ECS-3X8X, 2X6X, 1X5X 32.768 KHZ TUNING FORK

ECS tuning fork type crystals are used as a clock source in communication equipment, measuring instruments, microprocessors and other time management applications. Their low power consumption makes these crystals ideal for portable equipment.

FEATURES

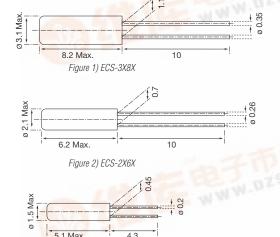
- Cost effective
- Tight tolerance
- · Long term stability
- Excellent resistance and environmental characteristics
- PbFree/RoHS Compliant

PART NUMBERING GUIDE "EXAMPLE"

MANUFACTURER		FREQUENCY		LOAD CAPACITANCE		PACKAGE TYPE*	
ECS	-	.327	-	12.5	-	8X	
ECS	_	.327	-	12.5	-	13X	
ECS	-	.327		8	_	14X	

^{*} Package type examples (8X=3x8, 13X=2x6, 14X=1x5)

OPERATING CONDITIONS/ELECTRICAL CHARACTERISTICS


PARAMETERS		ECS-3X8X	ECS-2X6X	ECS-1X5X	UNITS		
NOMINAL FREQUENCY	Fo	32.768	32.768	32.768	KHz		
FREQUENCY TOLERANCE	Δf/fo	±20	±20	±20	PPM		
LOAD CAPACITANCE (typ.)	CL	12.5	12.5	8.0	pF		
DRIVE LEVEL (max.)	DL	1	1	1	μW		
RESISTANCE AT SERIES RESONANCE	R ₁	35 (max.)	35 (max.)	40 (max.)	ΚΩ		
Q-FACTOR	Q	90,000 (typ.)	70,000 (typ.)	80,000 (typ.)			
TURNOVER TEMPERATURE	T _M	+25 ±5	+25 ±5	+25 ±5	°C		
TEMPERATURE COEFFICIENT	В	-0.040ppm/°C2 max.	-0.040ppm/°C ² max.	-0.040ppm/°C ² max.	PPM/(ΔC°)		
SHUNT CAPACITANCE	Co	1.60 (typ.)	1.35 (typ.)	1.00 (typ.)	pF		
CAPACITANCE RATIO		460 (typ.)	450 (typ.)	400 (typ.)			
OPERATING TEMP. RANGE	TOPR	-10~+60					
STORAGE TEMP. RANGE	T _{STG}	-40~+85					
SHOCK RESISTANCE		Drop test 3 times on hard wooden board from height of 75cm / ±5 PPM max.					
INSULATION RESISTANCE	IR	500MΩ min./DC100V					
AGING (FIRST YEAR)	Δf/fo	±3 PPM max. @ +25°C ±3°C					
MOTIONAL CAPACITANCE	C ₁	0.0035 (typ.)	0.0030 (typ.)	0.0025 (typ.)	pF		

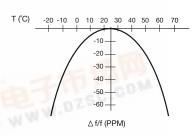
Note: Contact factory for optional load capacitance.


PACKAGE DIMENSIONS (mm)

Figure 3) ECS-1X5X

f.dzsc.com

RECOMMENDED OSCILLATION **CIRCUIT**



ELECTRICAL CHARACTERISTICS

IC: TC 4069P Rf: 10MΩ Rd: 330KΩ (As required) $C_1 = 22pF, C_2 = 22pF$ $V_{DD} = 3.0V$

In this circuit, low drive level with a maximum of 1µW is recommended. If excessive drive is applied, irregular oscillation or quartz element fractures may occur.

PARABOLIC TEMPERATURE CURVE

To determine frequency stability, use parabolic curvature. For example: What is the stability at 45°C?

1) Change in T (°C) = 45 -25 = 20°C = -0.04 PPM $\times (\Delta T)^2$ 2) Change in frequency $= -0.04 PPM \times (20)^{2}$ = -16.0 PPM