查询PIC24HJ256GP210A供应商

2009 Microchip Technology Inc.

dzsc.com

MICROCHIP

PIC24HJXXXGPX06A/X08A/X10A Data Sheet

High-Performance, 16-bit Microcontrollers

Preliminary

查询PIC24HJ256GP210A供应商

Note the following details of the code protection feature on Microchip devices:

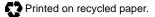
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

MICROCHIPPIC24HJXXXGPX06A/X08A/X10A

High-Performance, 16-Bit Microcontrollers

Operating Range:

- Up to 40 MIPS operation (@ 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)
- Up to 20 MIPS operation (@ 3.0-3.6V):
 - High temperature range (-40°C to +140°C)

High-Performance CPU:

- Modified Harvard architecture
- C compiler optimized instruction set
- 16-bit wide data path
- 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 71 base instructions: mostly 1 word/1 cycle
- Sixteen 16-bit General Purpose Registers
- Flexible and powerful Indirect Addressing modes
- Software stack
- 16 x 16 multiply operations
- 32/16 and 16/16 divide operations
- Up to ±16-bit data shifts

Direct Memory Access (DMA):

- 8-channel hardware DMA
- 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

Interrupt Controller:

- 5-cycle latency
- Up to 61 available interrupt sources
- Up to five external interrupts
- Seven programmable priority levels
- Five processor exceptions

Digital I/O:

- Up to 85 programmable digital I/O pins
- Wake-up/Interrupt-on-Change on up to 24 pins
- Output pins can drive from 3.0V to 3.6V
- All digital input pins are 5V tolerant
- 4 mA sink on all I/O pins

On-Chip Flash and SRAM:

- · Flash program memory, up to 256 Kbytes
- Data SRAM, up to 16 Kbytes (includes 2 Kbytes of DMA RAM)

System Management:

- Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated PLL
 - Extremely low jitter PLL
- Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- Watchdog Timer with its own RC oscillator
- Fail-Safe Clock Monitor
- Reset by multiple sources

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep and Doze modes with fast wake-up

Timers/Capture/Compare/PWM:

- Timer/Counters, up to nine 16-bit timers:
 - Can pair up to make four 32-bit timers
 - One timer runs as Real-Time Clock with external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to eight channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to eight channels):
- Single or Dual 16-Bit Compare mode
- 16-bit Glitchless PWM mode

查询PIC24HJ256GP210A供应商 Communication Modules:

- 3-wire SPI (up to two modules):
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C[™] (up to two modules):
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - $\ensuremath{\text{IrDA}}^{\ensuremath{\mbox{\scriptsize B}}}$ encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN[™] module) 2.0B active (up to two modules):
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and 3 masks
 - Loopback, Listen Only and Listen All Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet[™] addressing support

Analog-to-Digital Converters:

- Up to two Analog-to-Digital Converter (ADC) modules in a device
- 10-bit, 1.1 Msps or 12-bit, 500 ksps conversion:
 - Two, four, or eight simultaneous samples
 - Up to 32 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
- Conversion possible in Sleep mode
- ±1 LSb max integral nonlinearity
- ±1 LSb max differential nonlinearity

CMOS Flash Technology:

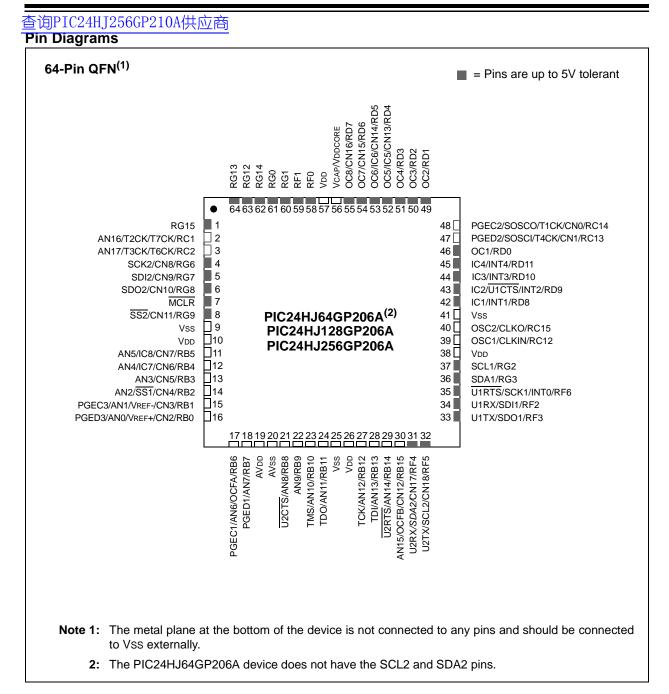
- Low-power, high-speed Flash technology
- Fully static design
- 3.3V (±10%) operating voltage
- Industrial and extended temperature
- Low-power consumption

Packaging:

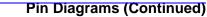
- 100-pin TQFP (14x14x1 mm and 12x12x1 mm)
- 64-pin TQFP (10x10x1 mm)
- 64-pin QFN (9x9x0.9 mm)

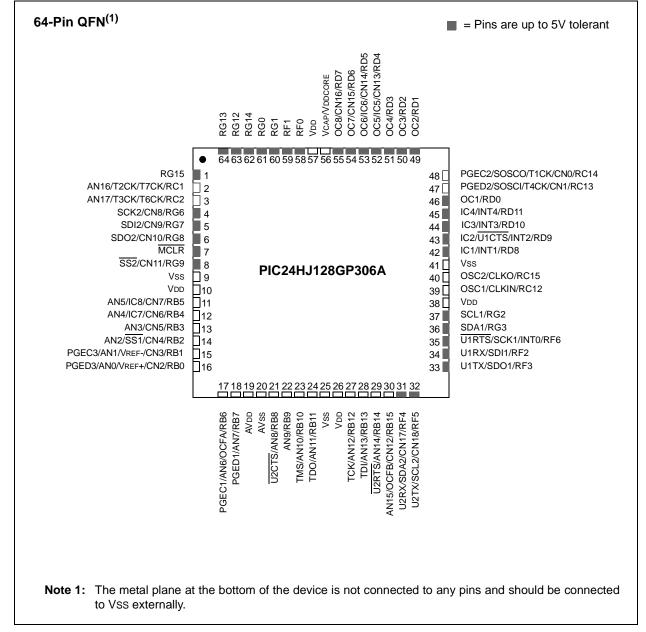
Note: See the device variant tables for exact peripheral features per device.

查询PIC24HJ256GP210A供应商 PIC24H PRODUCT FAMILIES


The PIC24H Family of devices is ideal for a wide variety of 16-bit MCU embedded applications. The device names, pin counts, memory sizes and peripheral availability of each device are listed below, followed by their pinout diagrams.

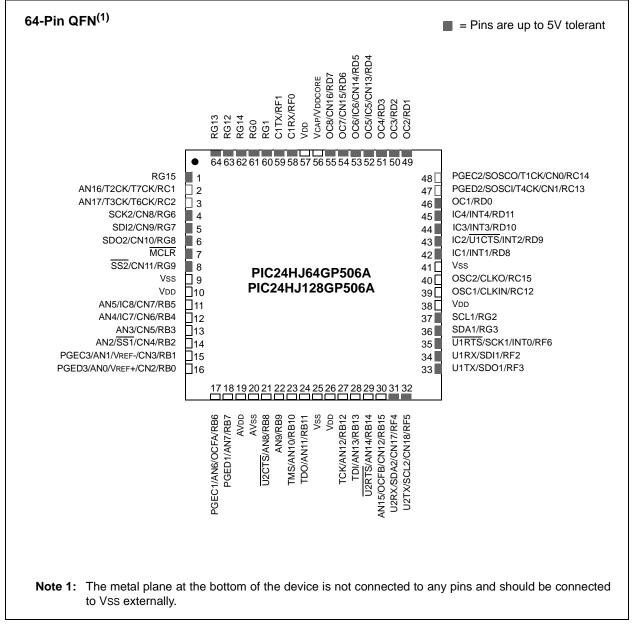
PIC24H Family Controllers

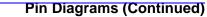

Device	Pins	Program Flash Memory (KB)	RAM ⁽¹⁾ (KB)	DMA Channels	Timer 16-bit	Input Capture	Output Compare Std. PWM	Codec Interface	ADC	UART	SPI	I²C™	CAN	I/O Pins (Max) ⁽²⁾	Packages
PIC24HJ64GP206A	64	64	8	8	9	8	8	0	1 ADC, 18 ch	2	2	1	0	53	PT, MR
PIC24HJ64GP210A	100	64	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ64GP506A	64	64	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	1	53	PT, MR
PIC24HJ64GP510A	100	64	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	1	85	PF, PT
PIC24HJ128GP206A	64	128	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ128GP210A	100	128	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ128GP506A	64	128	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	1	53	PT, MR
PIC24HJ128GP510A	100	128	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	1	85	PF, PT
PIC24HJ128GP306A	64	128	16	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ128GP310A	100	128	16	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ256GP206A	64	256	16	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ256GP210A	100	256	16	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ256GP610A	100	256	16	8	9	8	8	0	2 ADC, 32 ch	2	2	2	2	85	PF, PT

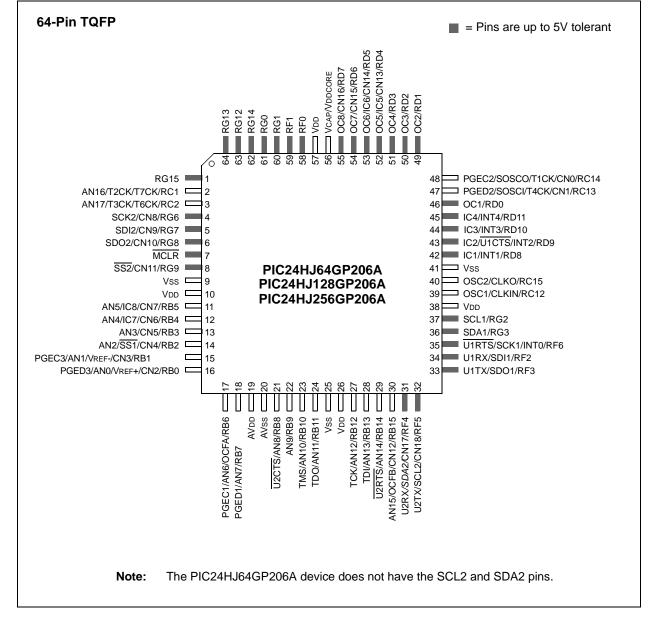

Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.

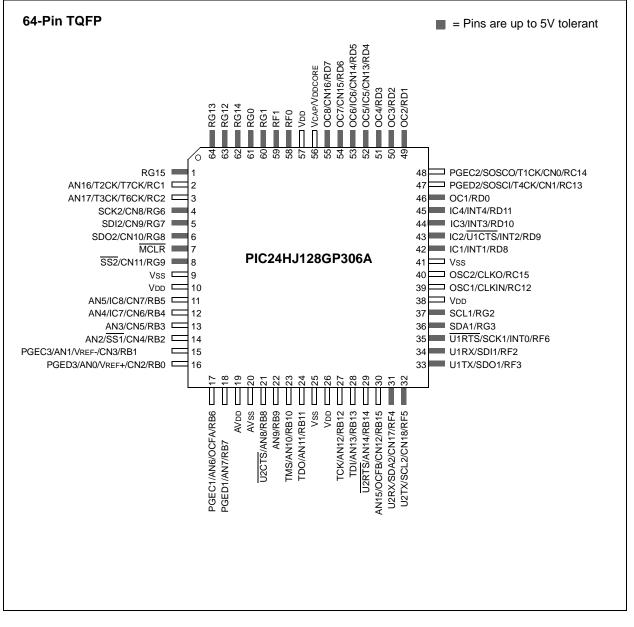
2: Maximum I/O pin count includes pins shared by the peripheral functions.

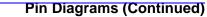
查询PIC24HJ256GP210A供应商

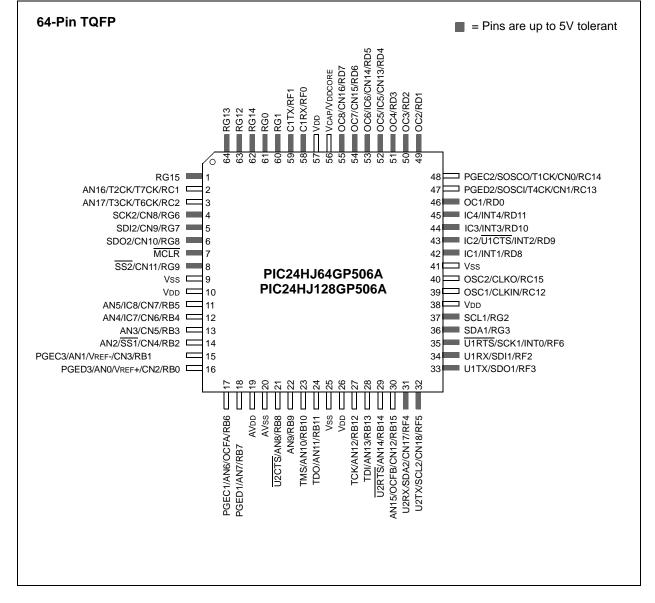



© 2009 Microchip Technology Inc.

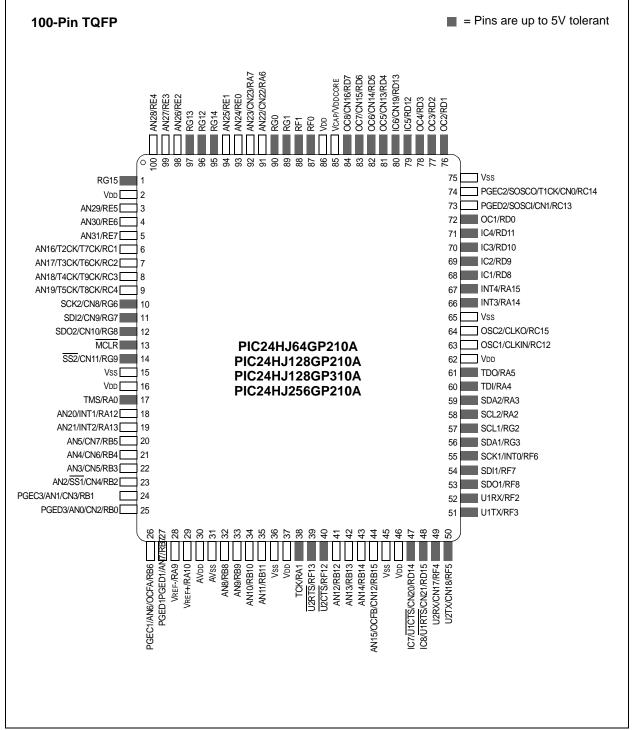

查询PIC24HJ256GP210A供应商


查询PIC24HJ256GP210A供应商



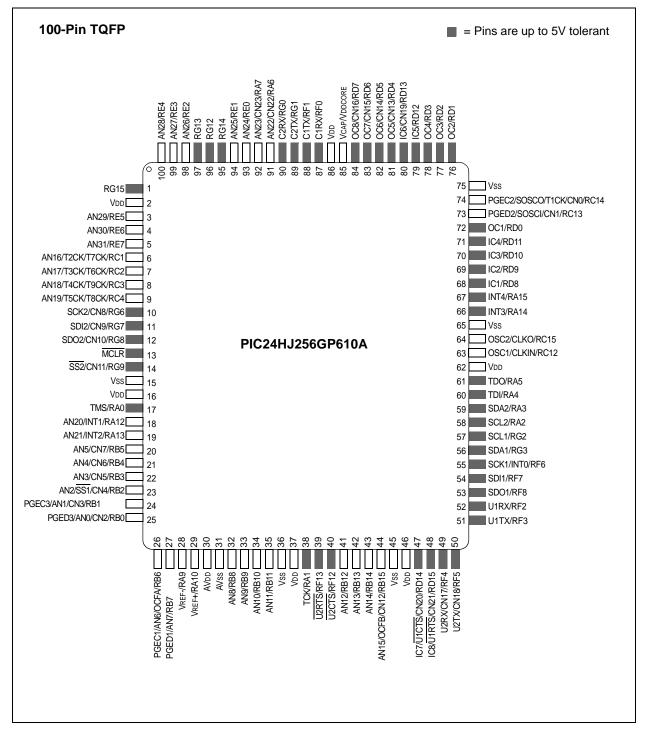

查询PIC24HJ256GP210A供应商

Pin Diagrams (Continued)


查询PIC24HJ256GP210A供应商

查询PIC24HJ256GP210A供应商

Pin Diagrams (Continued)



查询PIC24HJ256GP210A供应商 Pin Diagrams (Continued)

100-Pin TQFP Pins are up to 5V tolerant AN22/CN22/RA6 AN23/CN23/RA7 VCAP/VDDCORE OC8/CN16/RD7 IC6/CN19/RD13 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 AN25/RE1 AN24/RE0 AN26/RE2 RG1 C1TX/RF1 AN27/RE3 C1RX/RFC OC4/RD3 OC3/RD2 **AN28/RE4** IC5/RD12 OC2/RD1 RG13 RG12 RG14 RGO VDD 00 98 97 95 95 94 93 75 Vss RG15 1 74 PGEC2/SOSCO/T1CK/CN0/RC14 Vdd 2 73 PGED2/SOSCI/CN1/RC13 AN29/RE5 3 72 OC1/RD0 AN30/RE6 IC4/RD11 71 AN31/RE7 5 70 IC3/RD10 AN16/T2CK/T7CK/RC1 6 69 IC2/RD9 AN17/T3CK/T6CK/RC2 7 68 IC1/RD8 AN18/T4CK/T9CK/RC3 8 AN19/T5CK/T8CK/RC4 67 INT4/RA15 9 SCK2/CN8/RG6 10 66 INT3/RA14 SDI2/CN9/RG7 11 65 Vss OSC2/CLKO/RC15 SDO2/CN10/RG8 12 64 MCLR OSC1/CLKIN/RC12 13 63 PIC24HJ64GP510A SS2/CN11/RG9 14 62 Vdd PIC24HJ128GP510A Vss ____ 15 61 TDO/RA5 VDD 16 60 TDI/RA4 TMS/RA0 17 59 SDA2/RA3 AN20/INT1/RA12 18 58 SCL2/RA2 AN21/INT2/RA13 19 57 SCL1/RG2 AN5/CN7/RB5 20 56 SDA1/RG3 AN4/CN6/RB4 21 SCK1/INT0/RF6 55 AN3/CN5/RB3 22 54 SDI1/RF7 AN2/SS1/CN4/RB2 23 53 SDO1/RF8 PGEC3/AN1/CN3/RB1 24 52 U1RX/RF2 PGED3/AN0/CN2/RB0 25 U1TX/RF3 51 50< PGED1/AN7/RB7 AN9/RB9 [AN10/RB10 [AN11/RB11 [TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB12 AN13/RB13 AN14/RB14 U2RX/CN17/RF4 U2TX/CN18/RF5 AVSS AN8/RB8 VREF+/RA10 AVDD Vss Vpp IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 ۵Q۸ PGEC1/AN6/OCFA/RB6 AN15/OCFB/CN12/RB15 Vss

查询PIC24HJ256GP210A供应商

Pin Diagrams (Continued)

查询PIC24HJ256GP210A供应商

Table of Contents	
PIC24H Product Families	5
1.0 Device Overview	
2.0 Guidelines for Getting Started with 16-Bit Microcontrollers	21
3.0 CPU	25
4.0 Memory Organization	
5.0 Flash Program Memory	
6.0 Reset	
7.0 Interrupt Controller	
8.0 Direct Memory Access (DMA)	
9.0 Oscillator Configuration	
10.0 Power-Saving Features	
11.0 I/O Ports	-
12.0 Timer1	
13.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9	
14.0 Input Capture	
15.0 Output Compare	
 16.0 Serial Peripheral Interface (SPI) 17.0 Inter-Integrated Circuit™ (l²C™) 	
 17.0 Inter-Integrated Circuit™ (I²C[™]) 18.0 Universal Asynchronous Receiver Transmitter (UART) 	
19.0 Enhanced CAN (ECAN™) Module	
20.0 10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
21.0 Special Features	
21.0 Special relatives	
23.0 Development Support.	
24.0 Electrical Characteristics	
25.0 High Temperature Electrical Characteristics	
26.0 Packaging Information	
Appendix A: Migrating from PIC24HJXXXGPX06/X08/X10 Devices to PIC24HJXXXGPX06A/X08A/X10A Devices	295
Appendix B: Revision History	
Index	297
The Microchip Web Site	301
Customer Change Notification Service	301
Customer Support	301
Reader Response	302
Product Identification System	303

查询PIC24HJ256GP210A供应商

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

查询PIC24HJ256GP210A供应商 1.0 DEVICE OVERVIEW

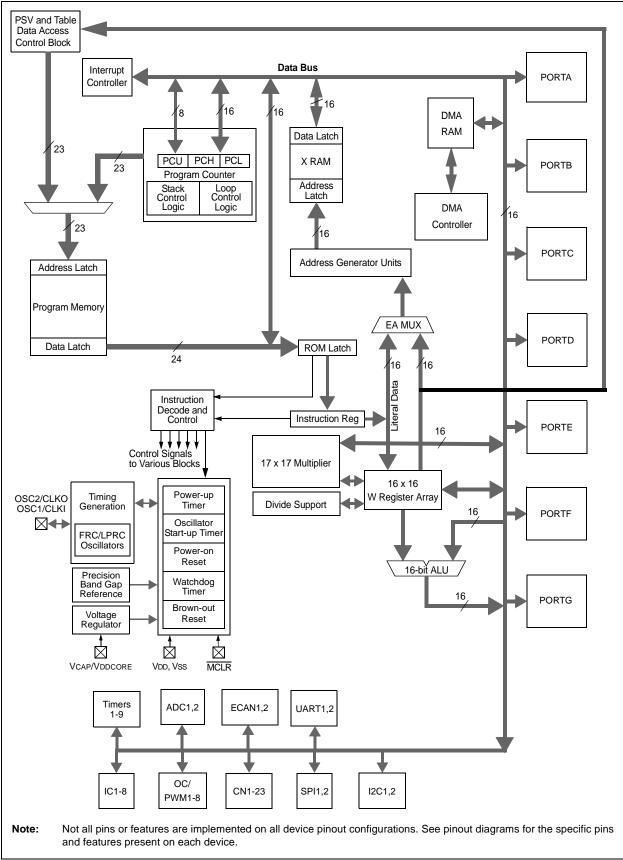
Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

This document contains device specific information for the following devices:

- PIC24HJ64GP206A
- PIC24HJ64GP210A
- PIC24HJ64GP506A
- PIC24HJ64GP510A
- PIC24HJ128GP206A
- PIC24HJ128GP210A
- PIC24HJ128GP506A
- PIC24HJ128GP510A
- PIC24HJ128GP306A
- PIC24HJ128GP310A
- PIC24HJ256GP206A
- PIC24HJ256GP210A
- PIC24HJ256GP610A

The PIC24HJXXXGPX06A/X08A/X10A device family includes devices with different pin counts (64 and 100 pins), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes and 16 Kbytes).

This makes these families suitable for a wide variety of high-performance digital signal control applications. The devices are pin compatible with the dsPIC33F family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application.


The PIC24HJXXXGPX06A/X08A/X10A device family employs a powerful 16-bit architecture, ideal for applications that rely on high-speed, repetitive computations, as well as control.

The 17 x 17 multiplier, hardware support for division operations, multi-bit data shifter, a large array of 16-bit working registers and a wide variety of data addressing together provide modes. the PIC24HJXXXGPX06A/X08A/X10A Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the PIC24HJXXXGPX06A/X08A/X10A devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use PIC24HJXXXGPX06A/X08A/X10A devices.

Figure 1-1 shows a general block diagram of the various core and peripheral modules in the PIC24HJXXXGPX06A/X08A/X10A family of devices, while Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

查询PIC24HJ256GP210A供应商

FIGURE 1-1: PIC24HJXXXGPX06A/X08A/X10A GENERAL BLOCK DIAGRAM

查询PIC24HJ256GP210A供应商

Pin Name AN0-AN31 AVDD	Pin Type I P	Buffer Type Analog	Description
AVdd	Р	Analog	
			Analog input channels.
A) (Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	Ground reference for analog modules.
CLKI CLKO	I O	ST/CMOS —	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
C1RX C1TX C2RX C2TX	 0 0	ST — ST —	ECAN1 bus receive pin. ECAN1 bus transmit pin. ECAN2 bus receive pin. ECAN2 bus transmit pin.
PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3	I/O I I/O I I/O I	ST ST ST ST ST ST	Data I/O pin for programming/debugging communication channel 1. Clock input pin for programming/debugging communication channel 1. Data I/O pin for programming/debugging communication channel 2. Clock input pin for programming/debugging communication channel 2. Data I/O pin for programming/debugging communication channel 3. Clock input pin for programming/debugging communication channel 3.
IC1-IC8	I	ST	Capture inputs 1 through 8.
INT0 INT1 INT2 INT3 INT4	 	ST ST ST ST ST	External interrupt 0. External interrupt 1. External interrupt 2. External interrupt 3. External interrupt 4.
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
OCFA OCFB OC1-OC8	 0	ST ST —	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare Fault B input (for Compare Channels 5, 6, 7 and 8). Compare outputs 1 through 8.
OSC1 OSC2	I I/O	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
			mode. Optionally functions as CLKO in RC and EC modes.
RA0-RA7 RA9-RA10	I/O I/O	ST ST ST	PORTA is a bidirectional I/O port.
RA12-RA15 RB0-RB15	I/O I/O	ST	PORTB is a bidirectional I/O port.
RC1-RC4	I/O	ST	PORTC is a bidirectional I/O port.
RC12-RC15	1/O	ST	
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.
RE0-RE7	I/O	ST	PORTE is a bidirectional I/O port.
RF0-RF8 RF12-RF13	I/O	ST	PORTF is a bidirectional I/O port.
RG0-RG3 RG6-RG9 RG12-RG15 Legend: CMO3	I/O I/O I/O	ST ST ST	PORTG is a bidirectional I/O port.

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog inputP = PowerO = OutputI = Input

查询PIC24HJ256GP210A供应商 TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	Description
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	SPI1 data in.
SDO1	0	_	SPI1 data out.
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.
SDI2	1	ST	SPI2 data in.
SDO2	0		SPI2 data out.
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.
SCL2	I/O	ST	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	Synchronous serial data input/output for I2C2.
SOSCI	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0		32.768 kHz low-power oscillator crystal output.
TMS	I	ST	JTAG Test mode select pin.
TCK	I	ST	JTAG test clock input pin.
TDI	I	ST	JTAG test data input pin.
TDO	0	—	JTAG test data output pin.
T1CK	I	ST	Timer1 external clock input.
T2CK	I	ST	Timer2 external clock input.
T3CK	I	ST	Timer3 external clock input.
T4CK	I	ST	Timer4 external clock input.
T5CK	I	ST	Timer5 external clock input.
T6CK	I	ST	Timer6 external clock input.
T7CK	I	ST	Timer7 external clock input.
T8CK	I	ST	Timer8 external clock input.
T9CK	Ι	ST	Timer9 external clock input.
U1CTS	I	ST	UART1 clear to send.
U1RTS	0	—	UART1 ready to send.
U1RX	I	ST	UART1 receive.
U1TX	0	—	UART1 transmit.
U2CTS	I	ST	UART2 clear to send.
U2RTS	0	—	UART2 ready to send.
U2RX	I	ST	UART2 receive.
U2TX	0	—	UART2 transmit.
Vdd	Р	—	Positive supply for peripheral logic and I/O pins.
VCAP/VDDCORE	Р	—	CPU logic filter capacitor connection.
Vss	Р		Ground reference for logic and I/O pins.
VREF+		Analog	Analog voltage reference (high) input.
VREF-		Analog	Analog voltage reference (low) input.
Legend: CMO	S = CMO	S compatible	e input or output Analog = Analog input P = Power

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input O = Output P = Power I = Input

查询PIC24HJ256GP210A供应商

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

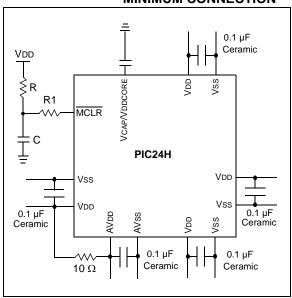
Getting started with the PIC24HJXXXGPX06A/X08A/X10A family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP/VDDCORE
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

- Additionally, the following pins may be required:
- VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mu	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe	rence	source.			


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

查询PIC24HJ256GP210A供应商 FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including MCUs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

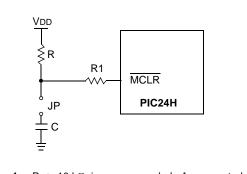
2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 24.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 21.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides for two specific device functions:


- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

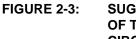
Note 1: $R \le 10 \ k\Omega$ is recommended. A suggested starting value is $10 \ k\Omega$. Ensure that the MCLR pin VIH and VIL specifications are met.

查询PIC24HJ256GP210A供应商 2.5 ICSP Pins

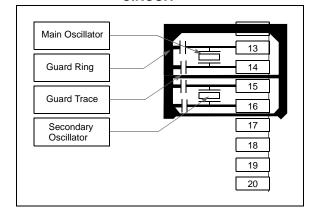
The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB ICD 3 or MPLAB REAL ICE[™].


For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.

- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB[®] ICD 2" (poster) DS51265
- "MPLAB[®] ICD 2 Design Advisory" DS51566
- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749


2.6 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

查询PIC24HJ256GP210A供应商

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

查询PIC24HJ256GP210A供应商 3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70245) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any point.

The PIC24HJXXXGPX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The PIC24HJXXXGPX06A/X08A/X10A instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the PIC24HJXXXGPX06A/X08A/X10A is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

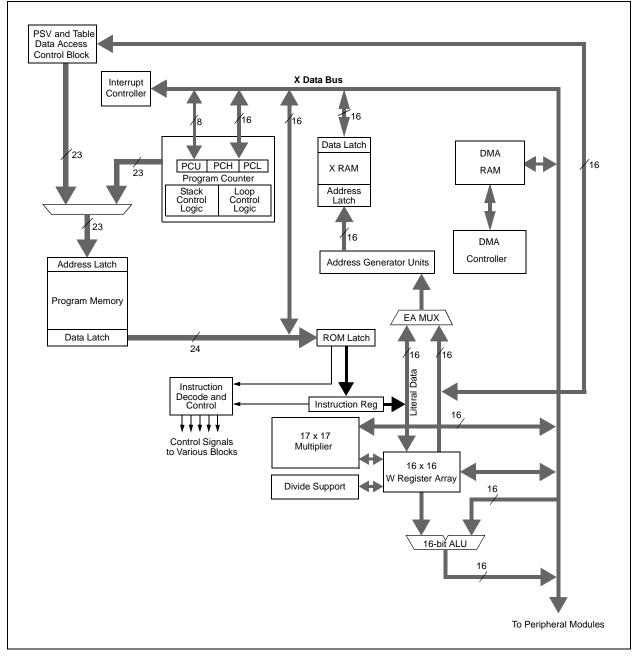
A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the PIC24HJXXXGPX06A/X08A/X10A is shown in Figure 3-2.

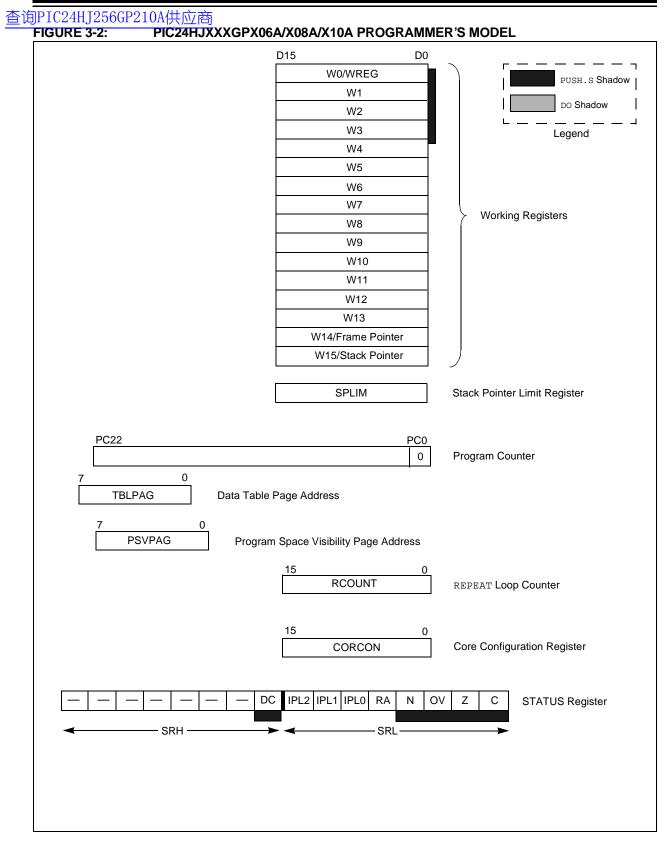
3.1 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

3.2 Special MCU Features


The PIC24HJXXXGPX06A/X08A/X10A features a 17-bit by 17-bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible.


The PIC24HJXXXGPX06A/X08A/X10A supports 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

查询PIC24HJ256GP210A供应商

FIGURE 3-1: PIC24HJXXXGPX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

3.3 CPU Control Registers

查询PIC24HJ256GP210A供应商 REGISTER 3-1: SR: CPU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
-	_		—	_		—	DC
bit 15				4			bit 8
R/W-0 ⁽¹⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit 0
Legend:							
C = Clear on	ly bit	R = Readable	e bit	U = Unimpler	mented bit, read	as '0'	
S = Set only	•	W = Writable	bit	-n = Value at			
'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15-9	-	nted: Read as '					
bit 8		U Half Carry/Bo					
		out from the 4th sult occurred	low-order bit ((for byte sized o	data) or 8th low-o	order bit (for wo	ord sized data)
			th low-order l	oit (for byte siz	ed data) or 8th	low-order bit (for word sized
		the result occur			,	(
bit 7-5	IPL<2:0>: CI	PU Interrupt Pri	ority Level Sta	atus bits ⁽²⁾			
		nterrupt Priority			ots disabled		
		nterrupt Priority					
		nterrupt Priority nterrupt Priority					
		nterrupt Priority					
	010 = CPU I	nterrupt Priority	Level is 2 (10))			
		nterrupt Priority					
bit 4		nterrupt Priority					
DIT 4		Loop Active bit loop in progress					
		loop in progress					
bit 3	N: MCU ALU						
	1 = Result wa	•					
	0 = Result wa	as non-negative	e (zero or pos	itive)			
bit 2	OV: MCU AL	U Overflow bit					
				omplement). It	indicates an ove	erflow of the ma	agnitude which
		ign bit to chang		ic (in this arithr	netic operation)		
	0 = No overfl		grieu aritinitet				
bit 1	Z: MCU ALU	Zero bit					
			ts the Z bit ha	as set it at som	e time in the pas	st	
					s cleared it (i.e.,		sult)
bit 0	C: MCU ALU	Carry/Borrow	oit				
		out from the Mostout from the Mostout from the Mo			e result occurred It occurred		
Note 1: T	The IPL<2:0> bits	s are concatena	ated with the I	PL<3> bit (COF	RCON<3>) to fo	rm the CPU In	terrupt Prioritv
L	evel. The value $PL<3> = 1$.						
2 . T	he IPL <2:0> Sta	atus hits ara raa	d only when I				

2: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

查询PIC24HJ256GP210A供应商

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	_	_	—	—	_
bit 15		•					bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	PSV	—	—
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable I	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clear	ed	'x = Bit is unk	nown	U = Unimpler	mented bit, read	l as '0'	
bit 15-4	Unimplemen	ted: Read as ')')				
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 ⁽¹⁾			
	1 = CPU inter	rupt priority lev	el is greater t	han 7			
	0 = CPU inter	rupt priority lev	el is 7 or less				
bit 2	PSV: Program	n Space Visibili	ty in Data Spa	ace Enable bit			
	1 = Program	space visible in	data space				
	0 = Program	space not visib	le in data spa	ce			
bit 1-0	Unimplemen	ted: Read as '	o'				

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

查询PIC24HJ256GP210A供应商 3.4 Arithmetic Logic Unit (ALU)

The PIC24HJXXXGPX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register</u>. The <u>C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "*dsPIC30F/33F Programmer*'s *Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The PIC24HJXXXGPX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.4.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.4.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.4.3 MULTI-BIT DATA SHIFTER

The multi-bit data shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either a working register or a memory location.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

查询PIC24HJ256GP210A供应商

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70237) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The PIC24HJXXXGPX06A/X08A/X10A architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the PIC24HJXXXGPX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.4 "Interfacing Program and Data Memory Spaces**".

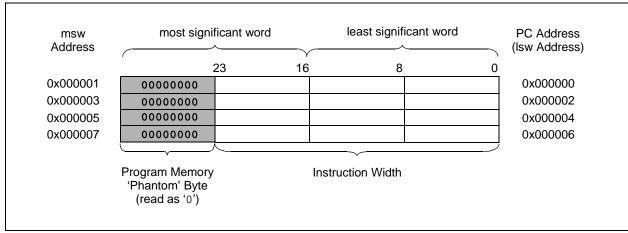
User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24HJXXXGPX06A/X08A/ X10A family of devices are shown in Figure 4-1.

	PIC24HJ64XXXXXA		PIC24HJ128XXXXXA		PIC24HJ256XXXXXA	
	GOTO Instruction	ĺ	GOTO Instruction	1	GOTO Instruction	0x000000
l T	Reset Address		Reset Address		Reset Address	- 0x000002
	Interrupt Vector Table		Interrupt Vector Table		Interrupt Vector Table	- 0x000004
	Reserved		Reserved		Reserved	0x0000FE 0x000100
	Alternate Vector Table		Alternate Vector Table		Alternate Vector Table	0x000104 0x0001FE
User Memory Space	User Program Flash Memory (22K instructions)		User Program Flash Memory (44K instructions)		User Program Flash Memory	0x000200
mory			(44K Instructions)		(88K instructions)	
Me						0x0157FE 0x015800
User	Unimplemented (Read '0's)		Unimplemented (Read '0's)			0x02ABFE 0x02AC00
					Unimplemented	
					(Read '0's)	
<u> </u>						0x7FFFE 0x800000
ry Space	Reserved		Reserved		Reserved	0xF7FFE
ome	Device Configuration Registers		Device Configuration Registers		Device Configuration Registers	0xF80000
Configuration Memory Space	Reserved		Reserved		Reserved	- 0xF80017 0xF80010
	DEVID (2)		DEVID (2)		DEVID (2)	OxFEFFFE 0xFF0000 0xFFFFFE

FIGURE 4-1: PROGRAM MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A FAMILY DEVICES

查询PIC24HJ256GP210A供应商 4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

查询PIC24HJ256GP210A供应商

4.2 Data Address Space

The PIC24HJXXXGPX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 and Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.4.3 "Reading Data from Program Memory Using Program Space Visibility").

PIC24HJXXXGPX06A/X08A/X10A devices implement up to 16 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the PIC24HJXXXGPX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the Least Significant bit (LSb) of any EA to determine which byte to select. The selected byte is placed onto the Least Significant Byte (LSB) of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

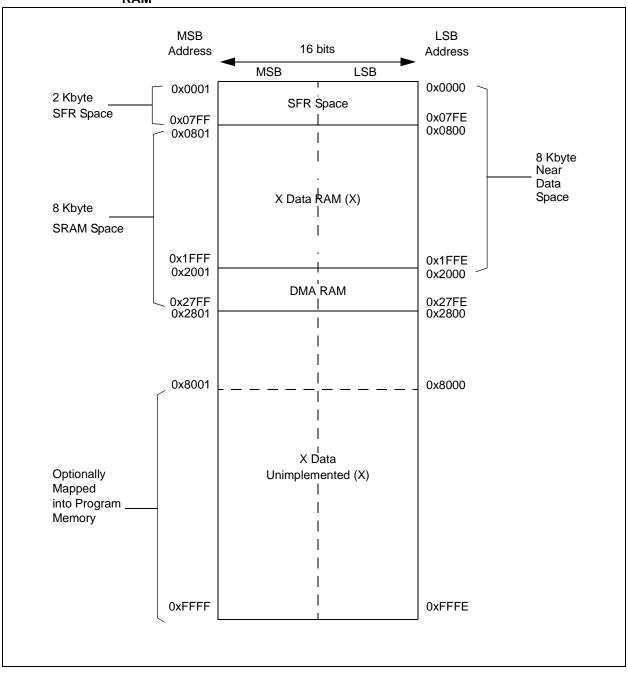
All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte (MSB) is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the Most Significant Byte of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the PIC24HJXXXGPX06A/X08A/X10A core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A complete listing of implemented SFRs, including their addresses, is shown in Table 4-1 through Table 4-33.


Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

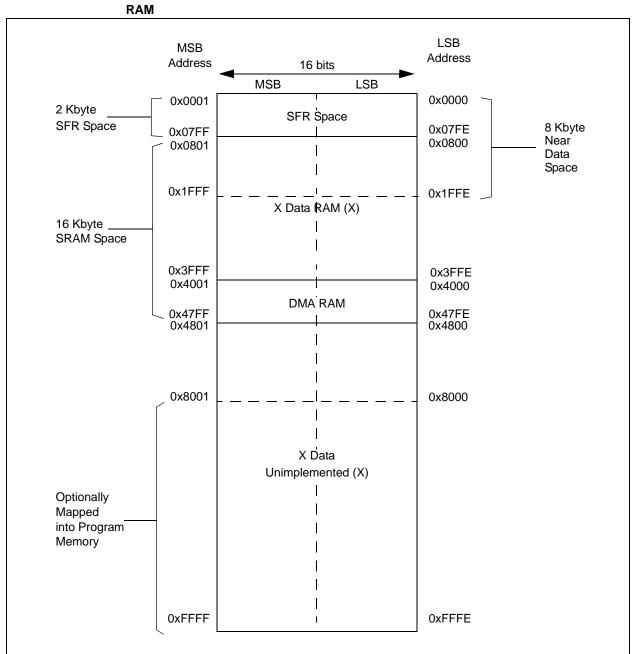

查询PIC24HJ256GP210A供应商

FIGURE 4-3: DATA MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A DEVICES WITH 8 KBS RAM

查询PIC24HJ256GP210A供应商

FIGURE 4-4: DATA MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A DEVICES WITH 16 KBS

4.2.5 DMA RAM

Every PIC24HJXXXGPX06A/X08A/X10A device contains 2 Kbytes of dual ported DMA RAM located at the end of data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

© 2009 Microchip Technology Inc.

TABLE 4-1:		CPU CORE REGISTERS MAP	E REGI	STERS	MAP														查议
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets	旬PI(
WREG0	0000								Working Register 0	gister 0								0000	224
WREG1	0002								Working Register 1	sgister 1								0000	H
WREG2	0004								Working Register 2	gister 2								0000	J25
WREG3	9000								Working Register 3	sgister 3								0000	560
WREG4	8000								Working Register 4	sgister 4								0000	GP:
WREG5	A000								Working Register 5	sgister 5								0000	21
WREG6	0000								Working Register 6	sgister 6								0000	0A
WREG7	000E								Working Register 7	sgister 7								0000	供
WREG8	0010								Working Register 8	sgister 8								0000	Ń
WREG9	0012								Working Register 9	sgister 9								0000	商
WREG10	0014								Working Register 10	gister 10								0000]
WREG11	0016								Working Register 11	gister 11								0000	
WREG12	0018								Working Register 12	gister 12								0000	
WREG13	001A								Working Register 13	gister 13								0000	
WREG14	001C								Working Register 14	gister 14								0000	
WREG15	001E								Working Register 15	gister 15								0800	
SPLIM	0020							Star	Stack Pointer Limit Register	mit Register								XXXXX	
PCL	002E							Program	Counter Lo	Program Counter Low Word Register	ister							0000	
РСН	0030	Ι										Program	Counter H	Program Counter High Byte Register	egister			0000	
TBLPAG	0032		I		Ι							Table Pɛ	ige Addres:	Table Page Address Pointer Register	egister			0000	
PSVPAG	0034	Ι		Ι							Prograr	Program Memory Visibility Page Address Pointer Register	/isibility Pa	ge Address	Pointer Re	gister		0000	
RCOUNT	0036							Repe	at Loop Cou	Repeat Loop Counter Register	ir							XXXX	
SR	0042	Ι							DC		IPL<2:0>		RA	z	VO	Z	С	0000	
CORCON	0044	Ι	Ι	Ι			Ι		Ι	Ι				IPL3	PSV	I		0000	
DISICNT	0052	Ι							Disable	Disable Interrupts Counter Register	Counter Re	gister						XXXX	
BSRAM	0750														IW_BSR	IR_BSR	RL_BSR	0000	
SSRAM	0752														IW_SSR	IR_SSR	RL_SSR	0000	
Legend:	x = unknov	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.	Reset, =	unimplemei	nted, read	as '0'. Res	et values a	re shown ir	n hexadecin	nal for PinH	igh devices								

询PI		IJ2	256	GF	21	0A供应商	5		1			
	All Resets	0000	0000	0000	0000		All Resets	0000	0000	0000	0000	
	Bit 0	CNOIE	CN16IE	CNOPUE	CN16PUE		Bit 0	CNOIE	CN16IE	CNOPUE	CN16PUE	
	Bit 1	CN1IE	CN17IE	CN1PUE	CN17PUE		Bit 1	CN1IE	CN17IE	CN1PUE	CN18PUE CN17PUE	
	Bit 2	CN2IE	CN18IE	CN2PUE	CN18PUE		Bit 2	CN2IE	CN18IE	CN2PUE		
	Bit 3	CN3IE	CN19IE	CN3PUE	CN19PUE		Bit 3	CN3IE	CN19IE	CN3PUE	CN19PUE	
	Bit 4	CN4IE	CN20IE	CN4PUE	CN20PUE		Bit 4	CN4IE	CN20IE	CN4PUE	CN20PUE	
/ICES	Bit 5	CN5IE	CN21IE	CN5PUE	CN21PUE	ces. ICES	Bit 5	CN5IE	CN21IE	CN5PUE	CN21PUE	
ER MAP FOR PIC24HJXXXGPX10A DEVICES	Bit 6	CNGIE	CN22IE	CN6PUE	CN23PUE CN22PUE	'0'. Reset values are shown in hexadecimal for PinHigh devices. ER MAP FOR PIC24HJXXXGPX08A DEVICES	Bit 6	CNGIE	I	CN6PUE	I	
(XGPX1	Bit 7	CN7IE	CN23IE	CN7PUE	CN23PUE	cimal for P (XGPX0	Bit 7	CN7IE	I	CN7PUE	l	
24HJX)	Bit 8	CN8IE	I	CN8PUE	Ι	n in hexade 24HJX)	Bit 8	CN8IE	Ι	CN8PUE		le mie ele sue de sue servicer tere de las
OR PIC	Bit 9	CN9IE	I	CN9PUE	Ι	es are show OR PIC	Bit 9	CN9IE	Ι	CN9PUE	I	the second second
RAP F	Bit 10	CN10IE	I	CN10PUE	-	Reset value	Bit 10	CN10IE	I	CN10PUE		
	Bit 11	CN11IE		CN11PUE			Bit 11	CN11IE	I	CN11PUE	-	
FION RE	Bit 12	CN12IE	I	CN12PUE	-	plemented, TION RE	Bit 12	CN12IE	I	CN12PUE	I	
	Bit 13	CN13IE	I	CN13PUE	Ι	t, —= unim TIFICAT	Bit 13	CN13IE	Ι	CN13PUE	I	
CHANGE NOTIFICATION REGIST	Bit 14	CN14IE	Ι	CN14PUE	Ι	 x = unknown value on Reset, — = unimplemented, read as CHANGE NOTIFICATION REGIST 	Bit 14	CN14IE	Ι	CN14PUE		
CHAI	Bit 15	CN15IE	Ι	CN15PUE	Ι	unknown va CHAI	Bit 15	CN15IE	Ι	CN15PUE	Ι	
4-2:	SFR Addr	0900	0062	0068	006A	×= (4-3:	SFR Addr	0900	0062	0068	006A	
TABLE 4-2:	SFR Name	CNEN1	CNEN2	CNPU1	CNPU2	Legend: ×= TABLE 4-3:	SFR Name	CNEN1	CNEN2	CNPU1	CNPU2	- buose 1

TABLE	: 4-4:	TABLE 4-4: CHANGE NOTIFICATION REGI	NGE NO	TIFICAT	'ION RE	GISTEF	ISTER MAP FOR PIC24HJXXXGPX06A DEVICES	OR PIC	24HJXX	(XGPX0	6A DEV	ICES						
SFR Name	SFR Addr	Bit 15	Bit 15 Bit 14	Bit 13	Bit 12	Bit 11	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0900	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CNENI 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CN6IE CN5IE CN3IE CN2IE CN1IE CN0IE	CN9IE	CN8IE	CN7IE	CNGIE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CNOIE	0000
CNEN2 0062	0062	Ι		Ι			Ι		Ι	Ι	-	CN21IE CN20IE	CN20IE		CN18IE	CN18IE CN17IE CN16IE	CN16IE	0000
CNPU1	8900	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN8PUE CN6PUE CN6PUE CN6PUE CN2PUE CN2PUE CN1PUE C00PUE 0000	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CNOPUE	0000
CNPU2 006A	006A	Ι	-	I		-		Ι	-		-	CN21PUE	CN20PUE		CN18PUE	CN21PUE CN20PUE - CN18PUE CN17PUE CN16PUE 0000	CN16PUE	0000

= unimplemented, read as '0'. Reset values are shown in hexadecimal x = unknown value on Reset,006A Legend:

PIC24HJXXXGPX06A/X08A/X10A

© 2009 Microchip Technology Inc.

查试	PIC چ	1	1	1	1	1	1	1		1		0	0	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	0	0	4	0
	All Resets	0000	0000 c	0000	F 0000	F 0000	0000	0000	0000	E 0000	E 0000	0000	0000	4444	4444	4444	0444	4044	4444	4444	4444	4444	4444	4444	4404	4444	4444	0004	0040	0440	4444	0000
	Bit 0		INTOEP	INTOIF	SI2C1IF	SPI2EIF	T7IF		INTOIE	SI2C1IE	SPI2EIE	T7IE	Ι	۸	^		^	^	^	<		A	^	•	^				Ι		<	
	Bit 1	OSCFAIL	INT1EP	IC1IF	MI2C1IF	SP12IF	SI2C2IF	U1EIF	IC1IE	MI2C1IE	SPI2IE	SI2C2IE	U1EIE	NT0IP<2:0>	DMA0IP<2:0>	T3IP<2:0>	U1TXIP<2:0>	SI2C1IP<2:0>	INT1IP<2:0>	DMA2IP<2:0>	T5IP<2:0>	SPI2EIP<2:0>	DMA3IP<2:0>	IC6IP<2:0>	OC8IP<2:0>	T7IP<2:0>	T9IP<2:0>	C2IP<2:0>	Ι	Ι	DMA6IP<2:0>	
	Bit 2	STKERR	INT2EP	OC1IF	I	C1RXIF	MI2C2IF	U2EIF	OC1IE	Ι	C1RXIE	MI2C2IE	U2EIE	4	ā	•	Ċ	SI	4	D	•	SF	ā	-	0	•	•	0	Ι	Ι	D	
	Bit 3	ADDRERR	INT3EP	T1IF	CNIF	C1IF	T8IF	I	T1IE	CNIE	C1IE	T8IE	Ι	I	I	I	I	I	Ι	Ι	I	I	I	I	Ι	Ι	I	I	Ι	Ι	Ι	VECNUM<6:0>
	Bit 4	MATHERR	INT4EP	DMA0IF	INT11F	DMA3IF	T9IF	DMA6IF	DMAOIE	INT1IE	DMA3IE	T9IE	DMA6IE												Ι			I				VEC
•	Bit 5	DMACERR N	I	IC2IF	AD2IF	IC3IF	INT3IF	DMA7IF	IC2IE	AD2IE	IC3IE	INT3IE	DMA7IE	C1IP<2:0>	IC2IP<2:0>	SPI1EIP<2:0>	AD1IP<2:0>	MI2C1IP<2:0>	AD2IP<2:0>	OC3IP<2:0>	INT2IP<2:0>	SPI2IP<2:0>	IC3IP<2:0>	OC5IP<2:0>	Ι	SI2C2IP<2:0>	INT3IP<2:0>	1	DMA5IP<2:0>	U1EIP<2:0>	DMA7IP<2:0>	
	Bit 6	DIVOERR D	Ι	OC2IF	IC7IF	IC4IF	INT4IF	C1TXIF	OC2IE	IC7IE	IC4IE	INT4IE	C1TXIE	_	_	S	4	W	4	C	2	S	_	0		SI	L	Ι	DI	ſ	DI	
	Bit 7		I	T2IF	IC8IF	IC5IF	C2RXIF	C2TXIF	T2IE	IC8IE	IC5IE	C2RXIE	C2TXIE	I	I	I	I	I			I	I	I	I	Ι		I	I	Ι		Ι	
	Bit 8		I	T3IF	DMA2IF	IC6IF	C2IF	I	T3IE	DMA2IE	IC6IE	C2IE	Ι				^	I			٨	٨			^	Δ		I			_	
Р	Bit 9		I	SPI1EIF	OC3IF	OC5IF	I	I	SPI1EIE	OC3IE	OC5IE	I		OC1IP<2:0>	OC2IP<2:0>	SP111P<2:0>	DMA1IP<2:0>	I	IC7IP<2:0>	0C4IP<2:0>	U2RXIP<2:0>	C1RXIP<2:0>	IC4IP<2:0>	OC6IP<2:0>	DMA4IP<2:0>	MI2C2IP<2:0>	INT4IP<2:0>	I		U2EIP<2:0>	C1TXIP<2:0>	<0:
ER MA	Bit 10		I	SPI11F	OC4IF	OC6IF	1	I	SP11E	OC4IE	OC6IE	I	Ι	0	0	S	ā	I	-	C	'n	Ċ	_	0	D	M	4I	I		L	Ċ	ILR<3:0>
REGIST	Bit 11	I	I	U1RXIF	T4IF	OC7IF	I	I	U1RXIE	T4IE	OC7IE	I	I	Ι	I	Ι	I	I	Ι	Ι	I	I	I	I	Ι	Ι	I	Ι	Ι	I	Ι	
INTERRUPT CONTROLLER REGISTER MAP	Bit 12		I	U1TXIF	T5IF	OC8IF	I	I	U1TXIE	T5IE	OC8IE	I	I			•	I										٨	I	Ι	I		
CONTR	Bit 13	I	I	AD11F	INT2IF	I	DMA5IF	I	AD1IE	INT2IE	Ι	DMA5IE	Ι	T1IP<2:0>	T2IP<2:0>	U1RXIP<2:0>	I	CNIP<2:0>	IC8IP<2:0>	T4IP<2:0>	U2TXIP<2:0>	C1IP<2:0>	IC5IP<2:0>	0C7IP<2:0>	T6IP<2:0>	T8IP<2:0>	C2RXIP<2:0>	I	Ι		C2TXIP<2:0>	Ι
RRUPT	Bit 14	1	DISI	DMA11F	U2RXIF	DMA4IF	I	Ι	DMA1IE	U2RXIE	DMA4IE	Ι	Ι			Ο	I		_					0			C	Ι	Ι	I	C	Ι
INTE	Bit 15	NSTDIS	ΑLTIVT		U2TXIF	TGIF	I	1	Ι	U2TXIE	T6IE	1	I						Ι	Ι	I		I			Ι	I		Ι		Ι	Ι
4-5:	SFR Addr	0080	0082	0084	0086	0088	008A	008C	0094	9600	8600	A600	009C	00A4	00A6	8A00	00AA	00AC	00AE	00B0	00B2	00B4	00B6	00B8	00BA	00BC	00BE	0000	00C2	00C4	00C6	00E0
TABLE 4-5:	SFR Name	INTCON1	INTCON2	IFS0	IFS1	IFS2	IFS3	IFS4	IEC0	IEC1	IEC2	IEC3	IEC4	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC6	IPC7	IPC8	IPC9	IPC10	IPC11	IPC12	IPC13	IPC14	IPC15	IPC16	IPC17	INTTREG

DS70592B-page 38

ווכ	C24F	1		I	I	I	I	I	I	I	0	×	×	×	Б	Бц	0	0	×	×	×	Ē٩	Ē٩	0	0	×	×	×	Бц	Ľч	0	c
	All Resets	XXXX	FFFF	0000	XXXX	XXXX	XXXX	FFFF	FFFF	0000	0000	XXXX	XXXX	XXXX	FFFF	FFFF	0000	0000	XXXX	XXXX	XXXX	FFFF	FFFF	0000	0000	XXXX	XXXX	XXXX	FFFF	FFF	0000	0000
	Bit 0			I						I	Ι						I	I						Ι	Ι						Ι	I
	Bit 1			TCS						TCS	TCS						TCS	TCS						TCS	TCS						TCS	S L
	Bit 2			TSYNC						I	1						I	I						I	Ι						I	I
	Bit 3			I						T32	I						T32	I						T32	Ι						T32	I
	Bit 4			<1:0>						<1:0>	<1:0>						<1:0>	<1:0>						<1:0>	<1:0>						<1:0>	-0-1-
	Bit 5			TCKPS<1:0>		(V)				TCKPS<1:0>	TCKPS<1:0>						TCKPS<1:0>	TCKPS<1:0>						TCKPS<1:0>	TCKPS<1:0>						TCKPS<1:0>	TCKPS-1-0-
	Bit 6			TGATE		Timer3 Holding Register (for 32-bit timer operations only)				TGATE	TGATE		Timer5 Holding Register (for 32-bit operations only)				TGATE	TGATE		Timer7 Holding Register (for 32-bit operations only)				TGATE	TGATE		Timer9 Holding Register (for 32-bit operations only)				TGATE	TGATE
	Bit 7	Register	egister 1	I	Register	32-bit timer (Register	Period Register 2	Period Register 3	I	I	Register	for 32-bit ope	Timer5 Register	Period Register 4	Period Register 5	I	I	Register	for 32-bit ope	Register	Period Register 6	Period Register 7	I		Register	for 32-bit ope	Timer9 Register	Period Register 8	Period Register 9	I	I
	Bit 8	Timer1 Register	Period Register 1	I	Timer2 Register	Register (for	Timer3 Register	Period R	Period R	I	I	Timer4 Register	ng Register (Timer5 I	Period R	Period R	I	I	Timer6 Register	ng Register (Timer7 Register	Period R	Period R			Timer8 Register	ng Register (Timer9 I	Period R	Period R	I	I
	Bit 9			I		er3 Holding I				I	I		imer5 Holdir				I	I		imer7 Holdir					Ι		imer9 Holdir				I	I
	Bit 10			I		Time				I	1						I	I		Т				I			Т				I	I
	Bit 11			I						I	I						I	I													I	I
AP	Bit 12			I						I	I						I	I													I	1
TIMER REGISTER MAP	Bit 13			TSIDL						TSIDL	TSIDL						TSIDL	TSIDL						TSIDL	TSIDL						TSIDL	TSIDI
R REG	Bit 14			I						I	I						I	I							-							I
TIME	Bit 15			TON						TON	TON						TON	TON						TON	TON						TON	NOT
4-6:	SFR Addr	0100	0102	0104	0106	0108	010A	010C	010E	0110	0112	0114	0116	0118	011A	011C	011E	0120	0122	0124	0126	0128	012A	012C	012E	0130	0132	0134	0136	0138	013A	0130
TABLE 4-6:	SFR Name	TMR1	PR1	T1CON	TMR2	TMR3HLD	TMR3	PR2	PR3	T2CON	T3CON	TMR4	TMR5HLD	TMR5	PR4	PR5	T4CON	T5CON	TMR6	TMR7HLD	TMR7	PR6	PR7	T6CON	T7CON	TMR8	TMR9HLD	TMR9	PR8	PR9	T8CON	TOCON

查询PIC24HJ256GP210A供应商

TABLE 4-7:		NPUT C	APTU	INPUT CAPTURE REGISTER		MAP												
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
IC1BUF	0140								Input 1 Ca	Input 1 Capture Register	эr							XXXX
IC1CON	0142	Ι		ICSIDL				I	Ι	ICTMR	ICI<1:0>	6	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144								Input 2 Ca	Input 2 Capture Register	зr							XXXX
ICZCON	0146	Ι		ICSIDL				I	Ι	ICTMR	ICI<1:0>	6	ICOV	ICBNE		ICM<2:0>		0000
IC3BUF	0148								Input 3 Ca	Input 3 Capture Register	зr							XXXX
IC3CON	014A	Ι		ICSIDL				I	Ι	ICTMR	ICI<1:0>	6	ICOV	ICBNE		ICM<2:0>		0000
IC4BUF	014C								Input 4 Ca	Input 4 Capture Register	зr							XXXX
IC4CON	014E	Ι	-	ICSIDL	Ι		-		Ι	ICTMR	ICI<1:0>	~0	ICOV	ICBNE		ICM<2:0>		0000
IC5BUF	0150								Input 5 Ca	Input 5 Capture Register	зr							XXXX
ICECON	0152	Ι		ICSIDL				I	Ι	ICTMR	ICI<1:0>	6	ICOV	ICBNE		ICM<2:0>		0000
IC6BUF	0154								Input 6 Ca	Input 6 Capture Register	зr							XXXX
ICECON	0156	Ι		ICSIDL				I	Ι	ICTMR	ICI<1:0>	6	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	Input 7 Capture Register	эг.							XXXX
IC7CON	015A	Ι	Ι	ICSIDL	Ι	Ι	Ι		Ι	ICTMR	ICI<1:0>	0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8 Ca	Input 8 Capture Register	jr.							XXXX
IC8CON	015E	Ι	Ι	ICSIDL	Ι	Ι	Ι		Ι	ICTMR	ICI<1:0>	0>	ICOV	ICBNE		ICM<2:0>		0000
Legend:	x = unknc	own value o	n Reset, -	— = unimple	emented, re	∋ad as '0'. I	Reset valut	es are shov	wn in hexad	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.	'inHigh devic	es.						

XXXXX XXXXX XXXXX		xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx	xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx	xxxxx xxxxxx xxxxx<	xxxxx xxxxxx xxxxx<
OCM<2:0>	OCM<2:0> OCM<2:0>	OCM<2:0> OCM<2:0> OCM<2:0>	OCM<2:0> OCM<2:0> OCM<2:0>	OCM<2:0> OCM<2:0> OCM<2:0>	OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0>	OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0>	OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0>	OCMA20> OCMA20> OCMA20> OCMA20> OCMA20> OCMA20>	OCMA2:0> OCMA2:0> OCMA2:0> OCMA2:0> OCMA2:0>	OCMA2:0> OCMA2:0> OCMA2:0> OCMA2:0> OCMA2:0>	OCMA2:0> OCMA2:0> OCMA2:0> OCMA2:0> OCMA2:0> OCMA2:0>	OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0>	OCMA20> OCMA20> OCMA20> OCMA20> OCMA20> OCMA20> OCMA20>	OC(M:2:0> OC(M:2	OCMA20- OCMA20	OCMA20- OCMA20
┝─┥│┝					$\vdash \dashv \mid \vdash \dashv \mid \vdash \dashv \mid \vdash \dashv$			$\vdash \dashv \mid \vdash \dashv \mid \vdash \dashv \mid \vdash \dashv \mid \vdash \dashv$			$\vdash \dashv \mid \vdash \dashv$	$\vdash \dashv \mid \vdash \dashv \mid$		$\vdash \dashv \mid \vdash \dashv \mid \vdash$	$\vdash \dashv \mid \vdash \dashv \mid$	
Output Compare 2 accuraty register Output Compare 2 Register	I	1	1 1	1 1		1 1 1	1 1 1									
		condary Register							endary Register 3 Register 		- Condary Register 	Condary Register Condary Register Condary Register A Register Condary Register S Register Condary Register	ocndary Register 3 Register 3 Register Condary Register 4 Register 5 Register		endary Register 3 Register condary Register 4 Register 6 Register condary Register 6 Register condary Register 6 Register condary	eondary Register 3 Register condary Register 4 Register 6 Register condary Register 6 Register 6 Register 7 Register 7 Register 8 Register 8 Register 8 Register 8 Register
	Uutput Compare 3 Secondary Register Outbut Compare 3 Redister	ut Compare 3 Secondary Re Output Compare 3 Register —	Output Compare 3 Secondary Register Output Compare 3 Register Output Compare 4 Secondary Register	tr Compare 3 Secondary Re Output Compare 3 Register ut Compare 4 Secondary Re Ut Compare 4 Secondary Re Output Compare 4 Register	ut Compare 3 Seco Output Compare 3 — — — — — ut Compare 4 Seco Output Compare 4	Output Compare 3 Secondary Register Output Compare 3 Secondary Register Output Compare 4 Secondary Register Output Compare 4 Secondary Register Output Compare 4 Secondary Register Output Compare 5 Secondary Register	ut Compare 3 Secondary Re Output Compare 3 Register — — — — — — — — Ut Compare 4 Register — — — — — — — — — Ut Compare 5 Secondary Re Output Compare 5 Register	It Compare 3 Second ut Compare 3 Seconduput Compare 3 Seconduput Compare 4 Seconduput Compare 4 Seconduput Compare 5 Secondupt Compare 5 Second	Output Compare 3 Secondary Register Output Compare 3 Register Output Compare 3 Register Output Compare 4 Secondary Register Output Compare 4 Secondary Register Output Compare 5 Secondary Register	tr Compare 3 Secondary Re Output Compare 3 Register — — — — — — — — Ut Compare 4 Register — — — — — — — — Ut Compare 5 Secondary Re Output Compare 5 Register — — — — — — — — — — _ —	It Compare 3 Second to Compare 3 Second Output Compare 4 Second to Compare 4 Second to Compare 5 Second to Compare 5 Second to Compare 5 Second to Compare 6 Second to Compare 7 Second	Output Compare 3 Secondary Register Output Compare 3 Secondary Register Output Compare 4 Secondary Register Output Compare 4 Secondary Register Output Compare 5 Secondary Register Output Compare 5 Secondary Register Output Compare 6 Secondary Register Output Compare 7 Secondary Register	ut Compare 3 Secondary Re Ourput Compare 3 Register — — — — — — — — Ut Compare 4 Secondary Re Ourput Compare 4 Register — — — — — — — — Ut Compare 5 Secondary Re Ourput Compare 6 Register — — — — — — — — — — — — — — — — — — —	It Compare 3 Seco Ourbut Compare 3 Seco Ourbut Compare 4 Seco Ourbut Compare 5 Seco Ut Compare 5 Seco Ut Compare 6 Seco Ourbut Compare 6 Seco Ourbut Compare 6 Seco Ourbut Compare 6 Seco Ourbut Compare 7 Seco Ourbut Compare 7 Seco Ourbut Compare 7 Seco Ourbut Compare 7 Seco	Output Compare 3 Secondary Register Output Compare 3 Register Output Compare 4 Secondary Register Output Compare 4 Secondary Register Output Compare 5 Secondary Register Output Compare 5 Secondary Register Output Compare 5 Secondary Register Output Compare 6 Secondary Register Output Compare 7 Secondary Register Output Compare 8 Secondary Register	ut Compare 3 Secondary Re Output Compare 3 Register ut Compare 4 Secondary Re Output Compare 4 Register — — — — — — — Ut Compare 5 Secondary Re Output Compare 6 Register — — — — — — — — — ut Compare 6 Secondary Re Output Compare 6 Register — — — — — — — — — — — — — — — — — — —
	Output C	Output C	Output C Output C Output C Output C	Output C OUt	Output C 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	Output C 0 - - - 0<	Output C Output C Output C Output C Output C	Output C 00-01-01-00-01-00-01-00-01-01-00-01-01-0								
		-														
- OCSIDL -		- OCSIDL -	- OCSIDL -	- OCSIDL	- OCSIDL -	- OCSIDL -	- OCSIDL -	OCSIDL OCSIDL	ocsibl ocsibl	ocsibl	ocsibl ocsibl	OCSIDL OCSIDL OCSIDL OCSIDL	ocsibl ocsibl ocsibl	ocsibl ocsibl ocsibl	ocsibl ocsibl	ocsibl
			1			1 1 1 1										
018A 018C	018E	018E 0190	018E 0190 0192	018E 0190 0192 0194	018E 0190 0192 0194 0196	018E 0190 0192 0194 0196 0198	018E 0190 0192 0194 0196 0198 0198	018E 0190 0192 0194 0196 0198 0198 0197	018E 0190 0192 0194 0196 0198 0198 0193 0197 0196	018E 0190 0190 0192 0194 0196 0198 0196 0196 0196 0196 0196	018E 0190 0192 0192 0194 0198 0198 0198 0196 0196 0130	018E 0190 0192 0192 0194 0196 0196 0196 0180 0130 0130 0140 0140	018E 0190 0192 0192 0194 0196 0196 0196 0196 0130 0130 0130 0130 0130 0130 0130 013	018E 0190 0192 0192 0194 0196 0196 0196 0196 0130 0130 0130 0132 0132 0132 0132 0132	018E 0190 0190 0192 0194 0196 0196 0196 0196 0197 0196 0196 0180 0180 0180 0184 0180 0184 0180 0184 0186 0186	018E 0190 0192 0192 0194 0196 0196 0196 0196 0187 0186 0184 0184 0184 0184 0184 0184 0184 0184
OC2CON	OC3R	OC3R OC3CON	OC3R OC3CON OC4RS	OC3R OC3CON OC4RS OC4R	0C3R 0C3CON 0C4RS 0C4R	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C4RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C4RS 0C5RS 0C5RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C4RS 0C5RS 0C5RS 0C5RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C4RS 0C5RS 0C5RS 0C5RS 0C5RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C4RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS	003R 003R 004RS 004RS 004RS 005RS 005RS 005RS 005RS 005RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C4RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C6RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C5RS 0C5RS 0C5RS 0C5RS 0C6RS 0C6RS 0C6RS 0C6RS 0C6RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C4RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C4RS 0C4RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C5RS 0C6RS 0C6RS 0C7RS	0C3R 0C3R 0C4RS 0C4RS 0C4RS 0C5 0C5 0C5 0C5 0C5 0C5 0C5 0C5 0C5 0C5

查询PIC24HJ256GP210A供应商

R MAP	
ISTER	
I2C1 REGISTER	
-9: I	
TABLE 4-	

SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12	Bit 14 Bit 13	Bit 14 Bit 13				Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3	Bit 2	Bit 1	Bit 0	All Resets
							I											
0200	1	1	1	1									Receive	Receive Register				0000
0202		-				I		—					Transmit	Transmit Register				00FF
0204						I		—				Baud Rat	Baud Rate Generator Register	r Register				0000
0206 I2CEN — I2CSIDL SCLREL IPMIEN A100	- I2CSIDL SCLREL IPMIEN	I2CSIDL SCLREL IPMIEN	SCLREL IPMIEN	IPMIEN		A10N	1	A10M DISSLW SMEN	SMEN	GCEN STREN	STREN	ACKDT ACKEN	ACKEN	RCEN	PEN	RSEN	SEN	1000
0208 ACKSTAT TRSTAT BCL	TRSTAT	TRSTAT				BCI		GCSTAT	GCSTAT ADD10 IWCOL	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
020A						I	-					Address Register	Register					0000
020C						Ι					1	Address Mask Register	sk Register					0000
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices	wn value on Reset, — = unimplemented, read as '0'. Reset valu	Reset, —= unimplemented, read as '0'. Reset valu	- unimplemented, read as '0'. Reset valu	ented, read as '0'. Reset valu	as '0'. Reset valu	et valu	les a	re shown in	hexadecin	nal for PinH	ligh device:	s.						

TABLE 4-10: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	I	I	I		I	I	I					Receive Register	Register				0000
12C2TRN	0212		1	1	1	1	I	1	I				Transmit Register	Register				00FF
12C2BRG	0214						I					Baud Rati	Baud Rate Generator Register	Register				0000
I2C2CON	0216	I2CEN		IZCSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
12C2STAT	0218	ACKSTAT	TRSTAT		1		BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	٩	S	R_W	RBF	TBF	0000
12C2ADD	021A											Address Register	Register					0000
12C2MSK	021C											Address Mask Register	sk Register					0000
Legend:	x = unkno	\mathbf{x} = unknown value on Reset, — = unimplemented, read	Reset, — =	= unimplem			tet values	as '0'. Reset values are shown in hexadecimal for PinHigh devices.	hexadecir	nal for PinF	High device:	s.						

TABLE 4-11: UART1 REGISTER MAP

SFR Addr Bit	t 15 B	iit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2		Bit 0	All Resets
0220 UAR	RTEN		USIDL	IREN	RTSMD	I	UEN1	UENO	WAKE	LPBACK	ABAUD	URXINV	BRGH		L<1:0>	STSEL	0000
0222 UTXI	ISEL1 UT	TXINV L	JTXISELO		UTXBRK	UTXEN	UTXBF	TRMT	URXISE	L<1:0>	ADDEN	RIDLE	PERR		OERR	URXDA	0110
0224 -				-		Ι	Ι				UART 1	Transmit Re	jister				XXXX
0226 -			I			I					UART	Receive Reg	lister				0000
0228							Bauc	I Rate Gen	erator Presc	aler							0000
					Bit 15 Bit 14 Bit 13 Bit 14 UARTEN USIDL IF UTXISEL1 UTXINV UTXISEL0 IF	Bit 15 Bit 14 Bit 13 Bit 12 UARTEN USIDL IREN F UARTEN USIDL IREN F UTXISEL1 UTXINV UTXISEL0 L L L L L	Bit 15 Bit 14 Bit 13 Bit 12 UARTEN USIDL IREN F UARTEN USIDL IREN F UTXISEL1 UTXINV UTXISEL0 L L L L L	Bit 15 Bit 14 Bit 13 Bit 12 UARTEN USIDL IREN F UARTEN USIDL IREN F UTXISEL1 UTXINV UTXISEL0 L L L L L	Bit 15 Bit 14 Bit 13 Bit 12 UARTEN USIDL IREN F UARTEN USIDL IREN F UTXISEL1 UTXINV UTXISEL0 L L L L L	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 30 Bit 3 Bit 3 UARTEN USIDL IREN RTSMD UEN1 UEN0 WAKE UARTEN USIDL IREN RTSMD UEN1 UAKE UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF TRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF TRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF IRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBF IRMT URXISI U	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 30 Bit 3 Bit 3 UARTEN USIDL IREN RTSMD UEN1 UEN0 WAKE UARTEN USIDL IREN RTSMD UEN1 UAKE UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF TRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF TRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF IRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBF IRMT URXISI U	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 30 Bit 3 Bit 3 UARTEN USIDL IREN RTSMD UEN1 UEN0 WAKE UARTEN USIDL IREN RTSMD UEN1 UAKE UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF TRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF TRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBR UTXBF IRMT URXISI UTXISEL1 UTXINV UTXISEL0 UTXBF IRMT URXISI U	Bit 15 Bit 14 Bit 13 Bit 11 Bit 10 Bit 2 Bit 2 Bit 3 Bit 3	Bit 15 Bit 14 Bit 13 Bit 15 Bit 14 Bit 15 Bit 2 Bit 3 Bit 3	Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 30 Bit 3 Bit 3	Bit 15 Bit 14 Bit 13 Bit 15 Bit 15 Bit 15 Bit 15 Bit 15 Bit 2 Bit 3 Bit 3 Bit 3 UARTEN USIDL IREN RISNID UEND VAKE LPBACK ABAUD URXINV BRGH UTXISEL1 UTXINV INTONIC UTXBK UTXBK NAKE LPBACK ABAUD URXINV BRGH UTXISEL1 UTXINV UTXISEL1 UTXINV UTXISEL1 UTXISEL1 NAKE LPBACK ABAUD NIDKIN BRGH UTXISEL1 UTXINV UTXISEL UTXBK UTXBK RIMT UTXBK RIME RIM UTXISEL1 UTXINV UTXISEL UTXBK UTXBK RIME RIME	Bit 15 Bit 14 Bit 13 Bit 15 Bit 14 Bit 15 Bit 15 Bit 15 Bit 15 Bit 2 Bit 2 Bit 2 Bit 15 UARTEN USIDL IREN RTSMD UEN1 UEN0 WAKE LPBACK ABAUD URXINV BrGH PDSEL DER UTXISEL1 UTXINV ITXINV UTXISEL UTXISEL ABAUD URXINV BrGH PDSEL DER PDSEL DER DER

x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Legend:

查询PIC24HJ256GP210A供应商

Ъ.	Bit 12
FER MA	Bit 13
UART2 REGISTER MAP	Bit 14
UART2	Bit 15
-12:	SFR
TABLE 4-12:	SFR

业冏															R MAP	FGISTE	SPI1 R	4-13.	TARI F 4-13· SPI1 REGISTER MAP
ゴナ							es.	as '0'. Reset values are shown in hexadecimal for PinHigh devices.	ecimal for P	n in hexad	s are show	eset value	ead as '0'. R	mented, re	— = unimple	on Reset, -	\mathbf{x} = unknown value on Reset, — = unimplemented, read	un = x	Legend:
. UA	0000							aler	Baud Rate Generator Prescaler	d Rate Gen	Bau							0238	U2BRG
21	0000				egister	JART Receive Register	UART					Ι					Ι	0236	U2RXREG
0GF	XXXX				egister	UART Transmit Register	UART					Ι					Ι	0234	U2TXREG
200	0110	URXDA	OERR	FERR	PERR	RIDLE	ADDEN	URXISEL<1:0>		TRMT	UTXBF	UTXBRK UTXEN	UTXBRK	Ι	UTXISELO	UTXINV	UTXISEL1	0232	U2STA
IJ2	0000	STSEL	PDSEL<1:0>	PDSE	BRGH	URXINV	ABAUD URXINV	LPBACK	WAKE	UENO	UEN1	Ι	RTSMD	IREN	NSIDL		UARTEN	0230	U2MODE
0.024F	All Resets	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 11 Bit 10 Bit 9	Bit 10	Bit 11	Bit 12	Bit 13	Bit 14	Bit 15	SFR Addr	SFR Name

۲ n

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13 Bit 12	Bit 12	Bit 11	Bit 11 Bit 10 Bit 9		Bit 8	Bit 7	Bit 7 Bit 6 Bit 5	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2	Bit 2	Bit 1	Bit 0	AII Resets
SPI1STAT 0240	0240	SPIEN	I	SPISIDL	I	I	I	I	I	I	SPIROV	1	I	1	I	SPITBF SPIRBF	SPIRBF	0000
SPI1CON1 0242	0242	Ι	-		DISSCK	DISSDO	DISSDO MODE16 SMP		CKE	SSEN	CKP MSTEN	MSTEN		SPRE<2:0>		-BAPRE-	PPRE<1:0>	0000
SPI1CON2	0244	FRMEN	SPI1CON2 0244 FRMEN SPIFSD FRMPOL	FRMPOL								I	I			FRMDLY		0000
SPI1BUF 0248	0248							SPI1 Transmit and Receive Buffer Register	nit and Rec	eive Buffer	Register							0000
Legend:	x = unk	known value	\mathbf{x} = unknown value on Reset, — = unimplemented, read	- = unimplen	nented, rea	d as '0'. Re	as '0'. Reset values are shown in hexadecimal for PinHigh devices.	are shown i	n hexadeci	mal for Pin	High device	S.						

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 SPI2 REGISTER MAP Bit 13 Bit 14 Bit 15 SFR Addr TABLE 4-14: SFR Name

SFR Name Addr	SFR Addr	Bit 15	Bit 15 Bit 14	Bit 13 Bit 12	Bit 12	Bit 11	Bit 11 Bit 10 Bit 9	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0		All Resets
SPI2STAT 0260 SPIEN	0260	SPIEN	Ι	SPISIDL							SPIROV		Ι	1	1	SPITBF SPIRBF	SPIRBF	0000
SPI2CON1 0262	0262		Ι		DISSCK	DISSDO	DISSDO MODE16 SMP CKE	SMP	CKE	SSEN	CKP MSTEN	MSTEN	0,	SPRE<2:0>		PPRE<1:0>	:1:0>	0000
SPI2CON2	0264	FRMEN	SPI2CON2 0264 FRMEN SPIFSD FRMPOL	FRMPOL										I	I	FRMDLY		0000
SPI2BUF 0268	0268							SPI2 Trans	SPI2 Transmit and Receive Buffer Register	eive Buffer I	Register							0000
Legend:	un = x	known valu	Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.	— = unimpl∈	emented, re	ad as '0'. R	eset values	are shown	in hexaded	imal for Pir	High devic	es.						

© 2009 Microchip Technology Inc.

TABLE 4-15 :		ADC1 R	ADC1 REGISTER MAP	ER MAP														<u>查</u> ì
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Data Buffer 0	Buffer 0								24 ××
AD1CON1	0320	ADON		ADSIDL	ADDMABM		AD12B	FORM<1:0>	1<1:0>		SSRC<2:0>		I	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322		VCFG<2:0>		Ι		CSCNA	CHPS<1:0>	<1:0>	BUFS	Ι		SMPI<3:0>	<3:0>		BUFM	ALTS	25
AD1CON3	0324	ADRC	Ι			Ś	SAMC<4:0>						ADCS	ADCS<7:0>				66 0000
AD1CHS123	0326	I	1	I	I	I	CH123NB<1:0>		CH123SB		Ι	I	I	I	CH123N	CH123NA<1:0>	CH123SA	P2
AD1CHS0	0328	CHONB	1	I		Ō	CH0SB<4:0>			CHONA	Ι	I			CH0SA<4:0>	4		10
AD1PCFGH ⁽¹⁾) 032A	PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26 PCFG25	PCFG25	PCFG24	PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16	
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	长 0000
AD1CSSH ⁽¹⁾	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	Z 0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	Ι		1	I		1	1	I		Ι		I			DMABL<2:0>	4	0000
Reserved	0334- 033E	Ι	Ι	Ι		Ι	Ι	I	Ι	I	I	I	I	Ι	I		I	0000
Legend: Note 1: I	x = unkn Not all Al	own value c Nx inputs ar	on Reset, — e available	 – unimplei on all devic 	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Not all ANx inputs are available on all devices. See the device pin diagrams for available ANx inputs.	as '0'. Res evice pin c	et values a liagrams for	re shown ir r available <i>i</i>	hexadecim ANx inputs.	al for PinH	igh devices							
TABLE 4-16:		ADC2 R	ADC2 REGISTER MAP	ER MAP				·	-			-						
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF0	0340								ADC Data Buffer 0	Buffer 0								XXXX
AD2CON1	0360	ADON		ADSIDL	ADDMABM		AD12B	FORN	FORM<1:0>	0	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362		VCFG<2:0>	^	I	I	CSCNA	CHPS	CHPS<1:0>	BUFS			SMPI<3:0>	:3:0>		BUFM	ALTS	0000
AD2CON3	0364	ADRC				0	SAMC<4:0>						ADCS<7:0>	<7:0>				0000
AD2CHS123	0366	Ι		Ι	Ι	Ι	CH123	CH123NB<1:0>	CH123SB		Ι			Ι	CH123NA<1:0>		CH123SA	0000
AD2CHS0	0368	CHONB		Ι	Ι		CH0S	CH0SB<3:0>		CHONA	Ι	Ι			CH0S/	CH0SA<3:0>		0000
Reserved	036A	Ι			Ι			Ι	Ι			Ι						0000
AD2PCFGL	036C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
Reserved	036E				I													0000
AD2CSSL	0370	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0372	Ι	Ι	I	Ι			Ι	Ι	I	I		I		D	DMABL<2:0>	٨	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. 0374-037E Legend:

0000

T

L

T

T

L

L

L

L

I

L

l

L

Reserved

TABLE 4-17:	-17:	DMA	REGIS ⁻	DMA REGISTER MAP	٩	Ī		Ī	Ī			-	Ī		Ī			
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	1		1	Ι	I	AMODE<1:0>	<1:0>	I	I	MODE<1:0>	<1:0>	0000
DMA0REQ	0382 F	FORCE		1			1	1	1	Ι			=	IRQSEL<6:0>				0000
DMA0STA	0384								S.	STA<15:0>								0000
DMA0STB	0386								S.	STB<15:0>								0000
DMA0PAD	0388								74	PAD<15:0>								0000
DMA0CNT	038A		I	I			I					CNT<9:0>	<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW		I	I	I	I	AMODE<1:0>	<1:0>	I	I	MODE<1:0>	<1:0>	0000
DMA1REQ	038E F	FORCE		I				I	I	Ι			=	RQSEL<6:0>				0000
DMA1STA	0390								ω.	STA<15:0>								0000
DMA1STB	0392								ŝ	STB<15:0>								0000
DMA1PAD	0394								Ρ	PAD<15:0>								0000
DMA1CNT	0396	1	I	I		I	I					CNT<9:0>	<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	1	1	I	Ι		AMODE<1:0>	<1:0>	I	I	MODE<1:0>	<1:0>	0000
DMA2REQ	039A F	FORCE	I	I		1	I	I	1	Ι			1	IRQSEL<6:0>				0000
DMA2STA	039C								ю.	STA<15:0>								0000
DMA2STB	039E								ω.	STB<15:0>								0000
DMA2PAD	03A0								μ	PAD<15:0>								0000
DMA2CNT	03A2		Ι	I		Ι	Ι					CNT<9:0>	<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	I	I	Ι	Ι	Ι	AMODE<1:0>	<1:0>	Ι	Ι	MODE<1:0>	<1:0>	0000
DMA3REQ	03A6 F	FORCE	I	I		Ι			I	Ι			=	RQSEL<6:0>				0000
DMA3STA	03A8								ω.	STA<15:0>								0000
DMA3STB (03AA								S.	STB<15:0>								0000
DMA3PAD 03AC	03AC								μ	PAD<15:0>								0000
DMA3CNT (03AE		I	I		Ι						CNT<9:0>	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW			I	Ι	Ι	AMODE<1:0>	<1:0>			MODE<1:0>	<1:0>	0000
DMA4REQ	03B2 F	FORCE	I	I		Ι			I	Ι			=	IRQSEL<6:0>				0000
DMA4STA	03B4								ω.	STA<15:0>								0000
DMA4STB	03B6								ŝ	STB<15:0>								0000
DMA4PAD	03B8								ď	PAD<15:0>								0000
DMA4CNT (03BA			I		Ι	I					CNT<9:0>	<9:0>					0000
DMA5CON (03BC	CHEN	SIZE	DIR	HALF	NULLW	I			Ι	Ι	AMODE<1:0>	<1:0>	Ι	Ι	MODE<1:0>	<1:0>	0000
DMA5REQ (03BE F	FORCE				Ι			Ι	Ι			±	IRQSEL<6:0>				0000
DMA5STA	03C0								S.	STA<15:0>								0000
DNASCTD									Ċ									

 $\ensuremath{\textcircled{}^{\odot}}$ 2009 Microchip Technology Inc.

Bit 10 Bit 3 Bit 4 Bit 3 Bit 3 Bit 3 Bit 3 Bit 4 Bit 3 Bit 3 Bit 4 Bit 4 </th <th>Bit 7 Bit 6 Bit cd15:0> - A - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - - - - - - A - - - - - A - - - - - - A - - - - - - - A - - - - -</th> <th>Bit 8 Bit 7 PAD<15:0> PAD<15:0> - - - - - - - - - - - - - - - - - - - - - STR<15:0> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - STR<15:0> - - PMCOLO XWCOL7 PMSAT7 PMANCOL0 AMSAT7 -</th> <th>Bit 9 Bit 9 DHA310 DHA31</th> <th>Bit 10</th> <th></th> <th>2 Bit 11 B F NULLW - - - - - - -</th> <th>13 Bit 12 Bit 11 B - - - - - - - -</th> <th>it 14 Bit 13 Bit 12 Bit 11 B EIZE DIR HALF NULLW siZE DIR HALF NULLW </th> <th>Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 B CHEN SIZE DIR HALF NULLW <t< th=""></t<></th>	Bit 7 Bit 6 Bit cd15:0> - A - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - A - - - - - - - - A - - - - - A - - - - - - A - - - - - - - A - - - - -	Bit 8 Bit 7 PAD<15:0> PAD<15:0> - - - - - - - - - - - - - - - - - - - - - STR<15:0> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - STR<15:0> - - PMCOLO XWCOL7 PMSAT7 PMANCOL0 AMSAT7 -	Bit 9 Bit 9 DHA310 DHA31	Bit 10		2 Bit 11 B F NULLW - - - - - - -	13 Bit 12 Bit 11 B - - - - - - - -	it 14 Bit 13 Bit 12 Bit 11 B EIZE DIR HALF NULLW siZE DIR HALF NULLW 	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 B CHEN SIZE DIR HALF NULLW <t< th=""></t<>
	5:05 5	PAD<1 PAD 1		PWCOL1	W W W W W L3 PWCOL2 PWCOL1 L3 PWCOL2 PWCOL1 In hexadecimal for PinHig	F NULLW NULLW NULLW F NULLW DL4 PWCOL3 PWCOL2 PWCOL1 DL4 PWCOL3 PWCOL2 PWCOL1 sare shown in hexadecimal for PinHig	IR HALF NULLW IR HALF NULLW IR HALF NULLW IR HALF NULLW IR HALF NULLW IR HALF NULLW IR PWCOL2 PWCOL2 IR PWCOL3 PWCOL2 IR IR IR NULLW IR HALF NULLW IR HALF NULLW IR HALF NULLW	IZE DIR HALF NULLW	Image: Size of the size o
	5:0> 5:0> A 5:0> FPST6 PPST6 5:0> A A 65:0> A A 7 PPST6 PPS 8It 7 Bit 6 Bit 6	- - - - STA<1		PWCOL1	W W W W L3 PWCOL2 PWCOL1 L3 PWCOL2 PWCOL1 In hexadecimal for PinHig	F NULLW NULLW F NULLW U- D14 PWCOL3 PWCOL2 D14 PWCOL3 PWCOL1 Sare shown in hexadecimal for PinHig	R HALF NULLW - <	IZE DIR HALF NULLW <	HEN SIZE DIR HALF NULLW ORCE HALF NULLW ORCE HEN SIZE DIR HALF NULLW ORCE ORCE ORCE ORCE MCOL7 PWCOL6 PWCOL6 PWCOL2 PWCOL2 PWCOL1
	− − A 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 6:0> 7 81t 7 81t 6	- STA<1 STA<1 STB<1 PAD<1 STB<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<1 STA<		PWCOL1 F	W W W W L L PWCOL2 PWCOL1 PWCOL2 PWCOL1 F L In hexadecimal for PinHighting	F NULLW F NULLW F NULLW I I I I I I I I I I I I I I <	IR HALF NULLW - - - - - - IR HALF NULLW - - - - IR HALF NULLW - - - - - IR HALF NULLW - - - - - - IR HALF NULLW - <td>IZE DIR HALF NULLW -</td> <td>HEN SIZE DIR HALF NULLW ORCE HALF NULLW HALF NULLW HEN SIZE DIR HALF NULLW ORCE ORCE </td>	IZE DIR HALF NULLW -	HEN SIZE DIR HALF NULLW ORCE HALF NULLW HALF NULLW HEN SIZE DIR HALF NULLW ORCE ORCE
	5:0> 5:0> 5:0> 5:0> 5:0> - 6:15 - 8:17 - 8:17 - 8:17 - 8:17 - 8:17 - 8:17 -	- STA<1		PWCOL1 PV	W W W L3 PWCOL2 PWCOL1 PMCOL2 PWCOL2 PWCOL1 In hexadecimal for PinHigh	F F NULLW NULLW D14 PWCOL2 PWCOL1 PWCOL1 D14 PWCOL2 PWCOL12 PWCOL1 Sare shown in hexadecimal for PinHigh	- - - - - - - - -	- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	ORCE — …
	5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0>	STAc11 STBc1 PADc1 - PADc1 - STBc1 PADc1 PADc1 PADc1 PADc1 PADc1 PADc1 PADc1 PADc1		PWCOL1 PW	W	F F NULLW DL4 PWCOL2 PWCOL2 PWCOL1 PWCOL3 PWCOL1 Sare shown in hexadecimal for PinHigh or	- - - - IR HALF NULLW - - - - - - - - - - - - - - - - - 20L5 PWCOL3 PWCOL3 PWCOL1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	-:ZE DIR HALF NULLW <	>HEN SIZE DIR HALF NULLW ORCE ORCE MCOL7 PWCOL6 PWCOL3 PWCOL3 PWCOL1 PW Molemented, read as '0'. Reset values are shown in hexadecimal for PinHigh contact PM PinHigh contact
	5:0> 5:0> 6:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 1:0> 5:0> 5:0> 1:0 1:0> 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0	STB<1 PAD<1		PWCOL1 PM	M M L3 PWCOL2 PWCOL2 PWCOL1 PWCOL3 PWCOL1 In hexadecimal for PinHigh c	F NULLW NULLW DL4 PWCOL3 PWCOL1 PW DL4 PWCOL3 PWCOL1 PM Sare shown in hexadecimal for PinHigh or an and stress and str	- - - - IR HALF NULLW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20L5 PWCOL3 PWCOL2 PWCOL1 PMCOL4 PWCOL3 PWCOL2 - - - - - LSTCH<3:0>	iZE DIR HALF NULLW /td>	HEN SIZE DIR HALF NULLW ORCE ORCE MCOL7 PWCOL6 PWCOL3 PWCOL2 PWCOL1 PW Momented, read as '0'. Reset values are shown in hexadecimal for PinHigh
	5:0> 5:	PAD<1 - -		PWCOL1 PW	W	F NULLW NULLW DL4 PWCOL3 PWCOL2 PWCOL1 DL4 PWCCOL3 PWCCOL2 PWCCOL1 State shown in hexadecimal for PinHigh	- - - - IR HALF NULLW - - - - - - - - - - - - - - - - - 20L5 PWCOL3 PWCOL3 PWCOL1 PWCCL3 PWCOL2 PWCCOL1 PW	iZE DIR HALF NULLW /td>	<
				PWCOL1 PV	W		<	Image: Second	<
	A 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0>			PWCOL1 PW Hard PinHigh	W	F NULLW -	IR HALF NULLW 20L5 PWCOL3 PWCOL3 PWCOL1 PWCOL1 PW Image: Colored and Colore	IZE DIR HALF NULLW -	HEN SIZE DIR HALF NULLW
		STB<1 STB<1 STB<1 PAD<1 PAD<1 PF DSADR		PWCOL1 PW	L3 PWCOL1 PWCOL1 PW L3 PWCOL2 PWCOL1 PW LSTCH<3:0>	- - - 14 PWCOL3 PWCOL1 PWCOL3 PWCOL1 PW 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - </td <td>- -</td> <td>- - - - - - -</td> <td>ORCE -</td>	- -	- - - - - - -	ORCE -
	5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 5:0> 15:0> 15:0> 15:0> 15:0> R PIC24HJXXG	STAc1: STBc1 PADc1 PADc1 PF DSADR: evices.	Å V	PWCOL1 PW	L3 PWCOL2 PWCOL1 PW LSTCH<3:0>	DL4 PWCOL3 PWCOL1 PW LSTCH<3:0> LSTCH<3:0>	- - - - COL5 PWCOL4 PWCOL2 PWCOL1 PWCOL3 PWCOL2 PWCOL1 PW - - - LSTCH<3:0>	COL6 PWCOL5 PWCOL4 PWCOL1 PWCOL5 PWCOL4 PWCOL3 PWCOL2 LSTCH<3:0>	Image: marked start Image: marked start Image: marked start Image: marked start Image: marked start Image: marked start
	5:0> 5:0> COL7 XWCOL6 XWC ST7 PPST6 PPE 15:0> R PIC24HJXXC Bit 7 Bit 6	STB<1 PAD<1 ZOL0 XW PF DSADR	DMd	PWCOL1 PWC H<3:0>	L3 PWCOL2 PWCOL1 PWC LSTCH<3:0>	DL4 PWCOL3 PWCOL1 PWCOL1 PWC LSTCH<3:0> LSTCH<3:0>	- - - - - - - - COL5 PWCOL4 PWCOL1 PWC - - LSTCH<3:0> . - LSTCH Addression	PWCOL1 PWCOL1 PWCOL5 PWCOL4 PWCOL3 PWCOL2 LSTCH<3:0>	NCOL7 PWCOL6 PWCOL3 PWCOL3 PWCOL1 NCOL7 PWCOL6 PWCOL4 PWCOL3 PWCOL2 PWCOL6 PWCOL5 PWCOL3 PWCOL1 PWCOL1
	5:0> COL7 XWCOL6 XWC %T7 PPST6 PPS <15:0> R PIC24HJXXC Bit 7 Bit 6	PAD<1 COL0 XW PF DSADR	DMd	PWCOL1 PWC H<3:0>	L3 PWCOL2 PWCOL1 PWC L3 PWCOL2 PWCOL1 PWC LSTCH<3:0>	DL4 PWCOL3 PWCOL1 PWC LSTCH<3:0> LSTCH<3:0> S are shown in hexadecimal for PinHigh de	COL5 PWCOL4 PWCOL3 PWCOL3 PWCOL2 PWCOL1 PWCOL4 PWCOL3 PWCOL2 PWCOL4 PWCOL3 PWCOL2 PWCOL4 PWCOL3 PWCOL4 PWC015 PWCOL4 PWCOL4	COL6 PWCOL5 PWCOL4 PWCOL2 PWCOL1 LSTCH<3:0> LSTCH<3:0>	NCOL7 PWCOL6 PWCOL3 PWCOL2 PWCOL1 PWC PWCOL1 PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC
	COL7 XWCOL6 XWC ST7 PPST6 PPS (15:0> R PIC24HJXXXG Bit 7 Bit 6	OL0 XW PF DSADR vices.	E PMC	PWCOL1 PWCOL0 XWCOL7 H<3:0> PPST7 DSADR<15:0> DSADR<15:0> mal for PinHigh devices.	L3 PWCOL2 PWCOL1 PWC LSTCH<3:0> in hexadecimal for PinHigh de	DL4 PWCOL3 PWCOL1 PWC LSTCH<3:0> LSTCH<3:0> s are shown in hexadecimal for PinHigh de	- - - - COL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 - - LSTCH<3:0> - - LSTCH<3:0>	COL6 PWCOL5 PWCOL3 PWCOL2 PWCOL1 LSTCH<3:0>	- - - - - NCOL7 PWCOL6 PWCOL3 PWCOL2 PWCOL1 PWC - - - - - LSTCH<3:0>
	COL7 XWCOL6 XWC SST7 PPST6 PPS (15:0> R PIC24HJXXXG Bit 7 Bit 6	OL0 XW PF DSADR- vices.	PWC	2 PWCOL1 PWC :H<3:0> mal for PinHigh de	L3 PWCOL2 PWCOL1 PWC LSTCH<3:0> in hexadecimal for PinHigh de	DL4 PWCOL3 PWCOL2 PWCOL1 PWC LSTCH<3:0> s are shown in hexadecimal for PinHigh de	COL5 PWCOL4 PWCOL3 PWCOL1 PWC - - LSTCH<3:0> - - LSTCH<3:0>	COL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWC	WCOL7 PWCOL6 PWCOL5 PWCOL3 PWCOL1 PWCOL1 </td
┝╼┥╽╴╷┝━━╫━┥║║║┝╸	15:0> R PIC24HJXXXG Bit 7 Bit 6	DSADR<	č c	:H<3:0> mal for PinHigh de	LSTCH<3:0> in hexadecimal for PinHigh de	LSTCH<3:0> s are shown in hexadecimal for PinHigh de	 LSTCH<3:0> Reset values are shown in hexadecimal for PinHigh de 	Comparison of the set of the	Contraction of the section of t
	R PIC24HJXXXG Bit 7 Bit 6	DSADR< vices.	do.	mal for PinHigh dev	ı in hexadecimal for PinHigh dev	ss are shown in hexadecimal for PinHigh dev	. Reset values are shown in hexadecimal for PinHigh de	, read as '0'. Reset values are shown in hexadecimal for PinHigh dev	mplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh de
	R PIC24HJXXXG Bit 7 Bit 6	/ices.	P	mal for PinHigh dev	r in hexadecimal for PinHigh dev	ss are shown in hexadecimal for PinHigh dev	. Reset values are shown in hexadecimal for PinHigh dev	, read as '0'. Reset values are shown in hexadecimal for PinHigh dev	= unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.
	R PIC24HJXXXG		in uevi	D					
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 - - CANCAP - - - - - CANCAP - - - - - - CANCAP -	Bit 7 Bit 6	R 1 FO	0	1.WIN = 0 O					ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 O
CANCAP DNCNT<4:0> ERRIE ICODE<6:0> FSA<4:0>		Bit 8	t 9	3it 10 Bit 9	Bit 11 Bit 10 Bit 9	Bit 10	Bit 11 Bit 10	Bit 12 Bit 11 Bit 10	Bit 13 Bit 12 Bit 11 Bit 10
- DNCNT<4:0> ICODE<6:0> FSA<4:0> - FSA<4:0> FNRB<5:0> FNRB<5:0>	OPMODE<2:0>	<0	o<2:(REQOP<2:0>	- REQOP<2:	ABAT – REQOP<2:	1	ABAT —	ABAT —
ICODE<6:0>		Ι	1						0402
FSA<4:0> FNRB<5:0> FREIEEFCIERROVIERRIE				IT<4:0>	FILHIT<4:0>	FILHIT<4:0>	FILHIT<4:0>	FILHIT<4:0>	0404 — — — — FILHIT<4:0>
FNRB<5:0> FRRIE FIECIE RROVIE RRIE								0MABS<2:0>	0406 DMABS<2:0>
					FBP<5:0>	FBP<5:0>	FBP<5:0>	FBP<5:0>	0408 – – – FBP<5:0>
	IVRIF WAKIF	R EWARN	VAF	XWAR RXWAR	RXBP TXWAR RXWAF	TXWAR	RXBP TXWAR	TXBP RXBP TXWAR	TXBP RXBP TXWAR
WAKIE ERRIE - FIFOIE RBOVIE RBIE TBIE	IVRIE WAKIE								040C
RERRCNT<7:0>					<7:0>	TERRCNT<7:0>	TERRCNT<7:0>	TERRCNT<7:0>	040E TERRCNT<7:0>
<1:0> BRP<5:0>	SJW<1:0>	I							0410
S SAM SEG1PH<2:0> PRSEG<2:0>	SEG2PHTS SAM	2:0>	Ϋ́	SEG2PH<2:0>	- SEG2PH<2	- SEG2PH<2	SEG2PH<2	WAKFIL SEG2PH<2	
FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0	FLTEN7	49 FLTEN8	ш	TEN10 FLTEN	LTEN11 FLTEN10 FLTEN9 FLTEN8	FLTEN11	FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN	FLTEN13 FLTEN12 FLTEN11	FLTEN11
K<1:0> F2MSK<1:0> F1MSK<1:0> F0MSK<1:0>	F3MSK<1:0>	F4MSK<1:0>	4		F5MSK<1:0> F4	F5MSK<1:0>		F6MSK<1:0> F5MSK<1:0>	F5MSK<1:0>
K<1:0> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0>	F11MSK<1:0>	F12MSK<1:0>	12		F13MSK<1:0> F12	F13MSK<1:0>		F14MSK<1:0> F13MSK<1:0>	F13MSK<1:0>

DS70592B-page 46

Ι	All Resets	IJ25	6G	P2	10.	A住 0000	<u>+</u> 0000		0000	xxxx	XXXX	XXXX		ţs	
							00	00	00	XX	XX	XX		All Resets	
	Bit 0		RXFUL0	7 RXFUL16	RXOVF0	7 RXOVF	TX0PRI<1:0>	TX2PRI<1:0>	TX4PRI<1:0>	TX6PRI<1:0>				Bit 0	
	Bit 1		RXFUL1	RXFUL17	RXOVF1	RXOVF1	TX0P	TX2P	TX4P	ТХ6Р				Bit 1	
S ONLY	Bit 2		RXFUL2	RXFUL18	RXOVF2	RXOVF18	RTRENO	RTREN2	RTREN4	RTREN6			S ONLY	Bit 2	
EVICES	Bit 3		RXFUL3	RXFUL19	RXOVF3	RXOVF19	TX REQ0	TX REQ2	TX REQ4	TX REQ6			EVICES	Bit 3	
/610A D	Bit 4		RXFUL4	RXFUL20	RXOVF4	RXOVF20	TX ERR0	TX ERR2	TX ERR4	TX ERR6			(610A D	Bit 4	
A/510A	Bit 5		RXFUL5	RXFUL21	RXOVF5	0424 RX0VF31 RX0VF30 RX0VF29 RX0VF28 RX0VF27 RX0VF26 RX0VF25 RX0VF24 RX0VF23 RX0VF22 RX0VF21 RX0VF20 RX0VF19 RX0VF18 RX0VF17 RX0VF16	TX LARB0	TX LARB2	TX LARB4	TX LARB6			of: Reset values are shown in hexadecimal for PinHigh devices. CTRL1.WIN = 1 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY	Bit 5	
XGP506	Bit 6	×	RXFUL6	RXFUL22	RXOVF6	RXOVF22	TX ABAT0	TX ABAT2	TX ABAT4	TX ABAT6			High device	Bit 6	
24HJXX	Bit 7	See definition when WIN = x	RXFUL7	RXFUL23	RXOVF7	RXOVF23	TXEN0	TXEN2	TXEN4	TXEN6	ata Word	ata Word	mal for Pint	Bit 7	
DR PIC2	Bit 8	definition	RXFUL8	RXFUL24	RXOVF8	RXOVF24	<1:0>	<1:0>	<1:0>	<1:0>	Recieved Data Word	Transmit Data Word	in hexadeci DR PIC2	Bit 8	
N = 0 F(Bit 9	See	RXFUL9	RXFUL25		RXOVF25	TX1PRI<1:0>	TX3PRI<1:0>	TX5PRI<1:0>	TX7PRI<1:0>			are shown N = 1 FC	Bit 9	č
CTRL1.WIN = 0 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY	Bit 10		-11 RXFUL10	RXFUL26	RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9	RXOVF26	RTREN1	RTREN3	RTREN5	RTREN7			'0'. Reset values are shown in hexadecimal for PinHigh devices. ICTRL1.WIN = 1 FOR PIC24HJXXXGP506/	Bit 10	
N C1CT	Bit 11		RXFUL11	RXFUL27	RXOVF11	RXOVF27	TX REQ1	TX REQ3	TX REQ5	TX REQ7				Bit 11	
ECAN1 REGISTER MAP WHEN C1	Bit 12		RXFUL13 RXFUL12 RXFUI	RXFUL28	RXOVF12	RXOVF28	TX ERR1	TX ERR3	TX ERR5	TX ERR7			 x = unknown value on Reset, — = unimplemented, read as ' 20: ECAN1 REGISTER MAP WHEN C1 	Bit 12	
TER MA	Bit 13		RXFUL13	RXFUL29	RXOVF13	RXOVF29	TX LARB1	TX LARB3	TX LARB5	TX LARB7			-= unimple TER MA	Bit 13	
REGIS	Bit 14		RXFUL14	RXFUL30	RXOVF14	RXOVF30	TX ABT1	TX ABT3	TX ABT5	TX ABT7			on Reset, - REGIS	5 Bit 14	
CAN1	Bit 15		RXFUL15	RXFUL31	(OVF15	(OVF31	TXEN1	TXEN3	TXEN5	TXEN7			wn value CAN1	Bit 15	
	Addr E	0400- 041E	0420 R>	0422 R>	0428 RX	342A R>	0430 T	0432 T	0434 T	0436 T	0440	0442	nkr	Addr	0010
TABLE 4-19:	File Name		C1RXFUL1 (C1RXFUL2 (C1RXOVF1 (C1RXOVF2 (C1TR01CO N	C1TR23CO N	C1TR45CO N	C1TR67CO 0 N	C1RXD (C1TXD (Legend: x=u TABLE 4-20:	File Name	

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See definiti	See definition when WIN = x	IN = x							
C1BUFPNT1	0420		F3BP	F3BP<3:0>			F2BP	F2BP<3:0>			F1BP<3:0>	:3:0>			F0BP<3:0>	<3:0>		0000
C1BUFPNT2	0422		F7BP	F7BP<3:0>			F6BP	F6BP<3:0>			F5BP<3:0>	:3:0>			F4BP<3:0>	<3:0>		0000
C1BUFPNT3	0424		F11BF	F11BP<3:0>			F10BF	F10BP<3:0>			F9BP<3:0>	:3:0>			F8BP<3:0>	<3:0>		0000
C1BUFPNT4	0426		F15BF	F15BP<3:0>			F14BF	F14BP<3:0>			F13BP<3:0>	<3:0>			F12BP<3:0>	<3:0>		0000
C1RXM0SID	0430				SID<10:3>	10:3>					SID<2:0>		I	MIDE	I	EID<17:16>	16>	XXXX
C1RXM0EID	0432				EID<	EID<15:8>							EID<7:0>	<0>				XXXX
C1RXM1SID	0434				SID<10:3>	10:3>					SID<2:0>		I	MIDE	I	EID<17:16>	16>	XXXX
C1RXM1EID	0436				EID<	EID<15:8>							EID<7:0>	<0>				XXXX
C1RXM2SID	0438				SID<10:3>	10:3>					SID<2:0>			MIDE	I	EID<17:16>	16>	XXXX
C1RXM2EID	043A				EID<	EID<15:8>							EID<7:0>	-0:				XXXX
C1RXF0SID	0440				SID<	SID<10:3>					SID<2:0>			EXIDE	I	EID<17:16>	16>	XXXX
C1RXF0EID	0442				EID<15:8>	15:8>							EID<7:0>	-0:				XXXX
C1RXF1SID	0444				SID<	SID<10:3>					SID<2:0>			EXIDE		EID<17:16>	7:16>	XXXX
		vn value on	Recet -	- unimple	mented re	1,0, se pe	Pecet value	oc are sho	wo in hever	v – unknowu value on Basat — – unimplementad read as '0' Basat values are shown in havadacimal for DinHich daviras	iveh devi	202						

PinHigh devices. '0'. Reset values are shown in hexadecimal for unimplemented, read as Ш x = unknown value on Reset, Legend:

查询PIC24HJ256GP210A供应商

Image: field with the part of t	TABLE 4-20:		CAN1 R	EGIST	ER MA	P WHEI	N C1C1	FRL1.W	/IN = 1	FOR PI	C24HJX	(XXGP5)	06A/510	A/610A	DEVICI	ES ONL	ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY (CONTINUED)	UED)	
0446 EID EID <th>File Name</th> <th>Addr</th> <th>Bit 15</th> <th>Bit 14</th> <th>Bit 13</th> <th>Bit 12</th> <th>Bit 11</th> <th>Bit 10</th> <th>Bit 9</th> <th>Bit 8</th> <th>Bit 7</th> <th>Bit 6</th> <th>Bit 5</th> <th>Bit 4</th> <th>Bit 3</th> <th>Bit 2</th> <th></th> <th></th> <th>All sets</th>	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2			All sets
0406 010-050 010-050 010-050 010-050 010-050 010-050 0401 010-050 010-050 010-050 010-050 010-050 010-050 0405 010-050	C1RXF1EID	0446				EID<1	15:8>							EID	7:0>			X	XXX
(64) EID EID <td>C1RXF2SID</td> <td>0448</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>10:3></td> <td></td> <td></td> <td></td> <td></td> <td>SID<2:0></td> <td></td> <td>Ι</td> <td>EXIDE</td> <td> </td> <td>EID<17:16></td> <td></td> <td>xxx</td>	C1RXF2SID	0448				SID<1	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>		xxx
0406 DB-0135- DB-0173- EID-713- EID-713- 0406 DB-0153- DB-0153- EID-713- EID-713- 0407 DB-0153- DB-0123- EID-713- EID-713- 0408 DB-0103- DB-0103- DB-0103- DB-0173- EID-713- 0408 DB-0103- DB-0103- DB-0103- DB-0103- DB-0173- EID-713- 0409 DB-0103- DB-0103- DB-0103- DB-0103- DB-0173- EID-710- EID-710- 0404 DB-0103- DB-0103- DB-0103- DB-0103- DB-0173- DB-0173- DB-0173- 0405 DB-0103- DB-0103- DB-0103- DB-0103- DB-0173- DB-0173- DB-0173- 0406 DB-0103- DB-0103- DB-0123- DB-0173- DB-0173-<	C1RXF2EID	044A				EID<1	15:8>							EID<	7:0>			X	XXX
(046 (EID-756) (EID-770) 0490 S10-0135 EID-770 EID-770 0491 S10-0135 S10-0135 EID-770 EID-770 0491 S10-0135 S10-0135 S10-0135 EID-770 EID-7705 0491 S10-0135 S10-0135 S10-0135 EID-770 EID-7705 0495 S10-0135 S10-0135 S10-0135 S10-0135 S10-0135 0405 S10-0135 S10-0135 S10-0135 S10-0135 S10-0135 0405 S10-0135 S10-0135 S10-0135 S10-0135 S10-0135 0405 S10-0135 S10-0135 S10-0135 S10-0135 S10-0135 0406 S10-0135 S10-013 S10-013 S10-013 S10-0135 0406 S10-0135 S10-013 S10-013 S10-013 S10-014 0407 S10-0135 S10-013 S10-014 S10-014 S10-014 0408 S10-0135 S10-014 S10-014 S10-014 S10-014 </td <td>C1RXF3SID</td> <td>044C</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>10:3></td> <td></td> <td></td> <td></td> <td></td> <td>SID<2:0></td> <td></td> <td>Ι</td> <td>EXIDE</td> <td> </td> <td>EID<17:16></td> <td></td> <td>XXX</td>	C1RXF3SID	044C				SID<1	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>		XXX
0460 Discritto. Discritto. Electrito. Electrito. 0461 Electrito. Electrito. Electrito. Electrito. 0464 Electrito. Electrito. Electrito. Electrito. Electrito. 0464 Electrito. Sloco. Sloco. Electrito. Electrito. 0468 Electrito. Sloco. Sloco. Electrito. Electrito. Electrito. 0468 Electrito. Sloco. Sloco. Electrito. Electrito. Electrito. 0468 Electrito. Sloco. Sloco. Electrito. Electrito. Electrito. 0469 Electrito. Sloco. Sloco. Electrito. Electrito. Electrito. 0469 Electrito. Sloco. Electrito. Electrito. Electrito. Electrito. 0464 Electrito. Electrito. Electrito. Electrito. Electrito. 0464 Electrito. Electrito. Electrito. Electrito. Electrito.	C1RXF3EID	044E				EID<1	15:8>							EID	7:0>			X	
0482 Electão Electrão Electrão 0446 SUCiOS - EXO - Electrão 0466 SUCIOS SUCIOS - Electrão - Electrão 0466 SUCIOS SUCIOS SUCIOS - Electrão - Electrão 0466 SUCIOS SUCIOS SUCIOS SUCIOS - Electrão	C1RXF4SID	0450				SID<1	10:3>					SID<2:0>		I	EXIDE		EID<17:16>		
0464 END-210-5 EXIDE EXIDE EID-710-5 0468 EID-710-5 EID-710-5 EID-710-5 EID-710-5 0468 EID-710-5 EID-710-5 EID-710-5 EID-710-5 EID-710-5 0468 EID-710-5 EID-710-5 EID-710-5 EID-710-5 EID-710-5 0469 SID-210-5 SID-210-5 EID-710-5 EID-710-5 EID-710-5 0460 SID-210-5 SID-210-5 EID-710-5 EID-710-5 EID-710-5 0405 SID-210-5 SID-210-5 EID-710-5 EID-710-5 EID-710-5 0405 SID-210-5 SID-210-5 SID-210-5 EID-710-5 EID-710-5	C1RXF4EID	0452				EID<1	15:8>							EID	7:0>			X	
0466 EDe-16.3b. EDe-16.3b. EDe-17.0b. EDe-17.1b. ED0.7105	C1RXF5SID	0454				SID<1	10:3>					SID<2:0>		I	EXIDE	1	EID<17:16>		
0468 Discrito. SID.c2.0 EID.(17:6). EID	C1RXF5EID	0456				EID<1	15:8>							EID	7:0>			X	
0454 EID EID <td>C1RXF6SID</td> <td>0458</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>10:3></td> <td></td> <td></td> <td></td> <td></td> <td>SID<2:0></td> <td></td> <td>I</td> <td>EXIDE</td> <td>1</td> <td>EID<17:16></td> <td></td> <td>xxx</td>	C1RXF6SID	0458				SID<1	10:3>					SID<2:0>		I	EXIDE	1	EID<17:16>		xxx
045C EXDC_30 SID EXDC_30 E <	C1RXF6EID	045A				EID<1	15:8>							EID	7:0>			X	XXX
0456 EIDC4568 EIDC470A EIDC470A <th< td=""><td>C1RXF7SID</td><td>045C</td><td></td><td></td><td></td><td>SID<1</td><td>10:3></td><td></td><td></td><td></td><td></td><td>SID<2:0></td><td></td><td>Ι</td><td>EXIDE</td><td> </td><td>EID<17:16></td><td></td><td>XXX</td></th<>	C1RXF7SID	045C				SID<1	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>		XXX
0460 0460 0410 <th< td=""><td>C1RXF7EID</td><td>045E</td><td></td><td></td><td></td><td>EID<1</td><td>15:8></td><td></td><td></td><td></td><td></td><td></td><td></td><td>EID<</td><td>7:0></td><td></td><td></td><td>X</td><td>xxx</td></th<>	C1RXF7EID	045E				EID<1	15:8>							EID<	7:0>			X	xxx
04620463 $EID<EID$	C1RXF8SID	0460				SID<1	10:3>					SID<2:0>		I	EXIDE		EID<17:16>		xxx
0464 010 SID SID <td>C1RXF8EID</td> <td>0462</td> <td></td> <td></td> <td></td> <td>EID<1</td> <td>15:8></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>EID<</td> <td>7:0></td> <td></td> <td></td> <td>X</td> <td>xxx</td>	C1RXF8EID	0462				EID<1	15:8>							EID<	7:0>			X	xxx
0466EIDC 75.3.EIDC 70.3.EIDC 70.3.EI	C1RXF9SID	0464				SID<1	10:3>					SID<2:0>			EXIDE		EID<17:16>		xxx
0468 BID-10:3 BID-10:3 BID-17:16 EID-17:16 046A EID-15:8 EID-17:8 EID-17:16 EID-17:16 046C BID-10:3 BID-10:3 BID-17:16 EID-17:16 EID-17:16 046C BID-10:3 BID-10:3 BID-10:3 BID-17:16 EID-17:16 EID-17:16 046E BID-10:3 BID-10:3 BID-10:3 BID-10:3 EID-17:16 EID-17:16 EID-17:16 047B BID-10:3 BID-10:3 BID-10:3 BID-10:3 EID-17:16 EID-17:16 EID-17:16 047B BID-10:3 BID-10:3 BID-20:0 BID EID-17:16 EID-17:16 <td< td=""><td>C1RXF9EID</td><td>0466</td><td></td><td></td><td></td><td>EID<1</td><td>15:8></td><td></td><td></td><td></td><td></td><td></td><td></td><td>EID<</td><td>7:0></td><td></td><td></td><td>X</td><td>xxx</td></td<>	C1RXF9EID	0466				EID<1	15:8>							EID<	7:0>			X	xxx
046A EID EID <td>C1RXF10SID</td> <td>0468</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>10:3></td> <td></td> <td></td> <td></td> <td></td> <td>SID<2:0></td> <td></td> <td>Ι</td> <td>EXIDE</td> <td> </td> <td>EID<17:16></td> <td>X</td> <td>xxx</td>	C1RXF10SID	0468				SID<1	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>	X	xxx
046C 0146C 0146C 0146C 0146C 0146C 0146C 0146C 0147C 017C 012C 012C 012C 012C 012C	C1RXF10EID	046A				EID<1	15:8>							EID<	7:0>			X	XXX
046E EID EID <td>C1RXF11SID</td> <td>046C</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>10:3></td> <td></td> <td></td> <td></td> <td></td> <td>SID<2:0></td> <td></td> <td>I</td> <td>EXIDE</td> <td> </td> <td>EID<17:16></td> <td></td> <td>XXX</td>	C1RXF11SID	046C				SID<1	10:3>					SID<2:0>		I	EXIDE		EID<17:16>		XXX
0470 SID SID <td>C1RXF11EID</td> <td>046E</td> <td></td> <td></td> <td></td> <td>EID<1</td> <td>15:8></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>EID<</td> <td>7:0></td> <td></td> <td></td> <td>X</td> <td>XXX</td>	C1RXF11EID	046E				EID<1	15:8>							EID<	7:0>			X	XXX
0472EID<15:8EID<7:004740474 $EID<7:0$ $EID<7:0$ 0476 $SID<10:3$ $SID<2:0$ I I 0476 $EID<7:0$ I I I 0476 $SID<10:3$ I I I 0478 $SID<10:3$ I I I 0479 $SID<10:3$ I I I 0470 I I I I 0471 I I I I 0472 I I I <td>C1RXF12SID</td> <td>0470</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>10:3></td> <td></td> <td></td> <td></td> <td></td> <td>SID<2:0></td> <td></td> <td>Ι</td> <td>EXIDE</td> <td>1</td> <td>EID<17:16></td> <td></td> <td>xxx</td>	C1RXF12SID	0470				SID<1	10:3>					SID<2:0>		Ι	EXIDE	1	EID<17:16>		xxx
0474 SID SID SID EXIDE EXIDE EID FID FI	C1RXF12EID	0472				EID<1	15:8>							EID<	7:0>			X	xxx
0476 EID EID EID EID FID FID <td>C1RXF13SID</td> <td>0474</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>10:3></td> <td></td> <td></td> <td></td> <td></td> <td>SID<2:0></td> <td></td> <td>Ι</td> <td>EXIDE</td> <td>1</td> <td>EID<17:16></td> <td></td> <td>xxx</td>	C1RXF13SID	0474				SID<1	10:3>					SID<2:0>		Ι	EXIDE	1	EID<17:16>		xxx
0478 SID SID SID EXIDE EID FID FID<	C1RXF13EID	0476				EID<1	15:8>							EID<	7:0>			X	xxx
047A EID EID <td>C1RXF14SID</td> <td>0478</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>10:3></td> <td></td> <td></td> <td></td> <td></td> <td>SID<2:0></td> <td></td> <td>Ι</td> <td>EXIDE</td> <td> </td> <td>EID<17:16></td> <td></td> <td>xxx</td>	C1RXF14SID	0478				SID<1	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>		xxx
047C SID<10:3> SID<2:0> EID<17:16> 047E EID<15:8> EID<17:16> EID<17:16>	C1RXF14EID	047A				EID<1	15:8>							EID<	7:0>			X	xxx
047E EID<15:8> EID<7:0>	C1RXF15SID	047C				SID<1	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>		XXX
	C1RXF15EID	047E				EID<1	15:8>							EID<	7:0>			Ŕ	XXX

'0'. Reset values are shown in hexadecimal for PinHigh devices. unimplemented, read as x = unknown value on Reset, Legend:

查询PI	C24F	HJ2	256	GP	21	0A	供	Ń	商															
	AII Resets	0480	0000	0000	0000	0000	0000	0000	0000	0000	0000	FFF	0000	0000			All Resets		0000	0000	0000	0000	0000	0000
	Bit 0	MIN					TBIF	TBIE			٨	FLTENO	<1:0>	<1:0>			Bit 0		RXFUL0	RXFUL16	RXOVF0	RXOVF16	<1:0>	<1:0>
	Bit 1		4				RBIF	RBIE			PRSEG<2:0>	FLTEN1	FOMSK<1:0>	F8MSK<1:0>			Bit 1		RXFUL1		RXOVF1	RXOVF17	TX0PRI<1:0>	TX2PRI<1:0>
	Bit 2	Ι	DNCNT<4:0>	<0	FSA<4:0>	FNRB<5:0>	RBOVIF	RBOVIE		BRP<5:0>	Ъ	FLTEN2	F1MSK<1:0>	F9MSK<1:0>			Bit 2		RXFUL2	RXFUL18 RXFUL17	RXOVF2		RTRENO	RTREN2
ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR PIC24HJ256GP610A DEVICES ONLY	Bit 3	CANCAP		ICODE<6:0>		FNR	FIFOIF	FIFOIE	RERRCNT<7:0>	BRF	2:0>	FLTEN3	F1MS	F9MS		۲	Bit 3		RXFUL3	RXFUL19	RXOVF3	RXOVF19 RXOVF18	TX REQ0	TX REQ2
EVICE	Bit 4	1							RERRC		SEG1PH<2:0>	FLTEN4	F2MSK<1:0>	F10MSK<1:0>		ES ON	Bit 4		RXFUL4	XFUL20	RXOVF4	RXOVF20	TX ERR0	TX ERR2
610A D	Bit 5	6	I		Ι		ERRIF	ERRIE			0	ELTEN5	F2MS	F10M8		DEVIC	Bit 5		RXFUL5 R	RXFUL21 RXFUL20	RXOVF5 R	RXOVF21 R	TX LARB0	TX LARB2
256GP	Bit 6	OPMODE<2:0>	I		Ι		WAKIF	WAKIE		1:0>	SAM	FLTEN6	<1:0>	<1:0>		9610A	Bit 6 E		RXFUL6 R>	RXFUL22 RX	RXOVF6 RX	RXOVF22 RX	TX ABAT0 L/	TX ABAT2 L/
C24HJ	Bit 7	OP	I	Ι	Ι	I	IVRIF	IVRIE		SJW<1:0>	SEG2PHTS	FLTEN7	F3MSK<1:0>	F11MSK<1:0>		2CTRL1.WIN = 0 FOR PIC24HJ256GP610A DEVICES ONLY		WIN = x						
-OR PI	Bit 8		1				EWARN	1			S	FLTEN8	1:0>	:1:0>		IC24H	Bit 7	ion when	.8 RXFUL7	24 RXFUL23	08 RXOVF7	24 RXOV	TXEN0	TXEN2
OR 1 F	Bit 9	REQOP<2:0>					RXWAR E				SEG2PH<2:0>	FLTEN9 F	F4MSK<1:0>	F12MSK<1:0>	devices.	FOR P	Bit 8	See definition when WIN = x	RXFUL8	5 RXFUL24	9 RXOVF	RXOVF25 RXOVF24 RXOVF23	TX1PRI<1:0>	TX3PRI<1:0>
0 = 0	Bit 10	REQ		FILHIT<4:0>			TXWAR R				SEG2	FLTEN10 FI	0>	-0:	hexadecimal for PinHigh devices.	VIN = 0	Bit 9	Ŵ.	RXFUL9	RXFUL26 RXFUL25	RXOVF0	RXOVF2	TX1F	
TRL1.V	Bit 11 B	1		FILHI		FBP<5:0>	RXBP T>	-			-	FLTEN11 FL	F5MSK<1:0>	F13MSK<1:0>	adecimal	TRL1.V	Bit 10		RXFUL10		RXOVF10	RXOVF26	RTREN1	RTREN3
N C2C		, ,	1		-			1	TERRCNT<7:0>	-		_	-	ш		N C2C	Bit 11		RXFUL11	XFUL27	XOVF11	XOVF27	TX REQ1	TX REQ3
P WHE	Bit 12	. ABAT					TXBP		TERF			3 FLTEN12	F6MSK<1:0>	F14MSK<1:0>	ues are sh	P WHE	Bit 12		XFUL12 I	XFUL28 F	XOVF12 F	XOVF28 F	TX ERR1	TX ERR3
ER MA	Bit 13	CSIDL	1	Ι	- <u>^</u>		TXBO			Ι	Ι	FLTEN13	F6N	F14I	Reset valı	ER MA	Bit 13		(FUL13 R	(FUL29 R	OVF13 R	OVF29 R	TX LARB1	TX LARB3
EGIST	Bit 14	I	I	Ι	DMABS<2:0>	Ι	Ι	Ι		Ι	WAKFIL	FLTEN14	<<1:0>	F15MSK<1:0>	= unimplemented, read as '0'. Reset values are shown in	ECAN2 REGISTER MAP WHEN C2	Bit 14 E		RXFUL15 RXFUL14 RXFUL13 RXFUL12	0522 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27	RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08	RXOVF30 RXOVF29 RXOVF28 RXOVF27	TX ABAT1 L	TX ABAT3 L
AN2 R	Bit 15	1	I	Ι		I	Ι	I		Ι	I	FLTEN15	F7MSK<1:0>	F15MS	mented, r	AN2 R	Bit 15 Bi		UL15 RXF	UL31 RXF	VF15 RX0	RXOVF31 RXC		TXEN3 AE
	Addr	0500	0502	0504	0506	0508	050A	050C	050E	0510	0512	0514 F	0518	051A	= unimple		Addr Bit	0500- 051E	0520 RXFI	522 RXFI	0528 RXO	052A RXO	0530 TXEN1	
TABLE 4-21 :	File Name	C2CTRL1	C2CTRL2	CZVEC	C2FCTRL	C2FIFO	C2INTF	C2INTE	C2EC	C2CFG1	C2CFG2	C2FEN1	C2FMSKSEL1	C2FMSKSEL2	Legend: —	TABLE 4-22:	File Name Ac	05	C2RXFUL1 05	C2RXFUL2 05	C2RXOVF1 05	C2RXOVF2 05	C2TR01CON 05	C2TR23CON 0532

0000

TX4PRI<1:0> TX6PRI<1:0>

TX TX TX REQ6

TX LARB4 TX LARB6

TX ABAT4 TX ABAT6

TXEN4

TXEN6

TX5PRI<1:0> TX7PRI<1:0>

RTREN5 RTREN7

TX REQ5 TX REQ7

TX ERR5 TX ERR7

TX LARB5 TX LARB7

TX ABAT5 TX ABAT7

TXEN5 TXEN7

0534

0536

C2TR45CON C2TR67CON 0540 0542

C2RXD C2TXD

Recieved Data Word Transmit Data Word

TX ERR4 TX ERR6 XXXX

XXXX

RTREN4 RTREN6

© 2009 Microchip Technology Inc.

Legend:

x = unknown value on Reset, --- unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							- N	ee definiti	See definition when WIN = x	×= NI							
C2BUFPNT1	0520		F3BP<3:0>	<3:0>			F2BP<3:0>	<3:0>			F1BP<3:0>	<3:0>			FOBP	F0BP<3:0>		0000
C2BUFPNT2	0522		F7BP<3:0>	<3:0>			F6BP<3:0>	<3:0>			F5BP<3:0>	<3:0>			F4BP	F4BP<3:0>		0000
C2BUFPNT3	0524		F12BP<3:0>	<3:0>			F10BP<3:0>	<3:0>			F9BP<3:0>	<3:0>			F8BP	F8BP<3:0>		0000
C2BUFPNT4	0526		F15BP<3:0>	<3:0>			F14BP<3:0>	<3:0>			F13BP<3:0>	<3:0>			F12BF	F12BP<3:0>		0000
C2RXM0SID	0530				SID	SID<10:3>					SID<2:0>		I	MIDE		EID<17:16>	7:16>	XXXX
C2RXM0EID	0532				EID<	EID<15:8>							EID<7:0>	<0:				XXXX
C2RXM1SID	0534				SID	SID<10:3>					SID<2:0>		I	MIDE		EID<17:16>	7:16>	XXXX
C2RXM1EID	0536				EID<	15:8>							EID<7:0>	7:0>				XXXX
C2RXM2SID	0538				SID	SID<10:3>					SID<2:0>			MIDE		EID<17:16>	7:16>	XXXX
C2RXM2EID	053A				EID	15:8>							EID<7:0>	7:0>				хххх
C2RXF0SID	0540				SID	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>	7:16>	XXXX
C2RXF0EID	0542				EID<	15:8>							EID<7:0>	7:0>				XXXX
C2RXF1SID	0544				SID	SID<10:3>					SID<2:0>		I	EXIDE		EID<17:16>	7:16>	XXXX
C2RXF1EID	0546				EID	15:8>							EID<7:0>	7:0>				XXXX
C2RXF2SID	0548				SID<	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>	7:16>	XXXX
C2RXF2EID	054A				EID	15:8>							EID<7:0>	<0>				XXXX
C2RXF3SID	054C				SID	10:3>					SID<2:0>			EXIDE		EID<17:16>	7:16>	XXXX
C2RXF3EID	054E				EID	15:8>							EID<7:0>	7:0>				XXXX
C2RXF4SID	0550				SID<	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>	7:16>	хххх
C2RXF4EID	0552				EID	EID<15:8>							EID<7:0>	7:0>				хххх
C2RXF5SID	0554				SID	10:3>					SID<2:0>			EXIDE		EID<17:16>	7:16>	XXXX
C2RXF5EID	0556				EID	EID<15:8>							EID<7:0>	<0>				XXXX
C2RXF6SID	0558				SID	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>	7:16>	XXXX
C2RXF6EID	055A				EID	EID<15:8>							EID<7:0>	7:0>				XXXX
C2RXF7SID	055C				SID	SID<10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>	7:16>	XXXX
C2RXF7EID	055E				EID	15:8>							EID<7:0>	<0>				XXXX
C2RXF8SID	0560				SID	SID<10:3>					SID<2:0>			EXIDE	I	EID<17:16>	7:16>	XXXX
C2RXF8EID	0562				EID	15:8>							EID<7:0>	<0>				XXXX
C2RXF9SID	0564				SID	10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>	7:16>	XXXX
C2RXF9EID	0566				EID	EID<15:8>							EID<7:0>	<0>				XXXX
C2RXF10SID	0568				SID	SID<10:3>					SID<2:0>		Ι	EXIDE		EID<17:16>	7:16>	XXXX
C2RXF10EID	056A				EID	EID<15:8>							EID<7:0>	Z:0>				XXXX
C2RXF11SID	0560				SID	SID<10:3>					SID<2:0>			EXIDE	I	EID<17:16>	7.16>	XXXX

TABLE 4-23 :		AN2 RI	EGISTE	ECAN2 REGISTER MAP WHEN	WHEN	I C2CT	RL1.WI	N = 1 F	FOR PIC	:24HJ25	N C2CTRL1.WIN = 1 FOR PIC24HJ256GP610A DEVICES ONLY (CONTINUED)	A DEVIC	CES ON	NLY (CO	UNITNU	ED)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 Bit 0	0 All Resets
C2RXF11EID	056E				EID<	<15:8>							EID<7:0>	-0:			XXXX
C2RXF12SID	0270				SID<	<10:3>					SID<2:0>		Ι	EXIDE	I	EID<17:16>	XXXX
C2RXF12EID	0572				EID<	<15:8>							EID<7:0>	<0:			XXXX
C2RXF13SID	0574				SID<	<10:3>					SID<2:0>		I	EXIDE	I	EID<17:16>	XXXX
C2RXF13EID	0576				EID<	<15:8>							EID<7:0>	-0:			XXXX
C2RXF14SID	0578				SID<	SID<10:3>					SID<2:0>		I	EXIDE	I	EID<17:16>	XXXX
C2RXF14EID	057A				EID<	EID<15:8>							EID<7:0>	<0:			XXXX
C2RXF15SID	057C				SID<	SID<10:3>					SID<2:0>		I	EXIDE	I	EID<17:16>	XXXX
C2RXF15EID	057E				EID<	<15:8>							EID<7:0>	<0:			XXXX
.				-													

查询PIC24HJ256GP210A供应商

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Legend:

PIC24HJXXXGPX06A/X08A/X10A

查询PIC24HJ256GP210A供应商

TABLE 4-24: PORTA REGISTER MAP ⁽¹⁾	1-24:	PORTA	REGIS.	TER MA	\P ⁽¹⁾	•												
File Name	Addr	File Name Addr Bit 15 Bit 14 Bit 13 Bit 12	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	02C0 TRISA15 TRISA14 TRISA13 TRISA12	TRISA14	TRISA13	TRISA12	1	TRISA10	TRISA9	I	TRISA7	TRISA6	TRISA7 TRISA6 TRISA5	TRISA4	TRISA3 TRISA2	TRISA2	TRISA1	TRISA0	FGFF
PORTA	02C2	RA15	RA14	RA13	RA12	Ι	RA10	RA9	I	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	02C4 LATA15 LATA14 LATA13	LATA14	LATA13	LATA12	Ι	LATA10	LATA9	Ι	LATA7	LATA6	LATA5	LATA4	LATA3 LATA2	LATA2	LATA1	LATA0	XXXX
ODCA	0000	06C0 0DCA15 0DCA14	ODCA14	I	Ι	Ι	I	Ι	Ι	1	Ι	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
Legend: Note 1:		known value tual set of I/C	on Reset, –) port pins v		emented, res one device t	ad as '0'. R to another.	Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.	are shown ii to the corre	n hexadeci sponding p	mal for Pin binout diag	High devic ams.	es.						

PORTB REGISTER MAP⁽¹⁾ **TABLE 4-25**:

File Name	Addr	File Name Addr Bit 15 Bit 14 Bit 13 Bit 12	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	02C6 TRISB15 TRISB14 TRISB13 TRISB12	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10 TRISB9	TRISB9	TRISB8	TRISB8 TRISB7	TRISB6 TRISB5	TRISB5	TRISB4	TRISB3	TRISB3 TRISB2 TRISB1	TRISB1	TRISB0	FFF
PORTB	02C8	02C8 RB15	RB14	RB13 RB12	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RBO	XXXXX
LATB	02CA	02CA LATB15 LATB14 LATB13 LATB12	LATB14	LATB13	LATB12	LATB11	LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATBO	XXXXX
			-	a las fas al		(i e i e i e i			to be seen also		The device							

⁰. Reset values are shown in hexadecimal for PinHigh devices. x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh c The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. Legend: Note 1:

PORTC REGISTER MAP⁽¹⁾ **TABLE 4-26:**

				Bit 11 Bit 10 Bit 9	Bit 14 Bit 13 Bit 12 Bit 10 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 1 Bit 0	Bit 11 Bit 10 Bit 9
TRISC4 TRISC3 TRISC2 TRISC1						
LATC4 LATC3 LATC2 LATC1						
						02CC TRISC15 TRISC14 TRISC13 TRISC12
						O2CC TRISC15 TRISC13 TRISC12
						O2CC TRISC15 TRISC13 TRISC12
						O2CC TRISC15 TRISC13 TRISC12

PORTD REGISTER MAP⁽¹⁾ 4-27-TABLE

	+-21.		סוסוע							·		j						
File Name	Addr	File Name Addr Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 Bit 8	Bit 8	Bit 7		Bit 6 Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	02D2 TRISD15 TRISD14 TRISD13 TRISD12	TRISD14	TRISD13	TRISD12	TRISD11	TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD1	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	60y	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX
LATD	02D6	02D6 LATD15 LATD14 LATD13 LATD12	LATD14	LATD13	LATD12	LATD11	LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
ODCD	06D2	06D2 ODCD15 ODCD14 ODCD13 ODCD12	ODCD14	ODCD13	ODCD12	ODCD11	ODCD11 ODCD10	ODCD9 ODCD8 ODCD7 ODCD6 ODCD4 ODCD3 ODCD2	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1 ODCD0	ODCD0	0000
Legend: Note 1:	x = unk The act	Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Note 1: The actual set of <i>I</i> /O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.	on Reset, — port pins vɛ	- = unimplerr aries from or	nented, read	as '0'. Rese another. Ple	as '0'. Reset values are shown in hexadecimal for PinHigh another. Please refer to the corresponding pinout diagrams.	shown in f the corresp	exadecim: onding pin	al for PinHi ìout diagrai	igh devices ms.							

DS70592B-page 52

PORTE REGISTER MAP ⁽¹⁾												
Bit 13 Bit 12	Bit 11 Bit 10	10 Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
1		1	I	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	0.0FF
			Ι	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
-			Ι	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.	as '0'. Resei another. Plea	values are sho se refer to the c	wn in hexad correspondir	ecimal for F ng pinout di	inHigh devi agrams.	ces.						
2	Bit 11 Bit 10	10 Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
t TRISF12			TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISFO	31FF
RF13 RF12			RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	XXXX
LATF13 LATF12	-	-	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	XXXX
ODCF13 ODCF12		1	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.	d as '0'. Reset o another. Plea.	values are sho se refer to the (wn in hexad correspondir	ecimal for F ng pinout di	ʻinHigh devi agrams.	ces.						
PORTG REGISTER MAP ⁽¹⁾												
Bit 13 Bit 12												AII

File Name	Addr	File Name Addr Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3		Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	02E4 TRISG15 TRISG14 TRISG13 TRISG12	TRISG14	TRISG13	TRISG12	I	I	TRISG9	TRISG8	TRISG8 TRISG7 TRISG6	TRISG6	1	I	TRISG3	TRISG2	TRISG3 TRISG2 TRISG1 TRISG0	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	I	I	RG9	RG8	RG7	RG6	I	I	RG3	RG2	RG1	RG0	XXXX
LATG	02E8	02E8 LATG15 LATG14 LATG13 LATG12	LATG14	LATG13	LATG12	I	I	LATG9	LATG9 LATG8 LATG7	LATG7	LATG6	I	I	LATG3	LATG3 LATG2	LATG1	LATG0	XXXX
ODCG ⁽²⁾	06E4	06E4 0DCG15 0DCG14 0DCG13 0DCG12	ODCG14	ODCG13	ODCG12	I		ODCG9	ODCG8	ODCG7	ODCG6	I	I	ODCG3	ODCG2	ODCG1	ODCG0	0000
Legend: Note 1:	x = unk The act	Legend: x = unknown value on Reset, — = unimplemented, rev Note 1: The actual set of I/O port pins varies from one device t	on Reset, —) port pins vɛ	- = unimplem aries from on	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.	as '0'. Res another. PI	set values ease refer	ad as '0'. Reset values are shown in hexadecimal for PinHigh to another. Please refer to the corresponding pinout diagrams.	in hexadec esponding	simal for Pii pinout diaç	nHigh devic jrams.	ses.						

PIC24HJXXXGPX06A/X08A/X10A

查询PIC24HJ256GP210A 0300**(2)**

3040 0030 0000

PLLPRE<4:0>

TUN<5:0>

L

L

L

l

T L

L I

l L

I L

I L

> OSCTUN Legend:

PLLFBD

 ${\bf x}$ = unknown value on Reset, — = unimplemented, read a RCON register Reset values dependent on type of Reset.

÷

Note

— = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

PLLDIV<8:0>

PLLPOST<1:0>

FRCDIV<2:0>

DOZEN

DOZE<2:0> L I

ROI

0744 0746 0748

CLKDIV

	ş	(1))(2)
	All Resets	(1)	0300
	Bit 0	POR	OSWEN
	Bit 1	BOR	LPOSCEN OSWEN 0300(2)
	Bit 2	IDLE	-
	Bit 3	SWR SWDTEN WDTO SLEEP	CF
	Bit 4	WDTO	-
	Bit 5 Bit 4	SWDTEN	LOCK
	Bit 6	SWR	Ι
	Bit 7	VREGS EXTR	CLKLOCK
		VREGS	
	Bit 9 Bit 8	Ι	NOSC<2:0>
Ь.	Bit 11 Bit 10	I	
ER MA		Ι	-
TABLE 4-31: SYSTEM CONTROL REGISTER MI	Bit 12	I	•
TROL	Bit 13	-	COSC<2:0>
EM CON	Bit 14	IOPUWR	0
SYSTE	Bit 15	0740 TRAPR IOPUWR	I
-31:	Addr	0740	0742
TABLE 4	File Name Addr Bit 15 Bit 14 Bit 13 Bit 12	RCON	OSCCON 0742

供应商	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets	NVMOP<3:0> 0000 ⁽¹⁾	
	Bit 6 Bit 5	ERASE -	
	Bit 7 E	ш 	
of Reset.	Bit 8	1	
und by type o	Bit 10 Bit 9 Bit 8		
iration bits a	Bit 10	1	
SC Configu	Bit 11	I	
 OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset. E 4-32: NVM REGISTER MAP 	File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11		
s dependen R MAP	Bit 13	WRERR	Í
Seset value: EGISTE	Bit 14	WREN	
N register F	Bit 15	WR	
oscco 1-32:	Addr	0760	
 OSCCON register Reset values depender TABLE 4-32: NVM REGISTER MAP 	File Name	NVMCON 0760 WR WREN WRER	

0000				:Y<7:0>	NVMKEY				-				I	I			0766	NVMKEY
0000		VMOP<3:0>	NVMC		Ι	Ι	ERASE					Ι	Ι	WRERR	WREN	MR	0260	NVMCON
All Reset	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12	Bit 13	Bit 14	Bit 15	Addr	File Name

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset. —= unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Legend:

÷ Note

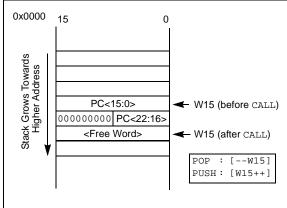
PMD REGISTER MAP TABLE 4-33:

File Name	ne Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0270		T4MD	T5MD T4MD T3MD	T2MD	T1MD				I2C1MD	I2C1MD U2MD U1MD SPI2MD SPI1MD C2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	C1MD AD1MD	0000
	0772	IC8MD	IC7MD	IC8MD IC7MD IC6MD IC5MD		IC4MD	IC4MD IC3MD IC2MD		IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	IC1MD OC8MD OC7MD OC6MD OC6MD OC5MD OC3MD OC2MD OC1MD	OC1MD	0000
MD3	0774	T9MD	T8MD	T9MD T8MD T7MD	T6MD								Ι	Ι	I	I2C2MD AD2MD	AD2MD	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Legend:

查询PIC24HJ256GP210A供应商 4.2.6 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the PIC24HJXXXGPX06A/X08A/X10A devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-5. For a PC push during any CALL instruction, the MSB of the PC is zeroextended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSB
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.2.7 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code, when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code, when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes in Table 4-34 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The 3-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (i.e., the addressing mode can only be Register Direct) which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

查询PIC24HJ256GP210A供应商

TABLE 4-34: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

4.3.3 MOVE INSTRUCTIONS

Move instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the Addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared between both source and destination (but typically only used by one).

In summary, the following Addressing modes are supported by move instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not	all	instructions	support	all	the	
	Addr	essi	ng modes give	en above. I	ndivi	dual	
	instructions may support different subsets						
	of th	ese /	Addressing mo	odes.			

4.3.4 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Interfacing Program and Data Memory Spaces

The PIC24HJXXXGPX06A/X08A/X10A architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24HJXXXGPX06A/X08A/X10A architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.4.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

查询PIC24HJ256GP210A供应商

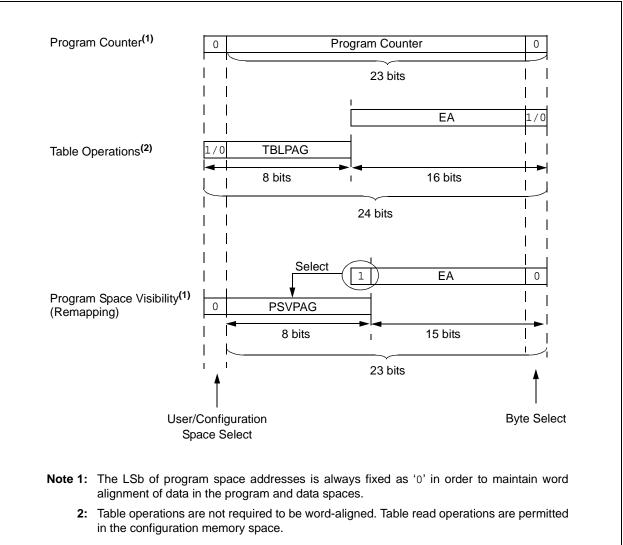

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area. Table 4-35 and Figure 4-6 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access Space	Program Space Address					
Access Type		<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access User		0 PC<22:1>			0		
(Code Execution)			0xxx xxxx x	xxx xx	xx xxxx xxx0		
TBLRD/TBLWT	User	TBLPAG<7:0>			Data EA<15:0>		
(Byte/Word Read/Write)		0	xxx xxxx	XXXX XX	xx xxxx xxxx		
	Configuration T		TBLPAG<7:0> Dat		Data EA<15:0>	Data EA<15:0>	
		1xxx xxxx xxxx xxxx x			xxx xxxx xxxx		
Program Space Visibility	User	0 PSVPAG<7:0>		/:0>	Data EA<14:0> ⁽¹⁾		
(Block Remap/Read)		0	xxxx xxxx	c	xxx xxxx xxxx	xxxx	

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

查询PIC24HJ256GP210A供应商 FIGURE 4-6: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

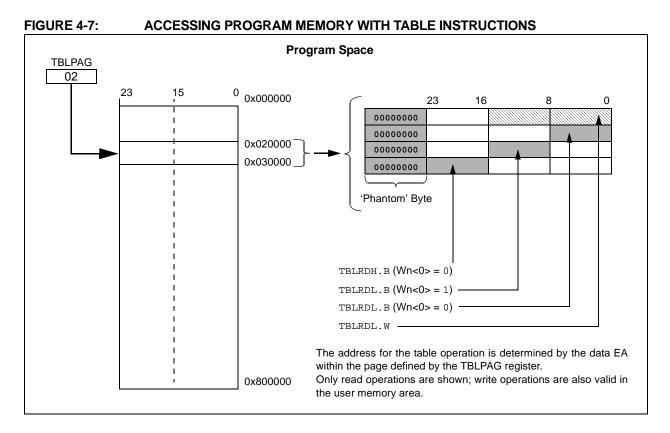
查询PIC24HJ256GP210A供应商

4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.


 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

查询PIC24HJ256GP210A供应商

4.4.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

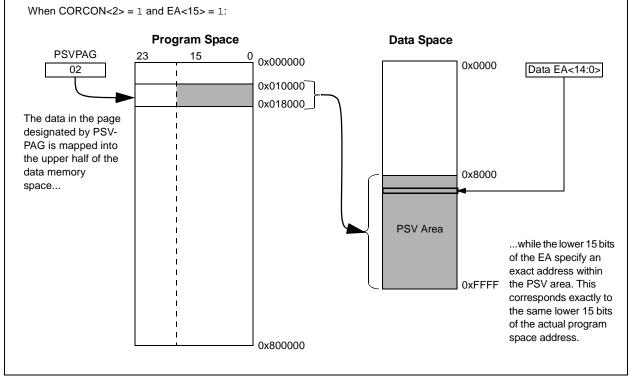
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-8), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-8: PROGRAM SPACE VISIBILITY OPERATION

查询PIC24HJ256GP210A供应商

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70228) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

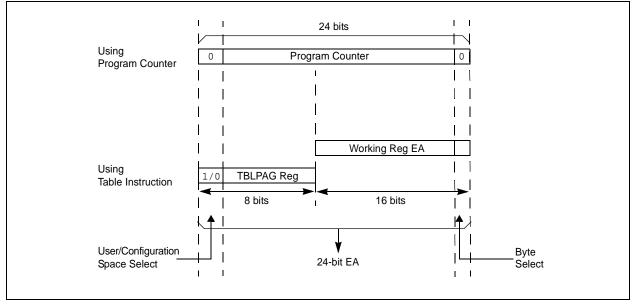
The PIC24HJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP programming capability allows a PIC24HJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or single instructions and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

查询PIC24HJ256GP210A供应商 5.2 RTSP Operation

The PIC24HJXXXGPX06A/X08A/X10A Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 24-12 displays typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 24-12).

EQUATION 5-1:	PROGRAMMING TIME

Т
7.37 MHz × (FRC Accuracy)% × (FRC Tuning)%

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `bllllll, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

查询PIC24HJ256GP210A供 NVMCON: FLASH MEMORY CONTROL REGISTER REGISTER 5-1: R/W-0(1) R/W-0⁽¹⁾ R/SO-0⁽¹⁾ U-0 U-0 U-0 U-0 U-0 WR WREN WRERR bit 15 bit 8 R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ U-0 U-0 U-0 NVMOP<3:0>(2) ERASE ____ bit 7 bit 0 Legend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits⁽²⁾ 1111 = Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0) 1110 = Reserved 1101 = Erase General Segment and FGS Configuration Register (ERASE = 1) or no operation (ERASE = 0)1100 = Erase Secure Segment and FSS Configuration Register (ERASE = 1) or no operation (ERASE = 0)1011-0100 = Reserved 0011 = Memory word program operation (ERASE = 0) or no operation (ERASE = 1) 0010 = Memory page erase operation (ERASE = 1) or no operation (ERASE = 0) 0001 = Memory row program operation (ERASE = 0) or no operation (ERASE = 1) 0000 = Program or erase a single Configuration register byte

Note 1: These bits can only be reset on POR.

2: All other combinations of NVMOP<3:0> are unimplemented.

查询PIC24HJ256GP210A供应商

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the page (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - Perform a dummy table write operation (TBLWTL) to any address within the page that needs to be erased.
 - d) Write 0x55 to NVMKEY.
 - e) Write 0xAA to NVMKEY.
 - f) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation MOV #0x4042, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA<15:0> pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	i
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

Note: A program memory page erase operation is set up by performing a dummy table write (TBLWTL) operation to any address within the page. This methodology is different from the page erase operation on dsPIC30F/33F devices in which the erase page was selected using a dedicated pair of registers (NVMADRU and NVMADR).

查询PIC24HJ256GP210A供应商 EXAMPLE 5-2: LOADING THE WRITE BUFFERS ; Set up NVMCON for row programming operations MOV #0x4001, W0 ; W0, NVMCON ; Initialize NVMCON MOV ; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled #0x0000, W0 MOV ; MOV W0, TBLPAG ; Initialize PM Page Boundary SFR #0x6000, W0 MOV ; An example program memory address ; Perform the TBLWT instructions to write the latches ; 0th program word MOV #LOW WORD 0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 1st_program_word MOV #LOW WORD 1, W2 ; #HIGH_BYTE_1, W3 MOV ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word #LOW_WORD_2, W2 MOV ; #HIGH_BYTE_2, W3 MOV ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 63rd program word MOV ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV MOV MOV MOV BSET NOP	#0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY NVMCON, #WR	; for next 5 instructions ; Write the 55 key ; ; Write the AA key ; Start the erase sequence : Insert two NOPs after the
NOP		; erase command is asserted

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HJ256GP210A供应商

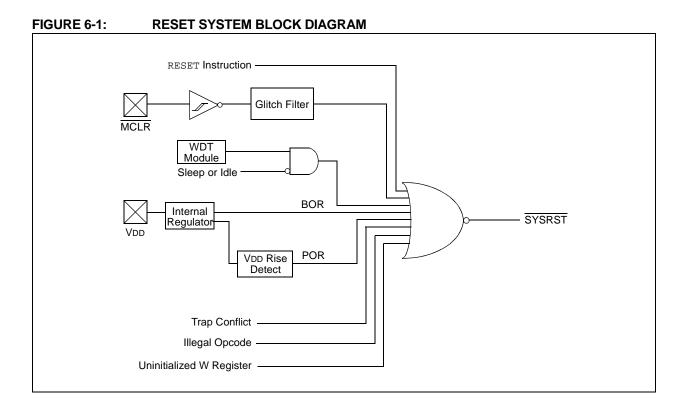
6.0 RESET

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70229) of the "dsPIC33F/PIC24H Family Reference Manual", , which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode and Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.


Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A POR will clear all bits, except for the POR bit (RCON<0>), that are set. The user can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

© 2009 Microchip Technology Inc.

REGISTER		I: RESET CO					_
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAPR	IOPUWR		_	—		_	VREGS ⁽³⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	1 = A Trap C 0 = A Trap C	o Reset Flag bit onflict Reset ha onflict Reset ha	s occurred s not occurre				
bit 14	1 = An illega Address	egal Opcode or al opcode dete Pointer caused Il opcode or uni	ction, an ille a Reset	gal address m	ode or uninitial	ized W registe	er used as a
bit 13-9	Unimplemer	ted: Read as '	כי				
bit 8	VREGS: Volt	age Regulator	Standby Durii	ng Sleep bit ⁽³⁾			
		Regulator is acti Regulator goes i			еер		
bit 7	1 = A Master	nal Reset (MCL Clear (pin) Res Clear (pin) Res	set has occur				
bit 6	1 = A reset	are Reset (Instru instruction has instruction has	been execut	ed			
bit 5	SWDTEN: So 1 = WDT is e 0 = WDT is d		Disable of W	DT bit ⁽²⁾			
bit 4	1 = WDT time	chdog Timer Tin e-out has occur e-out has not oo	red	it			
bit 3	1 = Device ha	e-up from Slee as been in Slee as not been in S	p mode				
bit 2	IDLE: Wake- 1 = Device w	up from Idle Fla as in Idle mode as not in Idle m	ig bit				
bit 1	1 = A Brown-	-out Reset Flag out Reset has o out Reset has r	occurred				
Note 1:	All of the Reset st cause a device R		e set or clear	ed in software.	Setting one of the	nese bits in sof	tware does no
2:	If the FWDTEN (SWDTEN bit sett	-	t is '1' (unpro	ogrammed), the	e WDT is alway	s enabled, reg	pardless of th
2.	Eor PIC24H 1256		X10A device	e this hit is u	nimplomontod c	nd roode bool	(programm

3: For PIC24HJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

查询PIC24HJ256GP210A供应商

bit 0

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

- POR: Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** For PIC24HJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

查询PIC24HJ256GP210A供应商 TABLE 6-1: RESET FLAG BIT OPERATION

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	—
POR (RCON<0>)	POR	

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

TABLE 6-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant		
POR	Oscillator Configuration bits		
BOR	(FNOSC<2:0>)		
MCLR	COSC Control bits		
WDTR	(OSCCON<14:12>)		
SWR			

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The system Reset signal is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable reset delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the reset signal is released.

查询PIC24HJ256GP210A供应商

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—		1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	Тьоск	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	TOST + TLOCK	TFSCM	1, 2, 3, 4, 5, 6
MCLR	Any Clock	Trst	—	-	3
WDT	Any Clock	Trst	—	_	3
Software	Any clock	Trst	—	_	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	_	3
Trap Conflict	Any Clock	Trst	—	_	3

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

- **2:** TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.
- **3:** TRST = Internal state Reset time (20 μ s nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL lock time (20 μ s nominal).
- **6:** TFSCM = Fail-Safe Clock Monitor delay (100 μ s nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the Reset signal is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when the Reset signal is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HJ256GP210A供应商 7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70224) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24HJXXXGPX06A/X08A/X10A CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of 8 nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24HJXXXGPX06A/X08A/X10A devices implement up to 61 unique interrupts and 5 nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24HJXXXGPX06A/X08A/X10A device clears its registers in response to a Reset which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

查询PIC24HJ25 FIGURE 7-1:	56GP210A供应商 PIC24HJXXXGPX06A/X08	۵/X100 INITI	
	FIC24IIJXXXGFX00A/X00		
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x0000002	
	Reserved	0x000002 0x000004	
	Oscillator Fail Trap Vector	0x000004	
	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	Reserved	-	
	Reserved	-	
	Interrupt Vector 0	0x000014	1
	Interrupt Vector 1	0,000014	
		-	
	~	-	
	~	-	
	Interrupt Vector 52	0x00007C	(4)
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
Ę	Interrupt Vector 54	0x000080	
iori	~		
Ъ.	~	-	
der	~	-	
ŏ	Interrupt Vector 116	0x0000FC	
a	Interrupt Vector 117	0x0000FE	L
Decreasing Natural Order Priority	Reserved	0x000100	
Ž	Reserved	0x000102	
ing	Reserved	-	
eas	Oscillator Fail Trap Vector	1	
scre	Address Error Trap Vector		
طّ	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved]	
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~	_	
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~	-	
	~	4	
		-	l
	Interrupt Vector 116 Interrupt Vector 117	0x0001FE	
▼	Start of Code	0x0001FE 0x000200	
'	Start of Code	0000200	
Note 1:	See Table 7-1 for the list of impleme	ented interrupt v	vectors.

查询PIC24HJ256GP210A供应商

ABLE 7-1	1 1	T VECTORS	1	
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Compare 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – Analog-to-Digital Converter 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	CN - Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – Analog-to-Digital Converter 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商 TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

IABLE /-1:	INTERRUP	VI VECTORS (CC		
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65-68	57-60	0x000086-	0x000186-	Reserved
		0x00008C	0x00018C	
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70-72	62-64	0x000090- 0x000094	0x000190- 0x000194	Reserved
73	65	0x000094	0x000194 0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-	0x0001A4-	Reserved
		0x0000FE	0x0001FE	

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

查询PIC24HJ256GP210A供应商

7.3 Interrupt Control and Status Registers

PIC24HJXXXGPX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VEC-NUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32, in the following pages.

查询PIC24HJ256GP210A供应商

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	C
bit 7							bit 0

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

11.0	11.0	11.0	11.0	U-0	11.0	11.0	11.0
U-0	U-0	U-0	U-0	0-0	U-0	U-0	U-0
—	—	—	—		—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable I	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clear	ed	'x = Bit is unki	nown	U = Unimpler	mented bit, read	l as '0'	
				(2)			
bit 3	IPL3: CPU Int	terrupt Priority	Level Status b	oit 3(∠)			
	1 = CPU inter	rupt priority lev	el is greater th	nan 7			
		rupt priority lev	•				

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER	7-3: INTCC	N1: INTERR			ERI			
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-	
NSTDIS		—	—	—				
bit 15								
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-	
_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		
bit 7								
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkne	own	
bit 14-7 bit 6 bit 5 bit 4	DIVOERR: An 1 = Math error 0 = Math error DMACERR: I 1 = DMA con 0 = DMA con MATHERR: A 1 = Math error	ted: Read as ithmetic Error S r trap was caus r trap was not DMA Controller troller error trap troller error trap withmetic Error r trap has occu	Status bit sed by a divide caused by a d Error Status b has occurred has not occu Status bit urred	ivide by zero bit				
bit 3	ADDRERR: A 1 = Address e	r trap has not o Address Error T error trap has o error trap has n	rap Status bit ccurred					
bit 2	STKERR: Sta 1 = Stack erro	 0 = Address error trap has not occurred STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred 						
bit 1	1 = Oscillator	scillator Failure failure trap has failure trap has	s occurred					
bit 0	Unimplemen		a.1					

查询PIC24HJ256GP210A供应商

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0					
ALTIVT	DISI		—	—	_		_					
bit 15	!						bit					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'						
-n = Value a		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	nown					
bit 15	ALTIVT: Enab	le Alternate Ir	nterrupt Vector	Table bit								
	1 = Use altern		•									
	0 = Use stand	lard (default) v	vector table									
bit 14	DISI: DISI Instruction Status bit											
	1 = DISI instruction is active											
	0 = DISI inst											
bit 13-5	Unimplement											
bit 4		INT4EP: External Interrupt 4 Edge Detect Polarity Select bit										
	1 = Interrupt on negative edge 0 = Interrupt on positive edge											
hit 0	•		•	Delerity Coloct	- hit							
bit 3	INT3EP: External Interrupt 3 Edge Detect Polarity Select bit 1 = Interrupt on negative edge											
	1 = Interrupt c 0 = Interrupt c											
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit											
	1 = Interrupt on negative edge											
	0 = Interrupt c											
bit 1	INT1EP: Exte	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit										
	1 = Interrupt c	on negative ed	ge									
	0 = Interrupt c	on positive edg	je									
bit 0			•	Polarity Select	bit							
	1 = Interrupt c											
	0 = Interrupt c	on positive edd	ae									

查询PIC24HJ256GP210A供应商 REGISTER 7-5: **IFS0: INTERRUPT FLAG STATUS REGISTER 0** U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DMA1IF AD1IF U1TXIF **U1RXIF** SPI1IF SPI1EIF T3IF _ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T2IF OC2IF IC2IF T1IF OC1IF IC1IF **INTOIF** DMA01IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14 DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit bit 13 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 **U1TXIF:** UART1 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 **U1RXIF:** UART1 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPI1IF: SPI1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 SPI1EIF: SPI1 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 T3IF: Timer3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 T2IF: Timer2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 OC2IF: Output Compare Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 IC2IF: Input Capture Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA01IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 T1IF: Timer1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

查询PIC24HJ256GP210A供应商 TEGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER	R/W-0	R/W-0				D/M/ O				
U2TXIF	U2RXIF	INT2IF	R/W-0 T5IF	R/W-0 T4IF	R/W-0 OC4IF	R/W-0 OC3IF	R/W DMA2			
bit 15	UZKAIF	INTZIE	TOIF	141	00411	OCSIF	DIVIAZ			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W			
IC8IF	IC7IF	AD2IF	INT1IF	CNIF		MI2C1IF	SI2C			
bit 7										
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unk	nown			
bit 15		RT2 Transmitte	-	g Status bit						
		request has oc request has no								
bit 14	-	RT2 Receiver I		Statue hit						
511 14		request has oc	-	Status Dit						
		request has no								
bit 13	INT2IF: Exte	rnal Interrupt 2	Flag Status b	it						
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred									
1 % 40	-	-								
bit 12		5 Interrupt Flag								
	 I = Interrupt request has occurred Interrupt request has not occurred 									
bit 11	-	Interrupt Flag								
	1 = Interrupt	request has oc	curred							
		request has no								
bit 10		out Compare Ch		rupt Flag Statu	ıs bit					
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred									
bit 9	•	out Compare Ch		rupt Flag Statu	ıs bit					
		request has oc		apt hag clait						
	0 = Interrupt	request has no	t occurred							
bit 8	DMA21IF: D	MA Channel 2	Data Transfer	Complete Inte	errupt Flag Statu	us bit				
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 								
bit 7	•	Capture Chann		Eloa Status bi	+					
	•	•	•	riay Status Di	L					
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 6	IC7IF: Input	Capture Chann	el 7 Interrupt	Flag Status bi	t					
		request has oc								
L:1 F	-	request has no								
bit 5		2 Conversion C	-	rupt ⊢lag Stat	us dit					
		request has oc request has no								
bit 4	-	rnal Interrupt 1		it						
		request has oc	-							
		request has no								

查询PIC24HJ256GP210A供应商

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 3	CNIF: Input Change Notification Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
	1 = Interrupt request has occurred

0 = Interrupt request has not occurred

查询PIC24HJ256GP210A供应商 REGISTER 7-7: **IFS2: INTERRUPT FLAG STATUS REGISTER 2** R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T6IF DMA4IF OC8IF OC7IF OC6IF OC5IF IC6IF ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC5IF IC4IF IC3IF C1IF SPI2IF SPI2EIF DMA3IF C1RXIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 **T6IF:** Timer6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 13 Unimplemented: Read as '0' bit 12 **OC8IF:** Output Compare Channel 8 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 OC7IF: Output Compare Channel 7 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 OC6IF: Output Compare Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 OC5IF: Output Compare Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 IC6IF: Input Capture Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 IC5IF: Input Capture Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 IC4IF: Input Capture Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 IC3IF: Input Capture Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 C1IF: ECAN1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

查询PIC24HJ256GP210A供应商 REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit 1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

查询PIC24HJ256GP210A供应商

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0				
		DMA5IF	—				C2IF				
bit 15				•			bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF				
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15-14	-	ted: Read as '									
bit 13				Complete Interr	upt Flag Status	bit					
		request has oco request has not									
bit 12-9	-	ted: Read as '									
bit 8	-			bit							
Sit 0	C2IF: ECAN2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred										
	•	request has not									
bit 7	C2RXIF: ECAN2 Receive Data Ready Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 6	INT4IF: External Interrupt 4 Flag Status bit										
	 I = Interrupt request has occurred Interrupt request has not occurred 										
bit 5		•		i+							
bit 5	INT3IF: External Interrupt 3 Flag Status bit 1 = Interrupt request has occurred										
	0 = Interrupt request has occurred										
bit 4	T9IF: Timer9 Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
	-	request has not									
bit 3	T8IF: Timer8 Interrupt Flag Status bit										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 2	•	•		og Statua bit							
DIL 2		2 Master Even		ay Status Di							
		request has not									
bit 1	-	2 Slave Events		g Status bit							
		request has occ	-	-							
		request has not									
bit 0		Interrupt Flag									
		request has oc									
	0 = Interrupt I	request has not	t occurred								

查询PIC24HJ256GP210A供应商

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	_	—	_	—	_	—	—					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0					
C2TXIF	C1TXIF	DMA7IF	DMA6IF		U2EIF	U1EIF	_					
bit 7							bit C					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own					
bit 15-8	-	ted: Read as '										
bit 7		C2TXIF: ECAN2 Transmit Data Request Interrupt Flag Status bit										
		1 = Interrupt request has occurred 0 = Interrupt request has not occurred										
bit 6	•	•		nterrunt Flag	Status hit							
		C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit 1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred											
bit 5	DMA7IF: DM	A Channel 7 D	ata Transfer C	omplete Inter	rupt Flag Status	bit						
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
L:1. A	•	•				1. : 4						
bit 4		MA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit										
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 3		ted: Read as '										
bit 2	U2EIF: UART	2 Error Interru	pt Flag Status	bit								
		request has oc										
	•	request has no										
bit 1		1 Error Interru		bit								
		request has oc request has no										
bit 0	•	ted: Read as '										
	Sumplemen	icu. Neau as	0									

查询PIC24HJ256GP210A供应商

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE				
bit 15							bit 8				
				- - - -	- 4.17 -	- - - -					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value a		'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkn	own				
bit 15	Unimplemen	ted: Read as	'0'								
bit 14	DMA1IE: DM	A Channel 1	Data Transfer (Complete Interr	upt Enable bit						
		request enable									
	•	request not en									
bit 13			-	rupt Enable bit							
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 12	U1TXIE: UAF	U1TXIE: UART1 Transmitter Interrupt Enable bit									
		request enable									
		request not en									
bit 11		RI1 Receiver	Interrupt Enab	le bit							
		request enable									
bit 10		Event Interrup									
		request enable									
	-	request not en									
bit 9	SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled										
	•	request enable request not en									
bit 8	-	Interrupt Enal									
	1 = Interrupt	request enable	ed								
	-	request not en									
bit 7		Interrupt Enal									
		request enable request not en									
bit 6	•	•		upt Enable bit							
	•	request enable									
	•	request not en									
bit 5		-	nel 2 Interrupt	Enable bit							
	•	request enable request not en									
bit 4	-	-		Complete Interr	upt Enable bit						
~		request enable									
	•	request not en									
bit 3		Interrupt Enal									
	•	request enable									
	0 = Interrupt	request not en	apled								

查询PIC24HJ256GP210A供应商

REGISTER 7-10: IECO: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE				
bit 15		1					b				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
IC8IE	IC7IE	AD2IE	INT1IE	CNIE	—	MI2C1IE	SI2C1IE				
bit 7	·	-					b				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15		RT2 Transmitte	r Interrunt En	ahla hit							
bit 15		request enable									
		request not ena									
bit 14	U2RXIE: UA	RT2 Receiver li	nterrupt Enab	le bit							
	1 = Interrupt request enabled										
1:140	-	request not ena									
bit 13	INT2IE: External Interrupt 2 Enable bit 1 = Interrupt request enabled										
	0 = Interrupt request enabled										
bit 12	T5IE: Timer5 Interrupt Enable bit										
	1 = Interrupt request enabled										
	-	0 = Interrupt request not enabled									
bit 11		Interrupt Enab									
	 I = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 10				upt Enable bit							
	OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 9	OC3IE: Output Compare Channel 3 Interrupt Enable bit										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 8	-	-		Complete Inter	runt Enable bit						
bit o		DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit I = Interrupt request enabled 									
	0 = Interrupt request not enabled										
bit 7	IC8IE: Input (Capture Chann	el 8 Interrupt	Enable bit							
		request enable request not ena									
bit 6	-	-		Enable bit							
	IC7IE: Input Capture Channel 7 Interrupt Enable bit 1 = Interrupt request enabled										
	-	request not ena									
bit 5		2 Conversion C		rupt Enable bit	t						
		request enable request not ena									
bit 4	-	rnal Interrupt 1									
	1 = Interrupt	request enable									

查询PIC24HJ256GP210A供应商

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

查询PIC24HJ256GP210A供应商 REGISTER 7-12: **IEC2: INTERRUPT ENABLE CONTROL REGISTER 2** R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T6IE DMA4IE OC8IE OC7IE OC6IE OC5IE IC6IE ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC5IE IC4IE IC3IE SPI2IE SPI2EIE DMA3IE C1IE C1RXIE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 T6IE: Timer6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 14 DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 Unimplemented: Read as '0' bit 12 **OC8IE:** Output Compare Channel 8 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 OC7IE: Output Compare Channel 7 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 OC6IE: Output Compare Channel 6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 OC5IE: Output Compare Channel 5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 IC6IE: Input Capture Channel 6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 IC5IE: Input Capture Channel 5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 IC4IE: Input Capture Channel 4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 IC3IE: Input Capture Channel 3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 C1IE: ECAN1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

查询PIC24HJ256GP210A供应商

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

bit 2	C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SPI2EIE: SPI2 Error Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

查询PIC24HJ256GP210A供应商

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0					
—	—	DMA5IE	—	—		—	C2IE					
bit 15							bit 8					
DAMO	DAVO	DAMO	DAMO	DAMA	D/W/O	DAMO	DAMA					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE					
bit 7							bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown					
		i a de Danadara (o'									
bit 15-14	-	ited: Read as '		Complete Inter	nunt Enchla hit							
bit 13		IA Channel 5 D		complete interi	rupt Enable bit							
		 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 12-9	-	ted: Read as '										
bit 8	-	2 Event Interrup										
	1 = Interrupt request enabled											
	0 = Interrupt	request not ena	abled									
bit 7	C2RXIE: ECAN2 Receive Data Ready Interrupt Enable bit											
	1 = Interrupt request enabled											
	0 = Interrupt request not enabled											
bit 6	INT4IE: External Interrupt 4 Enable bit 1 = Interrupt request enabled											
		request enable request not ena										
bit 5	-	-										
	INT3IE: External Interrupt 3 Enable bit 1 = Interrupt request enabled											
	0 = Interrupt request not enabled											
bit 4	T9IE: Timer9	Interrupt Enab	le bit									
	1 = Interrupt	request enable	d									
		request not ena										
bit 3	T8IE: Timer8 Interrupt Enable bit											
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 											
bit 2	-	2 Master Even		nable bit								
		request enable	•									
		request not ena										
bit 1	-	2 Slave Events		able bit								
	1 = Interrupt	request enable	d									
	-	request not ena										
bit 0		Interrupt Enab										
		request enable										
	0 = Interrupt	request not ena	abled									

查询PIC24HJ256GP210A供应商

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	—	—	—	_	—	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	—				
bit 7							bit 0				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15-8	Unimplemen	ted: Read as '	0'								
bit 7		C2TXIE: ECAN2 Transmit Data Request Interrupt Enable bit									
	1 = Interrupt request enabled 0 = Interrupt request not enabled										
bit 6	•	•		ntarrunt Engh	la hit						
DILO		C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit 1 = Interrupt request enabled									
		request not ena									
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	Complete Enat	ole Status bit						
	1 = Interrupt request enabled										
	-	equest not ena									
bit 4		A Channel 6 D		complete Enat	ble Status bit						
		equest enable equest not ena									
bit 3	-	ted: Read as '									
bit 2	U2EIE: UART	2 Error Interru	pt Enable bit								
		equest enable									
	•	equest not ena									
bit 1		1 Error Interru									
		equest enable equest not ena									
bit 0	-	ted: Read as '									
			-								

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W					
_		T1IP<2:0>				OC1IP<2:0>						
bit 15												
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W					
 bit 7		IC1IP<2:0>		—		INT0IP<2:0>						
Legend:												
R = Readab		W = Writable I	bit	-	mented bit, re	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	Unimpleme	nted: Read as '()'									
bit 14-12	-	T1IP<2:0>: Timer1 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is priority 1											
		upt source is disa	abled									
bit 11	Unimpleme	nted: Read as 'd)'									
bit 10-8	OC1IP<2:0>	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	001 = Interrupt is priority 1											
		upt source is dis										
bit 7	-	nted: Read as '0										
bit 6-4		Input Capture C			oits							
		upt is priority 7 (I	nighest priori	ty interrupt)								
	•											
	•											
		upt is priority 1 upt source is disa	abled									
bit 3	Unimpleme	nted: Read as ')'									
bit 2-0	INT0IP<2:0:	External Interr	upt 0 Priority	bits								
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)								
	•											
	•											
	001 = Interr											

查询PIC24HJ256GP210A供应商

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		T2IP<2:0>		_		OC2IP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		IC2IP<2:0>		—		DMA0IP<2:0>						
bit 7							bit 0					
Lananda												
Legend: R = Readab	la hit	W = Writable	h:t		mantad hit ra							
-n = Value a		'1' = Bit is set		0 = 0 mmple 0' = Bit is cle	mented bit, rea	ad as 0 x = Bit is unkn	0.000					
	IFOR				aleu		OWIT					
bit 15	Unimpleme	ented: Read as '	o'									
bit 14-12	-											
	T2IP<2:0>: Timer2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interr	rupt is priority 1										
		rupt source is dis	abled									
bit 11	Unimpleme	ented: Read as '	כי									
bit 10-8	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits											
	111 = Interr	rupt is priority 7 (I	highest priorit	ty interrupt)								
	•											
	•											
		rupt is priority 1 rupt source is dis	abled									
bit 7		ented: Read as '										
bit 6-4	-	: Input Capture C		errupt Priority b	oits							
	111 = Interr	rupt is priority 7 (I	highest priorit	ty interrupt)								
	•											
	•											
	001 = Interr	rupt is priority 1										
	000 = Interr	rupt source is dis	abled									
bit 3	Unimpleme	ented: Read as '	כ'									
bit 2-0	DMA0IP<2:	:0>: DMA Channe	el 0 Data Tra	nsfer Complete	e Interrupt Pric	ority bits						
	111 = Interr	rupt is priority 7 (I	highest priorit	ty interrupt)								
	•											
	•											
		rupt is priority 1										
	000 = Interr	rupt source is dis	abled									

					EGISTER 2					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W			
		U1RXIP<2:0>				SPI1IP<2:0>				
bit 15										
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W			
		SPI1EIP<2:0>		_		T3IP<2:0>				
bit 7										
Legend:										
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
bit 15	Unimpleme	ented: Read as '0	,							
bit 14-12	-			t Priority bits						
	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	•		•							
	•									
	• 001 – Interr	upt is priority 1								
		upt source is disa	abled							
bit 11	Unimplemented: Read as '0'									
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits									
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
		upt is priority 1 upt source is disa	abled							
bit 7	Unimpleme	ented: Read as '0	,							
bit 6-4	-	0>: SPI1 Error In		ity bits						
	111 = Interr	upt is priority 7 (h	ighest priori	ty interrupt)						
	•									
	•									
	• 001 = Interr	upt is priority 1								
		upt source is disa	abled							
bit 3	Unimplemented: Read as '0'									
bit 2-0	-	Timer3 Interrupt								
		upt is priority 7 (h	-	ty interrupt)						
	•									
	•									
	-	upt is priority 1								

查询PIC24HJ256GP210A供应商

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
_	_	—	_	_		DMA1IP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		AD1IP<2:0>		—		U1TXIP<2:0>						
bit 7							bit					
Legend:												
R = Readab	ole bit	W = Writable b	oit	U = Unimpler	mented bit, re	ad as '0'						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-11	Unimplement	ted: Read as '0)'									
bit 10-8	DMA1IP<2:0>	DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	111 = Interrup	ot is priority 7 (h	nighest priori	ty interrupt)								
	•											
	•											
	001 = Interrup 000 = Interrup	ot is priority 1 ot source is disa	abled									
bit 7	000 = Interrup											
bit 7 bit 6-4	000 = Interrup Unimplement	ot source is disa)'	e Interrupt Prio	rity bits							
	000 = Interrup Unimplemen AD1IP<2:0>:	ot source is disa ted: Read as '0	, ion Complet		rity bits							
	000 = Interrup Unimplemen AD1IP<2:0>:	ot source is disa ted: Read as '0 ADC1 Convers	, ion Complet		rity bits							
	000 = Interrup Unimplemen AD1IP<2:0>:	ot source is disa ted: Read as '0 ADC1 Convers	, ion Complet		rity bits							
	000 = Interrup Unimplement AD1IP<2:0>: 111 = Interrup • • • 001 = Interrup	ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h	,' ion Complet highest priorit		rity bits							
bit 6-4	000 = Interrup Unimplement AD1IP<2:0>: 111 = Interrup • • 001 = Interrup 000 = Interrup	ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h ot is priority 1	,' ion Complet ighest priorit abled		rity bits							
	000 = Interrup Unimplement AD1IP<2:0>: 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplement	ot source is disa ted: Read as '0 ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa	,' ion Complet ighest priorit abled ,'	ty interrupt)	rity bits							
bit 6-4 bit 3	000 = Interrup Unimplement AD1IP<2:0>: 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplement U1TXIP<2:0>	ot source is disa ted: Read as '0 ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa ted: Read as '0	,' ion Complet ighest priorit abled ,' mitter Interru	ty interrupt) upt Priority bits	rity bits							
bit 6-4 bit 3	000 = Interrup Unimplement AD1IP<2:0>: 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplement U1TXIP<2:0>	ot source is disa ted: Read as '0 ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa ted: Read as '0 : UART1 Trans	,' ion Complet ighest priorit abled ,' mitter Interru	ty interrupt) upt Priority bits	rity bits							
bit 6-4 bit 3	000 = Interrup Unimplement AD1IP<2:0>: 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplement U1TXIP<2:0>	ot source is disa ted: Read as '0 ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa ted: Read as '0 : UART1 Trans	,' ion Complet ighest priorit abled ,' mitter Interru	ty interrupt) upt Priority bits	rity bits							
bit 6-4 bit 3	000 = Interrup Unimplement AD1IP<2:0>: 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplement U1TXIP<2:0>	ot source is disa ted: Read as '0 ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa ted: Read as '0 : UART1 Trans ot is priority 7 (h	,' ion Complet ighest priorit abled ,' mitter Interru	ty interrupt) upt Priority bits	rity bits							

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-(
_		CNIP<2:0>		_	_	-	_
bit 15							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W
—		MI2C1IP<2:0>		_		SI2C1IP<2:0>	
bit 7							
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 11-7 bit 6-4	000 = Interru Unimplemen MI2C1IP<2:0	upt is priority 1 upt source is dis nted: Read as ' D>: I2C1 Master upt is priority 7 (I	o' Events Inter		s		
bit 3 bit 2-0	000 = Interru Unimplemen SI2C1IP<2:0 111 = Interru • •	upt is priority 1 upt source is dis nted: Read as f D>: I2C1 Slave E upt is priority 7 (I upt is priority 1	^{0'} Events Interru				

查询PIC24HJ256GP210A供应商

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		IC8IP<2:0>		—		IC7IP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		AD2IP<2:0>		_		INT1IP<2:0>						
bit 7							bit (
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'						
-n = Value at	POR	'1' = Bit is set '0' = Bit is cleared x =		x = Bit is unkn	iown							
bit 15	Unimpleme	nted: Read as '(ר'									
bit 14-12	Unimplemented: Read as '0' IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interru	upt is priority 1										
		upt source is dis	abled									
bit 11	Unimpleme	nted: Read as '	כ'									
bit 10-8	IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 7		nted: Read as '										
bit 6-4	-	ADC2 Convers		e Interrupt Pric	ority bits							
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)								
	•											
	•											
	001 = Interru	upt is priority 1										
		upt source is dis	abled									
bit 3	Unimpleme	nted: Read as '	כי									
bit 2-0	INT1IP<2:0>	-: External Interr	upt 1 Priority	bits								
	111 = Interru	upt is priority 7 (I	highest priorit	y interrupt)								
	•											
	•											
	001 = Interru	upt is priority 1										
		upt source is dis										

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W				
_		T4IP<2:0>		_		OC4IP<2:0>					
bit 15											
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W				
		OC3IP<2:0>		—		DMA2IP<2:0>					
bit 7											
Legend:											
R = Readable	bit	W = Writable k	oit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value at	n = Value at POR '1' = Bit is s			'0' = Bit is cle	eared	x = Bit is unkn	own				
hit 15	Unimalarsa	ntad: Dead as fo	,,								
bit 15 bit 14-12	-	nted: Read as '0									
DIL 14-12	T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	•										
		upt is priority 1 upt source is disa	abled								
bit 11	Unimplemented: Read as '0'										
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 7	Unimpleme	nted: Read as '0)'								
bit 6-4	OC3IP<2:0>	. Output Compa	re Channel 3	3 Interrupt Prior	ity bits						
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)	-						
	•										
	•										
	• 001 = Interr	upt is priority 1									
		upt source is disa	abled								
bit 3	Unimpleme	nted: Read as '0)'								
bit 2-0	-	0>: DMA Channe		nsfer Complete	e Interrupt Prio	rity bits					
		upt is priority 7 (h									
	•			/							
	•										
	•										

查询PIC24HJ256GP210A供应商

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		U2TXIP<2:0>		<u> </u>		U2RXIP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		INT2IP<2:0>	1411 0			T5IP<2:0>						
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable bit $U = Unimplemented bit, read as '0'$										
-n = Value at F	POR	R '1' = Bit is set '0' = Bit is cleared x = Bit is u				x = Bit is unkr	nown					
bit 15	Unimpleme	ented: Read as '	0'									
bit 14-12		D>: UART2 Trans rupt is priority 7 (I										
	•											
	• 001 = Interrupt is priority 1											
		upt source is dis	abled									
bit 11	Unimpleme	ented: Read as '	0'									
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 7		ented: Read as '										
bit 6-4	INT2IP<2:0	>: External Interr	upt 2 Priority	bits								
	111 = Interr	upt is priority 7 (highest priorit	ty interrupt)								
	•											
	•											
		upt is priority 1 upt source is dis	abled									
bit 3	Unimpleme	ented: Read as '	0'									
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits									
	111 = Interr	upt is priority 7 (highest priorit	ty interrupt)								
	•											
	•											
		upt is priority 1										
	000 = Interr	upt source is dis	adled									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W			
		C1IP<2:0>		—		C1RXIP<2:0>				
bit 15										
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-			
_		SPI2IP<2:0>		—		SPI2EIP<2:0>				
bit 7										
Legend:										
R = Readab	le bit	W = Writable b	oit	U = Unimple	mented bit, re	ad as '0'				
-n = Value a	n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unkno	own			
bit 15	Unimpleme	ented: Read as '0)'							
bit 14-12	-			ity bits						
	C1IP<2:0>: ECAN1 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interrupt is priority 1									
	000 = Interr	upt source is disa	abled							
bit 11	Unimplemented: Read as '0'									
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits									
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)						
	•									
	•									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 7		ented: Read as '0								
bit 6-4	-	>: SPI2 Event Int		v hite						
		upt is priority 7 (h	•	-						
	•	aprio phonty / (i	ingricot priori	ty monopty						
	•									
	• 001 - Interr	upt is priority 1								
		upt is priority i upt source is disa	abled							
bit 3		ented: Read as '0								
bit 2-0	-	0>: SPI2 Error In		itv bits						
		upt is priority 7 (h	-	-						
	•		5 1 2							
	•									
	• 001 – Interr	upt is priority 1								
	000 = Interr									

查询PIC24HJ256GP210A供应商

REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		IC5IP<2:0>	-			IC4IP<2:0>	-					
bit 15					1		bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		IC3IP<2:0>		—		DMA3IP<2:0>						
bit 7							bit 0					
Legend:	L- 1-14		L : 4									
R = Readab		W = Writable		-	mented bit, rea							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	Unimpleme	ented: Read as '	רי									
	bit 14-12 IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits											
		rupt is priority 7 (I										
	•		•									
	•											
	001 = Interr	rupt is priority 1										
		rupt source is dis	abled									
bit 11	Unimpleme	ented: Read as '	כי									
bit 10-8	IC4IP<2:0>	IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits										
	111 = Interr	rupt is priority 7 (I	highest priori	ty interrupt)								
	•											
	•											
		rupt is priority 1 rupt source is dis	abled									
bit 7	Unimpleme	ented: Read as '	o'									
bit 6-4	IC3IP<2:0>	: Input Capture C	Channel 3 Inte	errupt Priority b	its							
	111 = Interr	rupt is priority 7 (I	highest priori	ty interrupt)								
	•											
	•											
		rupt is priority 1 rupt source is dis	abled									
bit 3	Unimpleme	ented: Read as '	כ'									
bit 2-0	DMA3IP<2:	:0>: DMA Channe	el 3 Data Tra	nsfer Complete	e Interrupt Prio	rity bits						
	111 = Interr	rupt is priority 7 (I	highest priori	ty interrupt)								
	•											
	•											
		rupt is priority 1										
	000 = Interr	rupt source is dis	abled									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W				
_		OC7IP<2:0>		—		OC6IP<2:0>					
bit 15											
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W				
_		OC5IP<2:0>		_		IC6IP<2:0>					
bit 7											
Legend:											
R = Readab	R = Readable bit W = Writable bit				mented bit, rea	ad as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unkne	own				
bit 15	Unimpleme	ented: Read as ')'								
bit 14-12		>: Output Compa		ity bits							
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
		rupt is priority 1									
		rupt source is dis									
bit 11	Unimplemented: Read as '0'										
bit 10-8	OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits										
	111 = Interi	rupt is priority 7 (I	nighest priorit	y interrupt)							
	•										
	•	•									
	001 = Interrupt is priority 1										
		rupt source is dis									
bit 7	-	ented: Read as '									
bit 6-4		>: Output Compa		•	ity Dits						
	111 = Interi •	rupt is priority 7 (I	lignest priorit	y interrupt)							
	•										
	•										
		rupt is priority 1 rupt source is disa	abled								
bit 3		ented: Read as '(
bit 2-0	-	: Input Capture C		errupt Priority h	its						
		rupt is priority 7 (ł									
	•		5 -	, . ,							
	•										
	• 001 - Inter	rupt is priority 1									
	001 = 11001										

查询PIC24HJ256GP210A供应商

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T6IP<2:0>				DMA4IP<2:0>					
bit 15	·				·		bit				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_		_	OC8IP<2:0>						
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		0' = Bit is cleared x = Bit			nown				
bit 15	Unimpleme	nted: Read as '	0'								
bit 14-12	T6IP<2:0>:	Timer6 Interrupt	Priority bits								
	111 = Interru	upt is priority 7 (highest priorit	y interrupt)							
	•										
	•										
		upt is priority 1 upt source is dis	abled								
bit 11	Unimpleme	nted: Read as '	0'								
bit 10-8	DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits										
	111 = Interru	upt is priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interru	upt is priority 1									
		upt source is dis	abled								
bit 7-3	Unimpleme	nted: Read as '	0'								
bit 2-0	OC8IP<2:0>	: Output Compa	are Channel 8	Interrupt Prior	ity bits						
	111 = Interru •	upt is priority 7 (highest priorit	y interrupt)							
	•										
	•										
	0.01 lat-	upt is priority 1									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-	
_		T8IP<2:0>				MI2C2IP<2:0>		
bit 15								
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-	
		SI2C2IP<2:0>				T7IP<2:0>		
bit 7								
Legend:								
R = Readabl	le bit	W = Writable I	bit	U = Unimplei	mented bit, re	ad as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own	
bit 15	-	ented: Read as 'o						
bit 14-12		Timer8 Interrupt	-					
	111 = Interr	upt is priority 7 (I	nighest priorit	y interrupt)				
	•							
	•							
		upt is priority 1						
		upt source is dis						
bit 11	Unimplemented: Read as '0'							
bit 10-8		0>: I2C2 Master			5			
	111 = Interr	upt is priority 7 (I	nighest priorit	y interrupt)				
	•							
	•							
		upt is priority 1						
		upt source is dis						
bit 7	-	ented: Read as 'o						
bit 6-4		0>: I2C2 Slave E						
	111 = Interr	upt is priority 7 (I	nighest priorit	y interrupt)				
	•							
	•							
		upt is priority 1 upt source is dis	abled					
bit 3	Unimpleme	ented: Read as 'o)'					
bit 2-0	T7IP<2:0>:	Timer7 Interrupt	Priority bits					
	111 = Interr	upt is priority 7 (ł	nighest priorit	y interrupt)				
	•							
	•							
	001 = Interr	upt is priority 1						
		upt source is dis						

查询PIC24HJ256GP210A供应商

REGISTER 7-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		C2RXIP<2:0>				INT4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
— hit 7		INT3IP<2:0>		—		T9IP<2:0>	h:4 (
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	ר י				
bit 14-12	-	0>: ECAN2 Rece		adv Interrupt P	riority bits		
		upt is priority 7 (I					
	•		5 1	, ,			
	•						
	• 001 = Interr	upt is priority 1					
		upt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	כי				
bit 10-8	INT4IP<2:0	>: External Interr	upt 4 Priority	bits			
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	o'				
bit 6-4	INT3IP<2:0	>: External Interr	upt 3 Priority	bits			
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is dis					
bit 3	-	ented: Read as '					
bit 2-0		Timer9 Interrupt	-				
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
	000 = Interr	upt source is dis	abled				

查询PIC24HJ256GP210A供应商

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15	•						bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—		C2IP<2:0>	
bit 7	•						bit 0
Legend:							
R = Readable b	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-3 Unimplemented: Read as '0'

C2IP<2:0>: ECAN2 Event Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

bit 2-0

,

001 = Interrupt is priority 1

000 = Interrupt source is disabled

查询PIC24HJ256GP210A供应商

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		DMA5IP<2:0>					_
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
bit 15-7	Unimplemen	nted: Read as '	כ'				
bit 6-4	DMA5IP<2:0	>: DMA Channe	el 5 Data Trar	nsfer Complete	Interrupt Priorit	ty bits	
	111 = Interru	pt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	•						
		pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	nted: Read as ')'				

查询PIC24HJ256GP210A供应商

REGISTER 7-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	—		U2EIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		U1EIP<2:0>			_	—	_
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit				U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-11	Unimplemer	nted: Read as ')'				
bit 10-8	U2EIP<2:0>:	: UART2 Error li	nterrupt Prior	ity bits			
	111 = Interru	ıpt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
		pt is priority 1					
		pt source is dis					
bit 7	Unimplemer	nted: Read as ')'				
bit 6-4	U1EIP<2:0>	: UART1 Error li	nterrupt Prior	ity bits			
	111 = Interru	ipt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
	001 – Interri	pt is priority 1					
	000 = Interru	ipt source is dis ited: Read as '(

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商

REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

C2TXIP<2:0> bit 15 U-0 R/W-1 MA7IP bit 7 Legend: R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0'	it Data Rec	'0' = Bit is cle quest Interrupt		C1TXIP<2:0> R/W-0 DMA6IP<2:0> ad as '0' x = Bit is unkno	bit 8 R/W-0 bit 0
U-0 R/W-1 R/W-0 — DMA7IP<2:0> bit 7 Legend: W = Writable bit R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0'	it Data Rec	U = Unimpler '0' = Bit is cle	mented bit, rea	DMA6IP<2:0>	R/W-0 bit 0
DMA7IP<2:0> bit 7 Legend: R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0'	it Data Rec	U = Unimpler '0' = Bit is cle	mented bit, rea	DMA6IP<2:0>	bit 0
DMA7IP<2:0> bit 7 Legend: R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0'	it Data Rec	U = Unimpler '0' = Bit is cle	mented bit, rea	DMA6IP<2:0>	bit 0
bit 7 Legend: R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0'	it Data Rec	'0' = Bit is cle quest Interrupt	ared	ad as '0'	
Legend:R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is setbit 15Unimplemented: Read as '0'	it Data Rec	'0' = Bit is cle quest Interrupt	ared		
R = Readable bitW = Writable bit $-n$ = Value at POR'1' = Bit is setbit 15Unimplemented: Read as '0'	it Data Rec	'0' = Bit is cle quest Interrupt	ared		own
R = Readable bit W = Writable bit $-n$ = Value at POR'1' = Bit is setbit 15Unimplemented: Read as '0'	it Data Rec	'0' = Bit is cle quest Interrupt	ared		own
-n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0'	it Data Rec	'0' = Bit is cle quest Interrupt	ared		own
bit 15 Unimplemented: Read as '0'		quest Interrupt			
-			Priority bits		
			Priority bits		
bit 14-12 C2TXIP<2:0>: ECAN2 Transmi	hest priorit	ty interrunt)			
111 = Interrupt is priority 7 (high		iy monopi)			
•					
•					
001 = Interrupt is priority 1					
000 = Interrupt source is disabl	ed				
bit 11 Unimplemented: Read as '0'					
bit 10-8 C1TXIP<2:0>: ECAN1 Transmi	it Data Red	quest Interrupt	Priority bits		
111 = Interrupt is priority 7 (high	hest priorit	ty interrupt)			
•					
•					
001 = Interrupt is priority 1 000 = Interrupt source is disabl	ed				
bit 7 Unimplemented: Read as '0'					
bit 6-4 DMA7IP<2:0>: DMA Channel 7	7 Data Trai	nsfer Complete	Interrupt Prio	rity bits	
111 = Interrupt is priority 7 (high	hest priorit	ty interrupt)			
•					
•					
001 = Interrupt is priority 1					
000 = Interrupt source is disabl	ed				
bit 3 Unimplemented: Read as '0'					
bit 2-0 DMA6IP<2:0>: DMA Channel 6	3 Data Trar	nsfer Complete	Interrupt Prio	rity bits	
111 = Interrupt is priority 7 (high	hest priorit	ty interrupt)			
•					
•					
001 = Interrupt is priority 1					
000 = Interrupt source is disabl	ed				

REGISTER 7-3	33: INTTI	REG: INTERRI	JPT CONT	ROL AND ST	ATUS REG	STER		
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-	
	—				ILI	R<3:0>		
bit 15								
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-	
				VECNUM<6:0	>			
bit 7								
Legend:								
R = Readable b		W = Writable I	bit	U = Unimplen				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
h:+ 45 40		ntad. Daad aa W						
bit 15-12	-	nted: Read as '						
bit 11-8		lew CPU Interrup						
		J Interrupt Priorit	y Levens 15)				
	•							
	•							
	0001 = CPU	Interrupt Priority	/ Level is 1					
	0000 = CPL	J Interrupt Priorit	y Level is 0					
bit 7	Unimpleme	nted: Read as 'd)'					
bit 6-0	VECNUM<6	:0>: Vector Num	ber of Pend	ling Interrupt bits				
		Interrupt Vector						
	•		0					
	•							

查询PIC24HJ256GP210A供应商 7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value 0x0E with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

查询PIC24HJ256GP210A供应商

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70223) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and, therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The PIC24HJXXXGPX06A/X08A/X10A peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1: PERIPHERALS WITH DMA SUPPORT

Peripheral IRQ Number								
Felipiteral								
INT0	0							
Input Capture 1	1							
Input Capture 2	5							
Output Compare 1	2							
Output Compare 2	6							
Timer2	7							
Timer3	8							
SPI1	10							
SPI2	33							
UART1 Reception	11							
UART1 Transmission	12							
UART2 Reception	30							
UART2 Transmission	31							
ADC1	13							
ADC2	21							
ECAN1 Reception	34							
ECAN1 Transmission	70							
ECAN2 Reception	55							
ECAN2 Transmission	71							

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Word or byte sized data transfers.
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral.
- Indirect Addressing of DMA RAM locations with or without automatic post-increment.
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral.
- One-Shot Block Transfers Terminating DMA transfer after one block transfer.
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete.
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately.
- Automatic or manual initiation of block transfers
- Each channel can select from 19 possible sources of data sources or destinations.

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

查询PIC24HJ256GP210A供应商 FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS Peripheral Indirect Address **DMA Controller** DMA 1 Ready DMA Control DMA I DMA RAM SRAM Peripheral 3 Channels I 1 PORT 1 PORT 2 н CPU DMA 1 SRAM X-Bus DMA DS Bus **CPU** Peripheral DS Bus

CPU

DMA

Ready

Peripheral 1

DMA

CPU

DMA

Ready

Peripheral 2

DMA

Note: CPU and DMA address buses are not shown for clarity.

Non-DMA

Ready

Peripheral

8.1 DMAC Registers

CPU

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1 are common to all DMAC channels.

REGISTER				CONTROL R	LOISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-(
CHEN	SIZE	DIR	HALF	NULLW	—	—		
bit 15								
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W	
_	—	AMOD	E<1:0>		_	MODE	<1:0>	
bit 7								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	CHEN: Char 1 = Channel 0 = Channel							
bit 14	SIZE: Data Transfer Size bit							
	1 = Byte 0 = Word							
bit 13	DIR: Transfer Direction bit (source/destination bus select)							
				to peripheral ad to DMA RAM ad				
bit 12	1 = Initiate b	lock transfer co	mplete interro	errupt Select bit upt when half of upt when all of th	the data has b			
bit 11	 0 = Initiate block transfer complete interrupt when all of the data has been moved NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation 							
bit 10-6	Unimpleme	nted: Read as '	0'					
bit 5-4	AMODE<1:0	>: DMA Chann	el Operating	Mode Select bit	S			
	 11 = Reserved 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode 							
bit 3-2	Unimpleme	nted: Read as '	0'					
bit 1-0	MODE<1:0>	: DMA Channel	Operating M	lode Select bits				
	10 = Continu	not, Ping-Pong r Ious, Ping-Pong Not, Ping-Pong r	modes enal	bled	ansfer from/to	each DMA RAM	buffer)	

查询PIC24HJ256GP210A供应商

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	IRQSEL6 ⁽²⁾	IRQSEL5(2)	IRQSEL4(2)	IRQSEL3(2)	IRQSEL2 ⁽²⁾	IRQSEL1 ⁽²⁾	IRQSEL0 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
 - **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
 - **2:** Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

查询PIC24HJ256GP210A供应商

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
ſ							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 **STA<15:0>:** Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit $W = Writable bit$		bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	_	—		_	—	CNT<	9:8> (2)
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	:7:0> (2)			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unkr	nown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL
bit 15							b
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL
bit 7		I					t
Legend:		C = Clear on	y bit				
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set	1	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = Write colli 0 = No write c	collision detect	ed	-			
bit 14	1 = Write colli	annel 6 Peripl sion detected collision detect		llision Flag bit			
bit 13	1 = Write colli	PWCOL5: Channel 5 Peripheral Write Collision Flag bit 1 = Write collision detected					
bit 12	 0 = No write collision detected PWCOL4: Channel 4 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected 						
bit 11	PWCOL3: Ch 1 = Write colli	annel 3 Peripl	neral Write Co	Ilision Flag bit			
bit 10	PWCOL2: Ch 1 = Write colli	annel 2 Peripl sion detected collision detect	neral Write Co	Ilision Flag bit			
bit 9	PWCOL1: Ch 1 = Write colli	annel 1 Peripl sion detected	neral Write Co	Ilision Flag bit			
bit 8	 0 = No write collision detected PWCOL0: Channel 0 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected 						
bit 7	 XWCOL7: Channel 7 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected 						
bit 6	XWCOL6: Channel 6 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected						
bit 5	XWCOL5: Channel 5 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected						
bit 4		sion detected		ollision Flag bit			

查询PIC24HJ256GP210A供应商 REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected

REGISTER 8	-0. DIMA		ONTROLLER							
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-			
	<u> </u>				LSTC	H<3:0>				
bit 15										
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-			
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPS			
bit 7										
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unki	nown			
bit 15-12	Unimpleme	nted: Read as	'O'							
bit 11-8	-	>: Last DMA Cl		oits						
	1111 = No C	MA transfer ha	as occurred sir	ice system Re	eset					
	1110-1000 =	= Reserved		-						
		data transfer w								
	0110 = Last data transfer was by DMA Channel 6 0101 = Last data transfer was by DMA Channel 5									
	0100 = Last data transfer was by DMA Channel 4									
	0011 = Last data transfer was by DMA Channel 3									
	0010 = Last data transfer was by DMA Channel 2									
	0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 0									
bit 7										
		PPST7: Channel 7 Ping-Pong Mode Status Flag bit L = DMA7STB register selected								
		A register sele								
bit 6	PPST6: Cha	nnel 6 Ping-Po	ng Mode Statu	is Flag bit						
		⁻B register sele 「A register sele								
bit 5	PPST5: Cha	nnel 5 Ping-Po	ng Mode Statu	is Flag bit						
		B register sele A register sele								
bit 4	PPST4: Cha	nnel 4 Ping-Po	ng Mode Statu	is Flag bit						
		⁻B register sele ſA register sele								
bit 3	PPST3: Cha	nnel 3 Ping-Po	ng Mode Statu	is Flag bit						
		TB register sele								
bit 2	PPST2: Cha	nnel 2 Ping-Po	ng Mode Statu	is Flag bit						
		⁻B register sele ⁻A register sele								
bit 1	PPST1: Cha	nnel 1 Ping-Po	ng Mode Statu	is Flag bit						
		B register sele								
	0 = DMA1ST	A register colo	atad							
bit 0		nnel 0 Ping-Po								

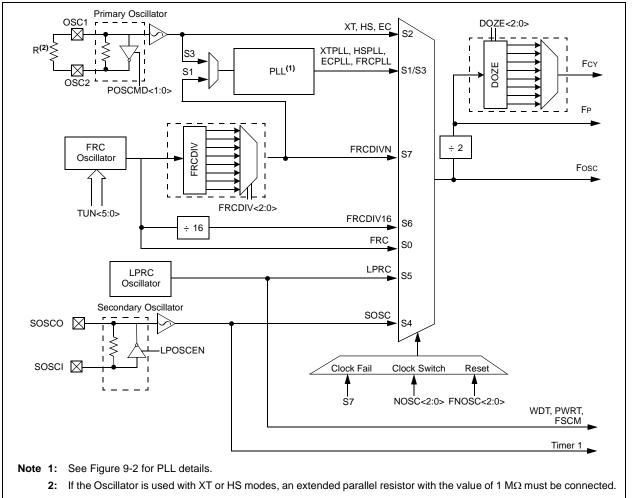
查询PIC24HJ256GP210A供应商

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	iown		

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

查询PIC24HJ256GP210A供应商 9.0 OSCILLATOR CONFIGURATION


- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70227) of the "dsPIC33F/dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24HJXXXGPX06A/X08A/X10A OSCILLATOR SYSTEM DIAGRAM

查询PIC24HJ256GP210A供应商

9.1 CPU Clocking System

There are seven system clock options provided by the PIC24HJXXXGPX06A/X08A/X10A:

- FRC Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- 1. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 2. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 3. EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 21.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the PIC24HJXXXGPX06A/ X08A/X10A architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

 $FCY = \frac{FOSC}{2}$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

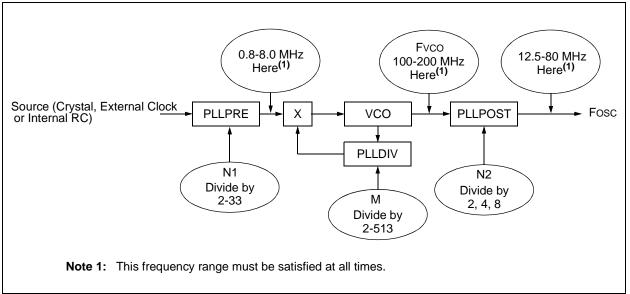
 $FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

EQUATION 9-3:

XT WITH PLL MODE

= 40 MIPS

EXAMPLE


 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

查询PIC24HJ256GP210A供应商

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: PIC24HJXXXGPX06A/X08A/X10A PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

查询PIC24HJ256GP210A供应商

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y		
_		COSC<2:0>		—		NOSC<2:0> ⁽²⁾			
bit 15							bit 8		
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0		
CLKLOCK		LOCK	—	CF	_	LPOSCEN	OSWEN		
bit 7							bit (
Legend:		y = Value set	from Configur	ation bits on P	OR	C = Clear only	/ bit		
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	-	ted: Read as '			,				
bit 14-12		Current Oscilla		bits (read-only)				
		C oscillator (FF C oscillator (FF							
		y oscillator (XT	,						
		y oscillator (XT		PLL					
	100 = Secon	dary oscillator (SOSC)						
		ower RC oscilla							
110 = Fast RC oscillator (FRC) with Divide-by-16 111 = Fast RC oscillator (FRC) with Divide-by-n									
1.1.44			-	e-by-n					
bit 11	-	ted: Read as '		(2)					
bit 10-8		NOSC<2:0>: New Oscillator Selection bits ⁽²⁾ 000 = Fast RC oscillator (FRC)							
		C oscillator (FF C oscillator (FF	,						
		y oscillator (XT							
		y oscillator (XT		PLL					
		dary oscillator (
		ower RC oscilla							
		C oscillator (FF							
h :+ 7		C oscillator (FF		e-by-n					
bit 7		Clock Lock Ena							
		M0 = 1), then a $M0 = 0$), then a				ied			
		d PLL selection							
bit 6		ted: Read as '		, 0	,				
bit 5	LOCK: PLL L	ock Status bit	read-only)						
		that PLL is in							
		that PLL is ou		up timer is in p	progress or PL	L is disabled			
bit 4	-	ted: Read as '							
bit 3		il Detect bit (re		plication)					
		as detected clo as not detected							
bit 2		ted: Read as '	~ !						

"dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip website) for details.

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

查询PIC24HJ256GP210A供应商

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enable secondary oscillator

- 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
 - Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70227) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

查询PIC24HJ256GP210A供应商

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0					
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	-					
bit 15				_II			bit 8					
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PLLP	OST<1:0>	—			PLLPRE<4:0>	>						
bit 7							bit 0					
Legend:		y = Value set	from Configu	ration bits on PC	R							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	iown					
bit 15		er on Interrupt b										
				nd the processor	clock/periphe	ral clock ratio is	set to 1:1					
bit 14-12		ts have no effec : Processor Clo										
DIL 14-12	000 = Fcy/1			Select bits								
	000 = FCY/2											
	010 = FCY/4	010 = FCY/4										
		011 = FCY/8 (default)										
		100 = FCY/16 101 = FCY/32										
	110 = FCY/64	110 = FCY/64										
	111 = FCY/12	-	(4)									
bit 11		DOZEN: DOZE Mode Enable bit ⁽¹⁾ 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks										
					heral clocks a	and the process	or clocks					
bit 10-8		0 = Processor clock/peripheral clock ratio forced to 1:1										
		FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits 000 = FRC divide by 1 (default)										
		000 = FRC divide by 1 (default) 001 = FRC divide by 2										
	010 = FRC c											
		011 = FRC divide by 8 100 = FRC divide by 16										
		100 = FRC divide by 16 101 = FRC divide by 32										
	110 = FRC c	•										
		divide by 256		e								
bit 7-6			Output Divide	er Select bits (als	o denoted as	N2', PLL posts	caler)					
	00 = Output/ 01 = Output/											
		01 = Output/4 (default) 10 = Reserved										
	11 = Output/											
bit 5	-	nted: Read as '										
bit 4-0			Detector Inpu	ut Divider bits (als	so denoted as	'N1', PLL preso	caler)					
	$00000 = \ln p$											
	00001 = Inp	ur o										
	•											
	•											
	11111 = Inp	ut/33										

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

查询PIC24HJ256GP210A供应商

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
_	—	_	—	_	_		PLLDIV<8>				
bit 15							bit 8				
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0				
10/00-0	10/00-0	10/00-1	PLLDI		17/00-0	11/00-0	10/00-0				
bit 7			I LLDIN	1<1.02			bit 0				
							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-9	Unimpleme	nted: Read as '	כ'								
	-	PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)									
bit 8-0	PLLDIV<8:0	>: PLL Feedbac	or divisor dits (also denoted a	as ini, PLL mu	iltiplier)					
bit 8-0	PLLDIV<8:0 000000000 000000001 000000010	= 2 = 3	K Divisor dits (also denoted a	as 'M', PLL mu	iltiplier)					
bit 8-0	000000000 000000001	= 2 = 3	K Divisor dits (also denoted i	as M, PLL mu	lltiplier)					
bit 8-0	000000000 000000001	= 2 = 3	K Divisor dits (also denoted i	as M, PLL mu	lltiplier)					
bit 8-0	000000000 000000001 000000010 • •	= 2 = 3	K Divisor dits (also denoted i	as M, PLL mu	lltiplier)					
bit 8-0	000000000 000000001 000000010 • •	= 2 = 3 = 4	K Divisor dits (also denoted i	as M, PLL MU	lltiplier)					

111111111 = 513

 $\ensuremath{\textcircled{}^{\odot}}$ 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	_				—	_			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	— TUN<5:0> ⁽¹⁾									
bit 7							bit (
Legend:										
R = Readable		W = Writable			nented bit, read					
-n = Value at	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$						
bit 15-6 bit 5-0	Unimplement TUN<5:0>: FF 011111 = Cer 011110 = Cer • • • 000001 = Cer 000000 = Cer 111111 = Cer • • • • • • • • • • • • • • • • • • •	RC Oscillator T nter frequency nter frequency nter frequency nter frequency nter frequency	⁻ uning bits ⁽¹⁾ + 11.625% (8 + 11.25% (8.2) + 0.375% (7.4) (7.37 MHz no - 0.375% (7.3) - 11.625% (6)	20 MHz) 40 MHz) ominal) 345 MHz) .52 MHz)						

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

查询PIC24HJ256GP210A供应商

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, PIC24HJXXXGPX06A/X08A/X10A devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 21.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70227) in the "dsPIC33F/PIC24H Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

If an oscillator failure occurs, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HJ256GP210A供应商 10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70236) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJXXXGPX06A/X08A/X10A devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- · Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJXXXGPX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "**Oscillator Configuration**".

10.2 Instruction-Based Power-Saving Modes

PIC24HJXXXGPX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled.
- Any form of device Reset.
- A WDT time-out.

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

查询PIC24HJ256GP210A供应商 10.2.2 IDLE MODE

Idle mode has these features:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_			
bit 15										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-			
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1M			
bit 7		I								
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 15	T5MD: Time	r5 Module Disal	ole bit							
		nodule is disable nodule is enable								
bit 14	T4MD: Time	r4 Module Disal	ole bit							
		1 = Timer4 module is disabled 0 = Timer4 module is enabled								
bit 13	T3MD: Timer3 Module Disable bit									
		1 = Timer3 module is disabled 0 = Timer3 module is enabled								
bit 12	T2MD: Timer2 Module Disable bit									
		1 = Timer2 module is disabled 0 = Timer2 module is enabled								
bit 11	T1MD: Time	r1 Module Disal	ole bit							
		nodule is disable nodule is enable								
bit 10-8	Unimpleme	nted: Read as '	0'							
bit 7	12C1MD: 1 ² C	1 Module Disat	ole bit							
	1 = I ² C1 module is disabled									
hit C		dule is enabled	hla hit							
bit 6		T2 Module Disa module is disabl								
	1 = UART2 module is disabled 0 = UART2 module is enabled									
bit 5	U1MD: UAR	T1 Module Disa	ble bit							
	1 = UART1 module is disabled0 = UART1 module is enabled									
bit 4	SPI2MD: SP	PI2 Module Disa	ble bit							
		dule is disabled dule is enabled								
bit 3	SPI1MD: SF	PI1 Module Disa	ble bit							
		dule is disabled dule is enabled								
bit 2	C2MD: ECA	N2 Module Disa	ble bit							
	C2MD: ECAN2 Module Disable bit 1 = ECAN2 module is disabled									

查询PIC24HJ256GP210A供应商

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 C1MD: ECAN1 Module Disable bit 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled bit 0 AD1MD: ADC1 Module Disable bit⁽¹⁾ 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled
 - **Note 1:** PCFGx bits will have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-				
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1M				
bit 15											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W				
OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1N				
bit 7											
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	-	out Capture 8 Moo apture 8 module		t							
		apture 8 module									
bit 14	-	out Capture 7 Mod		t							
		apture 7 module									
	•	apture 7 module									
bit 13		out Capture 6 Moo		t							
	 I = Input Capture 6 module is disabled Input Capture 6 module is enabled 										
bit 12	IC5MD: Input Capture 5 Module Disable bit										
		1 = Input Capture 5 module is disabled									
	0 = Input Capture 5 module is enabled										
bit 11	IC4MD: Input Capture 4 Module Disable bit										
		apture 4 module apture 4 module									
bit 10	•	ut Capture 3 Moo		t							
	1 = Input C	apture 3 module	is disabled								
	0 = Input Capture 3 module is enabled										
bit 9		out Capture 2 Moo		t							
		apture 2 module apture 2 module									
bit 8	•	out Capture 1 Mod		t							
		apture 1 module									
	•	apture 1 module									
bit 7		utput Compare 8		le bit							
	 1 = Output Compare 8 module is disabled 0 = Output Compare 8 module is enabled 										
bit 6	 O = Output Compare 8 module is enabled OC7MD: Output Compare 4 Module Disable bit 										
bit 0		Compare 7 modu									
		Compare 7 modu									
bit 5		utput Compare 6		le bit							
	•	Compare 6 modu Compare 6 modu									
bit 4	-	utput Compare 5		le bit							
~	1 = Output										

查询PIC24HJ256GP210A供应商

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit 1 = Output Compare 4 module is disabled 0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled0 = Output Compare 1 module is enabled

]PIC24HJ2 REGISTER	256GP210A供 <u>ʃ</u> 7 10-3: PMD 3		AL MODUL	E DISABLE C	ONTROL RE	EGISTER 3	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T9MD	T8MD	T7MD	T6MD		—	_	_
bit 15							
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	_	—	—	—	I2C2MD	AD2MD
bit 7							
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 14 bit 13	T8MD: Timer 1 = Timer8 m 0 = Timer8 m T7MD: Timer	odule is enable 8 Module Disat odule is disable odule is enable 7 Module Disat	ole bit ed d ole bit				
	0 = Timer7 m	odule is disable odule is enable	d				
bit 12	1 = Timer6 m	6 Module Disat odule is disable odule is enable	ed				
bit 11-2	Unimplemen	ted: Read as ')'				
bit 1	I2C2MD: I2C2 Module Disable bit						
		dule is disabled dule is enabled					
bit 0	AD2MD: AD2	2 Module Disab	le bit ⁽¹⁾				
	$1 = AD2 \mod 0 = AD2 \mod 0$	lule is disabled					

Note 1: PCFGx bits will have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

查询PIC24HJ256GP210A供应商 NOTES:

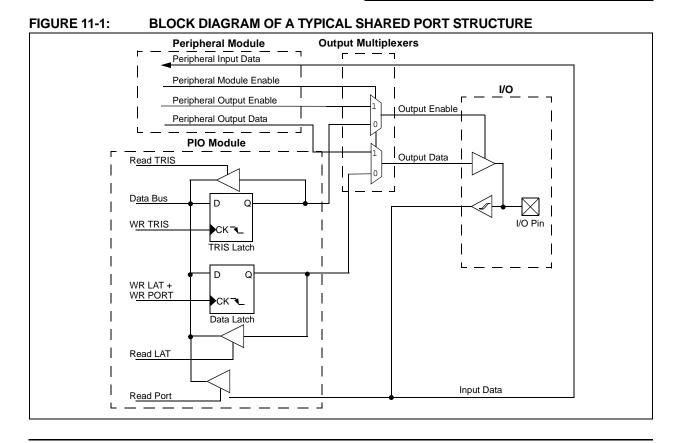
查询PIC24HJ256GP210A供应商 11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70230) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nonetheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

Note: The voltage on a digital input pin can be between -0.3V to 5.6V.

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商 11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the "Pin Diagrams (Continued)" for the available pins and their functionality.

11.3 **Configuring Analog Port Pins**

The use of the ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the Analog-to-Digital port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	In devices with two ADC modules, if the
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0
MOV	W0, TRISBB
NOP	
btss	PORTB, #13

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the PIC24HJXXXGPX06A/X08A/X10A devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the weak pull-up enable (CNxPUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

; Configure PORTB<15:8> as inputs ; and PORTB<7:0> as outputs ; Delay 1 cycle ; Next Instruction

查询PIC24HJ256GP210A供应商 12.0 TIMER1

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70244) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Timer1 also supports these features:

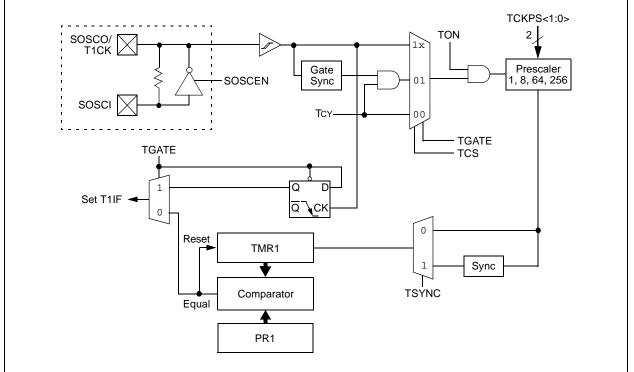

- Timer gate operation
- Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

查询PIC24HJ256GP210A供应商 REGISTER 12-1: **T1CON: TIMER1 CONTROL REGISTER** R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON TSIDL ____ _ _ ____ _ _ bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 TGATE TCKPS<1:0> TSYNC TCS ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' bit 13 **TSIDL:** Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When T1CS = 1: This bit is ignored. When T1CS = 0: 1 =Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3 Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit bit 2 When TCS = 1: 1 = Synchronize external clock input 0 = Do not synchronize external clock input When TCS = 0: This bit is ignored. TCS: Timer1 Clock Source Select bit bit 1 1 = External clock from pin T1CK (on the rising edge) 0 = Internal clock (FCY) Unimplemented: Read as '0' bit 0

查询PIC24HJ256GP210A供应商

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70244) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter

They also support these features:

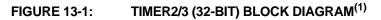
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

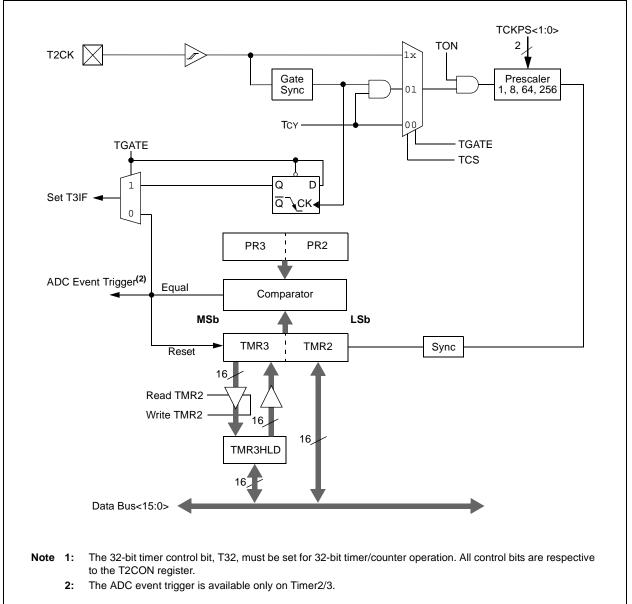
Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2. For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

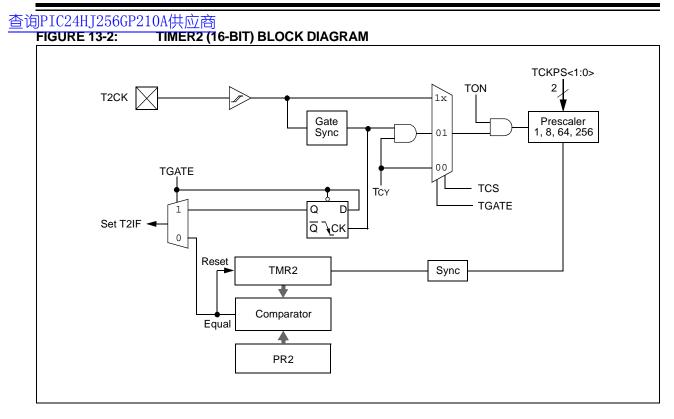
To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contains the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contains the least significant word.


To configure any of the timers for individual 16-bit operation:


- 1. Clear the T32 bit corresponding to that timer.
- Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.


查询PIC24HJ256GP210A供应商

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note:	Only Timer2	and	Timer3	can	trigger	а
	DMA data tra	nsfer.				

查询PIC24HJ256GP210A供应商 REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON ____ TSIDL _ ____ ____ ____ ____ bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0 TCS⁽¹⁾ TGATE TCKPS<1:0> T32 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timerx On bit When T32 = 1: 1 = Starts 32-bit Timerx/y 0 = Stops 32-bit Timerx/y When T32 = 0: 1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx Unimplemented: Read as '0' bit 14 bit 13 TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as '0' bit 6 TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:256 10 = 1:6401 = 1:8 00 = 1:1bit 3 T32: 32-bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers bit 2 Unimplemented: Read as '0' TCS: Timerx Clock Source Select bit⁽¹⁾ bit 1 1 = External clock from pin TxCK (on the rising edge) 0 = Internal clock (FCY) bit 0 Unimplemented: Read as '0'

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-C
TON ⁽¹⁾		TSIDL ⁽²⁾		—	_	—	_
bit 15	·					·	
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-C
—	TGATE ⁽¹⁾	TCKPS	<1:0> ⁽¹⁾	—	—	TCS ^(1,3)	_
bit 7							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	TON: Timery 1 = Starts 16- 0 = Stops 16-	bit Timery					
bit 14	•	ted: Read as '					
bit 13	•	in Idle Mode bi					
		ue module ope module operat		device enters lo ode	lle mode		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6		-	Accumulatio	on Enable bit ⁽¹⁾			
		ored.					
bit 5-4	TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	: Timer3 Input	Clock Presc	ale Select bits ⁽¹)		
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	TCS: Timery	Clock Source S	Select bit ^(1,3)				
	1 = External o 0 = Internal c	clock from pin ⁻ lock (FCY)	ГуСК (on the	e rising edge)			
bit 0		ted: Read as '	o'				

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

查询PIC24HJ256GP210A供应商 NOTES:

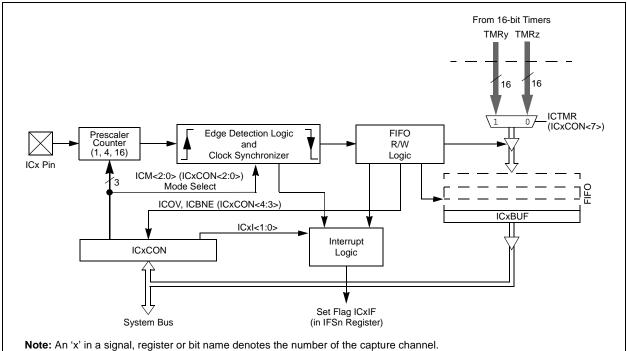
查询PIC24HJ256GP210A供应商 14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 12. "Input Capture" (DS70248), which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC24HJXXXGPX06A/X08A/X10A devices support up to eight input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- 1. Simple Capture Event modes
 - -Capture timer value on every falling edge of input at ICx pin
 - -Capture timer value on every rising edge of input at ICx pin


- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes
 - -Capture timer value on every 4th rising edge of input at ICx pin
 - -Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts.

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to 1 (ICI<1:0> = 00).

FIGURE 14-1: INPUT CAPTURE BLOCK DIAGRAM

查询PIC24HJ256GP210A供应商 14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

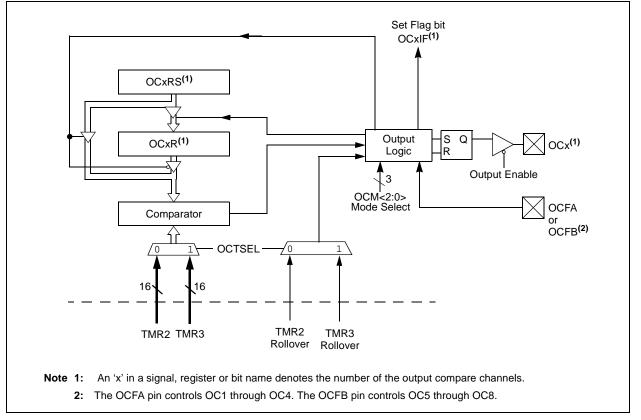
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	_	ICSIDL	_	_	_	_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
R/W-0 ICTMR ⁽¹⁾		R/W-0 1:0>	R-0, HC ICOV	R-0, HC ICBNE	R/W-0	R/W-0 ICM<2:0>	R/W-0

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit
	1 = Input capture module will halt in CPU Idle mode
	0 = Input capture module will continue to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture Timer Select bits ⁽¹⁾
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture overflow occurred
	0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.)
	110 = Unused (module disabled)
	101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge
	011 = Capture mode, every rising edge
	010 = Capture mode, every falling edge
	001 = Capture mode, every edge (rising and falling)
	(ICI<1:0> bits do not control interrupt generation for this mode.)
	000 = Input capture module turned off

查询PIC24HJ256GP210A供应商 15.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 13. "Output Compare" (DS70247), which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

查询PIC24HJ256GP210A供应商 15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note:	See Section 13. "Output Compare"
	(DS70247) in the "dsPIC33F/PIC24H
	Family Reference Manual" for OCxR and
	OCxRS register restrictions.

OCFA falling edge for OC1 to OC4

TABLE 15-1	. OUTFUT COMPARE MOL	23	
OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active-Low One-Shot	0	OCx rising edge
010	Active-High One-Shot	1	OCx falling edge
011	Toggle	Current output is maintained	OCx rising and falling edge
100	Delayed One-Shot	0	OCx falling edge
101	Continuous Pulse	0	OCx falling edge
110	PWM without Fault Protection	'0', if OCxR is zero	No interrupt
		'1', if OCxR is non-zero	

'0', if OCxR is zero

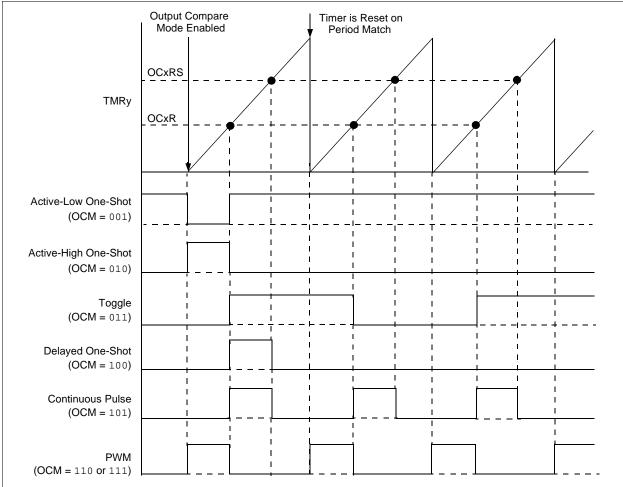

'1', if OCxR is non-zero

TABLE 15-1: OUTPUT COMPARE MODES

FIGURE 15-2: OUTPUT COMPARE OPERATION

PWM with Fault Protection

111

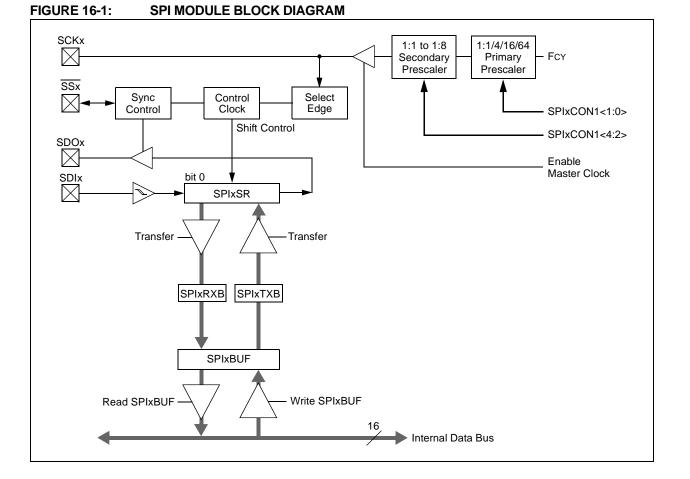
查询PIC24HJ256GP210A供应商 REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2) U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 ____ OCSIDL ____ ____ ____ ____ ___ _ bit 15 bit 8 U-0 U-0 U-0 R-0, HC R/W-0 R/W-0 R/W-0 R/W-0 OCFLT OCTSEL OCM<2:0> ____ bit 7 bit 0 Legend: HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 **OCSIDL:** Stop Output Compare in Idle Mode Control bit 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode bit 12-5 Unimplemented: Read as '0' bit 4 **OCFLT: PWM Fault Condition Status bit** 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111) bit 3 **OCTSEL:** Output Compare Timer Select bit 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x bit 2-0 OCM<2:0>: Output Compare Mode Select bits 111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HJ256GP210A供应商

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 18. "Serial Peripheral Interface (SPI)" (DS70243), which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

查询PIC24HJ256GP210A供应商

REGISTER 16-1: SPIXSTAT: SPIX STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
SPIEN		SPISIDL								
bit 15		OFICIDE					bit 8			
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0			
—	SPIROV	·			—	SPITBF	SPIRBF			
bit 7							bit 0			
Legend:		C = Clearable	bit							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	SPIEN: SPIX	Enable bit								
		module and con	figures SCK	x, SDOx, SDIx	and SSx as se	rial port pins				
L:L 4 4	0 = Disables		-1							
bit 14 bit 13	•	nted: Read as '(
DIL 13		pp in Idle Mode I		ation when device enters Idle mode						
		module operati								
bit 12-7	Unimplemer	nted: Read as ')'							
bit 6	SPIROV: Re	SPIROV: Receive Overflow Flag bit								
		 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register 								
	•	data in the SPI	•	er						
bit 5-2		nted: Read as '	-							
bit 1	SPITBF: SPI	x Transmit Buff	er Full Status	s bit						
	1 = Transmit	not yet started,	SPIxTXB is	full						
		started, SPIxT>								
	•	/ set in hardwar				om SPIXTXB.	SPIXSR			
bit 0	,	Ix Receive Buffe								
Sit 0		complete, SPIx		, one						
	0 = Receive	is not complete,	SPIxRXB is							
		/ set in hardward								
	Automatically	v cleared in narc	aware when (core reads SPIX	COL IOCATION,	reading SPIxRX	ND.			

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
bit 15							b			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(<1:0> ⁽²⁾			
bit 7							b			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15-13	-	nted: Read as '								
bit 12		able SCKx pin								
	 1 = Internal SPI clock is disabled, pin functions as I/O 0 = Internal SPI clock is enabled 									
bit 11										
DICTI		DISSDO: Disable SDOx pin bit 1 = SDOx pin is not used by module; pin functions as I/O								
		n is controlled b			-					
bit 10	MODE16: W	ord/Byte Comm	nunication Sel	ect bit						
	1 = Communication is word-wide (16 bits)									
	0 = Commun	ication is byte-	wide (8 bits)							
bit 9		SMP: SPIx Data Input Sample Phase bit								
	Master mode		ad aff -1-4 ·							
		a sampled at er a sampled at m								
	Slave mode:	a sampleu at II								
	SMP must be cleared when SPIx is used in Slave mode.									
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾							
	1 = Serial ou	tput data chang	ges on transitio		clock state to Id					
			•		ock state to activ	ve clock state (see bit 6)			
bit 7		e Select Enable		de) ⁽³⁾						
	$1 = \overline{SSx}$ pin used for Slave mode 0 = SSx pin not used by module. Pin controlled by port function									
	-	-		rolled by port f	unction					
bit 6		CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level								
		for clock is a h for clock is a lo								
bit 5		ster Mode Enab								
	1 = Master n									
	0 = Slave mo	ode								
			ramed SPI mo	odes. The user	should program	n this bit to '0' f	or the Fram			
S	PI modes (FRM	1EN = 1).								
2: D	o not set both F	Primary and Sec	condary presc	alers to a value	e of 1:1.					

3: This bit must be cleared when FRMEN = 1.

查询PIC24HJ256GP210A供应商

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED) SPRE<2:0>: Secondary Prescale bits (Master mode)⁽²⁾ bit 4-2 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 000 = Secondary prescale 8:1 PPRE<1:0>: Primary Prescale bits (Master mode)(2) bit 1-0 11 = Primary prescale 1:1 10 = Primary prescale 4:1 01 = Primary prescale 16:1 00 = Primary prescale 64:1

- Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

-	56GP210A供应						
REGISTER	16-3: SPIxC	CON2: SPIx CO	ONTROL R	EGISTER 2			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-
FRMEN	SPIFSD	FRMPOL	—	—	—	—	_
bit 15							
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-
_	_	_	_	_		FRMDLY	
bit 7							
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimplemented bit, read		d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	1 = Framed	med SPIx Support SPIx support ena SPIx support disa	abled (<mark>SSx</mark> p	oin used as fran	ne sync pulse ir	nput/output)	
bit 14	1 = Frame sy	ame Sync Pulse I ync pulse input (slave)	ontrol bit			
	-	ync pulse output	. ,				
bit 13		rame Sync Pulse	-				
		ync pulse is activ ync pulse is activ					
bit 12-2	Unimpleme	nted: Read as '0	,				
bit 1		ame Sync Pulse ync pulse coincic	•				
	0 = Frame s	ync pulse preced	les first bit c	lock			
bit 0	Unimpleme	nted: Read as '0	,				

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HJ256GP210A供应商 17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70235) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The PIC24HJXXXGPX06A/X08A/X10A devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly.

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

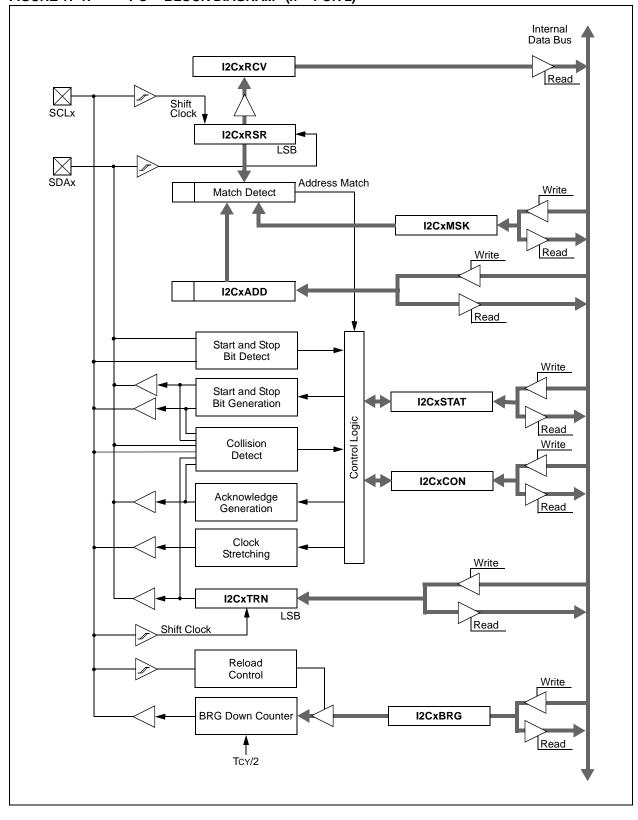
The I^2C module can operate either as a slave or a master on an I^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7 or 10-bit address

For details about the communication sequence in each of these modes, please refer to the *"dsPIC33F/PIC24H Family Reference Manual"*.

17.2 I²C Registers


I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation.

The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

查询PIC24HJ256GP210A供应商 FIGURE 17-1: I²C™BLOCK DIAGRAM (x = 1 OR 2)

查询PIC24HJ256GP210A供应商

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0 HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:		U = Unimplemented b	t, read as '0'							
R = Reada	ble bit	W = Writable bit	HS = Set in hardware	HC = Cleared in hardware						
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15		2Cx Enable bit								
DIL 15	1 = Enab	les the I2Cx module and co	nfigures the SDAx and SCLx pir							
bit 14	Unimple	mented: Read as '0'								
bit 13	I2CSIDL	: Stop in Idle Mode bit								
		ontinue module operation whinue module operation in Ide	nen device enters an Idle mode e mode							
bit 12	SCLREL	: SCLx Release Control bit	(when operating as I ² C slave)							
	1 = Relea 0 = Hold	ase SCLx clock SCLx clock low (clock streto								
		V (i.e., software may write '0 hing of slave transmission. H	' to initiate stretch and write '1' t ardware clear at end of slave re	o release clock). Hardware clear ception.						
		6 (i.e., software may only wri	te '1' to release clock). Hardwar	e clear at beginning of slave						
bit 11	IPMIEN:	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit								
		mode is enabled; all addres mode disabled	ses Acknowledged							
bit 10	A10M: 1	0-bit Slave Address bit								
	-	ADD is a 10-bit slave addres ADD is a 7-bit slave address								
bit 9	DISSLW	DISSLW: Disable Slew Rate Control bit								
		rate control disabled rate control enabled								
bit 8	SMEN: S	SMBus Input Levels bit								
		ole I/O pin thresholds compli- ble SMBus input thresholds	ant with SMBus specification							
bit 7	GCEN: 0	GCEN: General Call Enable bit (when operating as I^2C slave)								
	(moo	ble interrupt when a general dule is enabled for reception eral call address disabled	call address is received in the l:)	2CxRSR						
bit 6			bit (when operating as I ² C slave							
	Used in o 1 = Enab	conjunction with SCLREL bit le software or receive clock ble software or receive clock	stretching	2)						

查询PIC24HJ256GP210A供应商

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge
bit 4	 0 = Send ACK during Acknowledge ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

查询PIC24HJ256GP210A供应商 REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER R-0 HSC R-0 HSC U-0 R/C-0 HS U-0 U-0 R-0 HSC R-0 HSC ACKSTAT TRSTAT BCL GCSTAT ADD10 bit 15 bit 8 R/C-0 HS R/C-0 HS R-0 HSC R/C-0 HSC R-0 HSC R-0 HSC R/C-0 HSC R-0 HSC IWCOL I2COV D_A Ρ S R_W RBF TBF bit 7 bit 0 Legend: U = Unimplemented bit, read as '0' C = Clear only bit R = Readable bit W = Writable bit HS = Set in hardware HSC = Hardware set/cleared -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknownbit 15 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = NACK received from slave 0 = ACK received from slave Hardware set or clear at end of slave Acknowledge. TRSTAT: Transmit Status bit (when operating as I²C master, applicable to master transmit operation) bit 14 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation $0 = No \ collision$ Hardware set at detection of bus collision. GCSTAT: General Call Status bit bit 9 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-Bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection. bit 7 IWCOL: Write Collision Detect bit 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy $0 = No \ collision$ Hardware set at occurrence of write to I2CxTRN while busy (cleared by software). bit 6 I2COV: Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflowHardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). bit 5 **D_A:** Data/Address bit (when operating as I²C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte. bit 4 P: Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.

查询PIC24HJ256GP210A供应商 REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave
	Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

查询PIC24HJ256GP210A供应商 REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
0-0	0-0	0-0	0-0	0-0	0-0		
_	—	—	_	—		AMSK9	AMSK8
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7	-			•		-	bit

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

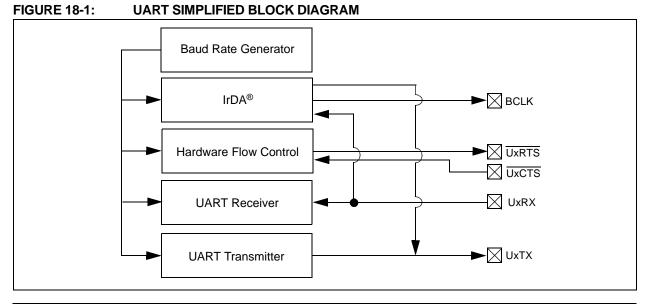
0 = Disable masking for bit x; bit match required in this position

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HJ256GP210A供应商

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70232) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJXXXGPX06A/X08A/X10A device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8 or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator with 16-bit Prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART is shown in Figure 18-1. The UART module consists of the key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
 - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>				
bit 15	·						bit 8				
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL	_<1:0>	STSEL				
bit 7							bit 0				
Legend:		HC = Hardwa	re cleared								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	1 = UARTx is		ARTx pins ar		UARTx as defii / port latches; U						
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	USIDL: Stop	USIDL: Stop in Idle Mode bit									
		ue module operation			dle mode						
bit 12	IREN: IrDA [®]	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾									
		coder and deco coder and deco									
bit 11	RTSMD: Mode Selection for UxRTS Pin bit										
		in in Simplex n in in Flow Cont									
bit 10	Unimplemen	ted: Read as '	0'								
bit 9-8	UEN<1:0>: UARTx Enable bits										
	10 = UxTX, U 01 = UxTX, U	IxRX, <u>UxCTS</u> a IxRX and UxR1 nd UxRX pins a	nd UxRTS pir	ns are enabled nabled and use	; UxCTS pin col an <u>d used</u> d; UxC <u>TS pin</u> c S and UxRTS/B	ontrolled by po	rt latches				
bit 7	WAKE: Wake	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit									
		are on following		κRX pin; interrι	upt generated or	n falling edge; I	bit cleared				
bit 6		RTx Loopback	Mode Select	bit							
		oopback mode		-							
		k mode is disat									
bit 5	ABAUD: Auto	o-Baud Enable	bit								
	before ar	ny data; cleared	d in hardware	upon completi	er – requires rec on	ception of a Sy	nc field (0x55)				
	0 = Baud rate	e measuremen	t disabled or o	completed							
	efer to Section ation on enablin					Reference Ma	<i>nual"</i> for infor-				

2: This feature is only available for the $16x BRG \mod (BRGH = 0)$.

查询PIC24HJ256GP210A供应商

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits
	0 = One Stop bit

- Note 1: Refer to Section 17. "UART" (DS70232) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

查询PIC24HJ256GP210A供应商

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1				
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT				
bit 15	1	1					bit 8				
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0				
URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA				
bit 7							bit (
Legend:		HC = Hardwar	o cloarad			C = Clear onl	v hit				
R = Readable	hit	W = Writable t		II – Unimpler	mented bit, read		y Dit				
-n = Value at F		1' = Bit is set	Л	$0^{\circ} = 0^{\circ}$		x = Bit is unkn					
	OK				aleu		IOWIT				
bit 15,13	11 = Reserve 10 = Interrupt transmit 01 = Interrupt operatio 00 = Interrupt	when a charac buffer become when the last on ns are complete	ter is transfe s empty character is s ed ter is transfe	rred to the Tran hifted out of th rred to the Tran	bits nsmit Shift Regis e Transmit Shift nsmit Shift Regis	Register; all tra	ansmit				
bit 14		ne character of smit Polarity In		nsmit buller)							
	$\frac{\text{If IREN} = 0:}{1 = \text{UxTX Idle}}$ $0 = \text{UxTX Idle}$ $\frac{\text{If IREN} = 1:}{1 = \text{IrDA}^{\text{®}} \text{ end}}$ $0 = \text{IrDA}^{\text{®}} \text{ end}$		e state is '1' e state is '0'								
bit 12	Unimplemen	ted: Read as '0	,								
bit 11		UTXBRK: Transmit Break bit									
bit 10	cleared b 0 = Sync Bre	nc Break on ney y hardware upo ak transmissior smit Enable bit ⁽	on completion disabled or	า	llowed by twelve	e '0' bits, followe	ed by Stop bit				
bit TO	1 = Transmit	enabled, UxTX	pin controlle		rted and buffer	is reset. UxTX	pin controlled				
bit 9	1 = Transmit				er can be writter	ı					
bit 8		nit Shift Registe									
	1 = Transmit	Shift Register is	empty and t	ransmit buffer is	s empty (the last is in progress o		as completed				
bit 7-6	URXISEL<1:0	D>: Receive Inte	errupt Mode	Selection bits	-						
	11 = Interrupt 10 = Interrupt 0x = Interrupt	is set on UxRS is set on UxRS	R transfer m R transfer m y character	aking the recei aking the recei is received and	ive buffer full (i.e ve buffer 3/4 ful d transferred fro	l (i.e., has 3 da	ta characters				

Note 1: Refer to Section 17. "UART" (DS70232) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

查询PIC24HJ256GP210A供应商 REGISTER 18-2: UXSTA: UARTX STATUS AND CONTROL REGISTER (CONTINUED) bit 5 **ADDEN:** Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled bit 4 RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle0 =Receiver is active bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected bit 1 **OERR:** Receive Buffer Overrun Error Status bit (read/clear only) 1 = Receive buffer has overflowed 0 =Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the UxRSR to the empty state bit 0 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to Section 17. "UART" (DS70232) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HI256GP210A供应商 19.0^{- HIMANCED CAN} (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*, Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70226), which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

19.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJXXXGPX06A/X08A/X10A devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- 3 full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation

- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

19.2 Frame Types

The CAN module transmits various types of frames which include data messages, remote transmission requests and as other frames that are automatically generated for control purposes. The following frame types are supported:

• Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit standard identifier (SID) but not an 18-bit extended identifier (EID).

Extended Data Frame:

An extended data frame is similar to a standard data frame but includes an extended identifier as well.

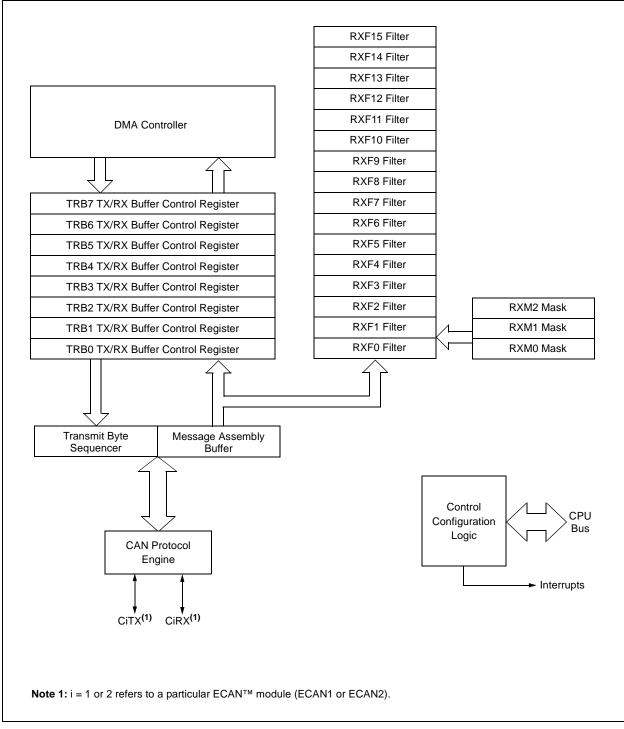
Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

Overload Frame:


An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

• Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

查询PIC24HJ256GP210A供应商

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

查询PIC24HJ256GP210A供应商

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers.

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

查询PIC24HJ256GP210A供应商

REGISTER 19-1: CICTRL1: ECAN™ MODULE CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0			
_	—	CSIDL	ABAT	—		REQOP<2:0>				
bit 15							bit 8			
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0			
	OPMODE<2:0>	>	—	CANCAP		—	WIN			
bit 7							bit (
Legend:		r = Bit is Res	erved							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'				
-n = Value at I	POR	'1' = Bit is set	:	'0' = Bit is cle		x = Bit is unkr	nown			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	-	in Idle Mode b								
	•	ue module ope		evice enters lo	lle mode					
	0 = Continue	module operat	ion in Idle mod	de						
bit 12		All Pending Tra								
	Signal all trar are aborted.	nsmit buffers to	abort transmi	ssion. Module	will clear this b	bit when all trans	missions			
bit 11	Reserved: D	o not use								
bit 10-8	REQOP<2:0	Request Op	eration Mode	bits						
	001 = Set Dis 010 = Set Lo 011 = Set Lis 100 = Set Co 101 = Reserv 110 = Reserv	opback mode sten Only Mode onfiguration mo /ed – do not us /ed – do not us	e de ie ie							
bit 7-5	<pre>111 = Set Listen All Messages mode OPMODE<2:0>: Operation Mode bits</pre>									
	000 = Module 001 = Module 010 = Module 011 = Module 100 = Module 101 = Reserv 110 = Reserv	e is in Normal (e is in Disable e is in Loopbac e is in Listen O e is in Configur ved	Dperation mod mode k mode nly mode ation mode							
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	CANCAP: C	AN Message F	Receive Timer	Capture Even	t Enable bit					
	1 = Enable in 0 = Disable C	put capture ba CAN capture	sed on CAN m	nessage receiv	/e					
bit 2-1	Unimplemen	ted: Read as	0'							
bit 0	WIN: SFR M	lap Window Se	lect bit							
	1 = Use filter									
	0 = Use buffe	er window								

查询PIC24HJ256GP210A供应商

REGISTER 19-2: CICTRL2: ECAN™ MODULE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	_	_	_		—	—				
bit 15		·			·	·	bit 8				
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
—	—	—			DNCNT<4:0>	>					
bit 7							bit C				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-5	Unimplemer	ted: Read as '	0'								
bit 4-0	DNCNT<4:0	DNCNT<4:0>: DeviceNet™ Filter Bit Number bits									
	10010-1111	10010-11111 = Invalid selection									
	10001 = Cor	npare up to data	a byte 3, bit 6	with EID<17>							
	•										
	•										
	•										
		npare up to dat	-	with EID<0>							

00000 = Do not compare data bytes

查询PIC24HJ256GP210A供应商 CIVEC: ECAN™ MODULE INTERRUPT CODE REGISTER REGISTER 19-3: U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 FILHIT<4:0> ____ ____ _ bit 8 bit 15 U-0 R-1 R-0 R-0 R-0 R-0 R-0 R-0 ICODE<6:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 FILHIT<4:0>: Filter Hit Number bits 10000-11111 = Reserved 01111 = Filter 15 00001 = Filter 1 00000 = Filter 0 bit 7 Unimplemented: Read as '0' bit 6-0 ICODE<6:0>: Interrupt Flag Code bits 1000101-1111111 = Reserved 1000100 = FIFO almost full interrupt 1000011 = Receiver overflow interrupt 1000010 = Wake-up interrupt 1000001 = Error interrupt 1000000 = No interrupt 0010000-0111111 = Reserved 0001111 = RB15 buffer Interrupt 0001001 = RB9 buffer interrupt 0001000 = RB8 buffer interrupt 0000111 = TRB7 buffer interrupt 0000110 = TRB6 buffer interrupt 0000101 = TRB5 buffer interrupt 0000100 = TRB4 buffer interrupt 0000011 = TRB3 buffer interrupt 0000010 = TRB2 buffer interrupt 0000001 = TRB1 buffer interrupt 0000000 = TRB0 Buffer interrupt

					OL REGISTER	•	
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-(
	DMABS<2:0>		—	—			
bit 15							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W
_	_	—			FSA<4:0>		
bit 7							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
	100 = 16 buf 011 = 12 buf 010 = 8 buffe 001 = 6 buffe	fers in DMA RA fers in DMA RA fers in DMA RA ers in DMA RAN ers in DMA RAN	M M 1 1				
bit 12-5		ers in DMA RAN nted: Read as '					
	-	FIFO Area Starts		its			
bit 4-0							
bit 4-0	11111 = RB3 11110 = RB3						

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商 REGISTER 19-5: CIFIFO: ECAN™ MODULE FIFO STATUS REGISTER U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0 FBP<5:0> _ ____ bit 15 bit 8 U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0 FNRB<5:0> ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13-8 FBP<5:0>: FIFO Write Buffer Pointer bits 011111 = RB31 buffer 011110 = RB30 buffer 000001 = TRB1 buffer 000000 = TRB0 buffer bit 7-6 Unimplemented: Read as '0' bit 5-0 FNRB<5:0>: FIFO Next Read Buffer Pointer bits 011111 = RB31 buffer 011110 = RB30 buffer 000001 = TRB1 buffer 000000 = TRB0 buffer

查询PIC24HJ256GP210A供应商

REGISTER 19-6: CIINTF: ECAN[™] MODULE INTERRUPT FLAG REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8
			11.0				

R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
bit 12	TXBP: Transmitter in Error State Bus Passive bit
bit 11	RXBP: Receiver in Error State Bus Passive bit
bit 10	TXWAR: Transmitter in Error State Warning bit
bit 9	RXWAR: Receiver in Error State Warning bit
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
bit 7	IVRIF: Invalid Message Received Interrupt Flag bit
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
bit 1	RBIF: RX Buffer Interrupt Flag bit
bit 0	TBIF: TX Buffer Interrupt Flag bit

查询PIC24HJ256GP210A供应商

REGISTER 19-7: CIINTE: ECAN™ MODULE INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
_	—	—	_	—	—	—	—							
bit 15							bit 8							
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0							
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE							
bit 7							bit 0							
Legend:														
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'										
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown								
bit 15-8	Unimplemen	ted: Read as ')'											
bit 7	IVRIE: Invalio	Message Rec	eived Interrup	t Enable bit										
hit C				og hit										

- bit 6 WAKIE: Bus Wake-up Activity Interrupt Flag bit
- bit 5 **ERRIE:** Error Interrupt Enable bit
- bit 4 Unimplemented: Read as '0'
- bit 3 FIFOIE: FIFO Almost Full Interrupt Enable bit
- bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit
- bit 1 **RBIE:** RX Buffer Interrupt Enable bit
- bit 0 **TBIE:** TX Buffer Interrupt Enable bit

查询PIC24HJ256GP210A供应商

REGISTER 19-8: CiEC: ECAN™ MODULE TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			TERR	CNT<7:0>				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			RERR	CNT<7:0>				
bit 7							bit (
Legend:								
R = Readable bi	t	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 RERRCNT<7:0>: Receive Error Count bits

查询PIC24HJ256GP210A供应商

REGISTER 19-9: CiCFG1: ECAN™ MODULE BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	_	—		—	_	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	W<1:0>				P<5:0>						
bit 7							bit C				
Legend:											
R = Readable bit W = Writable bit			U = Unimpler	nented bit, read	as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-8	Unimplemen	ted: Read as '	0'								
bit 7-6	SJW<1:0>: Synchronization Jump Width bits										
		$11 = \text{Length is } 4 \times \text{Tq}$									
		$10 = \text{Length is } 3 \times \text{T}_{Q}$ 01 = Length is 2 x T_{Q}									
	01 = Length i 00 = Length i										
bit 5-0	•	Baud Rate Pre	scalar hits								
Dit 5-0		$\bar{Q} = 2 \times 64 \times 1/2$									
	•		1 0/11								
	•										
	•										
	00 0010 = T	Q = 2 x 3 x 1/F	CAN								
		Q = 2 x 2 x 1/F									
	00 0000 = T	Q = 2 x 1 x 1/F	CAN								

查询PIC24HJ256GP210A供应商

REGISTER 19-10: CiCFG2: ECAN™ MODULE BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
_	WAKFIL	—		—		SEG2PH<2:0>				
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	PHTS SAM SEG1PH<2:0> PRSEG<2:0>									
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	known			
bit 15	Unimplemented: Read as '0'									
bit 14		lect CAN bus L		Wake-up bit						
		bus line filter for								
		line filter is not		e-up						
bit 13-11	-	ted: Read as '								
bit 10-8	SEG2PH<2:0>: Phase Buffer Segment 2 bits									
	111 = Length is 8 x Tq 000 = Length is 1 x Tq									
b # 7	•		at 0 Time Cal							
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit									
	 Freely programmable Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 									
bit 6				5		5				
	SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point									
		s sampled once								
bit 5-3	SEG1PH<2:0>: Phase Buffer Segment 1 bits									
	111 = Length is 8 x TQ									
	000 = Length	is 1 x Tq								
bit 2-0	PRSEG<2:0>	: Propagation	Time Segme	nt bits						
	111 = Length									
	000 = Length	is 1 y To								

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商

REGISTER 19-11: CIFEN1: ECAN™ MODULE ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 19-12: CIBUFPNT1: ECAN™ MODULE FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BP4	<3:0>			F2BF	><3:0>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F1BP<3:0>					F0BF	°<3:0>			
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-12		RX Buffer Writt							
bit 11-8	F2BP<3:0>:	RX Buffer Writt	en when Filte	r 2 Hits bits					
bit 7-4	F1BP<3:0>:	RX Buffer Writt	en when Filte	r 1 Hits bits					
bit 3-0	F0BP<3:0>:	RX Buffer Writ	ten when Filte	er 0 Hits bits					
bit 3-0	1111 = Filter	hits received in	n RX FIFO bu	ffer					
bit 3-0	1111 = Filter		n RX FIFO bu	ffer					
bit 3-0	1111 = Filter	hits received in	n RX FIFO bu	ffer					
bit 3-0	1111 = Filter	hits received in	n RX FIFO bu	ffer					
bit 3-0	1111 = Filter 1110 = Filter •	hits received in	n RX FIFO bu n RX Buffer 14	ffer					

查询PIC24HJ256GP210A供应商

REGISTER 19-13: CiBUFPNT2: ECAN™ MODULE FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BP<	<3:0>			F6BP<3:0>			
bit 15				bi				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BP<	<3:0>		F4BP<3:0>				

bit 7

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12	F7BP<3:0>: RX Buffer Written when Filter 7 Hits bits
bit 11-8	F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits
bit 7-4	F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits
bit 3-0	F4BP<3:0>: RX Buffer Written when Filter 4 Hits bits

REGISTER 19-14: CiBUFPNT3: ECAN™ MODULE FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BP	<3:0>					
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP<	<3:0>		F8BP<3:0>			
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12	F11BP<3:0>: RX Buffer Written when Filter 11 Hits bits

bit 11-8 **F10BP<3:0>:** RX Buffer Written when Filter 10 Hits bits

bit 7-4 F9BP<3:0>: RX Buffer Written when Filter 9 Hits bits

bit 3-0 F8BP<3:0>: RX Buffer Written when Filter 8 Hits bits

© 2009 Microchip Technology Inc.

bit 0

查询PIC24HJ256GP210A供应商

REGISTER 19-15: CIBUFPNT4: ECAN™ MODULE FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15B	P<3:0>		F14BP<3:0>				
bit 15				1			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F13B	P<3:0>			F12E	3P<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-12	F15BP<3:0	>: RX Buffer Wri	tten when Fil	ter 15 Hits bits				
bit 11-8	F14BP<3:0	>: RX Buffer Wri	tten when Fil	ter 14 Hits bits				
hit 7 4	E42DD -2.0		ttop when Fil	tor 12 Llito hito				

bit 7-4 **F13BP<3:0>:** RX Buffer Written when Filter 13 Hits bits

bit 3-0 F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits

查询PIC24HJ256GP210A供应商 REGISTER 19-16: CIRXFnSID: ECAN™ MODULE ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1, ..., 15)R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 8 R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 EXIDE EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit SIDx must be '1' to match filter 0 = Message address bit SIDx must be '0' to match filter Unimplemented: Read as '0' bit 4 bit 3 **EXIDE:** Extended Identifier Enable bit If MIDE = 1 then: 1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses If MIDE = 0 then: Ignore EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-17: CIRXFnEID: ECANTM MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商

REGISTER 19-18: CIFMSKSEL1: ECAN™ MODULE FILTER 7-0 MASK SELECTION REGISTER

R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F7MSK<1:0>	F6MSł	F6MSK<1:0>		F5MSK<1:0>		<<1:0>		
bit 15						bit		
R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3MSK<1:0>	F3MSK<1:0> F2MSK<1:0>		F1MS	K<1:0>	F0MSł	<<1:0>		
bit 7						bit		
_egend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit			'0' = Bit is clea	ared	x = Bit is unknown			
bit 13-12 F6MSK<1:0		e for Filter 6 bi e for Filter 5 bi e for Filter 4 bi e for Filter 3 bi e for Filter 2 bi e for Filter 1 bi	t t t t t t					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W		
	ISK<1:0>		K<1:0>		SK<1:0>	F12MS			
bit 15		_					-		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W		
F11MSK<1:0>		F10MS	K<1:0>	F9MS	K<1:0>	F8MSł	<<1:0>		
bit 7				•		•			
bit 15-14	F15MSK<1:	0>: Mask Sourc	e for Filter 15	bit					
		F15MSK<1:0>: Mask Source for Filter 15 bit 11 = Reserved							
		10 = Acceptance Mask 2 registers contain mask							
		ance Mask 1 reg	•						
bit 13-12	•	ance Mask 0 reg 0>: Mask Sourc	•		$a_{\rm E}$ as bit $15-14$)			
bit 11-10				-					
bit 9-8	F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14) F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)								
bit 7-6		0>: Mask Sourc		-					
bit 5-4				-	-				
		F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14) F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)							
bit 3-2				t (same values)	as dit 15-14)				

bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

查询PIC24HJ256GP210A供应商

REGISTER 19-20: CIRXMnSID: ECAN™ MODULE ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15			•				bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0		MIDE		EID17	EID16	
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 15-5	1 = Include k	Standard Identi bit SIDx in filter of is don't care in	comparison	son				
bit 4	Unimpleme	n ted: Read as '	0'					
bit 3	1 = Match o 0 = Match e	ifier Receive Mo nly message typ ither standard o Filter SID) = (M	pes (standard r extended a	ddress message	e if filters match	า	DE bit in filter	
bit 2 bit 1-0	Unimpleme EID<17:16> 1 = Include	nted: Read as ' Extended Ider bit EIDx in filter is don't care in	0' ntifier bits comparison	·		- "		

REGISTER 19-21: CIRXMnEID: ECAN™ TECHNOLOGY ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

查询PIC24HJ256GP210A供应商

REGISTER 19-22: CIRXFUL1: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | • | | • | | | | bit 0 |

Legend:	C = Clear only bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-23: CiRXFUL2: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit	C = Clear only bit					
R = Readable bit	W = Writable bit	W = Writable bit $U =$ Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商

REGISTER 19-24: CIRXOVF1: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7 | • | | | | | | bit 0 |

Legend:	C = Clear only bit				
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 19-25: CIRXOVF2: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit				
R = Readable bit	W = Writable bit	e bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXOVF<31:16>:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W			
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPR				
bit 15	i Nuem	T/L/ ((B))	T/LENGIN	T/TEQT						
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W			
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	<1:0>			
bit 7						1				
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15-8	See Definitio	n for Bits 7-0,	Controls Buf	fer n						
bit 7	TXENm: TX/RX Buffer Selection bit									
	1 = Buffer TRBn is a transmit buffer									
	0 = Buffer TRBn is a receive buffer									
bit 6	TXABTm: Message Aborted bit ⁽¹⁾									
	1 = Message 0 = Message	was aborted completed trar	nsmission succ	essfully						
bit 5	1 = Message	Message Lost lost arbitration did not lose ar	while being se	ent						
bit 4	-	ror Detected D		-						
	1 = A bus erro	or occurred wh or did not occu	ile the messag	e was being s						
bit 3	TXREQm: M	essage Send I	Request bit							
					it will automatic equest a messa		the mes			
bit 2	RTRENm: Au	to-Remote Tra	insmit Enable I	bit						
		emote transmit emote transmit	,							
bit 1-0	TXmPRI<1:0>: Message Transmission Priority bits									
	10 = High inte	message prior ermediate mess rmediate mess	sage priority age priority							

查询PIC24	HJ256GP210A	共应商						
	The buffers, SID, End		Field and Re	eceive Status re	egisters are sto	ored in DMA RA	M. These are	
REGISTER	19-27: CiTRB (n = 0,	nSID: ECAN 1,, 31)	™ MODULE	BUFFER n S	TANDARD II	DENTIFIER		
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	—	—	SID10	SID9	SID8	SID7	SID6	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	It POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			nown	
bit 15-13	Unimplomen	ted: Dood oo W	21					
bit 12-2	•	ted: Read as '(Standard Identii						
bit 1		ute Remote Re	•					
	1 = Message 0 = Normal m	will request rer essage	note transmis	sion				
bit 0	IDE: Extende	d Identifier bit						
	1 = Message will transmit extended identifier							

0 = Message will transmit standard identifier

REGISTER 19-28: CiTRBnEID: ECAN[™] MODULE BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31)

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x		
—	—	—	_	EID17	EID16	EID15	EID14		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
•									

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

查询PIC24HJ256GP210A供应商

REGISTER 19-29: CiTRBnDLC: ECAN™ MODULE BUFFER n DATA LENGTH CONTROL

	(n = 0,	1,, 31)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	1 = Message will request remote transmission0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

REGISTER 19-30: CiTRBnDm: ECANTM MODULE BUFFER n DATA FIELD BYTE m $(n = 0, 1, ..., 31; m = 0, 1, ..., 7)^{(1)}$

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRBnDm7 | TRBnDm6 | TRBnDm5 | TRBnDm4 | TRBnDm3 | TRBnDm2 | TRBnDm1 | TRBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRnDm<7:0>: Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

查询PIC24HJ256GP210A供应商

REGISTER 19-31: CITRBnSTAT: ECAN™ MODULE RECEIVE BUFFER n STATUS

(n = 0, 1,, 31)

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

- bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.
- bit 7-0 Unimplemented: Read as '0'

查询PIC24HJ256GP210A供应商

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 16. "Analog-to-Digital Converter (ADC)" (DS70225), which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices have up to 32 Analog-to-Digital input channels. These devices also have up to 2 Analog-to-Digital converter modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Two result alignment options (signed/unsigned)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

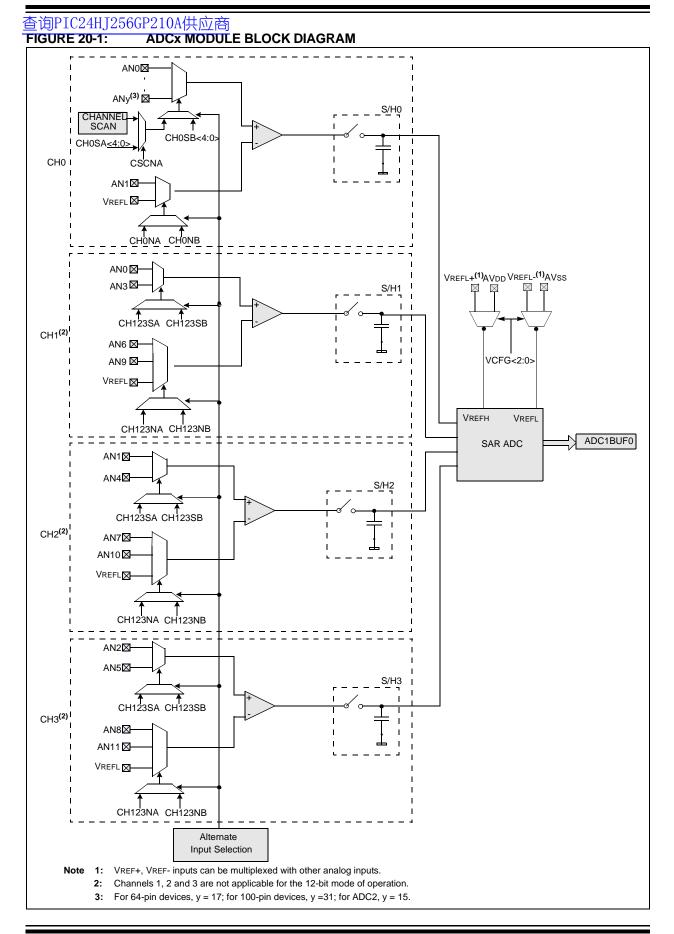
- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

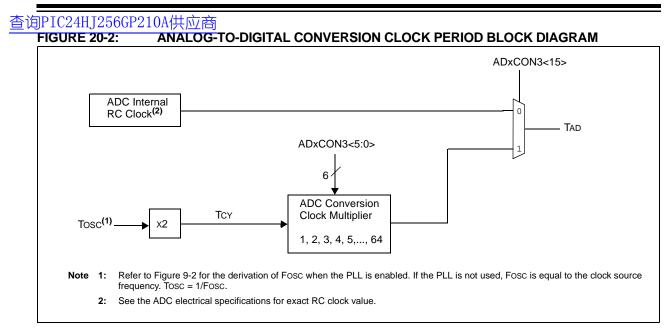
Depending on the particular device pinout, the Analog-to-Digital Converter can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the device data sheet for further details.

A block diagram of the Analog-to-Digital Converter is shown in Figure 20-1.

20.2 Analog-to-Digital Initialization

The following configuration steps should be performed.


- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on the ADC module (ADxCON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit
 - b) Select ADC interrupt priority


20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

查询PIC24HJ256GP210A供应商

REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2)

	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
ADON	_	ADSIDL	ADDMABM	—	AD12B	FORM	1<1:0>				
bit 15							bit 8				
	D 444 o	D 444 o		D 4 4 4 6	D 444 o	D 444 o	D / O A				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0 HC,HS	R/C-0 HC, HS				
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE				
bit 7							bit 0				
Legend:		HC = Cleared	by hardware	HS = Set by I	nardware						
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15		Operating Mod	e hit								
		dule is operatin									
	0 = ADC mod		9								
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	ADSIDL: Stop	o in Idle Mode I	oit								
		nue module ope			le mode						
	0 = Continue	module opera	tion in Idle mod	le							
bit 12		ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA									
							ss to the DMA				
		channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address									
						e size of the DN					
bit 11	Unimplemen	ted: Read as '	0'								
bit 10	AD12B: 10-B	it or 12-Bit Ope	eration Mode bi	t							
		channel ADC o channel ADC o	•								
bit 9-8	FORM<1:0>:	FORM<1:0>: Data Output Format bits									
	For 10-bit ope										
	11 = Reserve 10 = Reserve										
		nteger (Dout =	ssss sssd	dddd dddd, v	vhere s = .NO [.]	T.d<9>)					
		DOUT = 0.000				,					
	00 = Integer (00dd dddd d	lddd)							
	For 12-bit ope	eration:	00dd dddd d	lddd)							
	For 12-bit ope 11 = Reserve	eration: d	00dd dddd d	lddd)							
	For 12-bit ope 11 = Reserve 10 = Reserve	eration: ed		·	vhere s = .NO	T.d<11>)					
	For 12-bit ope 11 = Reserve 10 = Reserve 01 = Signed I	eration: d	ssss sddd	dddd dddd, v	vhere s = .NO	T.d<11>)					
bit 7-5	For 12-bit ope 11 = Reserve 10 = Reserve 01 = Signed I 00 = Integer (eration: d d nteger (Dout =	= ssss sddd dddd dddd d	dddd dddd, w Iddd)	vhere s = .NO	T.d<11>)					
bit 7-5	For 12-bit ope 11 = Reserve 10 = Reserve 01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna	eration: ed nteger (Dout = Dout = 0000 Sample Clock I counter ends	= ssss sddd dddd dddd c Source Select	dada dada, v Idad) bits							
bit 7-5	For 12-bit ope 11 = Reserve 10 = Reserve 01 = Signed I 00 = Integer (SSRC<2:0>:	eration: d nteger (Dout = Dout = 0000 Sample Clock I counter ends red	= ssss sddd dddd dddd c Source Select	dada dada, v Idad) bits							
bit 7-5	For 12-bit ope 11 = Reserve 10 = Reserve 01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv 100 = GP tim	eration: d nteger (DOUT = DOUT = 0000 Sample Clock I counter ends red red er (Timer5 for <i>i</i>	ssss sddd dddd dddd d Source Select sampling and s	dddd dddd, v Iddd) bits starts conversi	on (auto-conve		s conversion				
bit 7-5	For 12-bit ope 11 = Reserve 10 = Reserve 01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv 100 = GP tim 011 = Reserv	eration: d nteger (DOUT = DOUT = 0000 Sample Clock I counter ends red red er (Timer5 for <i>i</i>	ssss sddd dddd dddd c Source Select sampling and s ADC1, Timer3 f	dddd dddd, w lddd) bits starts conversi for ADC2) com	on (auto-conve pare ends sar	ert) npling and start					
bit 7-5	For 12-bit ope 11 = Reserve 10 = Reserve 01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv 101 = Reserv 011 = Reserv 010 = GP tim 011 = GP tim	eration: d d nteger (DOUT = DOUT = 0000 Sample Clock l counter ends red er (Timer5 for <i>r</i> red er (Timer3 for <i>r</i>	ssss sddd dddd dddd d Source Select sampling and s ADC1, Timer3 f	dddd dddd, w lddd) bits starts conversi for ADC2) com	on (auto-conve pare ends sar pare ends sar	ert) npling and start npling and start					
bit 7-5	For 12-bit ope 11 = Reserve 10 = Reserve 01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv 100 = GP tim 011 = Reserv 010 = GP tim 011 = Active	eration: d nteger (DOUT = DOUT = 0000 Sample Clock I counter ends red red er (Timer5 for <i>i</i>	ssss sddd dddd dddd d Source Select sampling and s ADC1, Timer3 f ADC1, Timer5 f	dddd dddd, w dddd) bits starts conversi for ADC2) com for ADC2) com	on (auto-conve pare ends sar pare ends sar arts conversior	ert) npling and start npling and start					

查询PIC24HJ256GP210A供应商 REGISTER 20-1: ADXCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2) (CONTINUED) bit 3 **SIMSAM:** Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence bit 2 ASAM: ADC Sample Auto-Start bit 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set bit 1 SAMP: ADC Sample Enable bit 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC \neq 000, automatically cleared by hardware to end sampling and start conversion. DONE: ADC Conversion Status bit bit 0 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when analog-to-digital conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation

in progress. Automatically cleared by hardware at start of a new conversion.

	HJ256GP210A						
REGISTER			CONTROL RE	EGISTER 2	•		
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>				CSCNA	CHPS	
bit 15							bit 8
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS			SMPI	<3:0>		BUFM	ALTS
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writabl	e bit	U = Unimple	emented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is cl		x = Bit is unkn	own
		a					
bit 15-13	VCFG<2:0>:	Converter Vo	oltage Reference	Configuration	n bits		
		VREF+	VREF-	_			
	000	AVDD	AVss				
	001 Exte	rnal VREF+ AVDD	AVss External VREF-	_			
		rnal VREF+	External VREF-				
	1xx	AVdd	AVss				
bit 12-11	Unimplemen	ted: Read as	s '0'				
bit 10	-		tions for CH0+ d	uring Sample	A bit		
	1 = Scan inp	-		5 1			
	0 = Do not so	can inputs					
bit 9-8			nnels Utilized bits				
			<1:0> is: U-0, Un CH2 and CH3	implemente	d, Read as '0'		
	01 = Converts						
	00 = Converts						
bit 7			t (only valid wher	-			
			second half of b first half of buffe				
bit 6	Unimplemen						
bit 5-2	-	Selects Increi	ment Rate for DM	1A Addresses	s bits or number	of sample/conv	ersion
			DMA address o	r generates	interrupt after	completion of	every 16th
	1110 = Increr		OMA address o	r generates	interrupt after	completion of	every 15th
	• samp	le/conversio	n operation				
	•						
	•						
		ments the I ble/conversio	DMA address o	r generates	interrupt after	completion o	f every 2nd
	0000 = Increr		DMA address	or generat	es interrupt a	fter completio	n of every
bit 1	BUFM: Buffer	r Fill Mode Se	elect bit				
		-	f buffer on first in Iffer from the beg	-	econd half of bu	ffer on next inte	errupt
bit 0	-	-	nple Mode Select	-			
	1 = Uses cha	annel input se	elects for Sample	A on first sar	mple and Sample	e B on next san	nple
	-			-			

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-			
ADRC		_			SAMC<4:0>(1)				
bit 15										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-			
			ADCS<	<7:0> (2)						
bit 7										
Legend:										
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown				
bit 14-13 bit 12-8	Unimplemented: Read as '0' SAMC<4:0>: Auto Sample Time bits ⁽¹⁾ 11111 = 31 TAD									
bit 12-8	SAMC<4:0>	: Auto Sample T								
	•									
	•									
	00001 = 1 T/ 00000 = 0 T/									
bit 7-0	ADCS<7:0>: 111111111 =	Analog-to-Digit	al Conversion	Clock Select b	oits ⁽²⁾					
	•	Reserved								
	•									
	•									
	01000000 = Reserved									
	00111111 =	TCY · (ADCS<7	7:0> + 1) = 64	• TCY = TAD						
	•									
	•									
	•									
	00000010 =	TCY · (ADCS<7	7:0> + 1) = 3 ·	· TCY = TAD · TCY = TAD						

查询PIC24HJ256GP210A供应商

REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		_				DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'0' = Bit is cleared

x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

-n = Value at POR

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

'1' = Bit is set

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

R/W-0

R/W-0

CH123NB<1:0>

CH123NA<1:0>

R/W-0

R/W-0

R/W-0

CH123SB

R/W-0

CH123SA

bit 8

bit 0

查询PIC24HJ256GP210A供应商 REGISTER 20-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER U-0 U-0 U-0 U-0 U-0 ____ ____ _ _ ____ bit 15 U-0 U-0 U-0 U-0 U-0 ____ ____ ____ bit 7 Legend:

R = Readable bit		W = Writable bit	U = Unimplemented bit	, read as '0'						
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-11	Unimple	mented: Read as '0'								
bit 10-9	CH123NI	1123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits								
	11 = CH1 10 = CH1	negative input is AN9, CH2	nimplemented, Read as '0' negative input is AN10, CH3 negative input is AN7, CH3 n s VREF-	•						
bit 8	CH123SE	H123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit								
	1 = CH1	positive input is AN3, CH2 p	nimplemented, Read as '0' ositive input is AN4, CH3 posi ositive input is AN1, CH3 posi							
bit 7-3	Unimple	mented: Read as '0'								
bit 2-1	CH123N/	CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits								
	11 = CH1 10 = CH1	When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF-								
bit 0	CH123S/	A: Channel 1, 2, 3 Positive Ir	put Select for Sample A bit							
	1 = CH1	When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN3								

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

查询PIC24HJ256GP210A供应商 REGISTER 20-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CHONB CH0SB<4:0> ____ ____ bit 15 bit 8 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 **CHONA** CH0SA<4:0> ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHONB: Channel 0 Negative Input Select for Sample B bit Same definition as bit 7. bit 14-13 Unimplemented: Read as '0' CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits bit 12-8 Same definition as bit<4:0>. bit 7 CHONA: Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFbit 6-5 Unimplemented: Read as '0' bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits 11111 = Channel 0 positive input is AN31 11110 = Channel 0 positive input is AN30 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0

Note: ADC2 can only select AN0 through AN15 as positive inputs.

查询PIC24HJ256GP210A供应商

REGISTER 20-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH^(1,2)

bit 7							bit (
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

CSS<31:16>: ADC Input Scan Selection bits

- 1 = Select ANx for input scan
- 0 = Skip ANx for input scan
- **Note 1:** On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREFL.
 - **2:** CSSx = ANx, where x = 16 through 31.

REGISTER 20-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15	·				•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk		x = Bit is unki	nown				

bit 15-0

CSS<15:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREF-.
 - **2:** CSSx = ANx, where x = 0 through 15.

REGISTER 20-9.6GPAD PCFCH产ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3,4)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16
bit 7	·		•			•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PCFG

PCFG<31:16>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVss 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - **2:** ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 high port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.
 - **4:** PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

REGISTER 20-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW^(1,2,3,4)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PCFG<15:0>:** ADC Port Configuration Control bits

- 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVss 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: On devices with 2 analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.
 - **3:** PCFGx = ANx, where x = 0 through 15.
 - **4:** PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

Configuration Bits

The Configuration bits can be programmed (read as

'0'), or left unprogrammed (read as '1'), to select vari-

ous device configurations. These bits are mapped

The device Configuration register map is shown in

The individual Configuration bit descriptions for the

Note that address 0xF80000 is beyond the user program

memory space. In fact, it belongs to the configuration

memory space (0x800000-0xFFFFF), which can only

To prevent inadvertent configuration changes during

code execution, all programmable Configuration bits

are write-once. After a bit is initially programmed during

a power cycle, it cannot be written to again. Changing

a device configuration requires that power to the device

Configuration registers are shown in Table 21-2.

be accessed using table reads and table writes.

starting at program memory location 0xF80000.

21.1

Table 21-1.

be cycled.

查询PIC24HJ256GP210A供应商 21.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section "CodeGuard™ 23. Security" (DS70239), Section 24. "Programming and Diagnostics" (DS70246), and Section 25. "Device Configuration" (DS70231) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

PIC24HJXXXGPX06A/X08A/X10A devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- In-Circuit Emulation

	LE 21-1. DEVICE CONFIGURATION REGISTER MAP								
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS	RBS<1:0>		—		BSS<2:0>		BWRP
0xF80002	FSS	RSS	<1:0>	—	_		SSS<2:0>		SWRP
0xF80004	FGS	_	—	—	—	—	GSS<1	:0>	GWRP
0xF80006	FOSCSEL	IESO Reserved ⁽²⁾		—	—	—	FNC)SC<2:0>	•
0xF80008	FOSC	FCKS	M<1:0>	—	—	—	OSCIOFNC	POSCM	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	PLLKEN ⁽³⁾	WDTPRE		WDTPOST<3:0>		
0xF8000C	FPOR		Reserved ⁽⁴⁾		—	—	FPV	VRT<2:0>	>
0xF8000E	FICD	Resei	rved ⁽¹⁾	JTAGEN	—	_	—	ICS<	<1:0>
0xF80010	FUID0				User Unit ID I	Byte 0			
0xF80012	FUID1	User Unit ID Byte 1							
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3				User Unit ID E	Byte 3			
Laward		monted hite							

TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bits, read as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

- 2: When read, this bit returns the current programmed value.
- **3:** This bit is unimplemented on PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices and reads as '0'.
- 4: These bits are reserved and always read as '1'.

查询PIC24HJ256GP210A供应商 TABLE 21-2: PIC24HJXXXGPX06A/X08A/X10A CONFIGURATION BITS DESCRIPTION

		CO6A/X08A/X10A CONFIGURATION BITS DESCRIPTION
Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	 Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0x0007FE 010 = High security; boot program Flash segment starts at End of VS, ends at 0x0007FE Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 0x0007FE 001 = High security; boot program Flash segment starts at End of VS, ends at 0x001FFE 001 = High security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE
		000 = High security; boot program Flash segment starts at End of VS, ends at 0x003FFE
RBS<1:0>	FBS	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

查询PIC24HJ256GP210A供应商

TABLE 21-2: PIC24HJXXXGPX06A/X08A/X10A CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	06A/X08A/X10A CONFIGURATION BITS DESCRIPTION (CONTINUED) Description
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size (FOR 128K and 256K DEVICES) X11 = No Secure program Flash segment
		Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
		Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
		(FOR 64K DEVICES) X11 = No Secure program Flash segment
		Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
		Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard Security; general program Flash segment starts at End of SS, ends at EOM 0x = High Security; general program Flash segment starts at End of ESS, ends at EOM
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected

查询PIC24HJ256GP210A供应商 TABLE 21-2: PIC24HJXXXGPX06A/X08A/X10A CONFIGURATION BITS DESCRIPTION (CONTINUED)

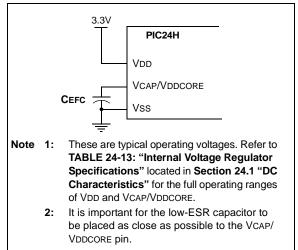
Bit Field	Register	Description
IESO	FOSCSEL	Internal External Start-up Option bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Reserved 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	FWDT	PLL Lock Enable bit 1 = Clock switch to PLL source will wait until the PLL lock signal is valid. 0 = Clock switch will not wait for the PLL lock signal.
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 0001 = 1:2 0000 = 1:1

查询PIC24HJ256GP210A供应商

TABLE 21-2:	PIC24HJXXXGPX06A/X08A/X10A	CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
JTAGEN	FICD	JTAG Enable bits 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved

查询PIC24HJ256GP210A供应商 21.2 On-Chip Voltage Regulator


All of the PIC24HJXXXGPX06A/X08A/X10A devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24HJXXXGPX06A/X08A/X10A family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP/VDDCORE pin (Figure 21-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 24-13 of **Section 24.1 "DC Characteristics"**.

Note:	It is important for the low-ESR capacitor to			
	be placed as close as possible to the			
	VCAP/VDDCORE pin.			

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 21-1: ON-CHIP VOLTAGE REGULATOR⁽¹⁾ CONNECTIONS

21.3 BOR: Brown-out Reset

The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.

21.4 Watchdog Timer (WDT)

For PIC24HJXXXGPX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

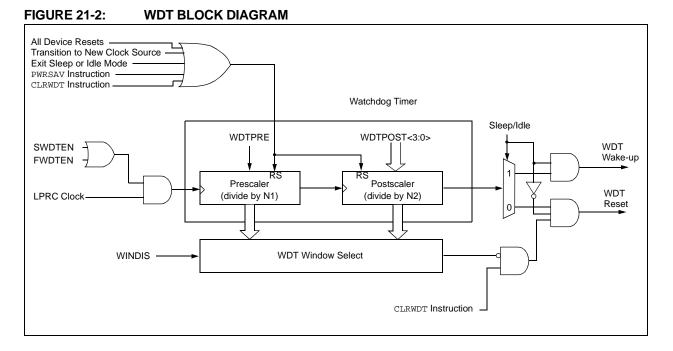
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

查询PIC24HJ256GP210A供应商 21.5 JTAG Interface

PIC24HJXXXGPX06A/X08A/X10A devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

Note:	For further information, refer to the
	dsPIC33F/PIC24H Family Reference
	Manual", Section 24. "Programming
	and Diagnostics" (DS70246), which is
	available from the Microchip website
	(www.microchip.com).

21.6 Code Protection and CodeGuard™ Security

The PIC24H product families offer advanced implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual PIC24H implemented. The following sections provide an overview these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note: For further information, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 23. "CodeGuard™ Security" (DS70239), which is available from the Microchip website (www.microchip.com).

21.7 In-Circuit Serial Programming Programming Capability

PIC24HJXXXGPX06A/X08A/X10A family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) document for details about ICSP programming capability.

Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

21.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP programming capability connections to MCLR, VDD, Vss and the PGEDx/ PGECx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

22.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section the "dsPIC33F/PIC24H Family in Reference Manual", which is available from the Microchip website (www.microchip.com).

The PIC24H instruction set is identical to that of the PIC24F, and is a subset of the dsPIC30F/33F instruction set.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 22-1 shows the general symbols used in describing the instructions.

The PIC24H instruction set summary in Table 22-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double word instructions, which were made double word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or double word instruction. Moreover, double word moves require two cycles. The double word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"dsPIC30F/33F Programmer's Reference Manual"* (DS70157).

查询PIC24HJ256GP210A供应商

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description	
#text	Means literal defined by "text"	
(text)	Means "content of text"	
[text]	Means "the location addressed by text"	
{ }	Optional field or operation	
<n:m></n:m>	Register bit field	
.b	Byte mode selection	
.d	Double Word mode selection	
.S	Shadow register select	
.w	Word mode selection (default)	
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$	
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero	
Expr	Absolute address, label or expression (resolved by the linker)	
f	File register address ∈ {0x00000x1FFF}	
lit1	1-bit unsigned literal $\in \{0,1\}$	
lit4	4-bit unsigned literal ∈ {015}	
lit5	5-bit unsigned literal ∈ {031}	
lit8	8-bit unsigned literal ∈ {0255}	
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode	
lit14	14-bit unsigned literal ∈ {016384}	
lit16	16-bit unsigned literal ∈ {065535}	
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'	
None	Field does not require an entry, may be blank	
PC	Program Counter	
Slit10	10-bit signed literal ∈ {-512511}	
Slit16	16-bit signed literal ∈ {-3276832767}	
Slit6	6-bit signed literal ∈ {-1616}	
Wb	Base W register ∈ {W0W15}	
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }	
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }	
Wm,Wn	Dividend, Divisor working register pair (direct addressing)	
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}	
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}	
Wn	One of 16 working registers ∈ {W0W15}	
Wnd	One of 16 destination working registers ∈ {W0W15}	
Wns	One of 16 source working registers ∈ {W0W15}	
WREG	W0 (working register used in file register instructions)	
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }	
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }	

查询PIC24HJ256GP210A供应商

TABLE 22-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,2
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU,Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU,Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU,Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	(2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	(2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	(2 or 3)	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	COM	f	$f = \overline{f}$	1	1	N,Z
		СОМ	f,WREG	WREG = \overline{f}	1	1	N,Z
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	Cr	CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
10	CFU	CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
20	CFB	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = $f - 1$	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
31	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
32	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
33	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
34	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None

查询PIC24HJ256GP210A供应商 TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Instr Assembly		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
55 151		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
43	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep

查询PIC24HJ256GP210A供应商

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
48	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
49	RESET	RESET		Software device Reset	1	1	None
50	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
51	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
52	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
53	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
54	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
55	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
56	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
57	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
58	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
59	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
60	SUB	SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
61	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
62	SUBR	SUBR	f	f = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
63	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
				WREG = WREG - 1 - (C) Wd = Ws - Wb - (C)	1		
		SUBBR	Wb,Ws,Wd	_	-	1	C,DC,N,OV,Z
<u> </u>		SUBBR	Wb,#lit5,Wd	Wd = Iit5 - Wb - (C)	1	1	C,DC,N,OV,Z
64	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None

查询PIC24HJ256GP210A供应商

TABLE 22-2:	INSTRUCTION SET OVERVIEW (CONTINUED)

				· /			
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
67	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
68	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
69	ULNK	ULNK		Unlink Frame Pointer	1	1	None
70	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
71	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HJ256GP210A供应商 23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

23.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

23.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

23.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

23.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

23.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

23.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

23.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

23.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

23.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

23.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

23.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(4)}$	0.3V to (VDD + 0.3V)
Voltage on VCAP/VDDCORE with respect to VSS	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
- **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
- 4: See the "Pin Diagrams" section for 5V tolerant pins.

查询PIC24HJ256GP210A供应商 24.1 DC Characteristics

TABLE 24-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp Range	Max MIPS
Characteristic	(in Volts)	(in °C)	PIC24HJXXXGPX06A/X08A/X10A
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/0			W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	Рдмах (Тј – Та)/θја			IA	W

TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θја	40		°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θја	28	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions					
Operati	ng Voltag	6						
DC10	C10 Supply Voltage							
	Vdd		3.0	—	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	_	V	—	
DC16	VPOR	VDD Start Voltage⁽⁴⁾ to ensure internal Power-on Reset signal	—	—	Vss	V	_	
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	—	—	V/ms	0-3.0V in 0.1s	
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	2.25	—	2.75	V	Voltage is dependent on load, temperature and VDD	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: VDD voltage must remain at Vss for a minimum of 200 μ s to ensure POR.

查询PIC24HJ256CP210A供中的ISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions					
Operating Cur	rent (IDD) ⁽²⁾		·						
DC20d	27	30	mA	-40°C					
DC20a	27	30	mA	+25°C	2.21/	10 MIPS			
DC20b	27	30	mA	+85°C	3.3V	TO MIPS			
DC20c	27	35	mA	+125°C					
DC21d	36	40	mA	-40°C					
DC21a	37	40	mA	+25°C	3.3V	16 MIPS			
DC21b	38	45	mA	+85°C	3.3V	10 10115			
DC21c	39	45	mA	+125°C					
DC22d	43	50	mA	-40°C					
DC22a	46	50	mA	+25°C	3.3V	20 MIPS			
DC22b	46	55	mA	+85°C	3.3V	20 MIF 3			
DC22c	47	55	mA	+125°C					
DC23d	65	70	mA	-40°C					
DC23a	65	70	mA	+25°C	3.3∨	30 MIPS			
DC23b	65	70	mA	+85°C	3.3V	30 MIPS			
DC23c	65	70	mA	+125°C					
DC24d	84	90	mA	-40°C					
DC24a	84	90	mA	+25°C	3.3∨	40 MIPS			
DC24b	84	90	mA	+85°C	3.3V	40 MIPS			
DC24c	84	90	mA	+125°C					

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

查询PIC24HJ256GP210A供应商 TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) **DC CHARACTERISTICS** $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial Operating temperature -40°C \leq TA \leq +125°C for Extended Parameter Typical⁽¹⁾ Max Units Conditions No. Idle Current (IIDLE): Core OFF Clock ON Base Current⁽²⁾ DC40d 25 -40°C 3 mΑ DC40a 3 25 +25°C mΑ 10 MIPS DC40b 3 25 +85°C 3.3V mΑ DC40c 3 25 +125°C mΑ DC41d 4 25 -40°C mΑ DC41a 5 25 +25°C mΑ 3.3V 16 MIPS DC41b 6 25 mΑ +85°C DC41c 6 25 +125°C mΑ DC42d 8 25 -40°C mΑ DC42a 9 25 +25°C mΑ 3.3V 20 MIPS DC42b 10 25 mΑ +85°C DC42c 10 25 mΑ +125°C DC43a 25 +25°C 15 mΑ DC43d 25 -40°C 15 mΑ 3.3V 30 MIPS DC43b 15 25 mΑ +85°C DC43c 15 25 +125°C mΑ -40°C DC44d 25 16 mΑ DC44a 25 +25°C 16 mΑ 3.3V 40 MIPS DC44b 16 25 mΑ +85°C DC44c 16 25 mΑ +125°C

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

查询PIC24HJ256GP210A供应商 TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions					
Power-Down	Current (IPD) ⁽	2)							
DC60d	400 ⁽⁴⁾ 50 ⁽⁵⁾	500 ⁽⁴⁾ 200 ⁽⁵⁾	μΑ	-40°C					
DC60a	400 ⁽⁴⁾ 50 ⁽⁵⁾	500 ⁽⁴⁾ 200 ⁽⁵⁾	μΑ	+25°C	2.21/	Base Power-Down Current ⁽³⁾			
DC60b	500 ⁽⁴⁾ 200 ⁽⁵⁾	800 (4) 500 (5)	μΑ	+85°C	3.3V	Base Power-Down Current			
DC60c	1000 ⁽⁴⁾ 600 ⁽⁵⁾	1500 ⁽⁴⁾ 1000 ⁽⁵⁾	μΑ	+125°C					
DC61d	8	13	μA	-40°C					
DC61a	10	15	μA	+25°C	2.21/	Matchdog Timor Currenti Alwor(3)			
DC61b	12	20	μΑ	+85°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾			
DC61c	13	25	μΑ	+125°C					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These characteristics apply to all devices with the exception of the PIC24HJ256GP610A.

5: These characteristics apply to PIC24HJ256GP610A devices only.

TABLE 24-8:	DC CHARACTERISTICS: DOZE CURRENT (IDOZE)
--------------------	--

DC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units		Conditions			
DC73a	11	35	1:2	mA					
DC73f	11	30	1:64	mA	-40°C	3.3V	40 MIPS		
DC73g	11	30	1:128	mA					
DC70a	42	50	1:2	mA			40 MIPS		
DC70f	26	30	1:64	mA	+25°C	3.3V			
DC70g	25	30	1:128	mA					
DC71a	41	50	1:2	mA					
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS		
DC71g	24	30	1:128	mA					
DC72a	42	50	1:2	mA			40 MIPS		
DC72f	26	30	1:64	mA	+125°C	3.3V			
DC72g	25	30	1:128	mA					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

查询PIC24HJ256GP210A供应商

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHA	RACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O pins	Vss	—	0.2 Vdd	V			
DI15		MCLR	Vss	—	0.2 Vdd	V			
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 Vdd	V			
DI18		I/O Pins with I ² C	Vss	—	0.3 Vdd	V	SMbus disabled		
DI19		I/O Pins with I ² C	Vss	—	0.2 Vdd	V	SMbus enabled		
	Vih	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V			
	ICNPU	CNx Pull-up Current							
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS		
DI50	lil	Input Leakage Current ^(2,3) I/O Pins 5V Tolerant ⁽⁴⁾	_	_	±2	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance		
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±1	μΑ	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +85°C		
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±2	μΑ	Shared with external reference pins, -40°C \leq TA \leq +85°C		
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance, -40°C \le TA \le +125°C		
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±8	μA	Analog pins shared with external reference pins, -40°C ≤ TA ≤ +125°C		
DI55		MCLR	—	—	±2	μA	$Vss \leq Vpin \leq Vdd$		
DI56		OSC1	_	—	±2	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams (Continued)" for a list of 5V tolerant pins.

查询PIC24HJ256GP210A供应商

TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions					
	Vol	Output Low Voltage						
DO10		I/O ports	—	—	0.4	V	Iol = 2 mA, Vdd = 3.3V	
DO16		OSC2/CLKO	—		0.4	V	IOL = 2 mA, VDD = 3.3 V	
	Voн	Output High Voltage						
DO20		I/O ports	2.40 — V IOH = -2.3 mA, VDD = 3.3V					
DO26		OSC2/CLKO	2.41	—	—	V	IOH = -1.3 mA, VDD = 3.3V	

TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHAR	ACTERIST	ICS	Standard Opera (unless otherw Operating temp	ise state	,			
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40		2.55	V	—

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	RACTER	(unless		ise state	nditions: 3.0V to 3.6V rd) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	—	E/W		
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage	
D132b	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	Vмın = Minimum operating voltage	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	—	10	—	mA		
D136a	Trw	Row Write Time	1.32	—	1.74	ms	TRw = 11064 FRC cycles, TA = +85°C, See Note 2	
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, TA = +125°C, See Note 2	
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2	
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2	
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2	
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

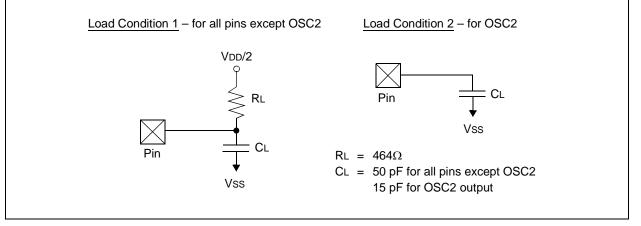
TABLE 24-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

(unless o	d Operating otherwise s g temperate						
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
	Cefc	External Filter Capacitor Value	4.7	10		μF	Capacitor must be low series resistance (< 5 Ohms)

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商

24.2 AC Characteristics and Timing


Parameters

This section defines PIC24HJXXXGPX06A/X08A/ X10A AC characteristics and timing parameters.

TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
AC CHARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					

FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2/SOSCO pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C™ mode

查询PIC24HJ256GP210A供应商 FIGURE 24-2: **EXTERNAL CLOCK TIMING** Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 OS20 OS30 **OS30 OS**31 **OS31 OS25** CLKO **OS41 OS40**

TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No. Symbol Charao		Characteristic	Min Typ ⁽¹⁾		Мах	Units	Conditions		
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS SOSC		
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns	—		
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns	—		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	_	5.2	_	ns	—		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns	—		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

查询PIC24HJ256GP210A供应商

TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteris		stic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter)		-3	0.5	3	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 24-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS		rd Operating temper	•	-40°(3.0V to 3.6V (unless otherwise stated) $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Characteristic	Min	Тур	Max	Units	Inits Conditions				
	Internal FRC Accuracy @ 7.3728 MHz ^(1,2)									
F20a	FRC	-2	_	+2	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad \text{VDD} = 3.0\text{-}3.6\text{V}$				
F20b	FRC	-5	—	$ +5 \ \% \ -40^{\circ}C \le TA \le +125^{\circ}C \ VDD = 3.0-3.6V$						

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

TABLE 24-19: INTERNAL RC ACCURACY

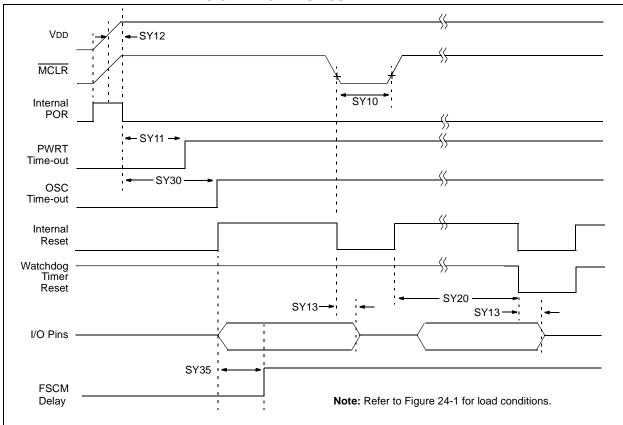
AC CH	ARACTERISTICS		rd Operating temper	rature -	40°C ≤ 1	B.OV to 3.6V (unless oth $\Gamma_A \le +85^{\circ}C$ for Industrial $\Lambda \le +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min	Тур	Max	Units	Conditions					
	LPRC @ 32.768 kHz ⁽¹⁾										
F21a	LPRC	-30	_	+30	%	$\text{-40°C} \leq \text{TA} \leq \text{+85°C}$					
F21b	LPRC	-70 ⁽²⁾ -35 ⁽³⁾	(2) (3)	+70 ⁽²⁾ +35 ⁽³⁾	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C$					

Note 1: Change of LPRC frequency as VDD changes.

2: These characteristics apply to all devices with the exception of the PIC24HJ256GPX06A/X08A/X10A.

3: These characteristics apply to PIC24HJ256GPX06A/X08A/X10A devices only.

查询PIC24HJ256GP210A供应商 FIGURE 24-3: CLKO AND I/O TIMING CHARACTERISTICS I/O Pin I/O Pin I/O Pin DI35 DI40 DI35 DI40 New Value I/O Pin Old Value I/O Pin Old Value I/O Pin Old Value I/O Pin Old Value New Value D031 D032 Note: Refer to Figure 24-1 for load conditions.


AC CHARACTERISTICS Standard Ope (unless other Operating tem				vise state	ed) -40°C ≤	Ta ≤ +8	5°C for I	ndustrial Extended
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TIOR	Port Output Rise Tim	_	10	25	ns	_	
DO32	TIOF	Port Output Fall Time	9	—	10	25	ns	_
DI35	TINP	INTx Pin High or Low	20	—	_	ns	—	
DI40	Trbp	CNx High or Low Tim	2		_	Тсү	_	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 24-20: I/O TIMING REQUIREMENTS

查询PIC24HJ256GP210A供应商

查询PIC24HJ256GP210A供应商

TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	(unles	ard Operatin s otherwise ting tempera	stated) ture -4	40°C ≤ ⁻	3.0V to 3.6V TA ≤ +85°C for Industrial A ≤ +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Conditions			
SY10	ТмсL	MCLR Pulse Width (low)	2	—	_	μS	-40°C to +85°C
SY11	Tpwrt	Power-up Timer Period	_	2 4 16 32 64 128		ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	_
SY20	Twdt1	Watchdog Timer Time-out Period	—	—	—	_	See Section 21.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 24-19)
SY30	Тозт	Oscillator Start-up Timer Period	_	1024 Tosc	_	—	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

© 2009 Microchip Technology Inc.

АС СНА	RACTERIST	ICS		(unless	rd Operating (s otherwise sta ing temperatur	ated) e -40°	C ≤ Ta ≤	+85°C	for Industrial for Extended
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchror no presca	•	0.5 TCY + 20		_	ns	Must also meet parameter TA15
			Synchror with pres		10		—	ns	
			Asynchro	onous	10	_		ns	
TA11	ΤτxL	TxCK Low Time	Synchror no presca		0.5 TCY + 20		_	ns	Must also meet parameter TA15
			Synchror with pres		10	_	_	ns	
			Asynchro	onous	10	_	_	ns	
TA15	ΤτχΡ	TxCK Input Period	Synchror no presca		Tcy + 40	_	—	ns	—
			Synchror with pres		Greater of: 20 ns or (TcY + 40)/N		_		N = prescale value (1, 8, 64, 256)
			Asynchro	onous	20		_	ns	—
OS60	Ft1	SOSCI/T1CK Oscil frequency Range (o by setting bit TCS (scillator e	nabled	DC	—	50	kHz	—
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TCY		1.5 TCY		

TABLE 24-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

查询PIC24HJ256GP210A供应商

TABLE 24-23: TIMER2, 4, 6 AND 8 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	RACTERIS	TICS		(unles	ard Operating s otherwise st ting temperatu	t ated) re -40°	°C ≤ TA ≤	+85°C f	or Industrial or Extended
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchro no preso		0.5 TCY + 20			ns	Must also meet parameter TB15
			Synchro with pres		10		_	ns	
TB11	TtxL	TxCK Low Time	Synchro no preso		0.5 TCY + 20			ns	Must also meet parameter TB15
			Synchro with pres		10		—	ns	
TB15	TtxP	TxCK Input Period	Synchro no preso		Tcy + 40		—	ns	N = prescale value
			Synchro with pres		Greater of: 20 ns or (TcY + 40)/N				(1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr		lock	0.5 TCY		1.5 TCY		

TABLE 24-24: TIMER3, 5, 7 AND 9 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS (un				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions	
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15	
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 Tcy + 20			ns	Must also meet parameter TC15	
TC15	TtxP	TxCK Input Period	Synchro no preso		Tcy + 40	_	_	ns	N = prescale value	
			Synchro with pres		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)	
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY		1.5 Тсү	_	—	

 $\ensuremath{\textcircled{}^{\circ}}$ 2009 Microchip Technology Inc.

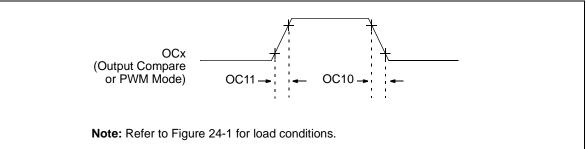

查询PIC24HJ256GP210A供应商 FIGURE 24-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 24-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	(unless otherwise	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Мах	Units	Conditions				
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns					
			With Prescaler	10	_	ns					
IC11	TccH	ICx Input High Time	No Prescaler	0.5 TCY + 20		ns	—				
			With Prescaler	10	_	ns					
IC15	TccP	ICx Input Period	(TCY + 40)/N — ns N = p value								

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

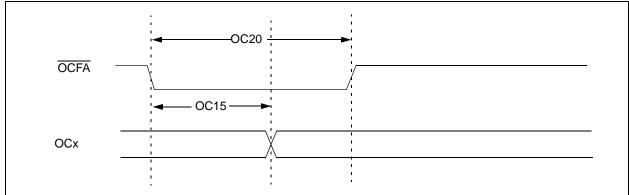


TABLE 24-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions								
OC10	TccF	OCx Output Fall Time	— — ns See parameter D032								
OC11	TccR	OCx Output Rise Time	— — — ns See parameter D031								

Note 1: These parameters are characterized but not tested in manufacturing.

查询PIC24HJ256GP210A供应商 FIGURE 24-8: OC/PWM MODULE TIMING CHARACTERISTICS

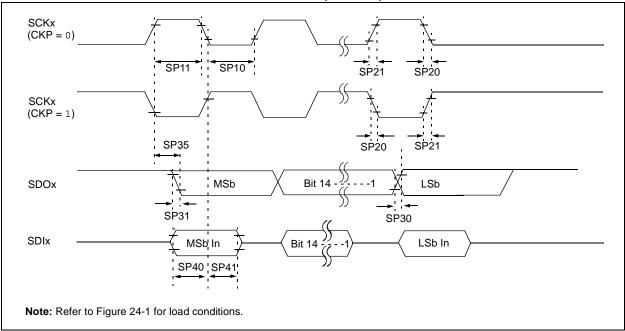
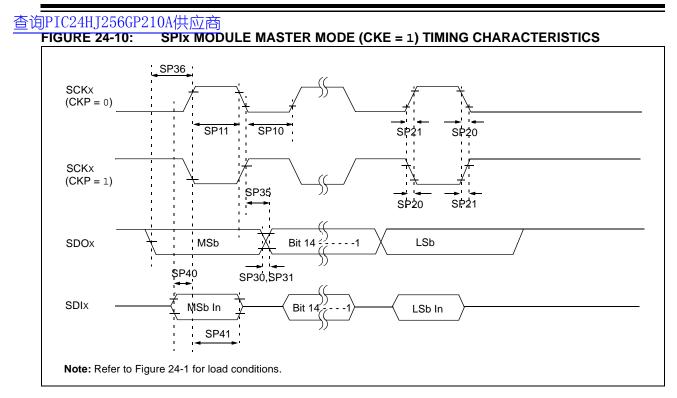


TABLE 24-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHAF	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions							
OC15	TFD	Fault Input to PWM I/O Change	— — 50 ns —							
OC20	TFLT	Fault Input Pulse-Width	50 <u> </u>							

Note 1: These parameters are characterized but not tested in manufacturing.

查询PIC24HJ256GP210A供应商 FIGURE 24-9: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 24-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

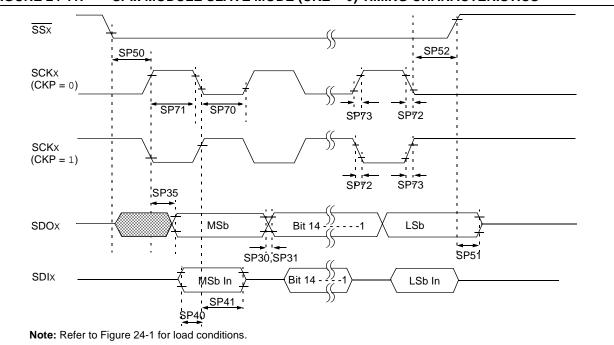
AC CHA	ARACTERIS	rics	Standard (unless o Operating	therwise	stated) ure -40)°C ≤ Ta	DV to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time	Tcy/2	_	_	ns	See Note 3
SP11	TscH	SCKx Output High Time	Tcy/2	—	_	ns	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter D032 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter D031 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See parameter D031 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	—	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 24-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS


AC CHA	RACTERIS	rics	Standard (unless o Operating	therwise	stated) ture -40°	°C ≤ Ta ≤	/ to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Condition					
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	—		ns	—	
SP11	TscH	SCKx Output High Time ⁽³⁾	TCY/2	—	_	ns	—	
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter D032	
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter D031	
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	—	ns	See parameter D032	
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter D031	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

查询PIC24HJ256GP210A供应商 FIGURE 24-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 24-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СН	ARACTERIS	TICS	$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Condition						
SP70	TscL	SCKx Input Low Time	30	_	_	ns	—		
SP71	TscH	SCKx Input High Time	30	—		ns	—		
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	—		
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	—		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	—	_	ns	See parameter D032		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	—	_	ns	See parameter D031		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—		ns	—		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns	—		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_		ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

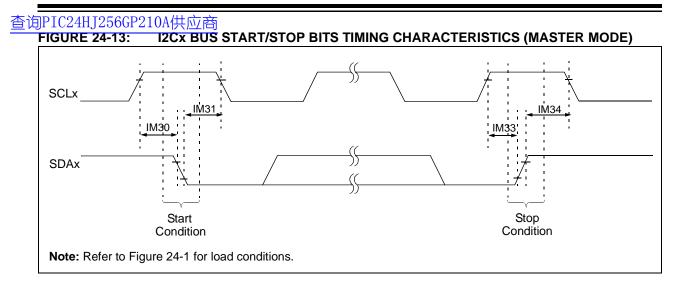
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

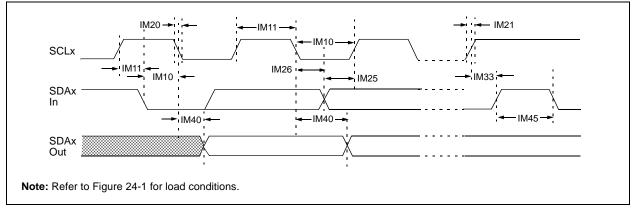
查询PIC24HJ256GP210A供应商 FIGURE 24-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS SP60 SSx \$ SP52 SP50 SCKx (CKP = 0) SP71 SP70 SP73 SP72 SCKx (CKP = 1) SP35 SP72 SP73 MSb Bit 14 LSb SDOx -1 SP30,SP31 SP51 SDIx Bit 14 LSb In MSb In SP41 SP40 Note: Refer to Figure 24-1 for load conditions.

查询PIC24HJ256GP210A供应商

TABLE 24-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

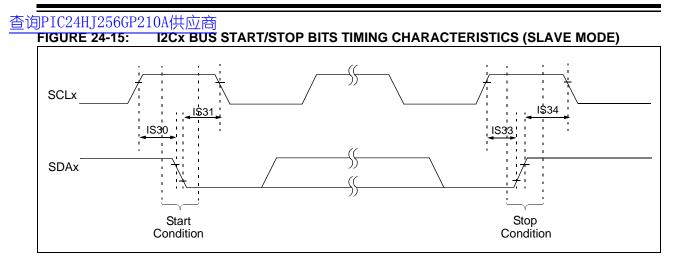

AC CHA	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30		_	ns	—		
SP71	TscH	SCKx Input High Time	30	_		ns	—		
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	—		
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	—		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	—	_	ns	See parameter D032		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	Ι	_	ns	See parameter D031		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	_		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20		_	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_		ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	Ι	—	ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—		
SP52	TscH2ssH TscL2ssH	SSx	1.5 Tcy + 40	_	_	ns	—		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

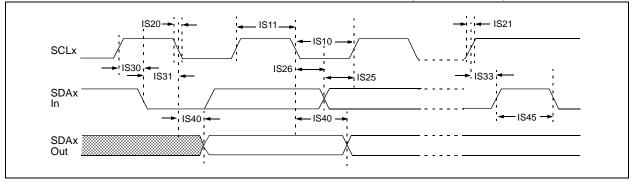

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


查询PIC24HJ256GP210A供应商 TABLE 24-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

АС СНА	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	stated)		v to 3.6v ≤ +85°C for Industrial
				1 0 1			+125°C for Extended
Param No.	Symbol	Charact	eristic	Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μS	—
			400 kHz mode	Tcy/2 (BRG + 1)		μS	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	—
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—
			400 kHz mode	Tcy/2 (BRG + 1)		μS	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	—
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	_
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	40		ns	
IM26	THD:DAT	Data Input	100 kHz mode	0		μS	_
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0.2		μS	-
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	condition
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 1)		μ s	After this period the
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	generated
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	_
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	—
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns	1
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	_
		From Clock	400 kHz mode	_	1000	ns	—
			1 MHz mode ⁽²⁾		400	ns	—
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	_	μ S	free before a new
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start
IM50	Св	Bus Capacitive L	bading	—	400	pF	—
IM51	TPGD	Pulse Gobbler De		65	390	ns	See Note 3


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70235) in the "*PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

查询PIC24HJ256GP210A供应产 TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	ARACTER	ISTICS		Standard Op (unless other Operating ten	wise sta	ated) ∋ -40°C	ns: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial
Param	Symbol	Charac	teristic	Min	Max	-40°C	$C \le TA \le +125^{\circ}C$ for Extended Conditions
•	-						
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μs	_
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	—
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	—	ns	
IS26	THD:DAT		100 kHz mode	0	—	μS	_
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μS	Start condition
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	_
		Setup Time	400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.6	—	μS	
IS34	THD:STO	•	100 kHz mode	4000	—	ns	—
		Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	—

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

查询PIC24HJ256GP210A供应商 FIGURE 24-17: ECAN™ MODULE I/O TIMING CHARACTERISTICS CiTx Pin Old Value New Value CiTx Pin Old Value CA10 CA11

TABLE 24-34: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless	d Operat otherwis	se stated rature -	l) ∙40°C ≤ T	3.0V to 3.6V $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions				
CA10	TioF	Port Output Fall Time	—		_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	—	—	_	ns	See parameter D031
CA20	Tcwf	Pulse-Width to Trigger CAN Wake-up Filter	120	—		ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

© 2009 Microchip Technology Inc.

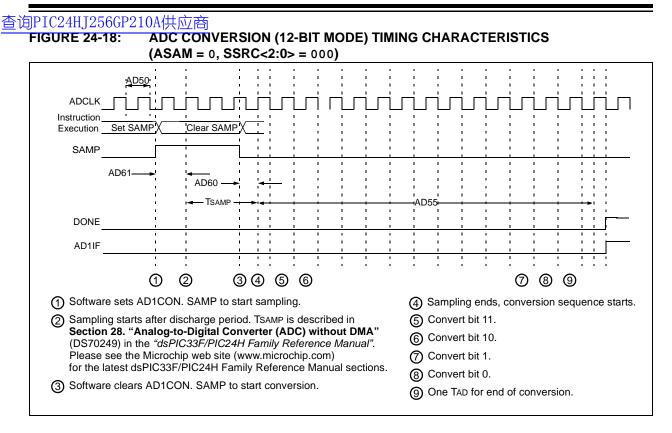
查询PIC24HJ256GP210A供应商

TABLE 24-35: ADC MODULE SPECIFICATIONS

AC CH	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbo I			Units	Conditions			
			Device	Supply	/			
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	_	
AD02	AVss	Module Vss Supply	Vss - 0.3		Vss + 0.3	V	—	
			Referen	ce Inpu	Its			
AD05	Vrefh	Reference Voltage High	AVss + 2.7		AVdd	V	See Note 1	
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0	
AD06	Vrefl	Reference Voltage Low	AVss		AVDD - 2.7	V	See Note 1	
AD06a			0		0	V	Vrefh = AVdd Vrefl = AVss = 0	
AD07	Vref	Absolute Reference Voltage	2.7		3.6	V	Vref = Vrefh - Vrefl	
AD08	IREF	Current Drain	—		10	μA	ADC off	
AD08a	Iad	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 1 12-bit ADC mode, See Note 1	
			Analo	g Input				
AD12	VINH	Input Voltage Range VINH	Vinl	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range VINL	Vrefl	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Imped- ance of Analog Voltage Source			200 200	Ω Ω	10-bit ADC 12-bit ADC	

Note 1: These parameters are not characterized or tested in manufacturing.

查询PIC24HJ256GP210A供应商


TABLE 24-36: ADC MODULE SPECIFICATIONS (12-BIT MODE)

АС СНА	RACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20a	Nr	Resolution	1:	2 data bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	1.25	3.4	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD24a	EOFF	Offset Error	-0.2	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	—	Monotonicity	—	—	—	_	Guaranteed
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with i	nternal V	VREF+/VREF-
AD20a	Nr	Resolution	1	2 data bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23a	Gerr	Gain Error	2	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	2	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25a	—	Monotonicity	_	—	—	_	Guaranteed
		Dynamic	Performa	ince (12	-bit Mod	e)	
AD30a	THD	Total Harmonic Distortion			-75	dB	
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5		dB	—
AD32a	SFDR	Spurious Free Dynamic Range	80	—	—	dB	_
AD33a	Fnyq	Input Signal Bandwidth		_	250	kHz	_
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	—

查询PIC24HJ256GP210A供应商

TABLE 24-37: ADC MODULE SPECIFICATIONS (10-BIT MODE)

АС СНА	RACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20b	Nr	Resolution	1	0 data bi	its	bits	
AD21b	INL	Integral Nonlinearity	-1.5	-	+1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23b	Gerr	Gain Error	0.4	3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD24b	EOFF	Offset Error	0.2	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25b	—	Monotonicity	—	—		—	Guaranteed
		ADC Accuracy (10-bit Mod	e) – Meas	suremen	its with i	nternal	VREF+/VREF-
AD20b	Nr	Resolution	1	0 data bi	its	bits	
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25b	—	Monotonicity	—	—			Guaranteed
		Dynamic	Performa	ance (10	-bit Mod	e)	
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	—	dB	—
AD32b	SFDR	Spurious Free Dynamic Range	72	—	—	dB	_
AD33b	Fnyq	Input Signal Bandwidth	—	—	550	kHz	—
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits	—

查询PIC24HJ256GP210A供应商

1	TABLE 24-38:	ADC CONVERSION (12-BIT MC	DDE) TIMING REQUIREMENTS
			Standard Operating Conditions: 3.0V to 3

АС СНА	ARACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур ⁽²⁾	Max.	Units	Conditions	
	-	Clock	Paramete	ers ⁽¹⁾			·	
AD50	TAD	ADC Clock Period	117.6		—	ns	—	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	—	
	Conversion Rate							
AD55	tCONV	Conversion Time	—	14 Tad		ns	—	
AD56	FCNV	Throughput Rate	—		500	ksps	—	
AD57	TSAMP	Sample Time	3 Tad		—	_	—	
		Timir	ng Parame	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad	—	Auto convert trigger not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 TAD	—	3.0 Tad	—	—	
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	—	—	—	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_		20	μS	_	

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

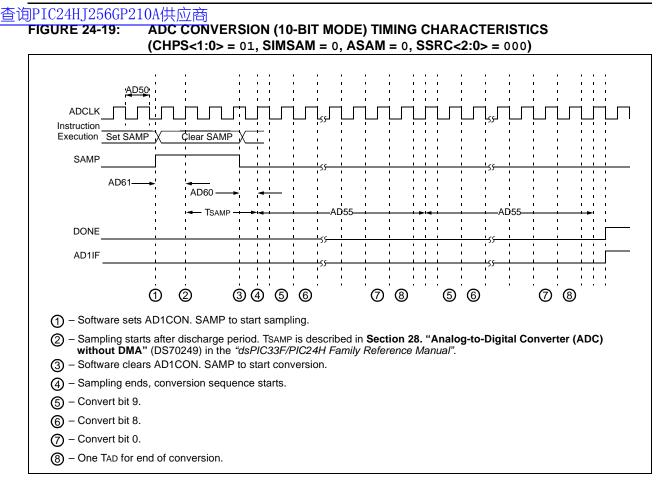
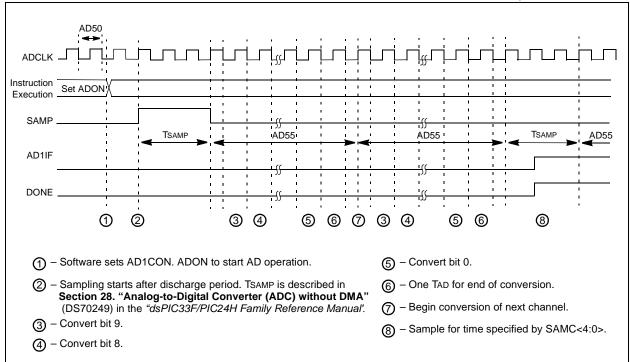



FIGURE 24-20: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

查询PIC24HJ256GP210A供应商

TABLE 24-39: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CH	ARACTE	RISTICS					DV to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
		Cloc	k Parame	ters			
AD50	TAD	ADC Clock Period	76	_	_	ns	—
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	—
		Con	version F	ate			
AD55	tCONV	Conversion Time	_	12 Tad	_	_	—
AD56	FCNV	Throughput Rate	—	_	1.1	Msps	—
AD57	TSAMP	Sample Time	2 Tad	_	_	_	—
		Timin	g Param	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad		Auto-Convert Trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	_	3.0 Tad	_	_
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	—	_	—
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μS	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

查询PIC24HJ256GP210A供应商 25.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics for devices operating in an ambient temperature range of -40°C to +140°C.

Note: Programming of the Flash memory is not allowed above 125°C.

The specifications between -40°C to +140°C are identical to those shown in **Section 24.0** "**Electrical Characteristics**" for operation between -40°C to +125°C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 24.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽⁴⁾	40°C to +140°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(5)}$	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(5)}$	0.3V to 5.6V
Voltage on VCAP/VDDCORE with respect to VSS	2.25V to 2.75V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽²⁾	60 mA
Maximum junction temperature	
Maximum output current sunk by any I/O pin ⁽³⁾	1 mA
Maximum output current sourced by any I/O pin ⁽³⁾	1 mA
Maximum current sunk by all ports combined	10 mA
Maximum current sourced by all ports combined ⁽²⁾	10 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
- **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGCx, and PGDx pins.
- **4:** AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
- 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

查询PIC24HJ256GP210A供应商

25.1 High Temperature DC Characteristics

TABLE 25-1: OPERATING MIPS VS. VOLTAGE

	VDD Range Temperature Range	Max MIPS	
Characteristic	(in Volts)	(in °C)	PIC24HJXXXGPX06A/X08A/ X10A
	3.0V to 3.6V	-40°C to +140°C	20

TABLE 25-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+145	°C
Operating Ambient Temperature Range	TA	-40	—	+140	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		PINT + PI/C)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ - TA)/θJ	A	W

TABLE 25-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	CTERISTIC	(unless o	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
Operating V	Voltage							
HDC10	Supply Voltage							
	Vdd		3.0 3.3 3.6 V -40°C to +140°C					

TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature				
Parameter No.	Typical	Мах	Units	Conditions				
Power-Down (Current (IPD)							
HDC60e	250	2000	μA	+140°C	3.3V	Base Power-Down Current ^(1,3)		
HDC61c	3	5	μΑ	+140°C 3.3V Watchdog Timer Current: ∆IwDT ^(2,4)				

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

查询PIC24HI256GP210A供应商 TABLE 25-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS (unless othe				perating Conditions: 3.0V to 3.6V erwise stated) emperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature				
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions			
HDC72a	39	45	1:2	mA				
HDC72f	18	25	1:64	mA	+140°C	3.3V	20 MIPS	
HDC72g	18	25	1:128	mA				

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

TABLE 25-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions					
	Vol	Output Low Voltage						
HDO10		I/O ports	—	—	0.4	V	IOL = 1 mA, VDD = 3.3V	
HDO16		OSC2/CLKO	—	—	0.4	V	IOL = 1 mA, VDD = 3.3V	
	Voh	Output High Voltage						
HDO20		I/O ports	2.40	—	—	V	Юн = -1 mA, VDD = 3.3V	
HDO26		OSC2/CLKO	2.41	—	—	V	Юн = -1 mA, VDD = 3.3V	

TABLE 25-7: DC CHARACTERISTICS: PROGRAM MEMORY

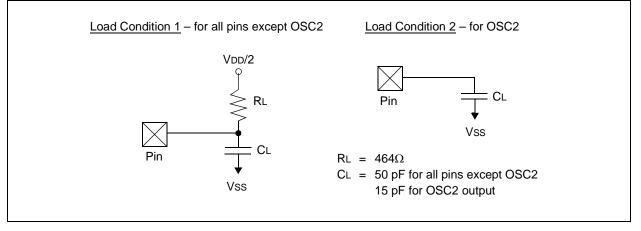
DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
		Program Flash Memory						
HD130	Eр	Cell Endurance	10,000	_	_	E/W	-40°C to +140°C ⁽²⁾	
HD134	TRETD	Characteristic Retention	20	_	—	Year	1000 E/W cycles or less and no other specifications are violated	

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is not allowed above 125°C.

查询PIC24HJ256GP210A供应商

25.2 AC Characteristics and Timing Parameters


The information contained in this section defines PIC24HJXXXGPX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 24.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 24.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 25-8: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature Operating voltage VDD range as described in Table 25-1.						

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-9: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature							-
Param No.	Symbol	Characteristic	Characteristic Min Typ Max Units Condi				
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized, but are not tested in manufacturing.

查询PIC24HJ256GP210A供应商 TABLE 25-10: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						-	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	1	10	25	ns	_
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28		—	ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	—	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_			
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	_	—	ns	_			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28		—	ns	_			
HSP41	,	Hold Time of SDIx Data Input to SCKx Edge	35		_	ns	—			

Note 1: These parameters are characterized but not tested in manufacturing.

© 2009 Microchip Technology Inc.

查询PIC24HJ256GP210A供应商 TABLE 25-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

ACStandard Operating Conditions: 3.0V to 3.6V (unlet Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High							•
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	35	ns	_
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 25-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		35	ns	—	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25			ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25			ns	_	
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2	
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—		55	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

查询PIC24HJ256GP210A供应商 TABLE 25-14: ADC MODULE SPECIFICATIONS

AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)TICSOperating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature								
Symbol	Characteristic Min Typ Max Units			Conditions					
Reference Inputs									
IREF	Current Drain	_	250 	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1			
	AC TERISTICS Symbol	AC TERISTICS Standard Operating Con Operating temperature Symbol Characteristic	TERISTICS Operating temperature -40°C ≤ Symbol Characteristic Min Reference	AC TERISTICS Standard Operating Conditions: 3.0V to Operating temperature Symbol Characteristic Min Typ Reference Input	AC TERISTICSStandard Operating Conditions: 3.0V to 3.6V (ur Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for SymbolSymbolCharacteristicMinTypMaxReference InputsIREFCurrent Drain—250600	AC TERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless of Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High TeSymbolCharacteristicMinTypMaxUnitsReference Inputs			

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 25-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)

	AC TERISTICS	Standard Operating Co Operating temperature			•		,				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions				
ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾											
HAD20a	Nr	Resolution	ts	bits	—						
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
HAD23a	Gerr	Gain Error	-2	_	10	LSb	Vinl = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
HAD24a	EOFF	Offset Error	-3	_	5	LSb	Vinl = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with In	ternal V	/REF+/VREF- ⁽¹⁾				
HAD20a	Nr	Resolution	1	2 data bi	ts	bits	—				
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
HAD23a	Gerr	Gain Error	2	_	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
HAD24a	EOFF	Offset Error	2		10	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
		Dynamic I	Performa	nce (12	bit Mode	e) ⁽²⁾					
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz	_				

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

查询PIC24HJ256GP210A供应商 TABLE 25-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	n Typ Max Un		Units	Conditions		
	AD	C Accuracy (10-bit Mode)	– Measu	rements	s with Ex	ternal V	ref+/Vref- ⁽¹⁾		
HAD20b	Nr	Resolution	10 data bits			bits	_		
HAD21b	INL	Integral Nonlinearity	-3	—	3	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD22b	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD23b	Gerr	Gain Error	-5	—	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD24b	EOFF	Offset Error	-1	—	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
	AD	C Accuracy (10-bit Mode)	– Measu	irement	s with Int	ernal V	REF+/VREF- ⁽¹⁾		
HAD20b	Nr	Resolution	10 data bits			bits			
HAD21b	INL	Integral Nonlinearity	-2		2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
HAD22b	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6		
HAD23b	Gerr	Gain Error	-5		15	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
HAD24b	EOFF	Offset Error	-1.5		7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
Dynamic Performance (10-bit Mode) ⁽²⁾									
HAD33b	Fnyq	Input Signal Bandwidth	_		400	kHz			

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

查询PIC24HJ256GP210A供应商 TABLE 25-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

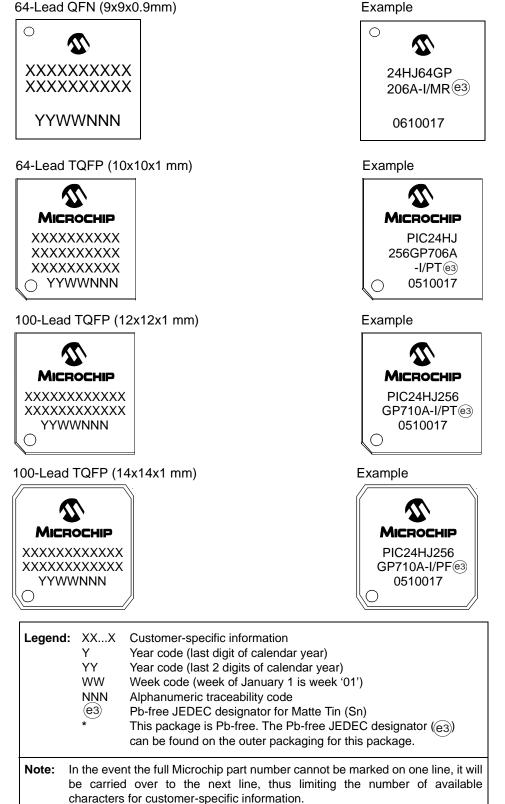
AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
Clock Parameters									
HAD50	Tad	ADC Clock Period ⁽¹⁾	147			ns	_		
Conversion Rate									
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	_	400	Ksps	_		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
Clock Parameters									
HAD50	TAD	ADC Clock Period ⁽¹⁾	104	—	—	ns	—		
Conversion Rate									
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	—	800	Ksps	—		
N	These percentages are characterized but not tested in menufacturing								

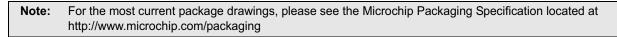
Note 1: These parameters are characterized but not tested in manufacturing.

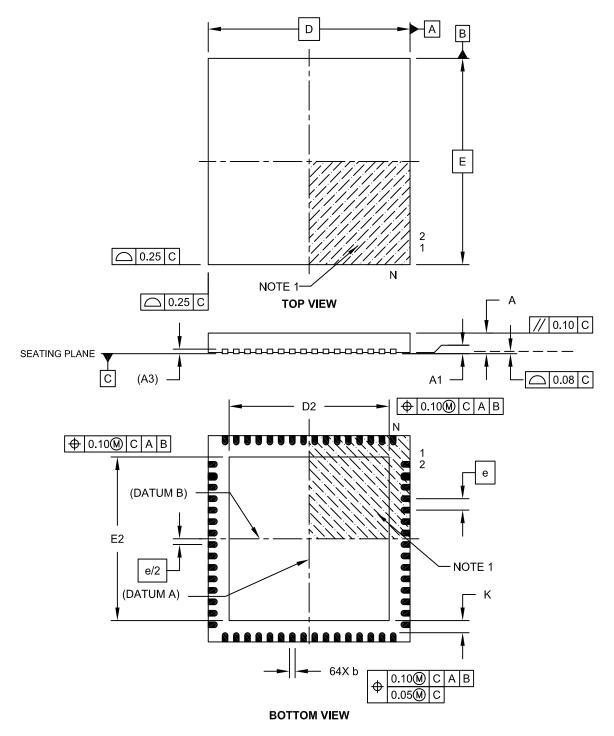

查询PIC24HJ256GP210A供应商 NOTES:

查询PIC24HJ256GP210A供应商

26.0 PACKAGING INFORMATION

26.1 **Package Marking Information**

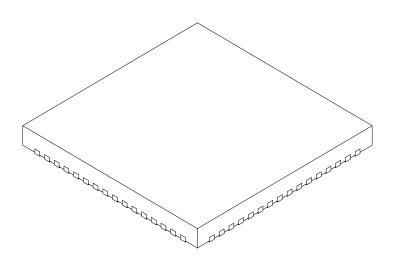

64-Lead QFN (9x9x0.9mm)



查询PIC24HJ256GP210A供应商

26.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]



Microchip Technology Drawing C04-149B Sheet 1 of 2

查询PIC24HJ256GP210A供应商

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

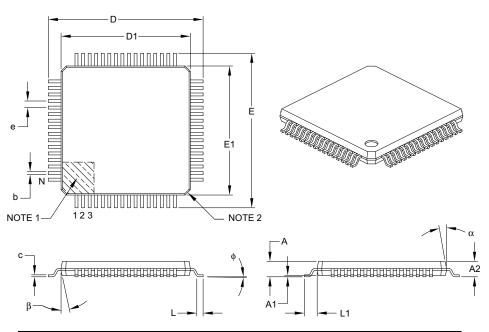
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dim	MIN	NOM	MAX		
Number of Pins	N	64			
Pitch	e		0.50 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	7.05	7.15	7.50	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	7.05	7.15	7.50	
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2

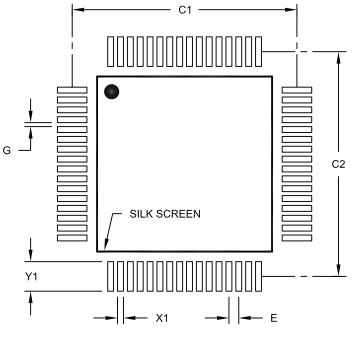
查询PIC24HJ256GP210A供应商

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX			
Number of Leads	N	64					
Lead Pitch	е	0.50 BSC					
Overall Height	A	_	-	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	φ	0°	3.5°	7°			
Overall Width	E	12.00 BSC					
Overall Length	D	12.00 BSC					
Molded Package Width	E1	10.00 BSC					
Molded Package Length	D1	10.00 BSC					
Lead Thickness	С	0.09	-	0.20			
Lead Width	b	0.17	0.22	0.27			
Mold Draft Angle Top	α	11°	12°	13°			
Mold Draft Angle Bottom	β	11°	12°	13°			

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

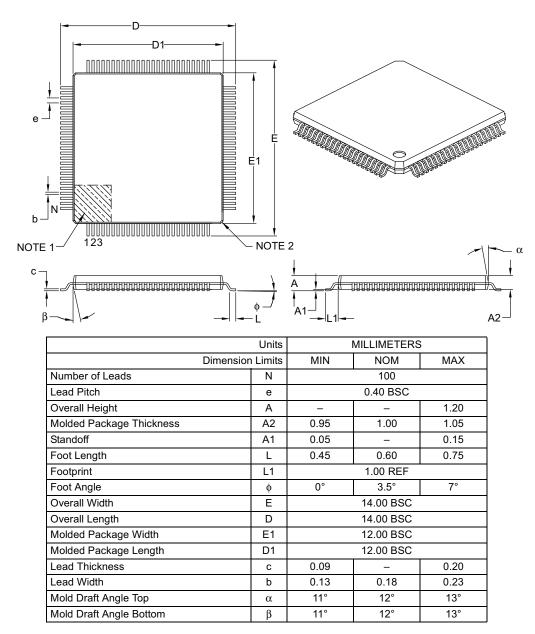
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

查询PIC24HJ256GP210A供应商

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

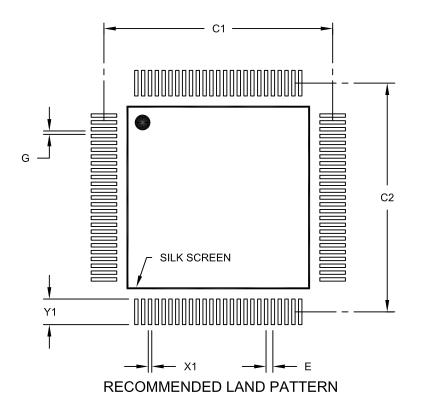
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

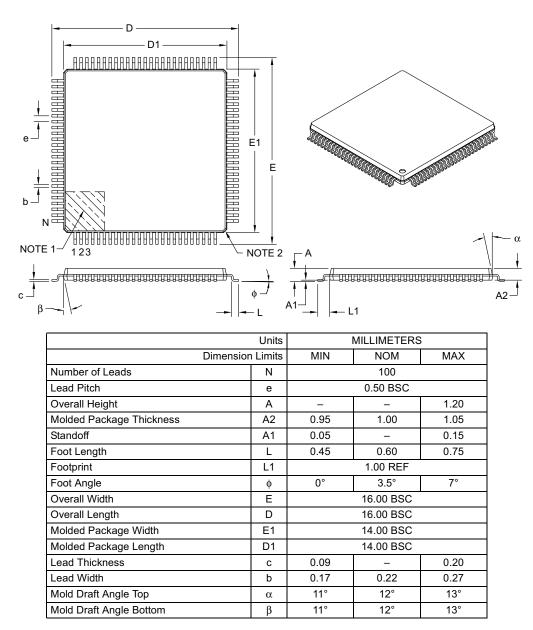
100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		-
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A

查询PIC24HJ256GP210A供应商

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

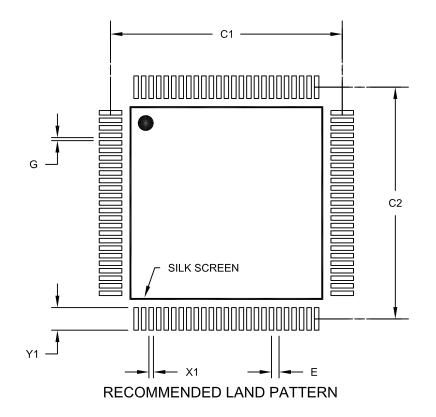
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110A

查询PIC24HJ256GP210A供应商 NOTES:

APPENDIX A: MIGRATING FROM PIC24HJXXXGPX06/ X08/X10 DEVICES TO PIC24HJXXXGPX06A/ X08A/X10A DEVICES

PIC24HJXXXGPX06A/X08A/X10A devices were designed to enhance the PIC24HJXXXGPX06/X08/ X10 families of devices.

In general, the PIC24HJXXXGPX06A/X08A/X10A devices backward-compatible are with PIC24HJXXXGPX06/X08/X10 devices; however, mandifferences ufacturing may cause PIC24HJXXXGPX06A/X08A/X10A devices to behave differently from PIC24HJXXXGPX06/X08/X10 devices. Therefore, complete system test and characterization is recommended if PIC24HJXXXGPX06A/X08A/X10A devices are used to replace PIC24HJXXXGPX06/X08/ X10 devices.

The following enhancements were introduced:

- Extended temperature support of up to +125°C
- Enhanced Flash module with higher endurance and retention
- New PLL Lock Enable configuration bit
- Added Timer5 trigger for ADC1 and Timer3 trigger for ADC2

查询PIC24HJ256GP210A供应商 APPENDIX B: REVISION HISTORY

Revision A (April 2009)

This is the initial release of this document.

Revision B (October 2009)

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-1:MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-Bit Microcontrollers"	Added information on high temperature operation (see " Operating Range: ").
Section 10.0 "Power-Saving Features"	Updated the last paragraph to clarify the number of cycles that occur prior to the start of instruction execution (see Section 10.2.2 "Idle Mode ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 20.0 "10-Bit/12-Bit Analog-to- Digital Converter (ADC)"	Updated the ADCx block diagram (see Figure 20-1).
Section 21.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 21.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 21-1).
Section 24.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 24-7).
	Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 24-32).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 24-12).
	Updated the Internal LPRC Accuracy parameters (see Table 24-18 and Table 24-19).
	Updated the ADC Module Specifications (12-bit Mode) parameters AD23a and AD24a (see Table 24-36).
	Updated the ADC Module Specifications (10-bit Mode) parameters AD23b and AD24b (see Table 24-37).
Section 25.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.

Α

AC Characteristics	
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC1 Register Map	
ADC2 Register Map	
Alternate Interrupt Vector Table (AIVT)	73
Analog-to-Digital Converter	
DMA	
Initialization	
Key Features	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	
Automatic Clock Stretch	

В

Block Diagrams
16-bit Timer1 Module147
ADC1 Module208
Connections for On-Chip Voltage Regulator224
ECAN Module182
Input Capture155
Output Compare157
PIC24H
PIC24H CPU Core26
PIC24H Oscillator System Diagram127
PIC24H PLL 129
Reset System67
Shared Port Structure145
SPI
Timer2 (16-bit)151
Timer2/3 (32-bit)150
UART
Watchdog Timer (WDT) 225

С

C Compilers	
Hi-Tech C	
MPLAB C	
Clock Switching	135
Enabling	135
Sequence	135
Code Examples	
Erasing a Program Memory Page	64
Initiating a Programming Sequence	65
Loading Write Buffers	65
Port Write/Read	
PWRSAV Instruction Syntax	
Code Protection	219, 226
Configuration Bits	
Description (Table)	
Configuration Register Map	219
Configuring Analog Port Pins	
CPU	
Control Register	
CPU Clocking System	
PLL Configuration	
Selection	128
Sources	128

Customer Change Notification Service
D
Data Address Space
Alignment
Memory Map for PIC24HJXXXGPX06A/X08A/X10A De-
vices with 16 KB RAM
Memory Map for PIC24HJXXXGPX06A/X08A/X10A De-
vices with 8 KB RAM 34
Near Data Space
Software Stack
Width
DC Characteristics
Doze Current (IDOZE)
High Temperature
I/O Pin Input Specifications
I/O Pin Output
I/O Pin Output Specifications
Idle Current (IDOZE)
Idle Current (IIDLE)
Operating Current (IDD)
Operating MIPS vs. Voltage
Power-Down Current (IPD)
Power-down Current (IPD) 276
Program Memory 247, 277
Temperature and Voltage
Temperature and Voltage Specifications
Thermal Operating Conditions
Demonstration/Development Boards, Evaluation Kits, and
Starter Kits 238
Development Support
DMA Module
DMA Register Map 45
DMAC Registers
DMAxCNT 118
DMAxCON 118
DMAxPAD 118
DMAxREQ 118
DMAxSTA 118
DMAxSTB 118

Е

ECAN Module
CiFMSKSEL2 register 199
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1) 46
ECAN1 Register Map (C1CTRL1.WIN = 0) 47
ECAN1 Register Map (C1CTRL1.WIN = 1) 47
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1) 49
ECAN2 Register Map (C2CTRL1.WIN = 0) 49
ECAN2 Register Map (C2CTRL1.WIN = 1) 50
Frame Types 181
Modes of Operation 183
Overview
ECAN Registers
Filter 15-8 Mask Selection Register (CiFMSKSEL2) 199
Electrical Characteristics
AC 248, 278
Enhanced CAN Module 181
Equations
Device Operating Frequency 128
FOSC Calculation 128
XT with PLL Mode Example 129
Errata 16

查询PIC24HJ256GP210A供应商

Flash Program Memory61
Control Registers62
Operations62
Programming Algorithm64
RTSP Operation62
Table Instructions61
Flexible Configuration
FSCM
Delay for Crystal and PLL Clock Sources
Device Resets71
Н
High Temperature Electrical Characteristics
1
I/O Ports
Parallel I/O (PIO)145
Write/Read Timing146
I ² C
Operating Modes167
Registers
I ² C Module
I2C1 Register Map
I2C2 Register Map
In-Circuit Debugger
In-Circuit Emulation
In-Circuit Serial Programming (ICSP)
Input Capture
Registers
Input Change Notification Module
Instruction Addressing Modes
Fine Register Instructions
MCU Instructions
Move and Accumulator Instructions
Other Instructions
Instruction Set
Overview
Summary
Instruction-Based Power-Saving Modes
Idle
Sleep
Internal RC Oscillator
Use with WDT225
Internet Address
Interrupt Control and Status Registers77
IECx
IFSx77
INTCON177
INTCON2
INTTREG77
IPCx
Interrupt Setup Procedures
Initialization
Interrupt Disable
Interrupt Service Routine
Trap Service Routine
Interrupt Vector Table (IVT)
interrupts confiduent with rower save instructions
J
JTAG Boundary Scan Interface219

Μ

Memory Organization
Microchip Internet Web Site
Modes of Operation
Disable
Initialization
Listen All Messages
Listen Only
Loopback
Normal Operation
MPLAB ASM30 Assembler, Linker, Librarian
MPLAB ICD 3 In-Circuit Debugger System
MPLAB PM3 Device Programmer
MPLAB REAL ICE In-Circuit Emulator System
Multi-Bit Data Shifter
Multi-Bit Data Shinel
Ν
NVM Module
Register Map54
_
0
Open-Drain Configuration146
Output Compare 157
Р
Packaging
Details
Marking
Peripheral Module Disable (PMD)
PICkit 2 Development Programmer/Debugger and PICkit 2
Debug Express
PICkit 3 In-Circuit Debugger/Programmer and PICkit 3 Debug
Express
Pinout I/O Descriptions (table)
PMD Module
Register Map
POR and Long Oscillator Start-up Times71 PORTA
Register Map
PORTB
Register Map
PORTC
Register Map
PORTD
Register Map 52
PORTE
Register Map53
PORTF
Register Map53
PORTG
Register Map 53
Power-Saving Features
Clock Frequency and Switching 137
Program Address Space
Construction
Construction
Construction 57 Data Access from Program Memory Using Program Space Visibility 60 Data Access from Program Memory Using Table Instructions 59 Data Access from, Address Generation 58 Memory Map 31 Table Read Instructions 31
Construction 57 Data Access from Program Memory Using Program Space Visibility 60 Data Access from Program Memory Using Table Instructions 59 Data Access from, Address Generation 58 Memory Map 31 Table Read Instructions 59 TBLRDH 59
Construction 57 Data Access from Program Memory Using Program Space Visibility 60 Data Access from Program Memory Using Table Instructions 59 Data Access from, Address Generation 58 Memory Map 31 Table Read Instructions 31

查询PIC24HJ256GP210A供应商 Program Memory

R

am Memory	
Interrupt Vector	
Organization	
Reset Vector	

Reader Response
Registers
ADxCHS0 (ADCx Input Channel 0 Select216
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) 215
ADxCON1 (ADCx Control 1)
ADxCON2 (ADCx Control 2)
ADxCON3 (ADCx Control 3)
ADxCON4 (ADCx Control 4)
ADxCSSH (ADCx Input Scan Select High)217
ADxCSSL (ADCx Input Scan Select Low)
ADxPCFGH (ADCx Port Configuration High)
ADxPCFGL (ADCx Port Configuration Low)
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) 195
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 196
CiCFG1 (ECAN Baud Rate Configuration 1)
CiCFG2 (ECAN Baud Rate Configuration 2)
CiCTRL1 (ECAN Control 1)
CiCTRL2 (ECAN Control 2)
CiEC (ECAN Transmit/Receive Error Count)
CIFCTRL (ECAN FIFO Control)
CiFEN1 (ECAN Acceptance Filter Enable)
CiFIFO (ECAN FIFO Status)
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 198, 199
CilNTE (ECAN Interrupt Enable)
CiINTF (ECAN Interrupt Flag)
CiRXFnEID (ECAN Acceptance Filter n Extended Identi-
fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi-
CiRXFnSID (ECAN Acceptance Filter n Standard Identi-
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)197
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi- fier)
 CiRXFnSID (ECAN Acceptance Filter n Standard Identifier)
 CiRXFnSID (ECAN Acceptance Filter n Standard Identifier)
 CiRXFnSID (ECAN Acceptance Filter n Standard Identifier)

ICxCON (Input Capture x Control)	
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
IPC0 (Interrupt Priority Control 0)	
IPC0 (Interrupt Priority Control 0)	
IPC10 (Interrupt Priority Control 10)	
IPC11 (Interrupt Priority Control 11)	
IPC12 (Interrupt Priority Control 12)	
IPC13 (Interrupt Priority Control 13)	
IPC14 (Interrupt Priority Control 14)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16) 113, "	
IPC17 (Interrupt Priority Control 17)	
IPC2 (Interrupt Priority Control 2)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
NVMCON (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control Register 1 139	
PMD2 (Peripheral Module Disable Control Register 2 141	
PMD3 (Peripheral Module Disable Control Register 3 143)
RCON (Reset Control)	68
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	162
SR (CPU Status)	
T1CON (Timer1 Control)	
TxCON (T2CON, T4CON, T6CON or T8CON Contro 152	
TyCON (T3CON, T5CON, T7CON or T9CON Contro 153	I)
UxMODE (UARTx Mode) UxSTA (UARTx Status and Control)	
Reset	110
Clock Source Selection	70
Special Function Register Reset States	
Times	
Reset Sequence	
Resets	

查询PIC24HJ256GP210A供应商 s

0	
Serial Peripheral Interface (SPI)	
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	55
Special Features	219
SPI Module	
SPI1 Register Map	43
SPI2 Register Map	43
Symbols Used in Opcode Descriptions	
System Control	
Register Map	54
-	

Т

-	
Temperature and Voltage Specifications	
AC	278
Timer1	. 147
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	. 149
Timing Characteristics	
ČLKO and I/O	. 251
Timing Diagrams	
10-bit Analog-to-Digital Conversion (CHPS<1:0> =	= 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> =	111,
SAMC<4:0> = 00001)	.273
10-bit Analog-to-Digtial Conversion (CHPS<1:0> =	= 01,
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)	
12-bit Analog-to-Digital Conversion (ASAM = 0,	SS-
RC<2:0> = 000)	
ECAN I/O	. 267
External Clock	. 249
I2Cx Bus Data (Master Mode)	. 263
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	. 263
I2Cx Bus Start/Stop Bits (Slave Mode)	. 265
Input Capture (CAPx)	
OC/PWM	. 257
Output Compare (OCx)	
Reset, Watchdog Timer, Oscillator Start-up Timer	and
Power-up Timer	
SPIx Master Mode (CKE = 0)	. 258
SPIx Master Mode (CKE = 1)	. 259
SPIx Slave Mode (CKE = 0)	. 260
SPIx Slave Mode (CKE = 1)	

Timer1, 2 and 3 External Clock 254
Timing Requirements
ADC Conversion (10-bit mode)
ADC Conversion (12-bit Mode) 283
CLKO and I/O 251
External Clock249
Input Capture 256
SPIx Master Mode (CKE = 0)
SPIx Module Master Mode (CKE = 1) 279
SPIx Module Slave Mode (CKE = 0) 280
SPIx Module Slave Mode (CKE = 1) 280
Timing Specifications
10-bit Analog-to-Digital Conversion Requirements 274
CAN I/O Requirements 267
I2Cx Bus Data Requirements (Master Mode)
I2Cx Bus Data Requirements (Slave Mode)
Output Compare Requirements
PLL Clock
Reset, Watchdog Timer, Oscillator Start-up Timer, Pow
er-up Timer and Brown-out Reset Requirements 253
Simple OC/PWM Mode Requirements 257
SPIx Master Mode (CKE = 0) Requirements
SPIx Master Mode (CKE = 1) Requirements
SPIx Slave Mode (CKE = 0) Requirements
SPIx Slave Mode (CKE = 1) Requirements
Timer1 External Clock Requirements 254
Timer2 External Clock Requirements 255
Timer3 External Clock Requirements 255
U
UART Module
UART1 Register Map 42
UART2 Register Map
UNIT 2 Negister Map 40

V

Voltage Regulator (On-Chip) 224	Voltage Regulator	(On-Chip)	224
---------------------------------	-------------------	-----------	-----

W

Watchdog Timer (WDT)	219, 225
Programming Considerations	225
WWW Address	301
WWW, On-Line Support	16

查询PIC24HJ256GP210A供应商 THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

查询PIC24HJ256GP210A供应商 READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	^{II} Name	
	Company	
	Address	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Wou	d you like a reply? <u>Y</u> N	
Devi	ce: PIC24HJXXXGPX06A/X08A/X10A	Literature Number: DS70592B
Ques	stions:	
1. \	Vhat are the best features of this docume	nt?
_		
_		
2. H	low does this document meet your hardwa	are and software development needs?
_		
_		
3. E	Do you find the organization of this docum	ent easy to follow? If not, why?
_		
-		
4. V	Vhat additions to the document do you thin	nk would enhance the structure and subject?
-		
- -	Nhat delations from the desumant asuld h	a made without offecting the everall usefulness?
5. V	vhat deletions from the document could b	e made without affecting the overall usefulness?
-		
- 6. I	s there any incorrect or misleading informa	ation (what and where)?
0. 1	s there any meetreet of misleading morning	
-		
7. H	low would you improve this document?	
_		

查询PIC24HJ256GP210A供应商

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Revision Level Tape and Reel Fl	memory, 100-pin, Industrial TQFP package.	temp., : 4 KB program emp.,
Architecture:	24 = 16-bit Microcontroller	
Flash Memory Family:	HJ = Flash program memory, 3.3V, High-speed	
Product Group:	GP2 = General purpose family GP3 = General purpose family GP5 = General purpose family GP6 = General purpose family	
Pin Count:	06 = 64-pin 0 = 100-pin	
Temperature Range:	= -40°C to+85°C(Industrial) E = -40°C to+125°C(Extended) H = -40°C to+140°C(High)	
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flatpack) PF = 14x14 mm TQFP (Thin Quad Flatpack) MR = 9x9x0.9 mm QFN (Thin Quad Flatpack)	
Pattern:	Three-digit QTP, SQTP, Code or Special Requirements blank otherwise) ES = Engineering Sample	

© 2009 Microchip Technology Inc.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820