Resets	
BOR (Brown-out Reset)	
Clock Source Selection	
CM (Configuration Mismatch Reset)	
Delay Times	
Device Times	
IOPUWR (Illegal Opcode Reset)	
MCLR (Pin Reset)	
POR (Power-on Reset)	
RCON Flags Operation	Ø/

查询PIC24FJ256GB206供应商 SER States

5		
SFR States	<u> </u>	
SWR (RESE	T Instruction)	
TRAPR (Trap	o Conflict Reset)	
	alized W Register Reset)	
WDT (Watch	dog Timer Reset)	
Revision History		
RTCC		
Alarm Config	uration	
Calibration		
Key Features	3	
Register Map	pping	
_		

S

Selective Peripheral Power Control Serial Peripheral Interface (SPI)	
Serial Peripheral Interface. See SPI.	200
SFR Space	
Sleep Mode	149
Software Simulator (MPLAB SIM)	
Software Stack	72
Special Features	
SPI	205

Т

Timer1	183
Timer2/3 and Timer4/5	185
Timing Diagrams	
CLKO and I/O Timing	359
External Clock	
Triple Comparator	
Triple Comparator Module	

U

UART
Operation of UxCTS and UxRTS Pins 227
Receiving in 8-Bit or 9-Bit Data Mode227
Transmitting
Break and Sync Sequence
in 8-Bit Data Mode 227
Transmitting in 9-Bit Data Mode227
Universal Asynchronous Receiver Transmitter. See UART.
Universal Serial Bus
Buffer Descriptors
Assignment in Different Buffering Modes240
Interrupts
and USB Transactions244
Universal Serial Bus. See USB OTG.
USB On-The-Go (OTG) 16

USB OTG	233
Buffer Descriptors and BDT	239
Device Mode Operation	. 244
DMA Interface	. 240
Hardware	
Calculating	
Transceiver Power Requirements	237
Hardware Configuration	. 235
Device Mode	. 235
External Interface	. 237
Host and OTG Modes	. 236
VBUS Voltage Generation	. 237
Host Mode Operation	. 245
Interrupts	. 243
Operation	. 247
Registers	
VBUS Voltage Generation	237

V

Voltage Regulator (On-Chip)	330
and BOR	330
Low-Voltage Detection	330
Standby Mode	330

W

Watchdog Timer (WDT)	331
Control Register	
Windowed Operation	331
WWW Address	382
WWW, On-Line Support	14

查询PIC24FJ256GB206供应商 NOTES:

查询PIC24FJ256GB206供应商 THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

查询PIC24FJ256GB206供应商 READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent			
RE:	Reader Response				
Fron	n: Name				
	Company				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
	ication (optional):				
Wou	ld you like a reply?YN				
Devi	ce: PIC24FJ256GB210 Family	Literature Number: DS39975A			
Que	stions:				
1.	1. What are the best features of this document?				
-					
-					
2.	2. How does this document meet your hardware and software development needs?				
-					
3. 1	3. Do you find the organization of this document easy to follow? If not, why?				
-					
4	What additions to the document do v	ou think would enhance the structure and subject?			
-					
5.	What deletions from the document could be made without affecting the overall usefulness?				
-					
6.	. Is there any incorrect or misleading information (what and where)?				
-					
-					
7. I	How would you improve this docume	nt?			
-					
-					

查询PIC24FJ256GB206供应商 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla Temperature Ran		 Examples: a) PIC24FJ128GB206-I/PT: PIC24F device with USB On-The-Go, 128-KB program memory, 96-KB data memory, 64-pin, Industrial temp., TQFP package. b) PIC24FJ256GB210-I/PT: PIC24F device with USB On-The-Go, 256-KB program memory, 96-KB data memory, 100-pin, Industrial temp., TQFP package.
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	FJ = Flash program memory	
Product Group	GB2 = General purpose microcontrollers with USB On-The-Go	
Pin Count	06 = 64-pin 10 = 100-pin (TQFP)/121-pin (BGA)	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package	PT = 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PT = 64-lead, TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack, No Lead) BG = 121-pin BGA package	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820