FLASH MEMORY

Document Title

64M Bit (8M x8/4M x16) Dual Bank NOR Flash Memory

Revision History

<u>Revision No.</u>	<u>History</u>	Draft Date	<u>Remark</u>
0.0	Initial Draft	January 10, 2002	Preliminary
1.0	Final Specification	May 22, 2002	Final
1.1	Revised - Release the stand-by current from typ. 5uA(max. 18uA) to typ. 10uA(max. 30uA).	June 18, 2003	
1.2	Not support 48TSOP1 Package Not support 16M/16M BANK partition	November 18, 2003	
1.3	Support 48TSOP1 Package	July 22, 2004	
1.4	Support 48TSOP1 Lead Free Package	September 16, 2004	
1.5	Support 48FBGA Leaded/Lead Free Package	March 16, 2005	

FLASH MEMORY

64M Bit (8M x8/4M x16) Dual Bank NOR Flash Memory

FEATURES

- Single Voltage, 2.7V to 3.6V for Read and Write operations
 Organization
- 8,388,608 x 8 bit (Byte mode) / 4,194,304 x 16 bit (Word mode) • Fast Read Access Time : 70ns
- Read While Program/Erase Operation
- Dual Bank architectures
- Bank 1 / Bank 2 : 16Mb / 48Mb
- Secode(Security Code) Block : Extra 64K Byte block
- Power Consumption (typical value @5MHz)
 Read Current : 14mA
- Program/Erase Current : 15mA
- Read While Program or Read While Erase Current : 25mA
- Standby Mode/Auto Sleep Mode : 10µA
- WP/ACC input pin
 - Allows special protection of two outermost boot blocks at VIL, regardless of block protect status
 - Removes special protection of two outermost boot block at VIH, the two blocks return to normal block protect status - Program time at VHH : 9µs/word
- Erase Suspend/Resume
- Unlock Bypass Program
- Hardware RESET Pin
- Command Register Operation
- Block Group Protection / Unprotection
- Supports Common Flash Memory Interface
- Industrial Temperature : -40°C to 85°C
- Endurance : 100,000 Program/Erase Cycles Minimum
- Data Retention : 10 years

PIN CONFIGURATION

A14 A13 A12 A11 A10

AL WE RESET A21 L ⁷/ACC '/BY

A18 A17 A7 A6

22 23

Note :

Package : 48 Pin TSOP1 : 12 x 20 mm / 0.5 mm Pin pitch
 48 Ball TBGA : 6 x 9 mm / 0.8 mm Ball pitch

48-pin TSOP1

Standard Type 12mm x 20mm

Please refer to the package dimension.

48 Ball FBGA : 6 x 9 mm / 0.8 mm Ball pitch

GENERAL DESCRIPTION

The K8D6316U featuring single 3.0V power supply, is a 64Mbit NOR-type Flash Memory organized as 8Mx8 or 4M x16. The memory architecture of the device is designed to divide its memory arrays into 135 blocks to be protected by the block group. This block architecture provides highly flexible erase and program capability. The K8D6316U NOR Flash consists of two banks. This device is capable of reading data from one bank while programming or erasing in the other bank. Access times of 70ns, 80ns and 90ns are available for the device. The device's fast access times allow high speed microprocessors to operate without wait states. The device performs a program operation in units of 8 bits (Byte) or 16 bits (Word) and erases in units of a block. Single or multiple blocks can be erased. The block erase operation is completed within typically 0.7 sec. The device requires 15mA as program/erase current in the standard and industrial temperature ranges.

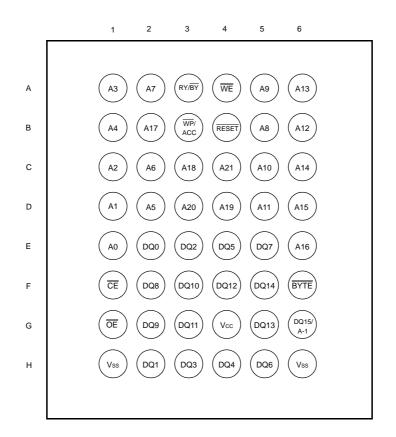
The K8D6316U NOR Flash Memory is created by using Samsung's advanced CMOS process technology. This device is available in 48 pin TSOP1 and 48 ball TBGA,FBGA packages. The device is compatible with EPROM applications to require high-density and cost-effective nonvolatile read/write storage solutions.

Pin Name	Pin Function
A0 - A21	Address Inputs
DQ0 - DQ14	Data Inputs / Outputs
DQ15/A-1	DQ15 Data Input / Output A-1 LSB Address
BYTE	Word / Byte Selection
CE	Chip Enable
OE	Output Enable
RESET	Hardware Reset Pin
RY/BY	Ready/Busy Output
WE	Write Enable
WP/ACC	Hardware Write Protection/Program Acceleration
Vcc	Power Supply
Vss	Ground
N.C	No Connection

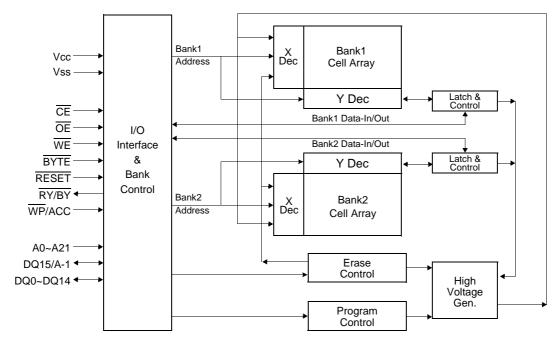
PIN DESCRIPTION

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

A16 BYTE

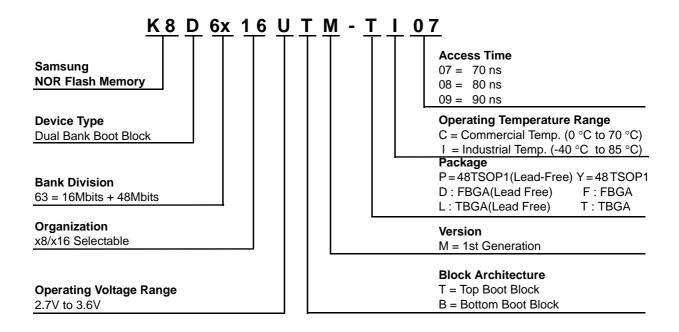

CE

Vss DQ15/A-DQ7 DQ14



FLASH MEMORY

48 Ball TBGA/FBGA TOP VIEW (BALL DOWN)


FUNCTIONAL BLOCK DIAGRAM

FLASH MEMORY

ORDERING INFORMATION

Table 1. PRODUCT LINE-UP

Part No.	- 7	-8	-9
Vcc		2.7V~3.6V	
Max. Address Access Time (ns)	70ns	80ns	90ns
Max. CE Access Time (ns)	70ns	80ns	90ns
Max. OE Access Time (ns)	25ns	25ns	35ns

Table 2. K8D6316U DEVICE BANK DIVISIONS

Device		Bank 1	Bank 2				
Part Number	Mbit	Block Sizes	Mbit	Block Sizes			
K8D6316U	16 Mbit	Eight 8 Kbyte/4 Kword, thirty-one 64 Kbyte/32 Kword	48 Mbit	Ninety-six 64 Kbyte/32 Kword			

FLASH MEMORY

Table 3. Top Boot Block Address (K8D6316UT)

K8D6316UT	Bleck				E	Block A	ddress			Block Size	Addres	s Range		
K8D6316UT	Block	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	(KB/KW)	Byte Mode	Word Mode
	BA134	1	1	1	1	1	1	1	1	1	1	8/4	7FE000H-7FFFFFH	3FF000H-3FFFFFH
	BA133	1	1	1	1	1	1	1	1	1	0	8/4	7FC000H-7FDFFFH	3FE000H-3FEFFFH
	BA132	1	1	1	1	1	1	1	1	0	1	8/4	7FA000H-7FBFFFH	3FD000H-3FDFFFH
	BA131	1	1	1	1	1	1	1	1	0	0	8/4	7F8000H-7F9FFFH	3FC000H-3FCFFFH
	BA130	1	1	1	1	1	1	1	0	1	1	8/4	7F6000H-7F7FFFH	3FB000H-3FBFFFH
	BA129	1	1	1	1	1	1	1	0	1	0	8/4	7F4000H-7F5FFFH	3FA000H-3FAFFFH
	BA128	1	1	1	1	1	1	1	0	0	1	8/4	7F2000H-7F3FFFH	3F9000H-3F9FFFH
	BA127	1	1	1	1	1	1	1	0	0	0	8/4	7F0000H-7F1FFFH	3F8000H-3F8FFFH
	BA126	1	1	1	1	1	1	0	Х	Х	Х	64/32	7E0000H-7EFFFFH	3F0000H-3F7FFFH
	BA125	1	1	1	1	1	0	1	Х	Х	Х	64/32	7D0000H-7DFFFFH	3E8000H-3EFFFFH
	BA124	1	1	1	1	1	0	0	Х	Х	Х	64/32	7C0000H-7CFFFFH	3E0000H-3E7FFFH
	BA123	1	1	1	1	0	1	1	Х	Х	Х	64/32	7B0000H-7BFFFFH	3D8000H-3DFFFFH
	BA122	1	1	1	1	0	1	0	Х	Х	Х	64/32	7A0000H-7AFFFFH	3D0000H-3D7FFFH
	BA121	1	1	1	1	0	0	1	Х	Х	Х	64/32	790000H-79FFFH	3C8000H-3CFFFFH
	BA120	1	1	1	1	0	0	0	Х	Х	Х	64/32	780000H-78FFFFH	3C0000H-3C7FFFH
	BA119	1	1	1	0	1	1	1	Х	Х	Х	64/32	770000H-77FFFFH	3B8000H-3BFFFFH
	BA118	1	1	1	0	1	1	0	Х	Х	Х	64/32	760000H-76FFFH	3B0000H-3B7FFFH
Danki	BA117	1	1	1	0	1	0	1	Х	Х	Х	64/32	750000H-75FFFFH	3A8000H-3AFFFFH
Bank1	BA116	1	1	1	0	1	0	0	Х	Х	Х	64/32	740000H-74FFFH	3A0000H-3A7FFFH
	BA115	1	1	1	0	0	1	1	Х	Х	Х	64/32	730000H-73FFFFH	398000H-39FFFFH
	BA114	1	1	1	0	0	1	0	Х	Х	Х	64/32	720000H-72FFFFH	390000H-397FFFH
	BA113	1	1	1	0	0	0	1	Х	Х	Х	64/32	710000H-71FFFFH	388000H-38FFFFH
	BA112	1	1	1	0	0	0	0	х	Х	Х	64/32	700000H-70FFFH	380000H-387FFFH
	BA111	1	1	0	1	1	1	1	Х	Х	Х	64/32	6F0000H-6FFFFFH	378000H-37FFFFH
	BA110	1	1	0	1	1	1	0	Х	Х	Х	64/32	6E0000H-6EFFFFH	370000H-377FFFH
	BA109	1	1	0	1	1	0	1	Х	Х	Х	64/32	6D0000H-6DFFFFH	368000H-36FFFFH
	BA108	1	1	0	1	1	0	0	Х	Х	Х	64/32	6C0000H-6CFFFFH	360000H-367FFFH
	BA107	1	1	0	1	0	1	1	Х	Х	Х	64/32	6B0000H-6BFFFFH	358000H-35FFFFH
	BA106	1	1	0	1	0	1	0	Х	Х	Х	64/32	6A0000H-6AFFFFH	350000H-357FFFH
	BA105	1	1	0	1	0	0	1	Х	Х	Х	64/32	690000H-69FFFFH	348000H-34FFFFH
	BA104	1	1	0	1	0	0	0	Х	Х	Х	64/32	680000H-68FFFFH	340000H-347FFFH
	BA103	1	1	0	0	1	1	1	Х	Х	Х	64/32	670000H-67FFFH	338000H-33FFFFH
	BA102	1	1	0	0	1	1	0	Х	Х	Х	64/32	660000H-66FFFFH	330000H-337FFFH
	BA101	1	1	0	0	1	0	1	Х	Х	Х	64/32	650000H-65FFFFH	328000H-32FFFFH
	BA100	1	1	0	0	1	0	0	Х	Х	Х	64/32	640000H-64FFFH	320000H-327FFFH
	BA99	1	1	0	0	0	1	1	х	х	х	64/32	630000H-63FFFFH	318000H-31FFFFH

FLASH MEMORY

K8D6316UT	Block				E	Block A	ddress	;				Block Size	Address Range		
Robostoot	BIOCK	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	(KB/KW)	Byte Mode	Word Mode	
	BA98	1	1	0	0	0	1	0	Х	Х	Х	64/32	620000H-62FFFFH	310000H-317FFFH	
Bank1	BA97	1	1	0	0	0	0	1	Х	Х	Х	64/32	610000H-61FFFFH	308000H-30FFFFH	
	BA96	1	1	0	0	0	0	0	х	Х	Х	64/32	600000H-60FFFFH	300000H-307FFFH	
	BA95	1	0	1	1	1	1	1	Х	Х	Х	64/32	5F0000H-5FFFFFH	2F8000H-2FFFFFH	
	BA94	1	0	1	1	1	1	0	Х	х	х	64/32	5E0000H-5EFFFFH	2F0000H-2F7FFFH	
	BA93	1	0	1	1	1	0	1	Х	Х	Х	64/32	5D0000H-5DFFFFH	2E8000H-2EFFFFH	
	BA92	1	0	1	1	1	0	0	Х	Х	Х	64/32	5C0000H-5CFFFFH	2E0000H-2E7FFFH	
	BA91	1	0	1	1	0	1	1	Х	Х	Х	64/32	5B0000H-5BFFFFH	2D8000H-2DFFFFH	
	BA90	1	0	1	1	0	1	0	Х	Х	Х	64/32	5A0000H-5AFFFFH	2D0000H-2D7FFFH	
	BA89	1	0	1	1	0	0	1	Х	Х	Х	64/32	590000H-59FFFFH	2C8000H20CFFFFH	
	BA88	1	0	1	1	0	0	0	Х	Х	Х	64/32	580000H-58FFFFH	2C0000H-2C7FFFH	
	BA87	1	0	1	0	1	1	1	Х	Х	Х	64/32	570000H-57FFFFH	2B8000H-2BFFFFH	
	BA86	1	0	1	0	1	1	0	Х	Х	Х	64/32	560000H-56FFFFH	2B0000H-2B7FFFH	
	BA85	1	0	1	0	1	0	1	Х	Х	Х	64/32	550000H-55FFFFH	2A8000H-2AFFFFH	
	BA84	1	0	1	0	1	0	0	Х	Х	Х	64/32	540000H-54FFFFH	2A0000H-2A7FFFH	
Bank2	BA83	1	0	1	0	0	1	1	Х	Х	Х	64/32	530000H-53FFFFH	298000H-29FFFFH	
	BA82	1	0	1	0	0	1	0	Х	Х	Х	64/32	520000H-52FFFFH	290000H-297FFFH	
	BA81	1	0	1	0	0	0	1	Х	Х	Х	64/32	510000H-51FFFFH	288000H-28FFFFH	
	BA80	1	0	1	0	0	0	0	Х	Х	Х	64/32	500000H-50FFFFH	280000H-287FFFH	
	BA79	1	0	0	1	1	1	1	Х	Х	Х	64/32	4F0000H-4FFFFFH	278000H-27FFFFH	
	BA78	1	0	0	1	1	1	0	Х	Х	Х	64/32	4E0000H-4EFFFFH	270000H-277FFFH	
	BA77	1	0	0	1	1	0	1	Х	Х	Х	64/32	4D0000H-4DFFFFH	268000H-26FFFFH	
	BA76	1	0	0	1	1	0	0	Х	Х	Х	64/32	4C0000H-4CFFFFH	260000H-267FFFH	
	BA75	1	0	0	1	0	1	1	Х	Х	Х	64/32	4B0000H-4BFFFFH	258000H-25FFFFH	
	BA74	1	0	0	1	0	1	0	Х	Х	Х	64/32	4A0000H-4AFFFFH	250000H-257FFFH	
	BA73	1	0	0	1	0	0	1	Х	Х	Х	64/32	490000H-49FFFFH	248000H-24FFFFH	
	BA72	1	0	0	1	0	0	0	Х	Х	Х	64/32	480000H-48FFFFH	240000H-247FFFH	
	BA71	1	0	0	0	1	1	1	Х	Х	Х	64/32	470000H-47FFFH	238000H-23FFFFH	

Table 3. Top Boot Block Address (Continued)

FLASH MEMORY

Table 3. Top Boot Block Address (Continued)

K8D6316UT	Block				E	Block A	ddress	5				Block Size	Address Range		
K8D6316UT	Block	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	(KB/KW)	Byte Mode	Word Mode	
	BA70	1	0	0	0	1	1	0	Х	Х	Х	64/32	460000H-46FFFFH	230000H-237FFFH	
	BA69	1	0	0	0	1	0	1	Х	Х	Х	64/32	450000H-45FFFFH	228000H-22FFFFH	
	BA68	1	0	0	0	1	0	0	Х	Х	Х	64/32	440000H-44FFFFH	220000H-227FFFH	
	BA67	1	0	0	0	0	1	1	Х	х	Х	64/32	430000H-43FFFFH	218000H-21FFFFH	
	BA66	1	0	0	0	0	1	0	х	Х	Х	64/32	420000H-42FFFFH	210000H-217FFFH	
	BA65	1	0	0	0	0	0	1	Х	Х	Х	64/32	410000H-41FFFFH	208000H-20FFFFH	
	BA64	1	0	0	0	0	0	0	Х	х	Х	64/32	400000H-3FFFFFH	200000H-207FFFH	
	BA63	0	1	1	1	1	1	1	Х	х	Х	64/32	3F0000H-3FFFFFH	1F8000H-1FFFFFH	
	BA62	0	1	1	1	1	1	0	Х	Х	Х	64/32	3E0000H-3EFFFFH	1F0000H-1F7FFFH	
	BA61	0	1	1	1	1	0	1	х	х	Х	64/32	3D0000H-3DFFFFH	1E8000H-1EFFFFH	
	BA60	0	1	1	1	1	0	0	х	х	Х	64/32	3C0000H-3CFFFFH	1E0000H-1E7FFFH	
	BA59	0	1	1	1	0	1	1	х	Х	Х	64/32	3B0000H-3BFFFFH	1D8000H-1DFFFFH	
	BA58	0	1	1	1	0	1	0	Х	х	Х	64/32	3A0000H-3AFFFFH	1D0000H-1D7FFFH	
	BA57	0	1	1	1	0	0	1	Х	х	Х	64/32	390000H-39FFFFH	1C8000H-1CFFFFH	
	BA56	0	1	1	1	0	0	0	Х	Х	Х	64/32	380000H-38FFFFH	1C0000H-1C7FFFH	
	BA55	0	1	1	0	1	1	1	Х	х	Х	64/32	370000H-37FFFFH	1B8000H-1BFFFFH	
	BA54	0	1	1	0	1	1	0	Х	х	Х	64/32	360000H-36FFFFH	1B0000H-1B7FFFH	
Dank2	BA53	0	1	1	0	1	0	1	Х	Х	Х	64/32	350000H-35FFFFH	1A8000H-1AFFFFH	
Bank2	BA52	0	1	1	0	1	0	0	Х	Х	Х	64/32	340000H-34FFFFH	1A0000H-1A7FFFH	
	BA51	0	1	1	0	0	1	1	Х	Х	Х	64/32	330000H-33FFFFH	198000H-19FFFFH	
	BA50	0	1	1	0	0	1	0	Х	Х	Х	64/32	320000H-32FFFFH	190000H-197FFFH	
	BA49	0	1	1	0	0	0	1	Х	Х	Х	64/32	310000H-31FFFFH	188000H-18FFFFH	
	BA48	0	1	1	0	0	0	0	Х	х	Х	64/32	300000H-30FFFFH	180000H-187FFFH	
	BA47	0	1	0	1	1	1	1	Х	Х	Х	64/32	2F0000H-2FFFFFH	178000H-17FFFFH	
	BA46	0	1	0	1	1	1	0	Х	Х	Х	64/32	2E0000H-2EFFFFH	170000H-177FFFH	
	BA45	0	1	0	1	1	0	1	Х	х	Х	64/32	2D0000H-2DFFFFH	168000H-16FFFH	
	BA44	0	1	0	1	1	0	0	Х	Х	Х	64/32	2C0000H-2CFFFFH	160000H-167FFFH	
	BA43	0	1	0	1	0	1	1	Х	Х	Х	64/32	2B0000H-2BFFFFH	158000H-15FFFFH	
	BA42	0	1	0	1	0	1	0	Х	х	Х	64/32	2A0000H-2AFFFFH	150000H-157FFFH	
	BA41	0	1	0	1	0	0	1	Х	Х	Х	64/32	290000H-29FFFFH	148000H-14FFFFH	
	BA40	0	1	0	1	0	0	0	Х	Х	Х	64/32	280000H-28FFFFH	140000H-147FFFH	
	BA39	0	1	0	0	1	1	1	Х	Х	Х	64/32	270000H-27FFFFH	138000H-13FFFFH	
	BA38	0	1	0	0	1	1	0	Х	Х	Х	64/32	260000H-26FFFFH	130000H-137FFFH	
	BA37	0	1	0	0	1	0	1	Х	Х	Х	64/32	250000H-25FFFFH	128000H-12FFFFH	
	BA36	0	1	0	0	1	0	0	Х	Х	Х	64/32	240000H-24FFFFH	120000H-127FFFH	
	BA35	0	1	0	0	0	1	1	Х	х	Х	64/32	230000H-23FFFFH	118000H-11FFFFH	

FLASH MEMORY

Table 3. Top Boot Block Address (Continued)

K8D6316UT	Block				E	Block A	ddress	5				Block Size	Address Range		
K6D631601	Block	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	(KB/KW)	Byte Mode	Word Mode	
	BA34	0	1	0	0	0	1	0	Х	Х	Х	64/32	220000H-22FFFFH	110000H-117FFFH	
-	BA33	0	1	0	0	0	0	1	Х	Х	Х	64/32	210000H-21FFFFH	108000H-10FFFFH	
	BA32	0	1	0	0	0	0	0	Х	Х	Х	64/32	200000H-20FFFFH	100000H-107FFFH	
	BA31	0	0	1	1	1	1	1	Х	Х	Х	64/32	1F0000H-1FFFFFH	0F8000H-0FFFFFH	
	BA30	0	0	1	1	1	1	0	Х	Х	Х	64/32	1E0000H-1EFFFFH	0F0000H-0F7FFFH	
	BA29	0	0	1	1	1	0	1	Х	Х	Х	64/32	1D0000H-1DFFFFH	0E8000H-0EFFFFH	
	BA28	0	0	1	1	1	0	0	Х	Х	Х	64/32	1C0000H-1CFFFFH	0E0000H-0E7FFFH	
	BA27	0	0	1	1	0	1	1	Х	Х	Х	64/32	1B0000H-1BFFFFH	0D8000H-0DFFFFH	
	BA26	0	0	1	1	0	1	0	Х	Х	Х	64/32	1A0000H-1AFFFFH	0D0000H-0D7FFFH	
	BA25	0	0	1	1	0	0	1	Х	Х	Х	64/32	190000H-19FFFFH	0C8000H-0CFFFFH	
	BA24	0	0	1	1	0	0	0	Х	Х	Х	64/32	180000H-18FFFFH	0C0000H-0C7FFFH	
	BA23	0	0	1	0	1	1	1	Х	Х	Х	64/32	170000H-17FFFFH	0B8000H-0BFFFFH	
-	BA22	0	0	1	0	1	1	0	Х	Х	Х	64/32	160000H-16FFFFH	0B0000H-0B7FFFH	
	BA21	0	0	1	0	1	0	1	Х	Х	Х	64/32	150000H-15FFFFH	0A8000H-0AFFFFH	
	BA20	0	0	1	0	1	0	0	Х	Х	Х	64/32	140000H-14FFFFH	0A0000H-0A7FFFH	
-	BA19	0	0	1	0	0	1	1	Х	Х	Х	64/32	130000H-13FFFFH	098000H-09FFFFH	
	BA18	0	0	1	0	0	1	0	Х	Х	Х	64/32	120000H-12FFFFH	090000H-097FFFH	
Bank2	BA17	0	0	1	0	0	0	1	Х	Х	Х	64/32	110000H-11FFFFH	088000H-08FFFFH	
	BA16	0	0	1	0	0	0	0	Х	Х	Х	64/32	100000H-10FFFFH	080000H-087FFFH	
	BA15	0	0	0	1	1	1	1	Х	Х	Х	64/32	0F0000H-0FFFFFH	078000H-07FFFFH	
	BA14	0	0	0	1	1	1	0	Х	Х	Х	64/32	0E0000H-0EFFFFH	070000H-077FFFH	
-	BA13	0	0	0	1	1	0	1	Х	Х	Х	64/32	0D0000H-0DFFFFH	068000H-06FFFFH	
	BA12	0	0	0	1	1	0	0	Х	Х	Х	64/32	0C0000H-0CFFFFH	060000H-067FFFH	
	BA11	0	0	0	1	0	1	1	Х	Х	Х	64/32	0B0000H-0BFFFFH	058000H-05FFFFH	
	BA10	0	0	0	1	0	1	0	Х	Х	Х	64/32	0A0000H-0AFFFH	050000H-057FFFH	
-	BA9	0	0	0	1	0	0	1	Х	Х	Х	64/32	090000H-09FFFFH	048000H-04FFFFH	
	BA8	0	0	0	1	0	0	0	Х	Х	Х	64/32	080000H-08FFFFH	040000H-047FFFH	
	BA7	0	0	0	0	1	1	1	Х	Х	Х	64/32	070000H-07FFFFH	038000H-03FFFFH	
-	BA6	0	0	0	0	1	1	0	Х	Х	Х	64/32	060000H-06FFFFH	030000H-037FFFH	
	BA5	0	0	0	0	1	0	1	Х	Х	Х	64/32	050000H-05FFFFH	028000H-02FFFFH	
-	BA4	0	0	0	0	1	0	0	Х	Х	Х	64/32	040000H-04FFFH	020000H-027FFFH	
-	BA3	0	0	0	0	0	1	1	Х	Х	Х	64/32	030000H-03FFFFH	018000H-01FFFFH	
ľ	BA2	0	0	0	0	0	1	0	Х	Х	Х	64/32	020000H-02FFFFH	010000H-017FFFH	
-	BA1	0	0	0	0	0	0	1	Х	Х	Х	64/32	010000H-01FFFH	008000H-00FFFFH	
-	BA0	0	0	0	0	0	0	0	х	х	х	64/32	000000H-00FFFFH	000000H-007FFFH	

Note : The bank address bits are A21 \sim A20 for K8D6316UT.

Table 4. Secode Block Addresses for Top Boot Devices

Device	Block Address	Block Size	(X8)	(X16)
	A21-A12	(KB/KW)	Address Range	Address Range
K8D6316UT	1111111xxx	64/32	7F0000H-7FFFFFH	3F8000H-3FFFFFH

FLASH MEMORY

Table 5. Bottom Boot Block Address (K8D6316UB)

K8D6316UB	Block				E	Block A	ddress					Block Size	Block Size Address Range			
K8D63160B	Block	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	(KB/KW)	Byte Mode	Word Mode		
	BA134	1	1	1	1	1	1	1	Х	Х	Х	64/32	7F0000H-7FFFFFH	3F8000H-3FFFFFH		
	BA133	1	1	1	1	1	1	0	Х	Х	Х	64/32	7E0000H-7EFFFFH	3F0000H-3F7FFFH		
	BA132	1	1	1	1	1	0	1	х	Х	Х	64/32	7D0000H-7DFFFFH	3E8000H-3EFFFFH		
	BA131	1	1	1	1	1	0	0	Х	Х	Х	64/32	7C0000H-7CFFFFH	3E0000H-3E7FFFH		
	BA130	1	1	1	1	0	1	1	х	х	х	64/32	7B0000H-7BFFFFH	3D8000H-3DFFFFH		
	BA129	1	1	1	1	0	1	0	Х	Х	Х	64/32	7A0000H-7AFFFFH	3D0000H-3D7FFFH		
	BA128	1	1	1	1	0	0	1	Х	Х	Х	64/32	790000H-79FFFFH	3C8000H-3CFFFFH		
	BA127	1	1	1	1	0	0	0	х	х	х	64/32	780000H-78FFFFH	3C0000H-3C7FFFH		
	BA126	1	1	1	0	1	1	1	х	х	х	64/32	770000H-77FFFFH	3B8000H-3BFFFFH		
	BA125	1	1	1	0	1	1	0	Х	Х	Х	64/32	760000H-76FFFH	3B0000H-3B7FFFH		
	BA124	1	1	1	0	1	0	1	х	х	х	64/32	750000H-75FFFFH	3A8000H-3AFFFFH		
	BA123	1	1	1	0	1	0	0	х	х	х	64/32	740000H-74FFFFH	3A0000H-3A7FFFH		
	BA122	1	1	1	0	0	1	1	Х	Х	Х	64/32	730000H-73FFFFH	398000H-39FFFFH		
	BA121	1	1	1	0	0	1	0	х	х	х	64/32	720000H-72FFFFH	390000H-397FFFH		
	BA120	1	1	1	0	0	0	1	х	х	х	64/32	710000H-71FFFFH	388000H-38FFFFH		
	BA119	1	1	1	0	0	0	0	Х	Х	Х	64/32	700000H-70FFFH	380000H-387FFFH		
	BA118	1	1	0	1	1	1	1	х	х	х	64/32	6F0000H-6F1FFFH	378000H-37FFFFH		
	BA117	1	1	0	1	1	1	0	х	х	х	64/32	6E0000H-6EFFFFH	370000H-377FFFH		
Bank2	BA116	1	1	0	1	1	0	1	Х	Х	Х	64/32	6D0000H-6DFFFFH	368000H-36FFFFH		
	BA115	1	1	0	1	1	0	0	Х	Х	Х	64/32	6C0000H-6CFFFFH	360000H-367FFFH		
	BA114	1	1	0	1	0	1	1	х	х	х	64/32	6B0000H-6BFFFFH	358000H-35FFFFH		
	BA113	1	1	0	1	0	1	0	Х	Х	Х	64/32	6A0000H-6AFFFFH	350000H-357FFFH		
	BA112	1	1	0	1	0	0	1	Х	Х	Х	64/32	690000H-69FFFFH	348000H-34FFFFH		
	BA111	1	1	0	1	0	0	0	х	х	Х	64/32	680000H-68FFFFH	340000H-347FFFH		
	BA110	1	1	0	0	1	1	1	Х	Х	Х	64/32	670000H-67FFFH	338000H-33FFFFH		
	BA109	1	1	0	0	1	1	0	Х	Х	Х	64/32	660000H-66FFFFH	330000H-337FFFH		
	BA108	1	1	0	0	1	0	1	х	х	х	64/32	650000H-65FFFFH	328000H-32FFFFH		
	BA107	1	1	0	0	1	0	0	Х	Х	Х	64/32	640000H-64FFFFH	320000H-327FFFH		
	BA106	1	1	0	0	0	1	1	х	х	х	64/32	630000H-63FFFFH	318000H-31FFFFH		
	BA105	1	1	0	0	0	1	0	х	х	х	64/32	620000H-62FFFFH	310000H-317FFFH		
	BA104	1	1	0	0	0	0	1	х	х	х	64/32	610000H-61FFFH	308000H-30FFFH		
	BA103	1	1	0	0	0	0	0	х	х	х	64/32	600000H-60FFFH	300000H-307FFFH		
	BA102	1	0	1	1	1	1	1	х	х	х	64/32	5F0000H-5FFFFFH	2F8000H-2FFFFFH		
	BA101	1	0	1	1	1	1	0	х	х	х	64/32	5E0000H-5EFFFFH	2F0000H-2F7FFFH		
	BA100	1	0	1	1	1	0	1	Х	х	Х	64/32	5D0000H-5DFFFFH	2E8000H-2EFFFFH		
	BA99	1	0	1	1	1	0	0	Х	Х	Х	64/32	5C0000H-5CFFFFH	2E0000H-2E7FFFH		

FLASH MEMORY

Table 5. Bottom Block Address (Continued)

K8D6316UB	Block					Blo	ck Add	ress				Block Size	Address Range		
K6D03100B	DIOCK	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	(KB/KW)	Byte Mode	Word Mode	
	BA98	1	0	1	1	0	1	1	Х	Х	Х	64/32	5B0000H-5BFFFFH	2D8000H-2DFFFFH	
	BA97	1	0	1	1	0	1	0	Х	Х	Х	64/32	5A0000H-5AFFFFH	2D0000H-2D7FFFH	
	BA96	1	0	1	1	0	0	1	Х	Х	Х	64/32	590000H-59FFFFH	2C8000H-2CFFFFH	
	BA95	1	0	1	1	0	0	0	Х	Х	Х	64/32	580000H-58FFFFH	2C0000H-2C7FFFH	
	BA94	1	0	1	0	1	1	1	Х	Х	Х	64/32	570000H-57FFFFH	2B8000H-2BFFFFH	
	BA93	1	0	1	0	1	1	0	Х	Х	Х	64/32	560000H-56FFFFH	2B0000H-2B7FFFH	
	BA92	1	0	1	0	1	0	1	Х	Х	Х	64/32	550000H-55FFFFH	2A8000H-2AFFFFH	
	BA91	1	0	1	0	1	0	0	Х	Х	Х	64/32	540000H-54FFFFH	2A0000H-2A7FFFH	
	BA90	1	0	1	0	0	1	1	Х	Х	Х	64/32	530000H-53FFFFH	298000H-29FFFFH	
	BA89	1	0	1	0	0	1	0	Х	Х	Х	64/32	520000H-52FFFFH	290000H-297FFFH	
	BA88	1	0	1	0	0	0	1	Х	Х	Х	64/32	510000H-51FFFFH	288000H-28FFFFH	
	BA87	1	0	1	0	0	0	0	Х	Х	Х	64/32	500000H-50FFFFH	280000H-287FFFH	
	BA86	1	0	0	1	1	1	1	Х	Х	Х	64/32	4F0000H-4FFFFFH	278000H-27FFFFH	
Bank2	BA85	1	0	0	1	1	1	0	Х	Х	Х	64/32	4E0000H-4EFFFFH	270000H-277FFFH	
	BA84	1	0	0	1	1	0	1	Х	Х	Х	64/32	4D0000H-4DFFFFH	268000H-26FFFFH	
	BA83	1	0	0	1	1	0	0	Х	Х	Х	64/32	4C0000H-4CFFFFH	260000H-267FFFH	
	BA82	1	0	0	1	0	1	1	Х	Х	Х	64/32	4B0000H-4BFFFFH	258000H-25FFFFH	
	BA81	1	0	0	1	0	1	0	Х	Х	Х	64/32	4A0000H-4AFFFFH	250000H-257FFFH	
	BA80	1	0	0	1	0	0	1	Х	Х	Х	64/32	490000H-49FFFFH	248000H-24FFFFH	
	BA79	1	0	0	1	0	0	0	Х	Х	Х	64/32	480000H-48FFFFH	240000H-247FFFH	
	BA78	1	0	0	0	1	1	1	Х	Х	Х	64/32	470000H-47FFFFH	238000H-23FFFFH	
	BA77	1	0	0	0	1	1	0	Х	Х	Х	64/32	460000H-46FFFFH	230000H-237FFFH	
	BA76	1	0	0	0	1	0	1	Х	Х	Х	64/32	450000H-45FFFFH	228000H-22FFFFH	
	BA75	1	0	0	0	1	0	0	Х	Х	Х	64/32	440000H-44FFFFH	220000H-227FFFH	
	BA74	1	0	0	0	0	1	1	Х	Х	Х	64/32	430000H-43FFFFH	218000H-21FFFFH	
	BA73	1	0	0	0	0	1	0	Х	Х	Х	64/32	420000H-42FFFFH	210000H-217FFFH	
	BA72	1	0	0	0	0	0	1	Х	Х	Х	64/32	410000H-41FFFFH	208000H-20FFFFH	
	BA71	1	0	0	0	0	0	0	Х	х	Х	64/32	400000H-40FFFH	200000H-207FFFH	

FLASH MEMORY

Table 5. Bottom Boot Block Address (Continued)

K8D6316UB	Block				E	Block A	ddress					Block Size	Address Range		
K8D63160B	BIOCK	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	(KB/KW)	Byte Mode	Word Mode	
	BA70	0	1	1	1	1	1	1	Х	Х	Х	64/32	3F0000H-3FFFFFH	1F8000H-1FFFFFH	
-	BA69	0	1	1	1	1	1	0	Х	Х	Х	64/32	3E0000H-3EFFFFH	1F0000H-1F7FFFH	
-	BA68	0	1	1	1	1	0	1	Х	Х	Х	64/32	3D0000H-3DFFFFH	1E8000H-1EFFFFH	
-	BA67	0	1	1	1	1	0	0	Х	Х	Х	64/32	3C0000H-3CFFFFH	1E0000H-1E7FFFH	
	BA66	0	1	1	1	0	1	1	Х	Х	Х	64/32	3B0000H-3BFFFFH	1D8000H-1DFFFFH	
	BA65	0	1	1	1	0	1	0	Х	Х	Х	64/32	3A0000H-3AFFFFH	1D0000H-1D7FFFH	
	BA64	0	1	1	1	0	0	1	Х	Х	Х	64/32	390000H-39FFFFH	1C8000H-1CFFFFH	
-	BA63	0	1	1	1	0	0	0	Х	Х	Х	64/32	380000H-38FFFFH	1C0000H-1C7FFFH	
-	BA62	0	1	1	0	1	1	1	Х	Х	Х	64/32	370000H-37FFFFH	1B8000H-1BFFFFH	
-	BA61	0	1	1	0	1	1	0	Х	Х	Х	64/32	360000H-36FFFFH	1B0000H-1B7FFFH	
	BA60	0	1	1	0	1	0	1	Х	Х	Х	64/32	350000H-35FFFFH	1A8000H-1AFFFFH	
-	BA59	0	1	1	0	1	0	0	Х	Х	Х	64/32	340000H-34FFFFH	1A0000H-1A7FFFH	
-	BA58	0	1	1	0	0	1	1	Х	Х	Х	64/32	330000H-33FFFFH	198000H-19FFFFH	
	BA57	0	1	1	0	0	1	0	х	Х	х	64/32	320000H-32FFFFH	190000H-197FFFH	
	BA56	0	1	1	0	0	0	1	х	х	х	64/32	310000H-31FFFFH	188000H-18FFFFH	
-	BA55	0	1	1	0	0	0	0	Х	Х	Х	64/32	300000H-30FFFFH	180000H-187FFFH	
Bank2	BA54	0	1	0	1	1	1	1	х	х	х	64/32	2F0000H-2F1FFFH	178000H-17FFFFH	
	BA53	0	1	0	1	1	1	0	х	х	х	64/32	2E0000H-2EFFFFH	170000H-177FFFH	
-	BA52	0	1	0	1	1	0	1	Х	Х	Х	64/32	2D0000H-2DFFFFH	168000H-16FFFFH	
-	BA51	0	1	0	1	1	0	0	Х	Х	Х	64/32	2C0000H-2CFFFFH	160000H-167FFFH	
	BA50	0	1	0	1	0	1	1	х	х	х	64/32	2B0000H-2BFFFFH	158000H-15FFFFH	
	BA49	0	1	0	1	0	1	0	Х	Х	Х	64/32	2A0000H-2AFFFFH	150000H-157FFFH	
	BA48	0	1	0	1	0	0	1	Х	Х	Х	64/32	290000H-29FFFFH	148000H-14FFFFH	
	BA47	0	1	0	1	0	0	0	х	х	х	64/32	280000H-28FFFFH	140000H-147FFFH	
	BA46	0	1	0	0	1	1	1	Х	Х	Х	64/32	270000H-27FFFFH	138000H-13FFFFH	
	BA45	0	1	0	0	1	1	0	Х	Х	Х	64/32	260000H-26FFFFH	130000H-137FFFH	
	BA44	0	1	0	0	1	0	1	х	х	Х	64/32	250000H-25FFFFH	128000H-12FFFFH	
	BA43	0	1	0	0	1	0	0	х	Х	Х	64/32	240000H-24FFFFH	120000H-127FFFH	
	BA42	0	1	0	0	0	1	1	х	Х	Х	64/32	230000H-23FFFFH	118000H-11FFFFH	
	BA41	0	1	0	0	0	1	0	Х	Х	Х	64/32	220000H-22FFFFH	110000H-117FFFH	
·	BA40	0	1	0	0	0	0	1	х	Х	Х	64/32	210000H-21FFFFH	108000H-10FFFFH	
ŀ	BA39	0	1	0	0	0	0	0	х	х	Х	64/32	200000H-20FFFFH	100000H-107FFFH	
	BA38	0	0	1	1	1	1	1	х	х	Х	64/32	1F0000H-1FFFFFH	0F8000H-0FFFFH	
Bank1	BA37	0	0	1	1	1	1	0	х	х	х	64/32	1E0000H-1EFFFFH	0F0000H-0F7FFH	
Danki	BA36	0	0	1	1	1	0	1	Х	Х	Х	64/32	1D0000H-1DFFFFH	0E8000H-0EFFFH	
-	BA35	0	0	1	1	1	0	0	х	Х	Х	64/32	1C0000H-1CFFFFH	0E0000H-0E7FFH	

FLASH MEMORY

Table 5. Bottom Block Address (Continued)

K8D6316UB	Block					Blo	ck Add	ress				Block Size	Addres	s Range
K8D63160B	BIOCK	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	(KB/KW)	Byte Mode	Word Mode
	BA34	0	0	1	1	0	1	1	Х	Х	Х	64/32	1B0000H-1BFFFFH	0D8000H-0DFFFFH
	BA33	0	0	1	1	0	1	0	Х	Х	Х	64/32	1A0000H-1AFFFFH	0D0000H-0D7FFFH
	BA32	0	0	1	1	0	0	1	Х	Х	Х	64/32	190000H-19FFFFH	0C8000H-0CFFFFH
	BA31	0	0	1	1	0	0	0	Х	Х	Х	64/32	180000H-18FFFFH	0C0000H-0C7FFFH
	BA30	0	0	1	0	1	1	1	Х	Х	Х	64/32	170000H-17FFFFH	0B8000H-0BFFFFH
	BA29	0	0	1	0	1	1	0	Х	Х	Х	64/32	160000H-16FFFH	0B0000H-0B7FFFH
	BA28	0	0	1	0	1	0	1	Х	Х	Х	64/32	150000H-15FFFFH	0A8000H-0AFFFFH
	BA27	0	0	1	0	1	0	0	Х	Х	Х	64/32	140000H-14FFFFH	0A0000H-0A7FFFH
	BA26	0	0	1	0	0	1	1	Х	Х	Х	64/32	130000H-13FFFFH	098000H-09FFFFH
	BA25	0	0	1	0	0	1	0	Х	Х	Х	64/32	120000H-12FFFFH	090000H-097FFFH
	BA24	0	0	1	0	0	0	1	Х	Х	Х	64/32	110000H-11FFFFH	088000H-08FFFFH
	BA23	0	0	1	0	0	0	0	Х	Х	Х	64/32	100000H-10FFFH	080000H-087FFFH
	BA22	0	0	0	1	1	1	1	Х	Х	Х	64/32	0F0000H-0FFFFFH	078000H-07FFFFH
	BA21	0	0	0	1	1	1	0	Х	Х	Х	64/32	0E0000H-0EFFFFH	070000H-077FFFH
	BA20	0	0	0	1	1	0	1	Х	Х	Х	64/32	0D0000H-0DFFFFH	068000H-06FFFFH
	BA19	0	0	0	1	1	0	0	Х	Х	Х	64/32	0C0000H-0CFFFFH	060000H-067FFFH
	BA18	0	0	0	1	0	1	1	Х	Х	Х	64/32	0B0000H-0BFFFFH	058000H-05FFFFH
Bank1	BA17	0	0	0	1	0	1	0	Х	Х	Х	64/32	0A0000H-0AFFFH	050000H-057FFFH
	BA16	0	0	0	1	0	0	1	Х	Х	Х	64/32	090000H-09FFFFH	048000H-04FFFFH
	BA15	0	0	0	1	0	0	0	Х	Х	Х	64/32	080000H-08FFFFH	040000H-047FFFH
	BA14	0	0	0	0	1	1	1	Х	Х	Х	64/32	070000H-07FFFFH	038000H-03FFFFH
	BA13	0	0	0	0	1	1	0	Х	Х	Х	64/32	060000H-06FFFFH	030000H-037FFFH
	BA12	0	0	0	0	1	0	1	Х	Х	Х	64/32	050000H-05FFFFH	028000H-02FFFFH
	BA11	0	0	0	0	1	0	0	Х	Х	Х	64/32	040000H-04FFFH	020000H-027FFFH
	BA10	0	0	0	0	0	1	1	Х	Х	Х	64/32	030000H-03FFFFH	018000H-01FFFFH
	BA9	0	0	0	0	0	1	0	Х	Х	Х	64/32	020000H-02FFFFH	010000H-017FFFH
	BA8	0	0	0	0	0	0	1	Х	Х	Х	64/32	010000H-01FFFFH	008000H-00FFFFH
	BA7	0	0	0	0	0	0	0	1	1	1	8/4	00E000H-00FFFFH	007000H-007FFFH
	BA6	0	0	0	0	0	0	0	1	1	0	8/4	00C000H-00DFFFH	006000H-006FFFH
	BA5	0	0	0	0	0	0	0	1	0	1	8/4	00A000H-00BFFFH	005000H-005FFFH
	BA4	0	0	0	0	0	0	0	1	0	0	8/4	008000H-009FFFH	004000H-004FFFH
	BA3	0	0	0	0	0	0	0	0	1	1	8/4	006000H-007FFFH	003000H-003FFFH
	BA2	0	0	0	0	0	0	0	0	1	0	8/4	004000H-005FFFH	002000H-002FFFH
	BA1	0	0	0	0	0	0	0	0	0	1	8/4	002000H-003FFFH	001000H-001FFFH
	BA0	0	0	0	0	0	0	0	0	0	0	8/4	000000H-001FFFH	000000H-000FFFH

Note : The bank address bits are A21 \sim A20 for K8D6316UB.

Table 6. Secode Block Addresses for Bottom Boot Devices

Device	Block Address	Block Size	(X8)	(X16)
	A21-A12	(KB/KW)	Address Range	Address Range
K8D6316UB	000000xxx	64/32	000000H-00FFFFH	000000H-007FFFH

FLASH MEMORY

PRODUCT INTRODUCTION

The K8D6316U is an 64Mbit (67,108,864 bits) NOR-type Flash memory. The device features single voltage power supply operating within the range of 2.7V to 3.6V. The device is programmed by using the Channel Hot Electron (CHE) injection mechanism which is used to program EPROMs. The device is erased electrically by using Fowler-Nordheim tunneling mechanism. To provide highly flexible erase and program capability, the device adapts a block memory architecture that divides its memory array into 135 blocks (64-Kbyte x 127, 8-Kbyte x 8). Programming is done in units of 8 bits (Byte) or 16 bits (Word). All bits of data in one or multiple blocks can be erased simultaneously when the device executes the erase operation. To prevent the device from accidental erasing or overwriting the programmed data, 135 memory blocks can be hardware protected by the block group. Byte/Word modes are available for read operation. These modes can be selected via BYTE pin. The device provides read access times of 70ns, 80ns and 90ns supporting high speed microprocessors to operate without any wait states.

The command set of K8D6316U is fully compatible with standard Flash devices. The device is controlled by chip enable ($\overline{\text{CE}}$), output enable ($\overline{\text{OE}}$) and write enable ($\overline{\text{WE}}$). Device operations are executed by selective command codes. The command codes to be combined with addresses and data are sequentially written to the command registers using microprocessor write timing. The command codes serve as inputs to an internal state machine which controls the program/erase circuitry. Register contents also internally latch addresses and data necessary to execute the program and erase operations. The K8D6316U is implemented with Internal Program/Erase Algorithms to execute the program Algorithm automatically programs and verifies data at specified addresses. The Internal Erase Algorithm automatically pre-programs the memory cell which is not programmed and then executes the erase operation. The K8D6316U has means to indicate the status of completion of program/erase operations. The status can be indicated via the RY/BY pin, Data polling of DQ7, or the Toggle bit (DQ6). Once the operations have been completed, the device automatically resets itself to the read mode. The device requires only 14 mA as active read current and 15 mA for program/erase operations.

Opera	ition	CE	OE	WE	BYTE	WP/ ACC	A9	A6	A1	A0	DQ15/ A-1	DQ8/ DQ14	DQ0/ DQ7	RESET
Read	word	L	L	Н	Н	L/H	A9	A6	A1	A0	DQ15	Dout	Dout	Н
Read	byte	L	L	н	L	L/H	A9	A6	A1	A0	A-1	High-Z	Dout	н
Stand-by		Vcc ± 0.3V	х	х	х	(2)	х	х	х	х	High-Z	High-Z	High-Z	(2)
Output Disa	able	L	Н	н	Х	L/H	Х	Х	Х	Х	High-Z	High-Z	High-Z	н
Reset		Х	Х	Х	Х	L/H	Х	Х	Х	Х	High-Z	High-Z	High-Z	L
Write	word	L	н	L	н	(4)	A9	A6	A1	A0	Din	Din	Din	н
white	byte	L	н	L	L	(4)	A9	A6	A1	A0	A-1	High-Z	Din	Н
Enable Blo Protect (3)	ck Group	L	н	L	х	L/H	х	L	н	L	х	х	Din	Vid
Enable Blo Unprotect (L	н	L	х	(4)	х	н	н	L	х	х	Din	Vid
Temporary Group	Block	х	х	х	х	(4)	х	х	х	х	х	х	х	Vid
Auto Select Manufactur		L	L	н	х	L/H	Vid	L	L	L	х	х	Code(See Table 9)	н
Auto Select Device Cod		L	L	н	Х	L/H	Vid	L	L	Н	Х	х	Code(See Table 9)	Н

Table 7. Operations Table

Notes :

1. L = VIL (Low), H = VIH (High), VID = 8.5V~12.5V, DIN = Data in, DOUT = Data out, X = Don't care.

2. WP/ACC and RESET pin are asserted at Vcc±0.3 V or Vss±0.3 V in the Stand-by mode.

3. Addresses must be composed of the Block address (A12 - A21).

The Block Protect and Unprotect operations may be implemented via programming equipment too. Refer to the "Block Group Protection and Unprotection".

4. If WP/ACC=VIL, the two outermost boot blocks is protected. If WP/ACC=VIH, the two outermost boot block protection depends on whether those blocks were last protected or unprotected using the method described in "Block Group Protection and Unprotection". If WP/ACC=VIH, all blocks will be temporarily unprotected.

5. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 9.

COMMAND DEFINITIONS

The K8D6316U operates by selecting and executing its operational modes. Each operational mode has its own command set. In order to select a certain mode, a proper command with specific address and data sequences must be written into the command register. Writing incorrect information which include address and data or writing an improper command will reset the device to the read mode. The defined valid register command sequences are stated in Table 8. Note that Erase Suspend (B0H) and Erase Resume (30H) commands are valid only while the Block Erase Operation is in progress.

Table 8. Command Sequences

Command Sequ	ience	Cycle	1st C	ycle	2nd (Cycle	3rd C	Cycle	4th C	ycle	5th C	Cycle	6th (Cycle
Command Sequ	lence	Cycle	Word	Byte	Word	Byte	Word	Byte	Word	Byte	Word	Byte	Word	Byte
Read	Addr	1	R	A										
Read	Data	I	R	D										
Deest	Addr	4	XX	хн										
Reset	Data	1	FC	H										
Autoselect Manufacturer	Addr	4	555H	AAAH	2AAH	555H	DA/ 555H	DA/ AAAH	DA/ X00H	DA/ X00H				
ID (2,3)	Data		AA	ΛH	55	5H	90	ЭН	EC	н				
Autoselect Device Code	Addr	4	555H	AAAH	2AAH	555H	DA/ 555H	DA/ AAAH	DA/ X01H	DA/ X02H				
(2,3)	Data		AA	ΛH	55	5H	90	Н	(See T	able 9)				
Autoselect Block Group	Addr	4	555H	AAAH	2AAH	555H	DA/ 555H	DA/ AAAH	BA / X02H	BA/ X04H				
Protect Verify (2,3)	Data		AA	ΛH	55	5H	90	ЭH	(See T	able 9)				
Auto Select Secode Block	Addr	4	555H	AAAH	2AAH	555H	DA/ 555H	DA/ AAAH	DA / X03H	DA/ X06H				
Factory Protect Verify (2,3)	Data		AA	ΛH	55	5H	90	ЭH	(See T	able 9)				
Enter Secode	Addr	•	555H	AAAH	2AAH	555H	555H	AAAH						
Block Region	Data	3	AA	ΛH	55	5H	88	зн						
Exit Secode	Addr	4	555H	AAAH	2AAH	555H	555H	AAAH	XX	хн				
Block Region	Data	4	AA	ΛH	55	БH	90	ЭH	00	Н				
Dragram	Addr	4	555H	AAAH	2AAH	555H	555H	AAAH	P	A				
Program	Data	4	AA	ΛH	55	5H	A	ЭН	Р	D				
Unlock Bypass	Addr	3	555H	AAAH	2AAH	555H	555H	AAAH						
UTILOCK Bypass	Data	3	AA	ΛH	55	5H	20)H						
Unlock Bypass	Addr	2	XX	ХН	P	A								
Program	Data	Z	AC)H	P	D								
Unlock Bypass	Addr	•	XX	ХН	XX	ХН								
Reset	Data	2	90	H	00)H								
	Addr		555H	AAAH	2AAH	555H	555H	AAAH	555H	AAAH	2AAH	555H	555H	AAAH
Chip Erase	Data	6	AA	ΛH	55	5H	80	ЮН	AA	Н	55	5H	1(ОН
	Addr	0	555H	AAAH	2AAH	555H	555H	AAAH	555H	AAAH	2AAH	555H	E	BA
Block Erase	Data	6	AA	ΛH	55	БH	80	ЭН	AA	Н	55	5H	30	ОН
Block Erase	Addr		XX	XH										
Suspend (4, 5)	Data	1	BC)H										
Block Erase	Addr		XX	ХН										
Resume	Data	1	30	H										
	Addr		55H	AAH										
CFI Query (6)	Data	1	98	H										

FLASH MEMORY

Notes: 1. RA : Read Address, PA : Program Address, RD : Read Data, PD : Program Data

- DA : Dual Bank Address (A20 A21), BA : Block Address (A12 A21), X = Don't care .
- 2. To terminate the Autoselect Mode, it is necessary to write Reset command to the register.
- 3. The 4th cycle data of Autoselect mode is output data.
- The 3rd and 4th cycle bank addresses of Autoselect mode must be same.
 The Read / Program operations at non-erasing blocks and the autoselect mode are allowed in the Erase Suspend mode.
 The Erase Suspend command is applicable only to the Block Erase operation.
- 6. Command is valid when the device is in read mode or Autoselect mode.
- 7. DQ8 DQ15 are don't care in command sequence, but RD and PD is excluded.
- 8. A11 A21 are also don't care, except for the case of special notice.

Table 9. K8D6316U Autoselect Codes, (High Voltage Method)

Description	CE	OE	WE	A21 to A12	A11 to A10	A9	A8 to A7	A6	A5 to A2	A1	A0	DQ8 to BYTE =ViH	DQ15 BYTE =VIL	DQ7 to DQ0
Manufacturer ID	L	L	н	DA	х	Vid	Х	L	Х	L	L	Х	Х	ECH
Device Code K8D6316UT (Top Boot Block)	L	L	Н	DA	х	Vid	х	L	х	L	н	22H	х	E0H
Device Code K8D6316UB (Bottom Boot Block)	L	L	Н	DA	х	Vid	х	L	х	L	н	22H	х	E2H
Block Protection Verification	L	L	н	BA	х	Vid	х	L	х	н	L	Х	х	01H (Protected), 00H (Unprotected)
Secode Block (2) Indicator Bit (DQ7)	L	L	Н	DA	х	Vid	х	L	х	Н	Н	х	х	80H (Factory locked), 00H (Not factory locked)

Notes: 1. L=Logic Low=VIL, H=Logic High=VIH, DA=Dual Bank Address, BA=Block Address, X=Don't care. 2. Secode Block : Security Code Block.

DEVICE OPERATION

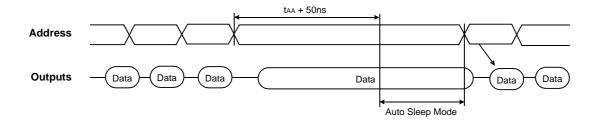
Byte/Word Mode

If the BYTE pin is set at logical "1", the device is in word mode, DQ0-DQ15 are active. Otherwise the BYTE pin is set at logical "0", the device is in byte mode, DQ0-DQ7 are active. DQ8-DQ14 are in the High-Z state and DQ15 pin is used as an input for the LSB (A-1) address pin.

Read Mode

The K8D6316U is controlled by Chip Enable (\overline{CE}), Output Enable (\overline{OE}) and Write Enable (\overline{WE}). When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the specified address location, will be the output of the device. The outputs are in high impedance state whenever \overline{CE} or \overline{OE} is high.

Standby Mode

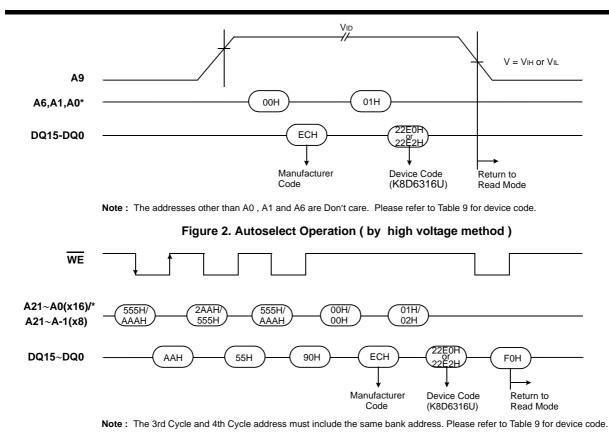

The K8D6316U features Stand-by Mode to reduce power consumption. This mode puts the device on hold when the device is deselected by making \overline{CE} high ($\overline{CE} = V_{||}$). Refer to the DC characteristics for more details on stand-by modes.

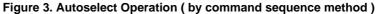
Output Disable

The device outputs are disabled when \overline{OE} is High ($\overline{OE} = V_{IH}$). The output pins are in high impedance state.

Automatic Sleep Mode

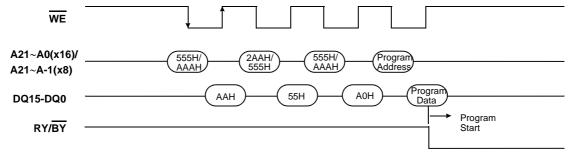
K8D6316U features Automatic Sleep Mode to minimize the device power consumption. Since the device typically draws $10\mu A$ of the current in Automatic Sleep Mode, this feature plays an extremely important role in battery-powered applications. When addresses remain steady for taa+50ns, the device automatically activates the Automatic Sleep Mode. In the sleep mode, output data is latched and always available to the system. When addresses are changed, the device provides new data without wait time.




Autoselect Mode

The K8D6316U offers the Autoselect Mode to identify manufacturer and device type by reading a binary code. The Autoselect Mode allows programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. In addition, this mode allows the verification of the status of write protected blocks. This mode is used by two method. The one is high voltage method to be required V_{ID} (8.5V~12.5V) on address pin A9. When A9 is held at V_{ID} and the bank address or block address is asserted, the device outputs the valid data via DQ pins(see Table 9 and Figure 2). The rest of addresses except A0, A1 and A6 are Don't Care. The other is autoselect command method that the autoselect code is accessible by the command sequence without V_{ID} . The manufacturer and device code may also be read via the command register. The Command Sequence is shown in Table 8 and Figure 3. The autoselect operation of block protect verification is initiated by first writing two unlock cycle. The third cycle must contain the bank address and autoselect command (90H). If Block address while (A6, A1, A0) = (0,1,0) is finally asserted on the address pin, it will produce a logical "1" at the device output DQ0 to indicate a write protected block or a logical "0" at the device output DQ0 to indicate a write unprotected block. To terminate the autoselect operation, write Reset command (F0H) into the command register.

FLASH MEMORY


Write (Program/Erase) Mode

The K8D6316U executes its program/erase operations by writing commands into the command register. In order to write the commands to the register, \overline{CE} and \overline{WE} must be low and \overline{OE} must be high. Addresses are latched on the falling edge of \overline{CE} or \overline{WE} (whichever occurs last) and the data are latched on the rising edge of \overline{CE} or \overline{WE} (whichever occurs first). The device uses standard microprocessor write timing.

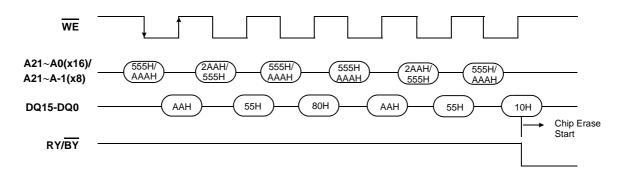
Program

The K8D6316U can be programmed in units of a word or a byte. Programming is writing 0's into the memory array by executing the Internal Program Routine. In order to perform the Internal Program Routine, a four-cycle command sequence is necessary. The first two cycles are unlock cycles. The third cycle is assigned for the program setup command. In the last cycle, the address of the memory location and the data to be programmed at that location are written. The device automatically generates adequate program pulses and verifies the programmed cell margin by the Internal Program Routine. During the execution of the Routine, the system is not required to provide further controls or timings.

During the Internal Program Routine, commands written to the device will be ignored. Note that a hardware reset during a program operation will cause data corruption at the corresponding location.

FLASH MEMORY

Unlock Bypass

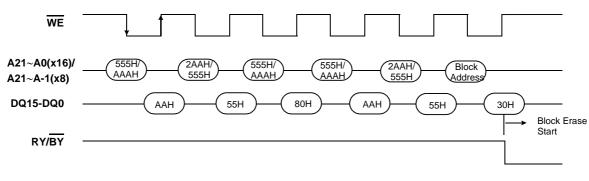

The K8D6316U provides the unlock bypass mode to save its program time for program operation. The mode is invoked by the unlock bypass command sequence. Then, the unlock bypass program command sequence is required to program the device. Unlike the standard program command sequence that contains four bus cycles, the unlock bypass program command sequence comprises only two bus cycles.

The unlock bypass mode is engaged by issuing the unlock bypass command sequence which is comprised of three bus cycles. Writing first two unlock cycles is followed by a third cycle containing the unlock bypass command (20H). Once the device is in the unlock bypass mode, the unlock bypass program command sequence is necessary to program in this mode. The unlock bypass program command sequence is comprised of only two bus cycles; writing the unlock bypass program command (A0H) is followed by the program address and data. This command sequence is the only valid one for programming the device in the unlock bypass mode.

The unlock bypass reset command sequence is the only valid command sequence to exit the unlock bypass mode. The unlock bypass reset command sequence consists of two bus cycles. The first cycle must contain the data (90H). The second cycle contains only the data (00H). Then, the device returns to the read mode.

Chip Erase

To erase a chip is to write 1's into the entire memory array by executing the Internal Erase Routine. The Chip Erase requires six bus cycles to write the command sequence. The erase set-up command is written after first two "unlock" cycles. Then, there are two more write cycles prior to writing the chip erase command. The Internal Erase Routine automatically pre-programs and verifies the entire memory for an all zero data pattern prior to erasing. The automatic erase begins on the rising edge of the last \overline{WE} or \overline{CE} pulse in the command sequence and terminates when DQ7 is "1". After that the device returns to the read mode.



Block Erase

To erase a block is to write 1's into the desired memory block by executing the Internal Erase Routine. The Block Erase requires six bus cycles to write the command sequence shown in Table 8. After the first two "unlock" cycles, the erase setup command (80H) is written at the third cycle. Then there are two more "unlock" cycles followed by the Block Erase command. The Internal Erase Routine automatically pre-programs and verifies the entire memory prior to erasing it. The block address is latched on the falling edge of \overline{WE} or \overline{CE} , while the Block Erase command is latched on the rising edge of \overline{WE} or \overline{CE} .

Multiple blocks can be erased sequentially by writing the six bus-cycle operation in Figure 6. Upon completion of the last cycle for the Block Erase, additional block address and the Block Erase command (30H) can be written to perform the Multi-Block Erase. An 50µs (typical) "time window" is required between the Block Erase command writes. The Block Erase command must be written within the 50µs "time window", otherwise the Block Erase command will be ignored. The 50µs "time window" is reset when the falling edge of the WE occurs within the 50µs of "time window" to latch the Block Erase command. During the 50µs of "time window", any command other than the Block Erase or the Erase Suspend command written to the device will reset the device to read mode. After the 50µs of "time window", the Block Erase command will initiate the Internal Erase Routine to erase the selected blocks. Any Block Erase address and command following the exceeded "time window" may or may not be accepted. No other commands will be recognized except the Erase Suspend command during Block Erase operation.

Erase Suspend / Resume

The Erase Suspend command interrupts the Block Erase to read or program data in a block that is not being erased. The Erase Suspend command is only valid during the Block Erase operation including the time window of 50µs. The Erase Suspend command is not valid while the Chip Erase or the Internal Program Routine sequence is running.

When the Erase Suspend command is written during a Block Erase operation, the device requires a maximum of $20\mu s$ to suspend the erase operation. But, when the Erase Suspend command is written during the block erase time window ($50\mu s$), the device immediately terminates the block erase time window and suspends the erase operation.

After the erase operation has been suspended, the device is available for reading or programming data in a block that is not being erased. The system may also write the autoselect command sequence when the device is in the Erase Suspend mode.

When the Erase Resume command is executed, the Block Erase operation will resume. When the Erase Suspend or Erase Resume command is executed, the addresses are in Don't Care state.

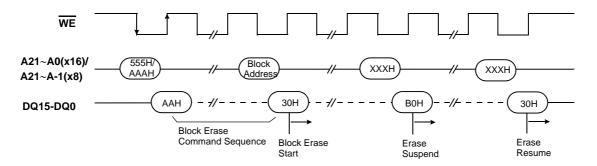


Figure 7. Erase Suspend/Resume Command Sequence

Read While Write

The K8D6316U provides dual bank memory architecture that divides the memory array into two banks. The device is capable of reading data from one bank and writing data to the other bank simultaneously. This is so called the Read While Write operation with dual bank architecture; this feature provides the capability of executing the read operation during Program/Erase or Erase-Suspend-Program operation.

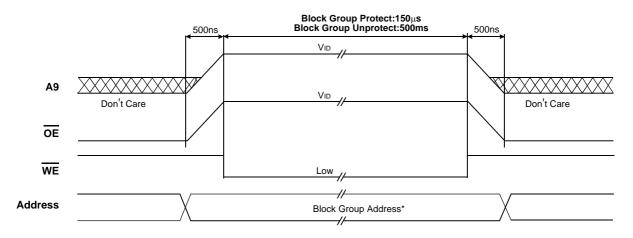
The Read While Write operation is prohibited during the chip erase operation. It is also allowed during erase operation when either single block or multiple blocks from same bank are loaded to be erased. It means that the Read While Write operation is prohibited when blocks from Bank1 and another blocks from Bank2 are loaded all together for the multi-block erase operation.

Block Group Protection & Unprotection

The K8D6316U feature hardware block group protection. This feature will disable both program and erase operations in any combination of forty one block groups of memory. Please refer to Tables 10 and 11. The block group protection feature is enabled using programming equipment at the user's site. The device is shipped with all block groups unprotected.

This feature can be hardware protected or unprotected. If a block is protected, program or erase command in the protected block will be ignored by the device. The protected block can only be read. This is useful method to preserve an important program data. The block group unprotection allows the protected blocks to be erased or programed. All blocks must be protected before unprotect operation is executing. The block group protection and unprotection can be implemented by two methods.

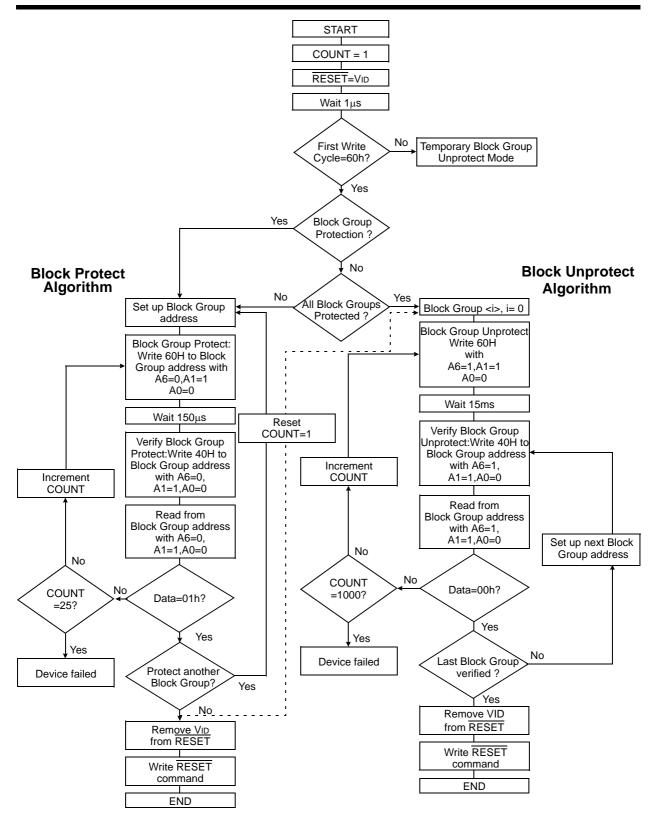
The first method needs the following conditions.


Operation	CE	OE	WE	BYTE	A9	A6	A1	A0	DQ15/ A-1	DQ8/ DQ14	DQ0/ DQ7	RESET
Block Group Protect	L	Н	L	Х	Х	L	Н	L	Х	Х	Din	Vid
Block Group Unprotect	L	Н	L	Х	Х	Н	Н	L	Х	Х	Din	Vid

Address must be inputted to the block group address (A12~A21) during block group protection operation. Please refer to Figure 9 (Algorithm) and Switching Waveforms of Block Group Protect & Unprotect Operations.

The second method needs the following conditions in order to keep backward compatibility. Please refer to Figure 8.

Operation	CE	OE	WE	BYTE	A9	A6	A1	A0	DQ15/ A-1	DQ8/ DQ14	DQ0/ DQ7	RESET
Block Group Protect	L	Vid		Х	Vid	L	н	L	Х	Х	Х	н
Block Group Unprotect	L	Vid		Х	Vid	н	н	L	Х	Х	Х	н


The K8D6316U needs the recovery time (20 μ s) from the rising edge of \overline{WE} in order to execute its program, erase and read operations.

Notes: * Block Group Address is Don't Care during Block Group Unprotection.

Figure 8. Block Group Protect Sequence (The second method)

Note : All blocks must be protected before unprotect operation is executing.

Figure 9. Block Group Protection & Unprotection Algorithms

FLASH MEMORY

Table 10. Block Group Address (Top Boot Block)

					Block A	ddress					Di si
Block Group	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	Block
BGA0	0	0	0	0	0	0	0	х	х	х	BA0
						0	1				
BGA1	0	0	0	0	0	1	0	х	х	х	BA1 to BA3
						1	1				
BGA2	0	0	0	0	1	х	Х	х	Х	Х	BA4 to BA7
BGA3	0	0	0	1	0	х	Х	х	х	х	BA8 to BA11
BGA4	0	0	0	1	1	х	Х	х	х	х	BA12 to BA15
BGA5	0	0	1	0	0	Х	Х	Х	Х	Х	BA16 to BA19
BGA6	0	0	1	0	1	х	х	х	х	х	BA20 to BA23
BGA7	0	0	1	1	0	х	х	х	х	х	BA24 to BA27
BGA8	0	0	1	1	1	х	Х	х	х	х	BA28 to BA31
BGA9	0	1	0	0	0	Х	Х	Х	Х	Х	BA32 to BA35
BGA10	0	1	0	0	1	Х	Х	Х	Х	Х	BA36 to BA39
BGA11	0	1	0	1	0	Х	Х	х	Х	х	BA40 to BA43
BGA12	0	1	0	1	1	Х	Х	х	Х	х	BA44 to BA47
BGA13	0	1	1	0	0	х	Х	х	х	х	BA48 to BA51
BGA14	0	1	1	0	1	х	Х	х	х	х	BA52 to BA55
BGA15	0	1	1	1	0	х	Х	х	х	х	BA56 to BA59
BGA16	0	1	1	1	1	х	Х	х	х	х	BA60 to BA63
BGA17	1	0	0	0	0	х	х	х	х	х	BA64 to BA67
BGA18	1	0	0	0	1	х	х	х	х	х	BA68 to BA71
BGA19	1	0	0	1	0	х	х	х	х	х	BA72 to BA75
BGA20	1	0	0	1	1	х	Х	х	х	х	BA76 to BA79
BGA21	1	0	1	0	0	х	Х	х	х	х	BA80 to BA83
BGA22	1	0	1	0	1	х	Х	х	х	х	BA84 to BA87
BGA23	1	0	1	1	0	х	Х	х	х	Х	BA88 to BA91
BGA24	1	0	1	1	1	х	Х	х	х	х	BA92 to BA95
BGA25	1	1	0	0	0	х	Х	х	х	х	BA96 to BA99
BGA26	1	1	0	0	1	х	Х	х	Х	Х	BA100 to BA103
BGA27	1	1	0	1	0	х	Х	х	х	х	BA104 to BA107
BGA28	1	1	0	1	1	х	Х	х	х	х	BA108 to BA111
BGA29	1	1	1	0	0	Х	Х	х	Х	х	BA112 to BA115
BGA30	1	1	1	0	1	Х	х	х	Х	х	BA116 to BA119
BGA31	1	1	1	1	0	Х	Х	Х	Х	Х	BA120 to BA123
						0	0				D 4404
BGA32	1	1	1	1	1	0	1	x	Х	х	BA124 to BA126
						1	0				
BGA33	1	1	1	1	1	1	1	0	0	0	BA127
BGA34	1	1	1	1	1	1	1	0	0	1	BA128
BGA35	1	1	1	1	1	1	1	0	1	0	BA129
BGA36	1	1	1	1	1	1	1	0	1	1	BA130
BGA37	1	1	1	1	1	1	1	1	0	0	BA131
BGA38	1	1	1	1	1	1	1	1	0	1	BA132
BGA39	1	1	1	1	1	1	1	1	1	0	BA133
BGA40	1	1	1	1	1	1	1	1	1	1	BA134

FLASH MEMORY

Table 11. Block Group Address (Bottom Boot Block)

Table 11. BIO			-			Address					
Block Group	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	Block
BGA0	0	0	0	0	0	0	0	0	0	0	BA0
BGA1	0	0	0	0	0	0	0	0	0	1	BA1
BGA2	0	0	0	0	0	0	0	0	1	0	BA2
BGA3	0	0	0	0	0	0	0	0	1	1	BA3
BGA4	0	0	0	0	0	0	0	1	0	0	BA4
BGA5	0	0	0	0	0	0	0	1	0	1	BA5
BGA6	0	0	0	0	0	0	0	1	1	0	BA6
BGA7	0	0	0	0	0	0	0	1	1	1	BA7
						0	1				
BGA8	0	0	0	0	0	1	0	х	х	х	BA8 to BA10
						1	1				
BGA9	0	0	0	0	1	х	Х	х	х	Х	BA11 to BA14
BGA10	0	0	0	1	0	х	х	х	х	Х	BA15 to BA18
BGA11	0	0	0	1	1	х	х	х	х	Х	BA19 to BA22
BGA12	0	0	1	0	0	х	Х	х	х	Х	BA23 to BA26
BGA13	0	0	1	0	1	х	х	х	х	Х	BA27 to BA30
BGA14	0	0	1	1	0	х	х	х	х	Х	BA31 to BA34
BGA15	0	0	1	1	1	х	х	х	х	Х	BA35 to BA38
BGA16	0	1	0	0	0	х	х	х	х	Х	BA39 to BA42
BGA17	0	1	0	0	1	х	х	х	х	Х	BA43 to BA46
BGA18	0	1	0	1	0	х	х	х	х	Х	BA47 to BA50
BGA19	0	1	0	1	1	х	х	Х	Х	Х	BA51 to BA54
BGA20	0	1	1	0	0	х	х	х	Х	Х	BA55 to BA58
BGA21	0	1	1	0	1	Х	х	Х	Х	Х	BA59 to BA62
BGA22	0	1	1	1	0	х	х	х	х	Х	BA63 to BA66
BGA23	0	1	1	1	1	х	Х	х	х	Х	BA67 to BA70
BGA24	1	0	0	0	0	х	х	х	х	Х	BA71 to BA74
BGA25	1	0	0	0	1	Х	х	Х	Х	Х	BA75 to BA78
BGA26	1	0	0	1	0	х	х	х	х	Х	BA79 to BA82
BGA27	1	0	0	1	1	х	х	х	х	Х	BA83 to BA86
BGA28	1	0	1	0	0	х	х	х	х	х	BA87to BA90
BGA29	1	0	1	0	1	х	х	х	Х	х	BA91 to BA94
BGA30	1	0	1	1	0	х	х	Х	Х	х	BA95 to BA98
BGA31	1	0	1	1	1	x	x	X	x	X	BA99 to BA102
		1	0		0	x	x		X		BA103 to BA102
BGA32	1			0				X		X	
BGA33	1	1	0	0	1	X	X	X	X	X	BA107 to BA110
BGA34	1	1	0	1	0	Х	Х	Х	Х	Х	BA111 to BA114
BGA35	1	1	0	1	1	Х	Х	Х	Х	Х	BA115 to BA118
BGA36	1	1	1	0	0	Х	Х	Х	Х	х	BA119 to BA122
BGA37	1	1	1	0	1	Х	Х	Х	Х	х	BA123 to BA126
BGA38	1	1	1	1	0	Х	Х	Х	Х	х	BA127 to BA130
						0	0				
BGA39	1	1	1	1	1	0	1	х	х	х	BA131 to BA133
						1	0	1			
BGA40	1	1	1	1	1	1	1	Х	х	х	BA134

Temporary Block Group Unprotect

The protected blocks of the K8D6316U can be temporarily unprotected by applying high voltage ($V_{ID} = 8.5V \sim 12.5V$) to the RESET pin. In this mode, previously protected blocks can be programmed or erased with the program or erase command routines. When the RESET pin goes high (RESET = V_{IH}), all the previously protected blocks will be protected again. If the WP/ACC pin is asserted at VIL , the two outermost boot blocks remain protected.

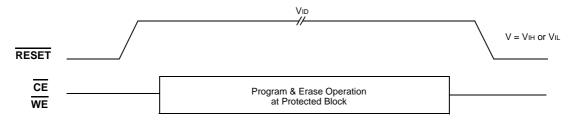


Figure 10. Temporary Block Group Unprotect Sequence

Write Protect (WP)

The \overline{WP} /ACC pin has two useful functions. The one is that certain boot block is protected by the hardware method not to use VID. The other is that program operation is accelerated to reduce the program time (Refer to Accelerated program Operation Paragraph). When the \overline{WP} /ACC pin is asserted at VIL, the device can not perform program and erase operation in the two "outermost" 8K byte boot blocks independently of whether those blocks were protected or unprotected using the method described in "Block Group protection/Unprotection".

The write protected blocks can only be read. This is useful method to preserve an important program data.

The two outermost 8K byte boot blocks are the two blocks containing the lowest addresses in a bottom-boot-configured device, or the two blocks containing the highest addresses in a top-boot-configured device.

(K8D6316UT : BA133 and BA134, K8D6316UB : BA0 and BA1)

When the WP/ACC pin is asserted at VIH, the device reverts to whether the two outermost 8K byte boot blocks were last set to be protected or unprotected. That is, block protection or unprotection for these two blocks depends on whether they were last protected or unprotected using the method described in "Block Group protection/unprotection".

Recommend that the WP/ACC pin must not be in the state of floating or unconnected, or the device may be led to malfunction.

Secode(Security Code) Block Region

The Secode Block feature provides a Flash memory region to be stored unique and permanent identification code, that is, Electronic Serial Number (ESN), customer code and so on. This is primarily intended for customers who wish to use an Electronic Serial Number (ESN) in the device with the ESN protected against modification. Once the Secode Block region is protected, any further modification of that region is impossible. This ensures the security of the ESN once the product is shipped to the field.

The Secode Block is factory locked or customer lockable. Before the device is shipped, the factory locked Secode Block is written on the special code and it is protected. The Secode Indicator bit (DQ7) is permanently fixed at "1" and it is not changed. The customer lockable Secode Block is unprotected, therefore it is programmed and erased. The Secode Indicator bit (DQ7) of it is permanently fixed at "0" and it is not changed. but Once it is protected, there is no procedure to unprotect and modify the Secode Block.

The Secode Block region is 64K bytes in length and is accessed through a new command sequence (see Table 8). After the system has written the Enter Secode Block command sequence, the system may read the Secode Block region by using the same addresses of the boot blocks (8KBx8). The K8D6316UT occupies the address of the byte mode 7F0000H to 7FFFFFH (word mode 3F8000H to 3FFFFFH) and the K8D6316UB type occupies the address of the byte mode 000000H to 00FFFFH (word mode 000000H to 007FFFH). This mode of operation continues until the system issues the Exit Secode Block command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to read mode.

Accelerated Program Operation

Accelerated program operation reduces the program time. This is one of two functions provided by the \overline{WP}/ACC pin. When the \overline{WP}/ACC pin is asserted as VHH, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotecting any protected blocks, and reduces the program operation time. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the \overline{WP}/ACC pin returns the device to normal operation. Recommend that the \overline{WP}/ACC pin must not be asserted at VHH except accelerated program operation, or the device may be damaged. In addition, the \overline{WP}/ACC pin must not be in the state of floating or unconnected, otherwise the device may be led to malfunction.

Software Reset

The reset command provides that the bank is reseted to read mode or erase-suspend-read mode. The addresses are in Don't Care state. The reset command is valid between the sequence cycles in an erase command sequence before erasing begins, or in a program command sequence before programming begins. This resets the bank in which was operating to read mode. If the device is be erasing or programming, the reset command is invalid until the operation is completed. Also, the reset command is valid between the sequence cycles in an autoselect command sequence. In the autoselect mode, the reset command returns the bank to read mode. If a bank entered the autoselect mode in the Erase Suspend mode, the reset command returns the bank to erase-suspend-read mode. If DQ5 is high on erase or program operation, the reset command return the bank to read mode or erase-suspend-read mode if the bank was in the Erase Suspend state.

Hardware Reset

The K8D6316U offers a reset feature by driving the $\overrightarrow{\text{RESET}}$ pin to V_L. The $\overrightarrow{\text{RESET}}$ pin must be kept low (V_L) for at least 500ns. When the $\overrightarrow{\text{RESET}}$ pin is driven low, any operation in progress will be terminated and the internal state machine will be reset to the standby mode after 20µs. If a hardware reset occurs during a program operation, the data at that particular location will be lost. Once the $\overrightarrow{\text{RESET}}$ pin is taken high, the device requires 200ns of wake-up time until outputs are valid for read access. Also, note that all the data output pins are tri-stated for the duration of the $\overrightarrow{\text{RESET}}$ pulse.

The RESET pin may be tied to the system reset pin. If a system reset occurs during the Internal Program and Erase Routine, the device will be automatically reset to the read mode; this will enable the systems microprocessor to read the boot-up firmware from the Flash memory.

Power-up Protection

To avoid initiation of a write cycle during Vcc Power-up, RESET low must be asserted during power-up. After RESET goes high, the device is reset to the read mode.

Low Vcc Write Inhibit

To avoid initiation of a write cycle during Vcc power-up and power-down, a write cycle is locked out for Vcc less than 1.8V. If Vcc < V_{LKO} (Lock-Out Voltage), the command register and all internal program/erase circuits are disabled. Under this condition the device will reset itself to the read mode. Subsequent writes will be ignored until the Vcc level is greater than VLKO. It is the user's responsibility to ensure that the control pins are logically correct to prevent unintentional writes when Vcc is above 1.8V.

Write Pulse Glitch Protection

Noise pulses of less than 5ns(typical) on CE, OE, or WE will not initiate a write cycle.

Logical Inhibit

Writing is inhibited under any one of the following conditions : $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IH}$ or $\overline{WE} = V_{IH}$. To initiate a write, \overline{CE} and \overline{WE} must be "0", while \overline{OE} is "1".

Commom Flash Memory Interface

Common Flash Momory Interface is contrived to increase the compatibility of host system software. It provides the specific information of the device, such as memory size, byte/word configuration, and electrical features. Once this information has been obtained, the system software will know which command sets to use to enable flash writes, block erases, and control the flash component. When the system writes the CFI command(98H) to address 55H in word mode(or address AAH in byte mode), the device enters the CFI mode. And then if the system writes the address shown in Table 12, the system can read the CFI data. Query data are always presented on the lowest-order data outputs(DQ0-7) only. In word(x16) mode, the upper data outputs(DQ8-15) is 00h. To terminate this operation, the system must write the reset command.

FLASH MEMORY

Table 12. Common Flash Memory Interface Code

Description	Addresses (Word Mode)	Addresses (Byte Mode)	Data
	10H	20H	0051H
Query Unique ASCII string "QRY"	11H 12H	22H 24H	0052H 0059H
	12H	2411 26H	0003H
Primary OEM Command Set	14H	28H	0000211 0000H
Address for Drimony Extended Table	15H	2AH	0040H
Address for Primary Extended Table	16H	2CH	0000H
Alternate OEM Command Set (00h = none exists)	17H 18H	2EH 30H	0000H 0000H
Address for Alternate OEM Extended Table (00h = none exists)	19H 1AH	32H 34H	0000H 0000H
Vcc Min. (write/erase) D7-D4: volt, D3-D0: 100 millivolt	1BH	36H	0027H
Vcc Max. (write/erase) D7-D4: volt, D3-D0: 100 millivolt	1CH	38H	0036H
Vpp Min. voltage(00H = no Vpp pin present)	1DH	ЗАН	0000H
Vpp Max. voltage(00H = no Vpp pin present)	1EH	ЗСН	0000H
Typical timeout per single byte/word write 2 [№] us	1FH	3EH	0004H
Typical timeout for Min. size buffer write 2 ^N us(00H = not supported)	20H	40H	0000H
Typical timeout per individual block erase 2 ^N ms	21H	42H	000AH
Typical timeout for full chip erase 2 ^N ms(00H = not supported)	22H	44H	0000H
Max. timeout for byte/word write 2 ^N times typical	23H	46H	0005H
Max. timeout for buffer write 2 ^N times typical	24H	48H	0000H
Max. timeout per individual block erase 2 ^N times typical	25H	4AH	0004H
Max. timeout for full chip erase 2 ^N times typical(00H = not supported)	26H	4CH	0000H
Device Size = 2 ^N byte	27H	4EH	0017H
Flash Device Interface description	28H 29H	50H 52H	0002H 0000H
	2AH	54H	0000H
Max. number of byte in multi-byte write = 2^{N}	2BH	56H	0000H
Number of Erase Block Regions within device	2CH	58H	0002H
	2DH	5AH	0007H
Erase Block Region 1 Information	2EH 2FH	5CH 5EH	0000H 0020H
	30H	60H	0000H
Erase Block Region 2 Information	31H 32H 33H 34H	62H 64H 66H 68H	007EH 0000H 0000H 0001H
Erase Block Region 3 Information	35H 36H 37H 38H	6AH 6CH 6EH 70H	0000H 0000H 0000H 0000H
Erase Block Region 4 Information	39H 3AH 3BH 3CH	72H 74H 76H 78H	0000H 0000H 0000H 0000H

FLASH MEMORY

Table 12. Common Flash Memory Interface Code

Description	Addresses (Word Mode)	Addresses (Byte Mode)	Data
Query-unique ASCII string "PRI"	40H 41H 42H	80H 82H 84H	0050H 0052H 0049H
Major version number, ASCII	43H	86H	0030H
Minor version number, ASCII	44H	88H	0030H
Address Sensitive Unlock(Bits 1-0) 0 = Required, 1= Not Required Silcon Revision Number(Bits 7-2)	45H	8AH	0000H
Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write	46H	8CH	0002H
Block Protect 0 = Not Supported, 1 = Supported	47H	8EH	0001H
Block Temporary Unprotect 00 = Not Supported, 01 = Supported	48H	90H	0001H
Block Protect/Unprotect scheme 04 = K8D1x16U mode	49H	92H	0004H
Simultaneous Operation (1) 00 = Not Supported, XX = Number of Blocks in Bank2	4AH	94H	00XXH
Burst Mode Type 00 = Not Supported, 01 = Supported	4BH	96H	0000H
Page Mode Type 00=Not supported, 01=4word page, 02=8word page	4CH	98H	0000H
ACC(Acceleration) Supply Minimum 00 = Not Supported, D7 - D4 : Volt, D3 - D0 : 100mV	4DH	9AH	0085H
ACC(Acceleration) Supply Maximum 00 = Not Supported, D7 - D4 : Volt, D3 - D0 : 100mV	4EH	9CH	00C5H
Top/Bottom Boot Block Flag 02H = Bottom Boot , 03H = Top Boot	4FH	9EH	000XH

Note : 1. The number of blocks in Bank2 is device dependent. K8D6316U(16Mb/48Mb) = 60h (96blocks)

DEVICE STATUS FLAGS

The K8D6316U has means to indicate its status of operation in the bank where a program or erase operation is in processes. Address must include bank address being excuted internal routine operation. The status is indicated by raising the device status flag via corresponding DQ pins or the RY/ BY pin. The corresponding DQ pins are DQ7, DQ6, DQ5, DQ3 and DQ2. The statuses are as follows :

Table 13. Hardware Sequence Flags

	Stat	us	DQ7	DQ6	DQ5	DQ3	DQ2	RY/BY
	Programming		DQ7	Toggle	0	0	1	0
	Block Erase or Chip Era	se	0	Toggle	0	1	Toggle	0
In Progress	Erase Suspend Read	Erase Suspended Block	1	1	0	0	Toggle (Note 1)	1
	Erase Suspend Read	Non-Erase Sus- pended Block	Data	Data	Data	Data	Data	1
	Erase Suspend Program	Non-Erase Sus- pended Block	DQ7	Toggle	0	0	1	0
	Programming		DQ7	Toggle	1	0	No Toggle	0
Exceeded Time Limits	Block Erase or Chip Era	se	0	Toggle	1	1	(Note 2)	0
	Erase Suspend Program	1	DQ7	Toggle	1	0	No Toggle	0

Notes :

1. DQ2 will toggle when the device performs successive read operations from the erase suspended block.

2. If DQ5 is High (exceeded timing limits), successive reads from a problem block will cause DQ2 to toggle.

DQ7 : Data Polling

When an attempt to read the device is made while executing the Internal Program, the complement of the data is written to DQ7 as an indication of the Routine in progress. When the Routine is completed an attempt to access to the device will produce the true data written to DQ7. When a user attempts to read the device during the Erase operation, DQ7 will be low. If the device is placed in the Erase Suspend Mode, the status can be detected via the DQ7 pin. If the system tries to read an address which belongs to a block that is being erased, DQ7 will be high. If a non-erased block address is read, the device will produce the true data to DQ7. If an attempt is made to program a protected block, DQ7 outputs complements the data for approximately 1µs and the device then returns to the Read Mode without changing data in the block. If an attempt is made to erase a protected block, DQ7 outputs complement data in approximately 100us and the device then returns to the Read Mode without erasing the data in the block.

DQ6 : Toggle Bit

Toggle bit is another option to detect whether an Internal Routine is in progress or completed. Once the device is at a busy state, DQ6 will toggle. Toggling DQ6 will stop after the device completes its Internal Routine. If the device is in the Erase Suspend Mode, an attempt to read an address that belongs to a block that is being erased will produce a high output of DQ6. If an address belongs to a block that is not being erased, toggling is halted and valid data is produced at DQ6.

If an attempt is made to program a protected block, DQ6 toggles for approximately 1us and the device then returns to the Read Mode without changing the data in the block. If an attempt is made to erase a protected block, DQ6 toggles for approximately $100\mu s$ and the device then returns to the Read Mode without erasing the data in the block.

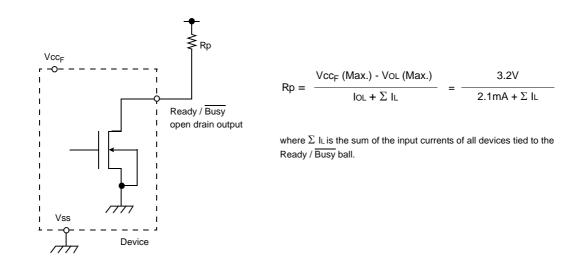
DQ5 : Exceed Timing Limits

If the Internal Program/Erase Routine extends beyond the timing limits, DQ5 will go High, indicating program/erase failure.

FLASH MEMORY

DQ3 : Block Erase Timer

The status of the multi-block erase operation can be detected via the DQ3 pin. DQ3 will go High if 50µs of the block erase time window expires. In this case, the Internal Erase Routine will initiate the erase operation. Therefore, the device will not accept further write commands until the erase operation is completed. DQ3 is Low if the block erase time window is not expired. Within the block erase time window, an additional block erase command (30H) can be accepted. To confirm that the block erase command has been accepted, the software may check the status of DQ3 following each block erase command.


DQ2 : Toggle Bit 2

The device generates a toggling pulse in DQ2 only if an Internal Erase Routine or an Erase Suspend is in progress. When the device executes the Internal Erase Routine, DQ2 toggles only if an erasing block is read. Although the Internal Erase Routine is in the Exceeded Time Limits, DQ2 toggles only if an erasing block in the Exceeded Time Limits is read. When the device is in the Erase Suspend mode, DQ2 toggles only if an address in the erasing block is read. If a non-erasing block address is read during the Erase Suspend mode, then DQ2 will produce valid data. DQ2 will go High if the user tries to program a non-erase suspend block while the device is in the Erase Suspend mode. Combination of the status in DQ6 and DQ2 can be used to distinguish the erase operation from the program operation.

RY/BY : Ready/Busy

The K8D6316U has a Ready / Busy output that indicates either the completion of an operation or the status of Internal Algorithms. If the output is Low, the device is busy with either a program or an erase operation. If the output is High, the device is ready to accept any read/write or erase operation. When the RY/ \overline{BY} pin is low, the device will not accept any additional program or erase commands with the exception of the Erase Suspend command. If the K8D6316U is placed in an Erase Suspend mode, the RY/ \overline{BY} output will be High. For programming, the RY/ \overline{BY} is valid (RY/ $\overline{BY} = 0$) after the rising edge of the fourth \overline{WE} pulse in the four write pulse sequence. For Chip Erase, RY/ \overline{BY} is also valid after the rising edge of \overline{WE} pulse in the six write pulse sequence. For Block Erase, RY/ \overline{BY} is also valid after the rising edge of the sixth \overline{WE} pulse.

The pin is an open drain output, allowing two or more Ready/Busy outputs to be OR-tied. An appropriate pull-up resistor is required for proper operation.

FLASH MEMORY

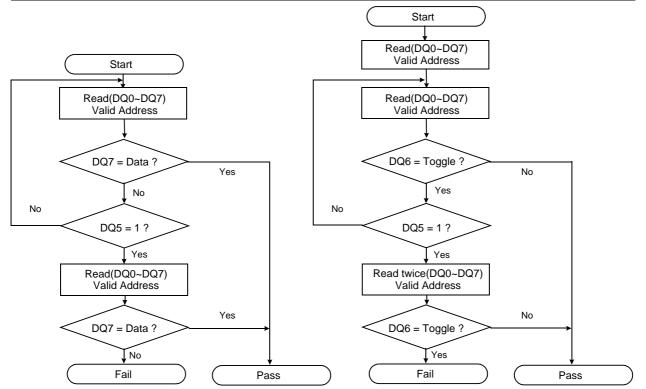



Figure 11. Data Polling Algorithms

Figure 12. Toggle Bit Algorithms

Notes :

1. All protected block groups are unprotected.

(If $\overline{WP}/ACC = VIL$, the two outermost boot blocks remain protected)

2. All previously protected block groups are protected once again.

Figure 13. Temporary Block Group Unprotect Routine

FLASH MEMORY

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Rating	Unit
	Vcc	Vcc	-0.5 to +4.0	
Voltage en envirin relative to Vec	A9, OE , RESET		-0.5 to +12.5	v
Voltage on any pin relative to Vss	WP/ACC	Vin	-0.5 to +12.5	
	All Other Pins		-0.5 to +4.0	
Temperature Under Bias	Commercial	Tbias	-10 to +125	°C
Temperature Onder Dias	Industrial	I blas	-40 to +125	C
Storage Temperature		Tstg	-65 to +150	°C
Short Circuit Output Current		los	5	mA
On exercise Temperature		TA (Commercial Temp.)	0 to +70	°C
Operating Temperature		TA (Industrial Temp.)	-40 to + 85	°C

Notes :

Notes :
 Minimum DC voltage is -0.5V on Input/ Output pins. During transitions, this level may fall to -2.0V for periods <20ns. Maximum DC voltage on input / output pins is Vcc+0.5V which, during transitions, may overshoot to Vcc+2.0V for periods <20ns.
 Minimum DC voltage is -0.5V on A9, OE, RESET and WP/ACC pins. During transitions, this level may fall to -2.0V for periods <20ns.
 Minimum DC voltage is -0.5V on A9, OE, RESET and WP/ACC pins. During transitions, this level may fall to -2.0V for periods <20ns.
 Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to Vss)

Parameter	Symbol	Min	Тур.	Max	Unit
Supply Voltage	Vcc	2.7	3.0	3.6	V
Supply Voltage	Vss	0	0	0	V

DC CHARACTERISTICS

Parameter	Symbol	Test Conditions	i	Min	Тур	Max	Unit
Input Leakage Current	١LI	VIN=VSS to VCC, VCC=VCCma	ах	- 1.0	-	+ 1.0	μA
A9, OE, RESET Input Leakage Current	Ilit	Vcc=Vccmax, A9, OE, RESE	<u>Γ</u> =12.5V	-	-	35	μA
WP/ACC Input Leakage Current	LIW	VCC=VCCmax, WP/ACC=12.5	5V	-	-	35	μA
Output Leakage Current	Ilo	VOUT=Vss to Vcc,Vcc=Vccr	nax, <mark>OE</mark> =VIH	- 1.0	-	+ 1.0	μA
Active Deed Current (1)	log1		5MHz	-	14	20	~ ^
Active Read Current (1)	Icc1		1MHz	-	3	6	mA
Active Write Current (2)	lcc2	CE=VIL, OE=VIH, WE=VIL		-	15	30	mA
Read While Program Current (3)	Icc3	CE=VIL, OE=VIH	•		25	50	mA
Read While Erase Current (3)	lcc4	CE=VIL, OE=VIH		-	25	50	mA
Program While Erase Suspend Current	Icc5	CE=VIL, OE=VIH		-	15	35	mA
ACC Accelerated Program	IACC		ACC Pin	-	5	10	~ ^
Current	TACC		Vcc Pin	-	15	30	mA
Standby Current	ISB1	Vcc=Vccmax, CE, RESET=V WP/ACC= Vcc± 0.3V or Vs		-	10	30	μA
Standby Current During Reset	ISB2	Vcc=Vccmax, RESET=Vss WP/ACC=Vcc± 0.3V or Vss	,	-	10	30	μA
Automatic Sleep Mode	ISB3	VIH=Vcc±0.3V, VIL=Vss±0.3 OE=VIL, IOL=IOH=0	SV,	-	10	30	μA
Input Low Level	VIL			-0.5	-	0.8	V
Input High Level	Vін			0.7xVcc	-	Vcc+0.3	V
Voltage for $\overline{\text{WP}}/\text{ACC}$ Block Temporarily Unprotect and Program Acceleration (4)	Vнн	$Vcc = 3.0V \pm 0.3V$		8.5	-	12.5	V

FLASH MEMORY

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Voltage for Autoselect and Block Protect (4)	Vid	$Vcc = 3.0V \pm 0.3V$	8.5	-	12.5	V
Output Low Level	Vol	IOL=100µA, VCC=VCCmin	-	-	0.4	V
Output High Level	Vон	IOH=-100μA, Vcc = VcCmin	Vcc-0.4	-	-	V
Low Vcc Lock-out Voltage (5)	Vlko		1.8	-	2.5	V

Notes :

1. The Icc current listed includes both the DC operating current and the frequency dependent component(at 5 MHz).

The read current is typically 14 mA (@ VCC=3.0V , OE at VIH.)

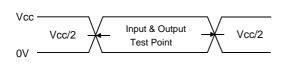
2. Icc active during Internal Routine(program or erase) is in progress.

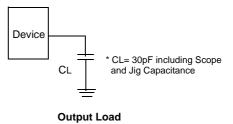
3. Icc active during Read while Write is in progress.

4. The high voltage (VHH or VID) must be used in the range of Vcc = 3.0V \pm 0.3V

5. Not 100% tested.

6. Typical value are measured at Vcc = 3.0V,T_A= $25^{\circ}C$, Not 100% tested.


CAPACITANCE(TA = 25 °C, Vcc = 3.3V, f = 1.0MHz)


Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	Cin	VIN=0V	-	10	pF
Output Capacitance	Соит	Vout=0V	-	10	pF
Control Pin Capacitance	CIN2	VIN=0V	-	10	pF

Note : Capacitance is periodically sampled and not 100% tested.

AC TEST CONDITION

Parameter	Value
Input Pulse Levels	0V to Vcc
Input Rise and Fall Times	5ns
Input and Output Timing Levels	Vcc/2
Output Load	CL = 30pF

Input Pulse and Test Point

AC CHARACTERISTICS

Read Operations

	Symbol	Vcc=2.7V~3.6V						
Parameter		-7		-8		-9		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time (1)	tRC	70	-	80	-	90	-	ns
Address Access Time	taa	-	70	-	80	-	90	ns
Chip Enable Access Time	tCE	-	70	-	80	-	90	ns
Output Enable Time	tOE	-	25	-	25	-	35	ns
CE & OE Disable Time (1)	tDF	-	16	-	16	-	16	ns
Output Hold Time from Address, \overline{CE} or \overline{OE} (1)	tон	0	-	0	-	0	-	ns
Note : 1. Not 100% tested.	l		1	1	1	1		1

ELECTRONICS

Revision 1.5

March 2005

FLASH MEMORY

AC CHARACTERISTICS Write(Erase/Program)Operations Alternate WE Controlled Write

<table-container>FormalSymbolImage<th></th><th></th><th></th><th></th><th></th><th></th><th>Vcc=2.7</th><th>V~3.6V</th><th></th><th></th><th></th></table-container>							Vcc=2.7	V~3.6V			
$ \begin{aligned} & \ \ \ \ \ \ \ \ \ \ \ \ \$		Parameter		Symbol	-	7	-	·8	-	9	Unit
$ \begin{array}{ c c c c c c } \mbox{Address Setup Time} & \begin{tabular}{ c c c c c c } \mbox{Address Hold Time} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					Min	Max	Min	Max	Min	Max	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Write Cycle Tin	me (1)		twc	70	-	80	-	90	-	ns
$ \begin{array}{ c c c c c } \ Iterational functional f$	Address Satur	Timo		tAS	0	-	0	-	0	-	ns
Address Hold Time tatr 0	Address Setup	Time		taso	55	-	55	-	55	-	ns
Instruction	Address Hold	Timo		tан	45	-	45	-	45	-	ns
Data Hold Time tbH 0 - 0 - 0 - ns Output Enable Setup Time (1) toEs 0 - 0 - 0 - ns Output Enable Setup Time (1) toEH1 0 - 0 - 0 - ns Output Enable Setup Time (1) toEH1 0 - 0 - 0 - ns Fogle and Data Polling (1) toEH2 10 - 0 - 0 - ns CE Setup Time tCE 0 - 0 - 0 - ns Virte Pulse Width tWP 35 - 35 - 45 - ns Write Pulse Width High tWP 35 - 25 - 30 - ns Programming Operation Word tProM 14(typ.) 14(typ.) 9(typ.) 9(typ.) 9(typ.) 9(typ.) 9(typ.) 9(typ.) 9(typ.) </td <td>Address Hold</td> <td>lille</td> <td></td> <td>tAHT</td> <td>0</td> <td>-</td> <td>0</td> <td>-</td> <td>0</td> <td>-</td> <td>ns</td>	Address Hold	lille		t AHT	0	-	0	-	0	-	ns
$ \begin{array}{ c c c c c } \hline Output Enable Setup Time (1) & toes 1 & 0 & - & 0 & - & 0 & - & ns \\ \hline Output Enable $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Data Setup Tim	ne		tDS	35	-	35	-	45	-	ns
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Data Hold Time	e		tDH	0	-	0	-	0	-	ns
	Output Enable	Setup Time (1)		tOES	0	-	0	-	0	-	ns
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Read (1)		tOEH1	0	-	0	-	0	-	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Toggle and Data	Polling (1)	tOEH2	10	-	10	-	10	-	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CE Setup Time	9		tcs	0	-	0	-	0	-	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CE Hold Time			tсн	0	-	0	-	0	-	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Write Pulse Wi	dth		tWP	35	-	35	-	45	-	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Write Pulse Wi	dth High		tWPH	25	-	25	-	30	-	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Programming (Operation	Word	tpou	14(typ.)	14(typ.)	14(typ.)	μS
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Frogramming C	operation	Byte	- IPGM	9(t	yp.)	9(t	yp.)	9(t	yp.)	μS
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Accelerated Pr	ogramming	Word	taccpcM	9(t	yp.)	9(t	yp.)	9(t	yp.)	μS
Vcc Set Up Time tvcs 50 - 50 - μs Write Recovery Time from RY/BY tRB 0 - 0 - 0 - ns RESET High Time Before Read tRH 50 - 50 - 0 - ns RESET to Power Down Time tRPD 20 - 20 - 20 - 10 - μs Program/Erase Valid to RY/BY Delay tBUSY 90 - 90 - 90 - ns VID Rising and Falling Time tVID 500 - 500 - 500 - ns RESET Pulse Width tRP 500 - 500 - 20 - 20 μs RESET Low to RY/BY High tRRB - 20 - 20 - 20 μs RESET Setup Time for Temporary Unprotect tRsP 1 - 1 - μs RESET Low Setup Time tRsTs	Operation		Byte	IACCEGINI	7(t	yp.)	7(t	yp.)	7(t	yp.)	μS
Write Recovery Time from RY/BY tRB 0 - 0 - 0 - 0 - ns RESET High Time Before Read tRH 50 - 50 - ns RESET to Power Down Time tRPD 20 - 20 - 20 - μs Program/Erase Valid to RY/BY Delay tBUSY 90 - 90 - 90 - ns Vib Rising and Falling Time tViD 500 - 500 - 500 - ns RESET Pulse Width tRP 500 - 500 - 500 - ns RESET Low to RY/BY High tRRB - 20 - 20 - 20 μs RESET Setup Time for Temporary Unprotect tRsP 1 - 1 - μs RESET Low Setup Time tRsTs 500 - 500 - 500 - ns RESET High to Address Valid tRSTW <td>Block Erase Op</td> <td>peration (2)</td> <td></td> <td>tBERS</td> <td>0.7(</td> <td>typ.)</td> <td>0.7(</td> <td>(typ.)</td> <td>0.7(</td> <td>typ.)</td> <td>sec</td>	Block Erase Op	peration (2)		t BERS	0.7(typ.)	0.7((typ.)	0.7(typ.)	sec
RESET High Time Before Readtrl50-50-50-nsRESET to Power Down TimetRPD20-20-20-µsProgram/Erase Valid to RY/BY DelaytBUSY90-90-90-nsVib Rising and Falling TimetVID500-500-500-nsRESET Pulse WidthtRP500-500-500-nsRESET Low to RY/BY HightRRB-20-20-20µsRESET Setup Time for Temporary UnprotecttRSP1-1-1µsRESET Low Setup TimetrRSTw200-500-500-nsRESET High to Address ValidtRSTw200-200-200-nsRead Recovery Time Before WritetGHWL0-0-0-nsCE High during toggling bit pollingtCEPH20-20-20-ns	Vcc Set Up Tin	ne		tvcs	50	-	50	-	50	-	μS
RESET to Power Down Time tRPD 20 - 20 - 20 - μs Program/Erase Valid to RY/BY Delay tBUSY 90 - 90 - 90 - 90 - ns Vid Rising and Falling Time tVID 500 - 500 - 500 - ns RESET Pulse Width tRP 500 - 500 - 500 - ns RESET Low to RY/BY High tRRB - 20 - 20 - 20 μs RESET Setup Time for Temporary Unprotect tRsP 1 - 1 - 1 - μs RESET Low Setup Time tRsTs 500 - 500 - ns RESET Low Setup Time tRsTw 200 - 200 - 1 - 1 - ms RESET High to Address Valid ttRsTw 200 - 200 - 00 - ns <td>Write Recovery</td> <td>/ Time from RY/</td> <td>BY</td> <td>trв</td> <td>0</td> <td>-</td> <td>0</td> <td>-</td> <td>0</td> <td>-</td> <td>ns</td>	Write Recovery	/ Time from RY/	BY	trв	0	-	0	-	0	-	ns
Program/Erase Valid to RY/BY Delay tBUSY 90 - 90 - 90 - ns VID Rising and Falling Time tVID 500 - 500 - 500 - ns RESET Pulse Width tRP 500 - 500 - 500 - ns RESET Low to RY/BY High tRP 500 - 20 - 20 - 20 - 20 μs RESET Low to RY/BY High tRRB - 20 - 1 - 1 - μs RESET Setup Time for Temporary Unprotect tRSP 1 - 1 - 1 - μs RESET Low Setup Time tRSTs 500 - 500 - 500 - ns RESET High to Address Valid tRSTw 200 - 200 - 200 - ns Read Recovery Time Before Write tGHWL 0 - 0 - 0	RESET High T	ime Before Rea	d	trн	50	-	50	-	50	-	ns
Vib Rising and Falling Time tvib 500 - 500 - 500 - ns RESET Pulse Width tRP 500 - 500 - 500 - ns RESET Pulse Width tRP 500 - 500 - 500 - ns RESET Low to RY/BY High tRRB - 20 - 20 - 20 μs RESET Setup Time for Temporary Unprotect tRsP 1 - 1 - 1 - μs RESET Low Setup Time tRsTs 500 - 500 - 500 - ns RESET High to Address Valid tRsTw 200 - 200 - ns Read Recovery Time Before Write tGHWL 0 - 0 - ns CE High during toggling bit polling tCEPH 20 - 20 - 20 - ns	RESET to Pow	ver Down Time		tRPD	20	-	20	-	20	-	μS
RESET Pulse Width trp 500 - 500 - 500 - ns RESET Pulse Width trp 500 - 500 - 500 - ns RESET Low to RY/BY High trrb trrb 20 - 20 - 20 μs RESET Setup Time for Temporary Unprotect trrb 1 - 1 - 1 - μs RESET Low Setup Time trrb 500 - 500 - 500 - ns RESET Low Setup Time trrb 500 - 500 - ns RESET High to Address Valid trrb trrb 200 - 200 - 1 ns Read Recovery Time Before Write tGHWL 0 - 0 - 0 - ns CE High during toggling bit polling tCEPH 20 - 20 - 20 - 1 -	Program/Erase	e Valid to RY/BY	Delay	t BUSY	90	-	90	-	90	-	ns
RESET Low to RY/BY HightrRB-20-20-20μsRESET Setup Time for Temporary UnprotecttRSP1-1-1-μsRESET Low Setup TimetrRSTs500-500-500-nsRESET High to Address ValidtrRSTw200-200-200-nsRead Recovery Time Before WritetGHWL0-0-0-nsCE High during toggling bit pollingtCEPH20-20-20-ns	VID Rising and	Falling Time		t∨id	500	-	500	-	500	-	ns
RESET Setup Time for Temporary Unprotecttrsp1-1-1-μsRESET Low Setup Timetrsts500-500-500-nsRESET High to Address Validtrstw200-200-200-nsRead Recovery Time Before WritetGHWL0-0-0-nsCE High during toggling bit pollingtCEPH20-20-20-ns	RESET Pulse	Width		tRP	500	-	500	-	500	-	ns
RESET Low Setup Time trsss 500 - 500 - ns RESET High to Address Valid trsstw 200 - 200 - 200 - ns Read Recovery Time Before Write tGHWL 0 - 0 - 0 - ns CE High during toggling bit polling tCEPH 20 - 20 - 20 - ns	RESET Low to	RY/BY High		trrb	-	20	-	20	-	20	μS
RESET High to Address Valid trsstw 200 - 200 - 200 - ns Read Recovery Time Before Write tGHWL 0 - 0 - 0 - ns CE High during toggling bit polling tCEPH 20 - 20 - 20 - ns	RESET Setup Time for Temporary Unprotect		tRSP	1	-	1	-	1	-	μS	
Read Recovery Time Before Write tGHWL 0 - 0 - 0 - CE High during toggling bit polling tCEPH 20 - 20 - 20 -	RESET Low Se	etup Time		trsts	500	-	500	-	500	-	ns
CE High during toggling bit polling tceph 20 - 20 - ns	RESET High to	Address Valid		trstw	200	-	200	-	200	-	ns
	Read Recovery	y Time Before W	/rite	tGHWL	0	-	0	-	0	-	ns
OE High during toggling bit polling toeph 20 - 20 - ns	CE High during	g toggling bit pol	ling	t CEPH	20	-	20	-	20	-	ns
	OE High during	g toggling bit pol	ling	toeph	20	-	20	-	20	-	ns

Notes: 1. Not 100% tested. 2. The duration of the Program or Erase operation varies and is calculated in the internal algorithms.

AC CHARACTERISTICS Write(Erase/Program)Operations Alternate CE Controlled Writes

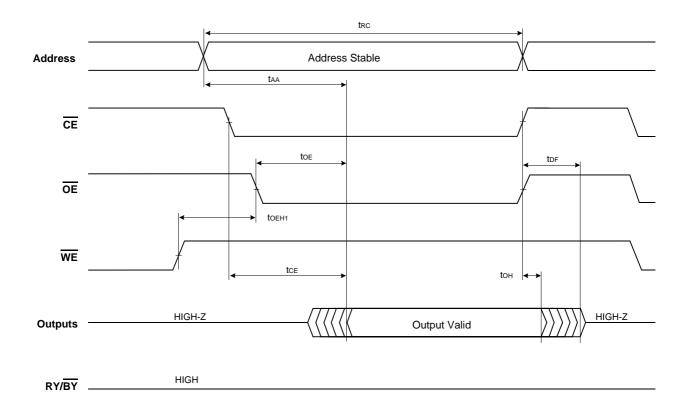
						Vcc=2.	7V~3.6V			
	Parameter		Symbol	-	7	-8		-	-9	Unit
				Min	Max	Min	Max	Min	Max	-
Write Cycle	Time (1)		twc	70	-	80	-	90	-	ns
Address Setu	ıp Time		tas	0	-	0	-	0	-	ns
Address Hold	d Time		tан	45	-	45	-	45	-	ns
Data Setup T	ïme		tDS	35	-	35	-	45	-	ns
Data Hold Tir	ne		tDH	0	-	0	-	0	-	ns
Output Enab	le Setup Time (1)	tOES	0	-	0	-	0	-	ns
Output	Read (1)		tOEH1	0	-	0	-	0	-	ns
Enable Hold Time Toggle and D	Toggle and Dat	a Polling (1)	tOEH2	10	-	10	-	10	-	ns
WE Setup Ti	me		tws	0	-	0	-	0	-	ns
WE Hold Tim	e		twн	0	-	0	-	0	-	ns
CE Pulse Wi	dth		tCP	35	-	35	-	45	-	ns
CE Pulse Wi	dth High		t CPH	25	-	25	-	30	-	ns
Drogrammin		Word	toou	14(typ.)	14(typ.)	14(typ.)	μs
Programming	g Operation	Byte	tPGM	9(t	yp.)	9(t	yp.)	9(t	yp.)	μs
Accelerated	ccelerated Programming Word		tucopou	9(t	yp.)	9(t	9(typ.)		yp.)	μs
Operation		Byte	taccpgm	7(t	yp.)	7(t	yp.)	7(typ.)		μs
Block Erase	Operation (2)	·	tBERS		0.7(typ.)		0.7(typ.)		0.7(typ.)	
BYTE Switch	ing Low to Outp	ut HIGH-Z	tFLQZ	25	-	25	-	30	-	ns

Notes: 1. Not 100% tested.

2. This does not include the preprogramming time.

ERASE AND PROGRAM PERFORMANCE

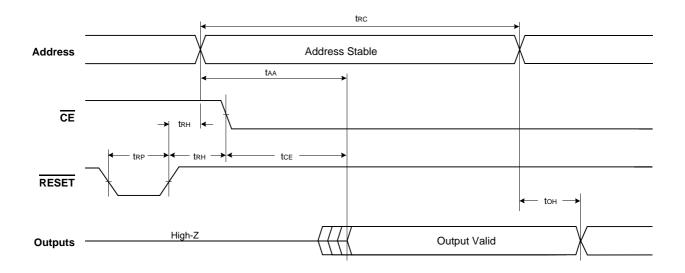
Parameter			Limits		Unit	Comments
Parameter		Min	Тур	Max	Unit	Comments
Block Erase Time		-	0.7	15	sec	Excludes 00H programming prior to erasure
Chip Erase Time		-	98	-	sec	
Word Programming Time		-	14	330	μS	Excludes system-level overhead
Byte Programming Time		-	9	210	μS	Excludes system-level overhead
Accelerated Byte/Word	Word Mode	-	9	210	μS	Excludes system-level overhead
Program Time	Byte Mode	-	7	150	μS	Excludes system-level overhead
Chin Drogromming Time	Word Mode	-	59	177	sec	Excludes system-level overhead
Chip Programming Time	Byte Mode	-	75	225	sec	Excludes system-level overhead
Erase/Program Endurance		100,000	-	-	cycles	Minimum 100,000 cycles guaran- teed


Notes : 1. 25 °C, Vcc = 3.0V 100,000 cycles, typical pattern.

2. System-level overhead is defined as the time required to execute the four bus cycle command necessary to program each byte. In the preprogramming step of the Internal Erase Routine, all bytes are programmed to 00H before erasure.

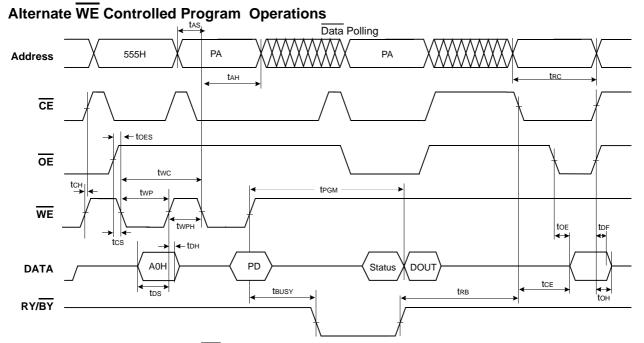
FLASH MEMORY

SWITCHING WAVEFORMS Read Operations



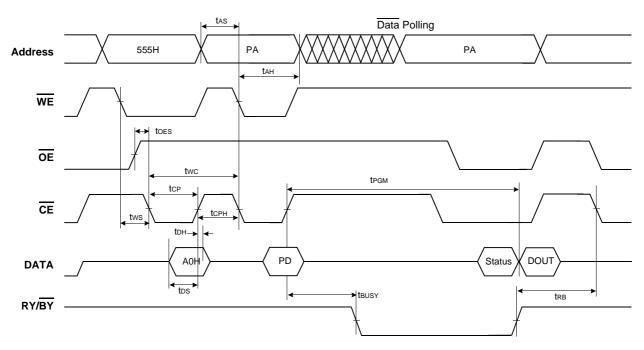
Parameter	Symbol	-7		-8		-9		Unit
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	tRC	70	-	80	-	90	-	ns
Address Access Time	taa	-	70	-	80	-	90	ns
Chip Enable Access Time	tCE	-	70	-	80	-	90	ns
Output Enable Time	tOE	-	25	-	25	-	35	ns
CE & OE Disable Time (1)	tDF	-	16	-	16	-	16	ns
Output Hold Time from Address, \overline{CE} or \overline{OE}	toн	0	-	0	-	0	-	ns
OE Hold Time	tOEH1	0	-	0	-	0	-	ns

Note: 1. Not 100% tested.


SWITCHING WAVEFORMS Hardware Reset/Read Operations

Parameter	Symbol	-7		-8		-9		Unit	
Falameter	Symbol	Min	Max	Min	Max	Min	Max	onit	
Read Cycle Time	tRC	70	-	80	-	90	-	ns	
Address Access Time	taa	-	70	-	80	-	90	ns	
Chip Enable Access Time	tCE	-	70	-	80	-	90	ns	
Output Hold Time from Address, \overline{CE} or \overline{OE}	tон	0	-	0	-	0	-	ns	
RESET Pulse Width	tRP	500	-	500	-	500	-	ns	
RESET High Time Before Read	tRН	50	-	50	-	50	-	ns	

SWITCHING WAVEFORMS


Notes: 1. DQ7 is the output of the complement of the data written to the device.
2. DOUT is the output of the data written to the device.
3. PA : Program Address, PD : Program Data
4. The illustration shows the last two cycles of the program command sequence.

Demonster		Cumula al	-	7	-:	8	-	9	l la it
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time		twc	70	-	80	-	90	-	ns
Address Setup Time		tas	0	-	0	-	0	-	ns
Address Hold Time		tан	45	-	45	-	45	-	ns
Data Setup Time		tDS	35	-	35	-	45	-	ns
Data Hold Time		tDH	0	-	0	-	0	-	ns
CE Setup Time		tcs	0	-	0	-	0	-	ns
CE Hold Time		tсн	0	-	0	-	0	-	ns
OE Setup Time		tOES	0	-	0	-	0	-	ns
Write Pulse Width		twp	35	-	35	-	45	-	ns
Write Pulse Width High		twpн	25	-	25	-	30	-	ns
Drogramming Operation	Word	1001	14(typ.)	14(t	yp.)	14(t	yp.)	us
Programming Operation	Byte	tPGM	9(t	yp.)	9(ty	/p.)	9(ty	/p.)	us
Accelerated Programming	Word	tACCPGM	9(t	yp.)	9(ty	/p.)	9(ty	/p.)	μS
Operation	Byte	LACCPGM	7(t	yp.)	7(ty	/p.)	7(ty	/p.)	μS
Read Cycle Time	·	tRC	70	-	80	-	90	-	ns
Chip Enable Access Time		tCE	-	70	-	80	-	90	ns
Output Enable Time		tOE	-	25	-	25	-	35	ns
CE & OE Disable Time		tDF	-	16	-	16	-	16	ns
Output Hold Time from Addre	ss, CE or OE	toн	0	-	0	-	0	-	ns
Program/Erase Valide to RY/E	BY Delay	t BUSY	90	-	90	-	90	-	ns
Recovery Time from RY/BY		trв	0	-	0	-	0	-	ns

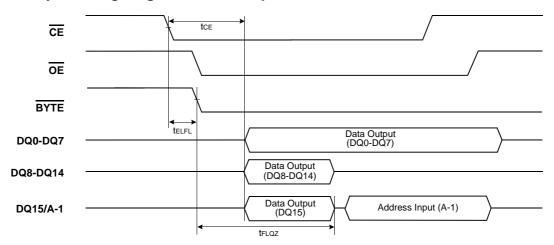
SWITCHING WAVEFORMS

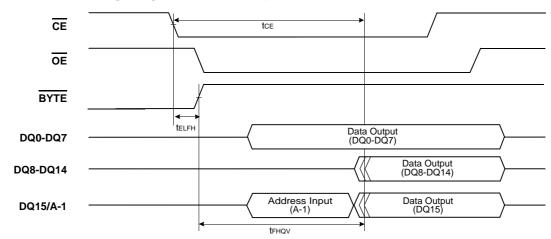
Alternate CE Controlled Program Operations

Notes : 1. DQ7 is the output of the complement of the data written to the device.

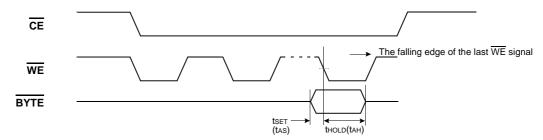
2. DOUT is the output of the data written to the device.

PA : Program Address, PD : Program Data
 The illustration shows the last two cycles of the program command sequence.

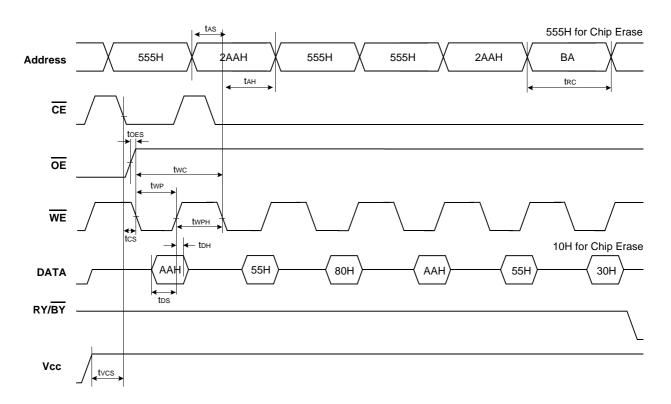

Parameter		Symbol	-	7	-	8	-9		Unit
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time		twc	70	-	80	-	90	-	ns
Address Setup Time		tas	0	-	0	-	0	-	ns
Address Hold Time		tан	45	-	45	-	45	-	ns
Data Setup Time		tDS	35	-	35	-	45	-	ns
Data Hold Time		tdн	0	-	0	-	0	-	ns
OE Setup Time		tOES	0	-	0	-	0	-	ns
WE Setup Time		tws	0	-	0	-	0	-	ns
WE Hold Time		twн	0	-	0	-	0	-	ns
CE Pulse Width		tCP	35	-	35	-	45	-	ns
CE Pulse Width High		tсрн	25	-	25	-	30	-	ns
Dragromming Operation	Word	tPGM	14(t	yp.)	14(1	typ.)	14(1	typ.)	μS
Programming Operation	Byte	LPGM	9(ty	/p.)	9(t	yp.)	9(t	yp.)	μS
Accelerated Programming	Word	- taccpgm	9(ty	/p.)	9(t	yp.)	9(t	yp.)	μS
Operation	Byte	- IACCPGM	7(ty	/p.)	7(t	yp.)	7(t	yp.)	μS
Program/Erase Valide to RY,	BY Delay	t BUSY	90	-	90	-	90	-	ns
Recovery Time from RY/BY		trв	0	-	0	-	0	-	ns


FLASH MEMORY

SWITCHING WAVEFORMS


Word to Byte Timing Diagram for Read Operation

Byte to Word Timing Diagram for Read Operation


BYTE Timing Diagram for Write Operation

Parameter	Symbol	-7	7		8	-1	9	Unit
Farameter	Symbol	Min	Max	Min	Max	Min	9 Max 90 5 30 35	Unit
Chip Enable Access Time	tCE	-	70	-	80	-	90	ns
CE to BYTE Switching Low or High	telfl/telfh	-	5	-	5	-	5	ns
BYTE Switching Low to Output HIGH-Z	tFLQZ	-	25	-	25	-	30	ns
BYTE Switching High to Output Active	t FHQV	-	25	-	25	-	35	ns

SWITCHING WAVEFORMS Chip/Block Erase Operations

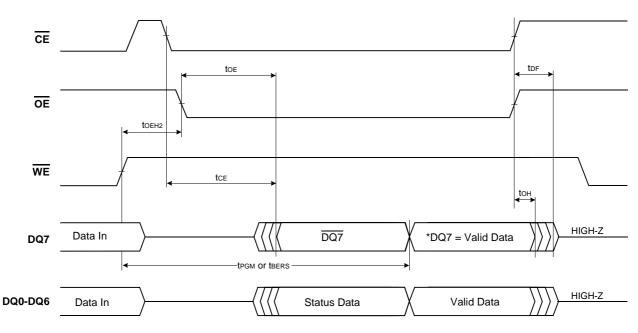
Note : BA : Block Address

Parameter	Symbol	-	7	-	8	-	9	Unit
Falameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time	twc	70	-	80	-	90	-	ns
Address Setup Time	tas	0	-	0	-	0	-	ns
Address Hold Time	tан	45	-	45	-	45	-	ns
Data Setup Time	tDS	35	-	35	-	45	-	ns
Data Hold Time	tDH	0	-	0	-	0	-	ns
OE Setup Time	tOES	0	-	0	-	0	-	ns
CE Setup Time	tcs	0	-	0	-	0	-	ns
Write Pulse Width	twp	35	-	35	-	45	-	ns
Write Pulse Width High	twpн	25	-	25	-	30	-	ns
Read Cycle Time	tRC	70	-	80	-	90	-	ns
Vcc Set Up Time	tvcs	50	-	50	-	50	-	μS

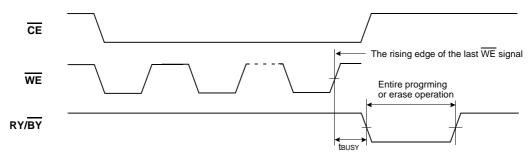
FLASH MEMORY

Read Command Read Command Read Read tRC tRC tRC twc twc tRC DA2 DA2 DA2 Address DA1 DA1 DA1 (555H) (PA) (PA) tas tas **t**AH tAA **t**AHT tCE CE toe ↔ **t**CEPH OE **t**DF toes ← toeh2 -> twp WE tdн tDF ← tɒs → • Valid Valid Valid Valid Valid DQ Status Output Output Input Input Output (A0H) (PD)

SWITCHING WAVEFORMS Read While Write Operations

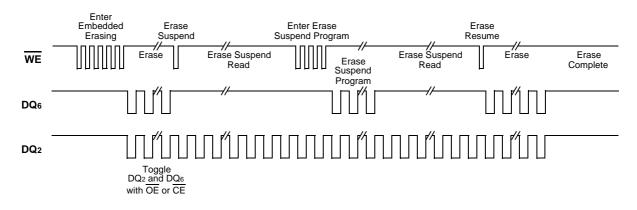

Note : This is an example in the program-case of the Read While Write function. DA1 : Address of Bank1, DA2 : Address of Bank 2 PA = Program Address at one bank , RA = Read Address at the other bank, PD = Program Data In , RD = Read Data Out

Parameter	Sumbol	-	7	-	8	-	Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time	twc	70	-	80	-	90	-	ns
Write Pulse Width	tWP	35	-	35	-	45	-	ns
Write Pulse Width High	tWPH	25	-	25	-	30	-	ns
Address Setup Time	tas	0	-	0	-	0	-	ns
Address Hold Time	tан	45	-	45	-	45	-	ns
Data Setup Time	tDS	35	-	35	-	45	-	ns
Data Hold Time	tDH	0	-	0	-	0	-	ns
Read Cycle Time	tRC	70	-	80	-	90	-	ns
Chip Enable Access Time	tCE	-	70	-	80	-	90	ns
Address Access Time	taa	-	70	-	80	-	90	ns
Output Enable Access Time	tOE	-	25	-	25	-	35	ns
OE Setup Time	tOES	0	-	0	-	0	-	ns
OE Hold Time	tOEH2	10	-	10	-	10	-	ns
CE & OE Disable Time	tDF	-	16	-	16	-	16	ns
Address Hold Time	tант	0	-	0	-	0	-	ns
CE High during toggle bit polling	t CEPH	20	-	20	-	20	-	ns


SWITCHING WAVEFORMS

Note : *DQ7=Vaild Data (The device has completed the internal operation).

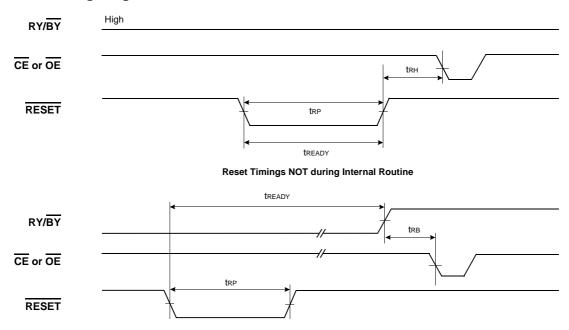
RY/BY Timing Diagram During Program/Erase Operation


Parameter	Symbol	-	7	-:	8	-	9	Unit
i arameter	Symbol	Min	Max	Min	Max	Min	Max	Onic
Program/Erase Valid to RY/BY Delay	t BUSY	90	-	90	-	90	-	ns
Chip Enable Access Time	tCE	-	70	-	80	-	90	ns
Output Enable Time	tOE	-	25	-	25	-	35	ns
CE & OE Disable Time	tDF	-	16	-	16	-	16	ns
Output Hold Time from Address, \overline{CE} or \overline{OE}	tон	0	-	0	-	0	-	ns
OE Hold Time	tOEH2	10	-	10	-	10	-	ns

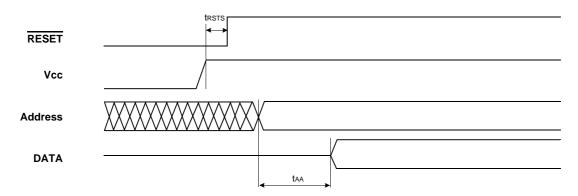
Toggle Bit During Internal Routine Operation tAHT tas Address' **t**AHT taso CE tOEH2 **t**CEPH WE toeph OE tDН tOE Status Status Status DQ6/DQ2 Data In Array Data Out Data Data Data RY/BY

SWITCHING WAVEFORMS

Note: Address for the write operation must include a bank address (A20~A21) where the data is written.


Note: DQ2 is read from the erase-suspended block.

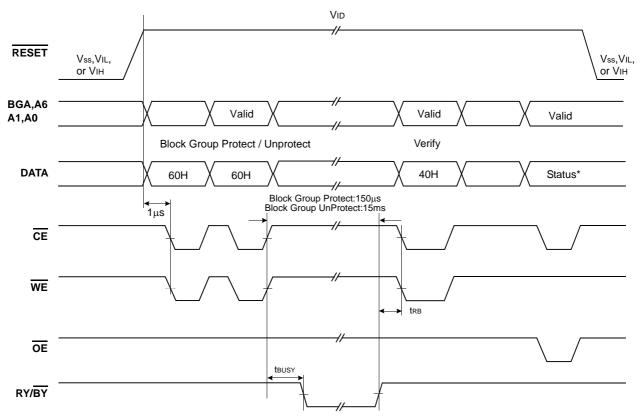
Parameter	Symbol	-7		-8		-9		Unit
Falameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Output Enable Access Time	tOE	-	25	-	25	-	35	ns
OE Hold Time	tOEH2	10	-	10	-	10	-	ns
Address Hold Time	t AHT	0	-	0	-	0	-	ns
Address Setup	taso	55	-	55	-	55	-	ns
Address Setup Time	tas	0	-	0	-	0	-	ns
Data Hold Time	tDH	0	-	0	-	0	-	ns
CE High during toggle bit polling	t CEPH	20	-	20	-	20	-	ns
OE High during toggle bit polling	t OEPH	20	-	20	-	20	-	ns


SWITCHING WAVEFORMS

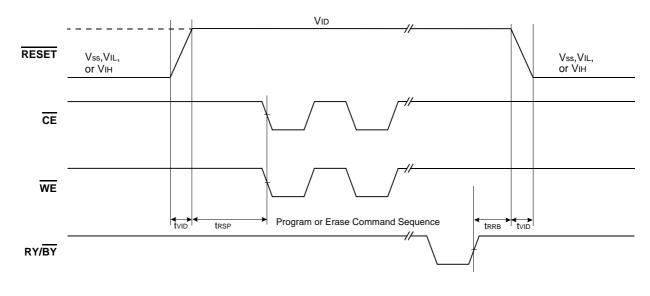
RESET Timing Diagram

Reset Timings during Internal Routine

Power-up and RESET Timing Diagram

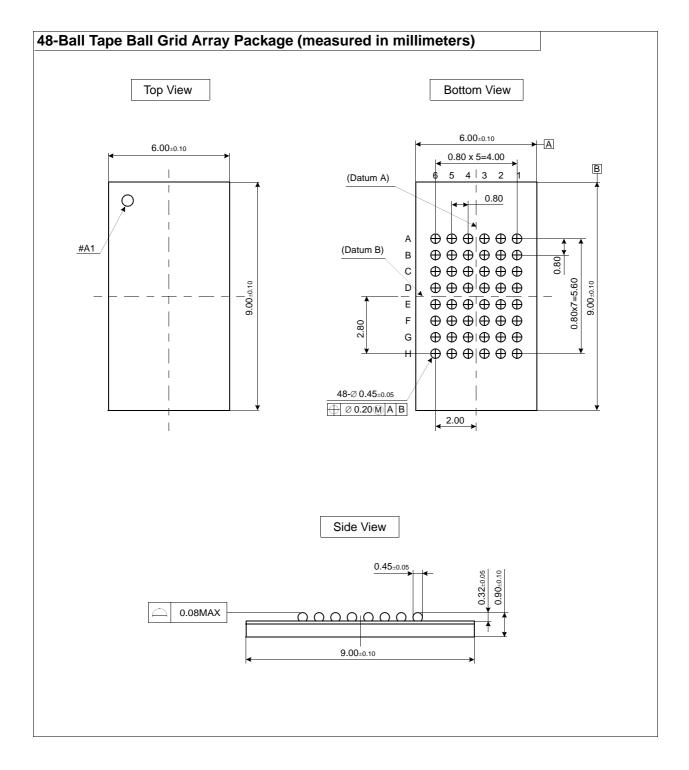


Parameter	Symbol	-	7	-	8	-	9	Unit
Faranieler	Symbol	Min	Max	Min	Max	Min	Max	Unit
RESET Pulse Width	tRP	500	-	500	-	500	-	ns
RESET Low to Valid Data (During Internal Routine)	tready	-	20	-	20	-	20	μs
RESET Low to Valid Data (Not during Internal Routine)	tready	-	500	-	500	-	500	ns
RESET High Time Before Read	tRH	50	-	50	-	50	-	ns
RY/BY Recovery Time	trв	0	-	0	-	0	-	ns
RESET High to Address Valid	trstw	200	-	200	-	200	-	ns
RESET Low Set-up Time	t RSTS	500	-	500	-	500	-	ns


FLASH MEMORY

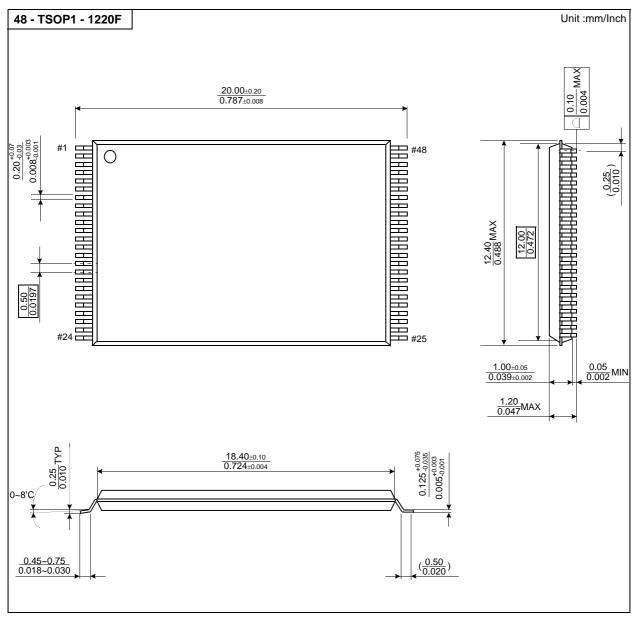
SWITCHING WAVEFORMS Block Group Protect & Unprotect Operations

Notes : Block Group Protect (A6=VIL , A1=VIH , A0=VIL) , Status=01H Block Group Unprotect (A6=VIH , A1=VIH, A0=VIL) , Status=00H BGA = Block Group Address (A12 ~ A21)


Temporary Block Group Unprotect

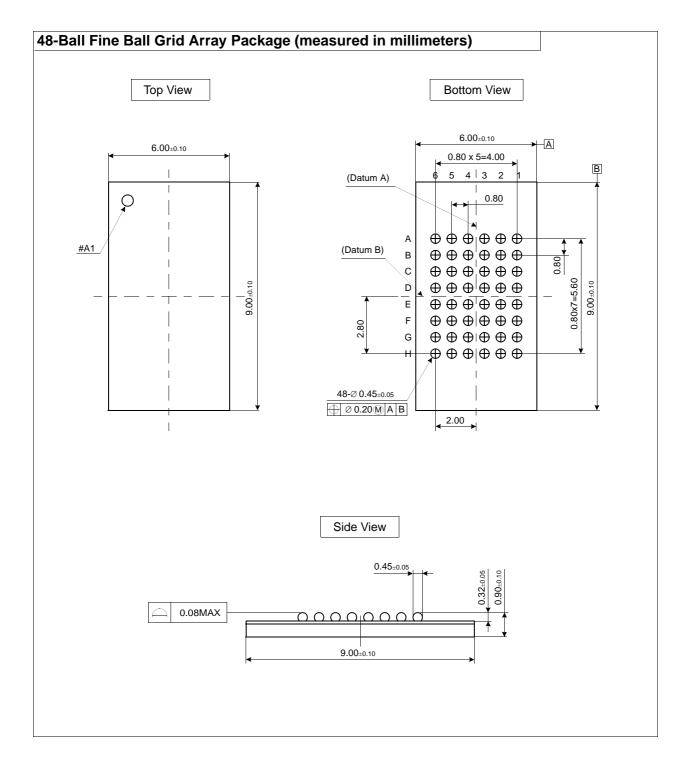
FLASH MEMORY

PACKAGE DIMENSIONS



FLASH MEMORY

PACKAGE DIMENSIONS


48-PIN LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)

FLASH MEMORY

PACKAGE DIMENSIONS

