FEATURES Output capability: standard I_{CC} category: SSI ### **GENERAL DESCRIPTION** The 74HC/HCT4002 are high-speed Si-gate CMOS devices and are pin compatible with "4002" of the "40008" series. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT4002 provide the 4-input NOR function. | | | | TYF | UNIT | | | |---------------|---|---|-----|------|------|--| | SYMBOL | PARAMETER | CONDITIONS | нс | нст | UNIT | | | tPHL/
tPLH | propagation delay
nA, nB, nC, nD to nY | C _L = 15 pF
V _{CC} = 5 V | 9 | 11 | ns | | | CI | input capacitance | | 3.5 | 3.5 | pF | | | CPD | power dissipation capacitance per gate | notes 1 and 2 | 16 | 22 | рF | | GND = 0 V; $T_{amh} = 25$ °C; $t_r = t_f = 6$ ns #### Notes 1. CPD is used to determine the dynamic power dissipation (PD in μ W): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$$ where: f; = input frequency in MHz CL = output load capacitance in pF VCC = supply voltage in V fo = output frequency in MHz $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ 2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} - 1.5 V ### PACKAGE OUTLINES 14-lead DIL; plastic (SOT27). 14-lead mini-pack; plastic (SO14; SOT108A). #### PIN DESCRIPTION | PIN NO. | SYMBOL | NAME AND FUNCTION | | |---------|--------|-------------------------|--| | 1, 13 | 1Y, 2Y | data outputs | | | 2, 9 | 1A, 2A | data inputs | | | 3, 10 | 1B, 2B | data inputs | | | 4, 11 | 1C, 2C | data inputs | | | 5, 12 | 1D, 2D | data inputs | | | 6, 8 | n.c. | not connected | | | 7 | GND | ground (0 V) | | | 14 | Vcc | positive supply voltage | | Fig. 4 Functional diagram. ### **FUNCTION TABLE** | | INP | OUTPUT | | | |-------------|-------------------|------------------|-------------|-------------| | nA | nB | nC | nΥ | | | L | L | L | L | н | | H
X
X | Х
Н
Х
•Х | X
X
H
X | X
X
H | L
L
L | H = HIGH voltage level L = LOW voltage level X = don't care ### DC CHARACTERISTICS FOR 74HC For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications". Output capability: standard I_{CC} category: SSI ### **AC CHARACTERISTICS FOR 74HC** GND = 0 V; $t_f = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$ | SYMBOL | | T _{amb} (°C)
74HC | | | | | | | UNIT | TEST CONDITIONS | | |----------------------------|---|-------------------------------|---------------|-----------------|------|-----------------|------|-----------------|------|-------------------|-----------| | | PARAMETER | | | | | | | | | \ , _ | WAVEFORMS | | | | +25 | | -40 to +85 | | -40 to +125 | | ONII | VCC | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | t _{PHL} / | propagation delay
nA, nB, nC, nD to nY | | 30
11
9 | 100
20
17 | | 125
25
21 | | 150
30
26 | ns | 2.0
4.5
6.0 | Fig. 7 | | t _{THL} /
tTLH | output transition time | | 19
7
6 | 75
15
13 | | 95
19
16 | | 110
22
19 | ns | 2.0
4.5
6.0 | Fig. 7 | ### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications". Output capability: standard I_{CC} category: SSI ### Note to HCT types The value of additional quiescent supply current ($\triangle I_{CC}$) for a unit load of 1 is given in the family specifications. To determine $\triangle I_{CC}$ per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD
COEFFICIENT | |-------------------|--------------------------| | nA, nB,
nC, nD | 0.45 | ### AC CHARACTERISTICS FOR 74HCT $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | SYMBOL | | T _{amb} (°C) | | | | | | | LINIT | TEST CONDITIONS | | |--|---|-----------------------|------|------------|------|-------------|------|------|-----------------|-----------------|-----------| | | PARAMETER | | | | | | | | | | WAVEFORMS | | | | +25 | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | tPHL/
tPLH | propagation delay
nA, nB, nC, nD to nY | | 13 | 22 | | 28 | | 33 | ns | 4.5 | Fig. 7 | | t _{THL} /
t _{TLH} | output transition time | | 7 | 15 | | 19 | | 22 | ns | 4.5 | Fig. 7 | ### **AC WAVEFORMS** Note to AC waveforms (1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3$ V; $V_I = GND$ to 3 V.