

查询"3022A"供应商
Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS843022

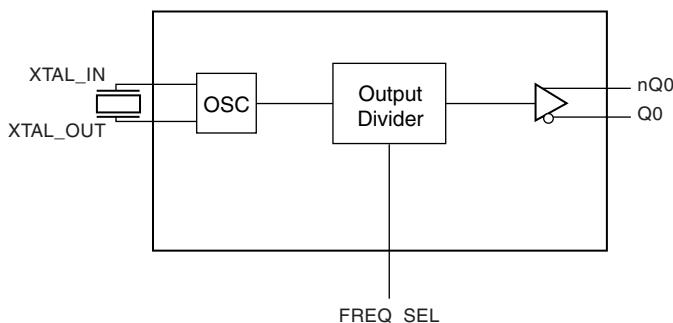
FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

GENERAL DESCRIPTION

 The ICS843022 is a Fibre Channel Clock Generator and a member of the HiPerClocks™ family of high performance devices from ICS. The ICS843022 uses a 25MHz crystal to synthesize 125MHz or 62.5MHz. The ICS843022 has excellent phase jitter performance, over the 12KHz – 20MHz integration range. The ICS843022 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

FEATURES

- 1 differential 3.3V LVPECL output
- Crystal oscillator interface designed for 25MHz, 18pF parallel resonant crystal
- Output frequencies: 125MHz or 62.5MHz (selectable)
- RMS phase jitter @ 125MHz, using a 25MHz crystal (12KHz - 20MHz): 0.62ps (typical)
- RMS phase noise at 125MHz (typical)


Offset	Noise Power
100Hz	-94.6 dBc/Hz
1KHz	-122.8 dBc/Hz
10KHz	-132.2 dBc/Hz
100KHz	-132.0 dBc/Hz

- 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- Industrial temperature information available upon request

FUNCTION TABLE

Inputs	Output Frequencies (with a 25MHz crystal)
FREQ_SEL	
0	125MHz
1	62.5MHz

BLOCK DIAGRAM

PIN ASSIGNMENT

VCCA	1	8	Vcc
VEE	2	7	Q0
XTAL_OUT	3	6	nQ0
XTAL_IN	4	5	FREQ_SEL

ICS843022
8-Lead TSSOP
4.40mm x 3.0mm x 0.925mm package body
G Package
Top View

The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type	Description			
1	V_{CCA}	Power	Analog supply pin.			
2	V_{EE}	Power	Negative supply pin.			
3, 4	XTAL_OUT, XTAL_IN	Input	Crystal oscillator interface. XTAL_in is the input, XTAL_OUT is the output.			
5	FREQ_SEL	Input	Pulldown	Frequency select pin. LVCMOS/LVTTL interface levels.		
6, 7	$nQ0, Q0$	Output		Differential clock outputs. LVPECL interface levels.		
8	V_{CC}	Power		Core supply pin.		

NOTE: *Pulldown* refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
$R_{PULLDOWN}$	Input Pulldown Resistor			51		KΩ

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC}	4.6V
Inputs, V_I	-0.5V to $V_{CC} + 0.5V$
Outputs, I_O	
Continuous Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	101.7°C/W (0 mps)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{CC}	Core Supply Voltage		3.135	3.3	3.465	V
V_{CCA}	Analog Supply Voltage		3.135	3.3	3.465	V
I_{EE}	Power Supply Current				85	mA

TABLE 3B. LVCMS/LVTTL DC CHARACTERISTICS, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		2		$V_{CC} + 0.3$	V
V_{IL}	Input Low Voltage		-0.3		0.8	V
I_{IH}	Input High Current	$FREQ_SEL$	$V_{CC} = V_{IN} = 3.465V$		150	μA
I_{IL}	Input Low Current	$FREQ_SEL$	$V_{CC} = 3.465V, V_{IN} = 0V$	-5		μA

TABLE 3C. LVPECL DC CHARACTERISTICS, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		$V_{CC} - 1.4$		$V_{CC} - 0.9$	V
V_{OL}	Output Low Voltage; NOTE 1		$V_{CC} - 2.0$		$V_{CC} - 1.7$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50Ω to $V_{CC} - 2V$.

TABLE 4. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation				Fundamental	
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

Integrated
Circuit
Systems, Inc.

PRELIMINARY

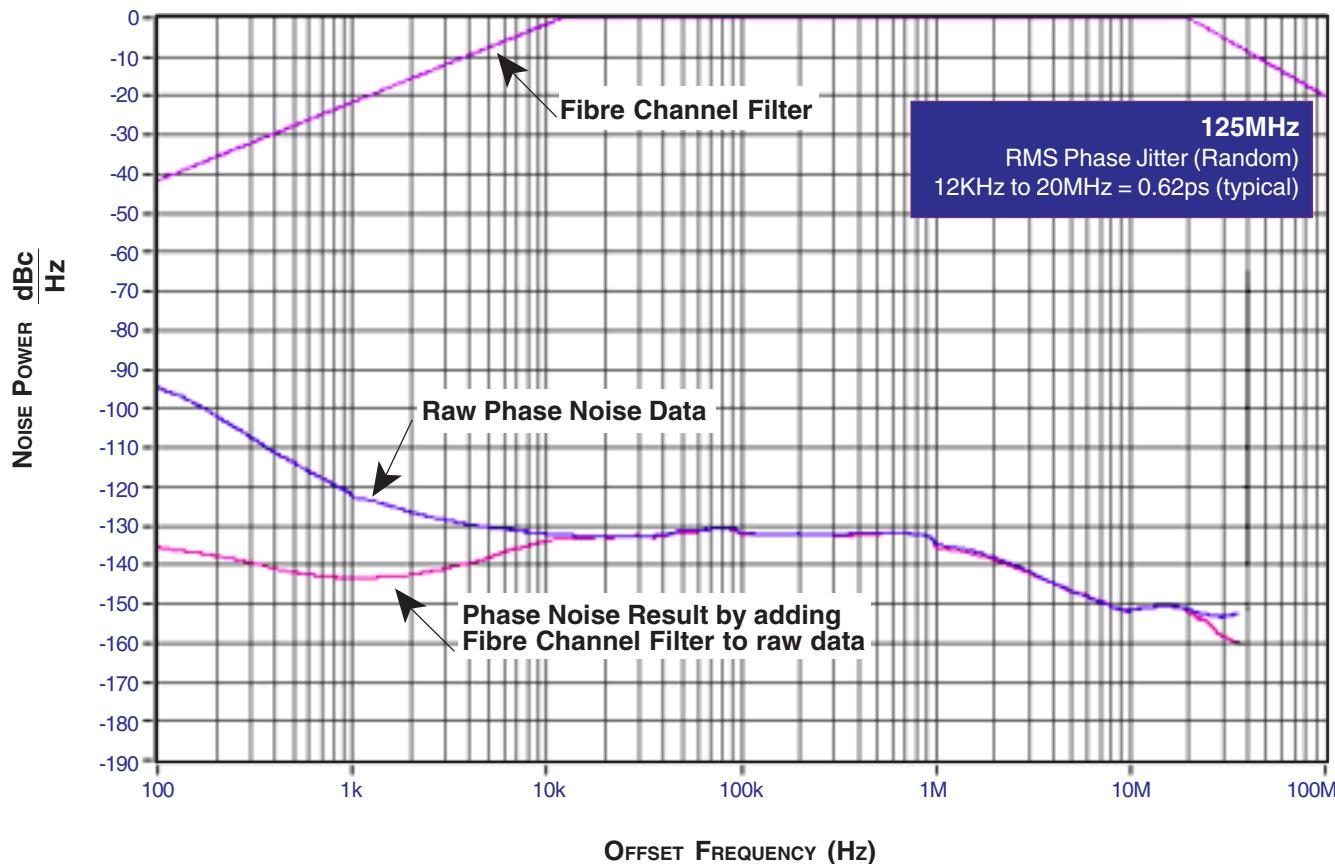
ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

TABLE 5. AC CHARACTERISTICS, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency			125		MHz
				62.5		MHz
$t_{jitter}(\emptyset)$	RMS Phase Jitter; NOTE 1	125MHz, Integration Range: 12KHz - 20MHz		0.62		ps
		62.5MHz, Integration Range: 12KHz - 20MHz		0.63		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%		400		ps
odc	Output Duty Cycle			50		%

NOTE 1: Please refer to the Phase Noise Plot.

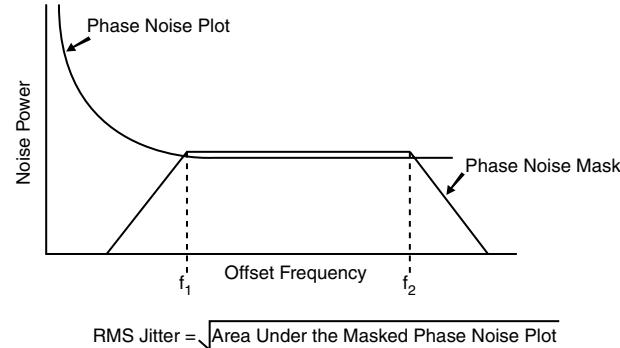
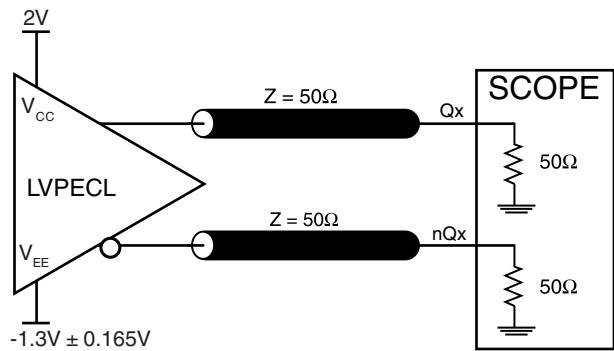

Integrated
Circuit
Systems, Inc.

PRELIMINARY

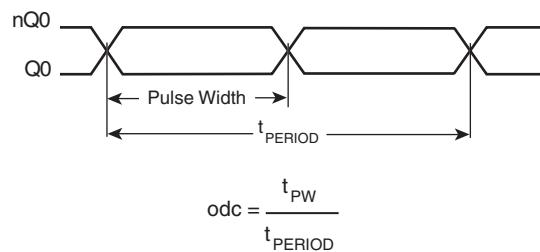
ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

TYPICAL PHASE NOISE AT 125MHz



Integrated
Circuit
Systems, Inc.

PRELIMINARY


ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

PARAMETER MEASUREMENT INFORMATION

3.3V OUTPUT LOAD AC TEST CIRCUIT

RMS PHASE JITTER

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

APPLICATION INFORMATION

POWER SUPPLY FILTERING TECHNIQUES

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS843022 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} , and V_{CCA} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. *Figure 1* illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each V_{CCA} pin.

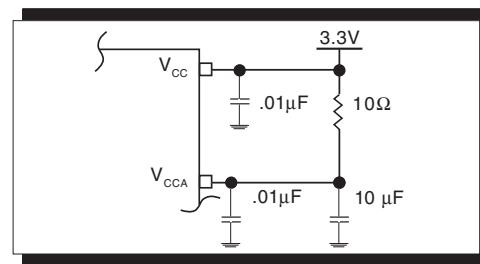


FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The ICS843022 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

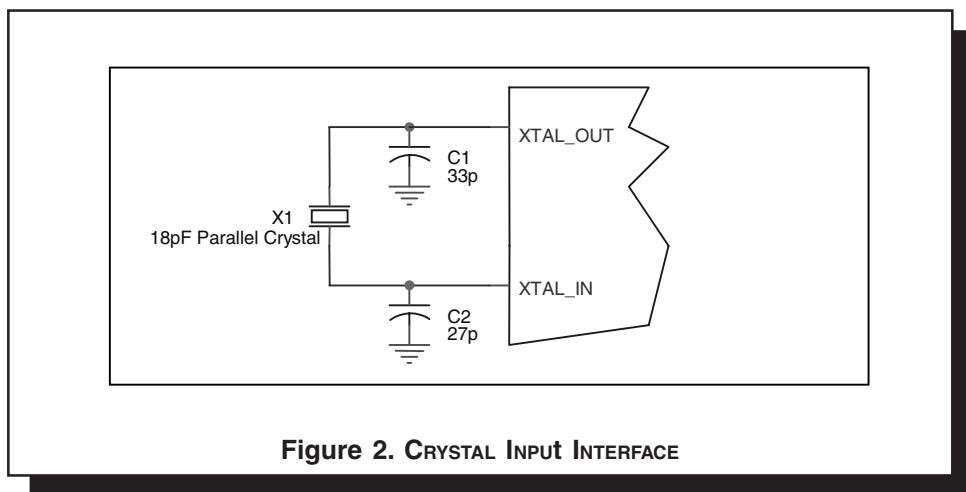


Figure 2. CRYSTAL INPUT INTERFACE

查询"3022A供商
Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

APPLICATION SCHEMATIC

Figure 3A shows a schematic example of the ICS843022. An example of LVPECL termination is shown in this schematic. Additional LVPECL termination approaches are shown in the LVPECL Termination Application Note. In this example, an 18pF parallel resonant 25MHz crystal is used for generating 125MHz

output frequency. The $C_1 = 27\text{pF}$ and $C_2 = 33\text{pF}$ are recommended for frequency accuracy. For different board layout, the C_1 and C_2 values may be slightly adjusted for optimizing frequency accuracy.

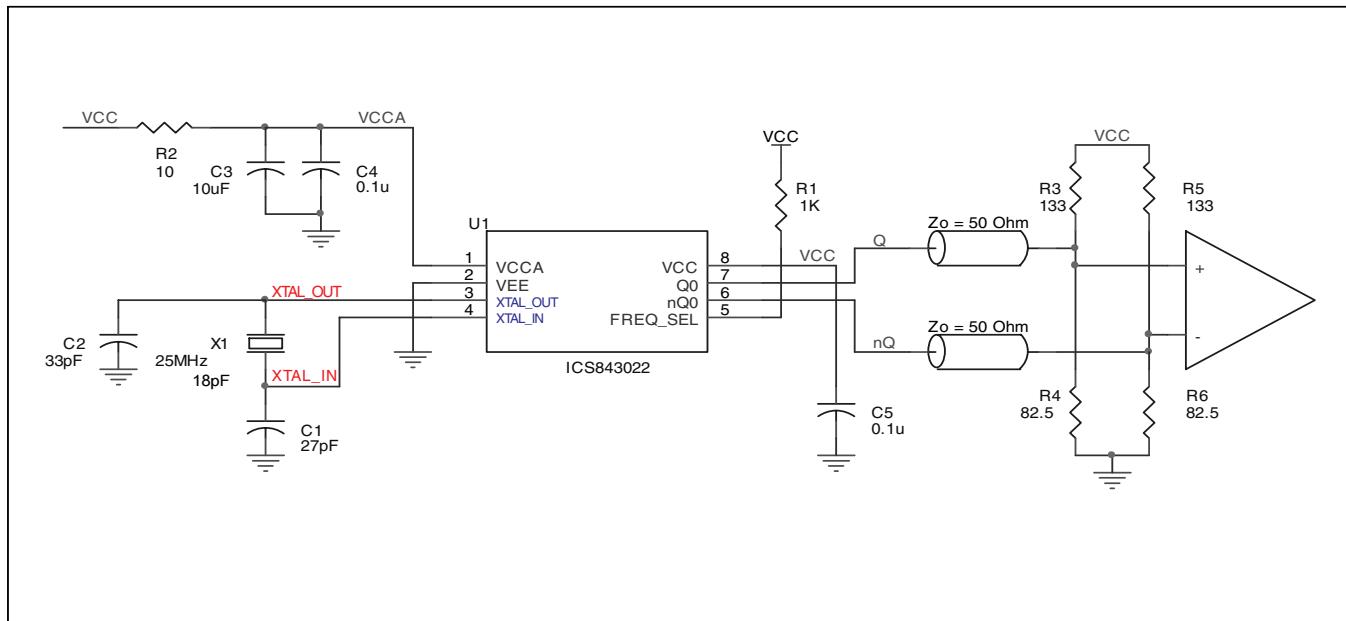


FIGURE 3A. ICS843022 SCHEMATIC EXAMPLE

PC BOARD LAYOUT EXAMPLE

Figure 3B shows an example of P.C. board layout. The crystal X1 footprint in this example allows either surface mount (HC49S) or through hole (HC49) package. C3 is 0805. C1 and C2 are

0402. Other resistors and capacitors are 0603. This layout assumes that the board has clean analog power and ground planes.



FIGURE 3B. ICS843022 PC BOARD LAYOUT EXAMPLE

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the ICS843022. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS843022 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = $V_{CC_MAX} * I_{EE_MAX} = 3.465V * 85mA = 294.5\text{mW}$
- Power (outputs)_{MAX} = **30mW/Loaded Output pair**

Total Power_{MAX} (3.465V, with all outputs switching) = $294.5\text{mW} + 30\text{mW} = 324.5\text{mW}$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS™ devices is 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * Pd_total + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 90.5°C/W per Table 6 below.

Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

$70^\circ\text{C} + 0.325\text{W} * 90.5^\circ\text{C/W} = 99.4^\circ\text{C}$. This is well below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

TABLE 6. THERMAL RESISTANCE θ_{JA} FOR 8-PIN TSSOP, FORCED CONVECTION

θ_{JA} by Velocity (Meters per Second)			
Multi-Layer PCB, JEDEC Standard Test Boards	0 101.7°C/W	1 90.5°C/W	2.5 89.8°C/W

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in *Figure 4*.

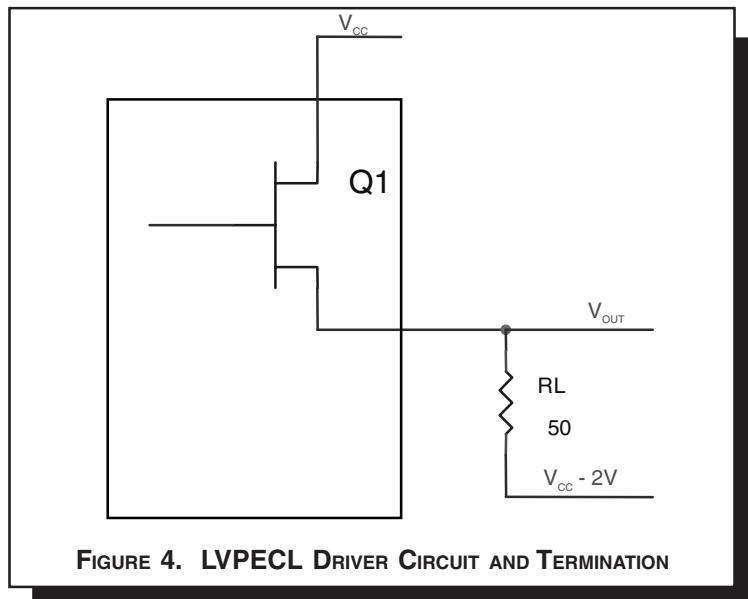


FIGURE 4. LVPECL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{cc} - 2V$.

- For logic high, $V_{out} = V_{oh_max} = V_{cc_max} - 0.9V$

$$(V_{cco_max} - V_{oh_max}) = 0.9V$$

- For logic low, $V_{out} = V_{ol_max} = V_{cc_max} - 1.7V$

$$(V_{cco_max} - V_{ol_max}) = 1.7V$$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{oh_max} - (V_{cc_max} - 2V))/R_L] * (V_{cc_max} - V_{oh_max}) = [(2V - (V_{cc_max} - V_{oh_max}))/R_L] * (V_{cc_max} - V_{oh_max}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$Pd_L = [(V_{ol_max} - (V_{cc_max} - 2V))/R_L] * (V_{cc_max} - V_{ol_max}) = [(2V - (V_{cc_max} - V_{ol_max}))/R_L] * (V_{cc_max} - V_{ol_max}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = $Pd_H + Pd_L = 30mW$

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

RELIABILITY INFORMATION

TABLE 7. θ_{JA} vs. AIR FLOW TABLE FOR 8 LEAD TSSOP

Multi-Layer PCB, JEDEC Standard Test Boards	θ_{JA} by Velocity (Meters per Second)		
	0	1	2.5
	101.7°C/W	90.5°C/W	89.8°C/W

TRANSISTOR COUNT

The transistor count for ICS843022 is: 1928

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

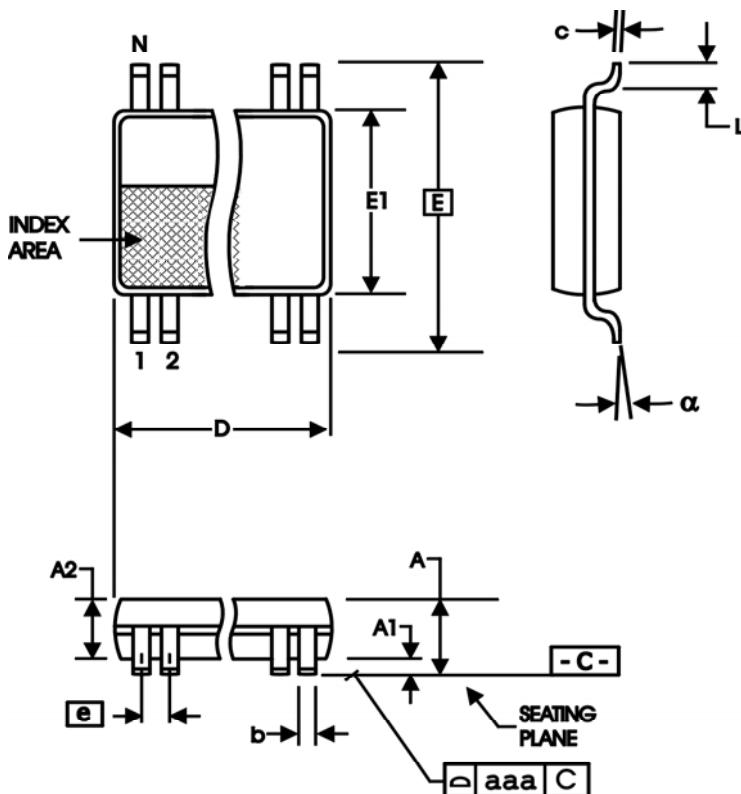


TABLE 8. PACKAGE DIMENSIONS

SYMBOL	Millimeters	
	Minimum	Maximum
N		8
A	--	1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	2.90	3.10
E	6.40 BASIC	
E1	4.30	4.50
e	0.65 BASIC	
L	0.45	0.75
alpha	0°	8°
aaa	--	0.10

Reference Document: JEDEC Publication 95, MO-153

PRELIMINARY

Integrated
Circuit
Systems, Inc.

ICS843022

FEMTOCLOCKS™ CRYSTAL-TO-
3.3V LVPECL CLOCK GENERATOR

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS843022AG	3022A	8 lead TSSOP	100 per tube	0°C to 70°C
ICS843022AGT	3022A	8 lead TSSOP on Tape and Reel	2500	0°C to 70°C

The aforementioned trademarks, HiPerClockS™ and FemtoClocks™ are a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.