

MIC4467/4468/4469

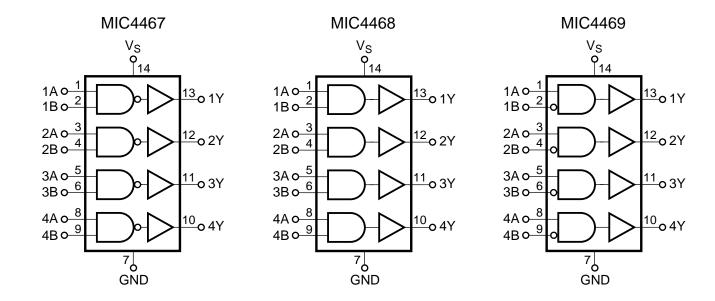
Quad 1.2A-Peak Low-Side MOSFET Driver

Bipolar/CMOS/DMOS

General Description

The MIC4467/8/9 family of 4-output CMOS buffer/drivers is an expansion from the earlier single- and dual-output drivers, to which they are functionally closely related. Because package pin count permitted it, each driver has been equipped with a 2-input logic gate for added flexibility. Placing four highpower drivers in a single package also improves system reliability and reduces total system cost. In some applications, one of these drivers can replace not only two packages of single-input drivers, but some of the associated logic as well.

Although primarily intended for driving power MOSFETs, and similar highly capacitive loads, these drivers are equally well suited to driving any other load (capacitive, resistive, or inductive), which requires a high-efficiency, low-impedance driver capable of high peak currents, rail-to-rail voltage swings, and fast switching times. For example, heavily loaded clock lines, coaxial cables, and piezoelectric transducers can all be


Features

- Built using reliable, low power CMOS processes
- Latchproof. Withstands 500mA Inductive Kickback
- 3 Input Logic Choices
- Symmetrical Rise and Fall Times 25ns
- Short, Equal Delay Times 75ns
- High Peak Output Current1.2A
- Wide Operating Range4.5 to 18V
- Low Equivalent Input Capacitance (typ) 6pF
- Inputs = Logic 1 for Any Input From 2.4V to V_S
- ESD Protected

Applications

- General-Purpose CMOS Logic Buffer
- Driving All 4 MOSFETs in an H-Bridge
- Direct Small-Motor Driver
- Relay or Peripheral Drivers
- Dual Differential Output Power Drivers
- CCD Driver
- Pin-Switching Network Driver

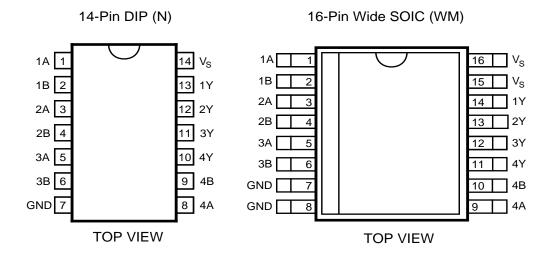
Logic Diagrams

driven easily with MIC446X series drivers. The only limitation on loading is that total power dissipation in the IC must be kep查询hit/the 4667世 (按i感 商ation limits of the package.

The MIC446X series drivers are built using a BCD process. They will not latch under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking (either polarity) occurs on the ground line. They can accept up to half an amp of inductive kickback current (either polarity) into their outputs without damage or logic upset.

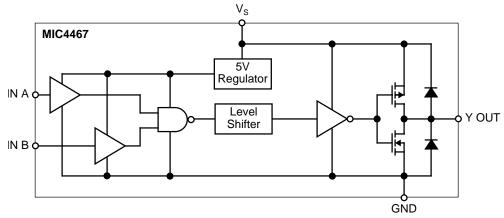
Ordering Information

Part No.	Package	Temp. Range
MIC44xxCN*	14-Pin Plastic DIP	0° to +70°C
MIC44xxCWM*	16-Pin Wide SOIC	0° to +70°C
MIC44xxBN*	14-Pin Plastic DIP	−40° to +85°C
MIC44xxBWM*	16-Pin Wide SOIC	–40° to +85°C

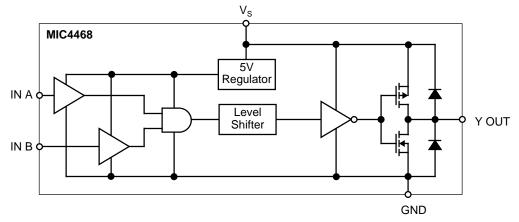

xx identifies input logic: 67 — NAND

68 — AND 69 — AND with 1 inverting input

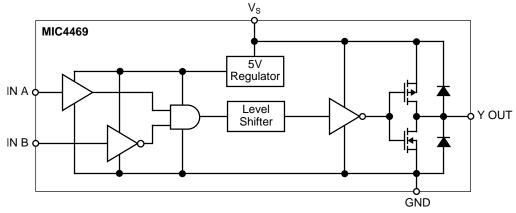
Truth Table


Part No.	Inp A	uts B	Output Y
MIC4467 (Each Driver)	L X H	X L H	ΤΙJ
MIC4468 (Each Driver)	H L X	H X L	ΗIJIJ
MIC4469 (Each Driver)	L X H	X H L	L L H

Pin Configurations



Block Diagrams


查询"MIC4467"供应商

Functional Diagram for One Driver (Four Drivers per Package–Ground Unused Inputs)

Functional Diagram for One Driver (Four Drivers per Package–Ground Unused Inputs)

Functional Diagram for One Driver (Four Drivers per Package–Ground Unused Inputs)

Absolute Maximum Ratings (Notes 1 and 2)

Suo型询/WHAO24467"供应商	22V
Input Voltage	(GND – 5V) to (V _S + 0.3V)
Maximum Chip Temperature	5
Operating	150°C
Storage	–65° to +150°C
Maximum Load Temperature	
(10 sec, for soldering)	300°C
Operating Ambient Temperatur	re
C Version	0° to +70°C
B Version	–40° to +85°C

Power Dissipation N Package (14-Pin Plastic DIP) WM Package (16-Pin Wide SOIC)	1.5W 1W
Package Thermal Resistance N Package (14-Pin Plastic DIP) θ _{JA} WM Package (16-Pin Wide SOIC) θ _{JA}	80°C/W 120°C/W

30

45

0.2

75

75

4

ns

ns

mΑ

Electrical Characteristics: Measured at $T_A = 25^{\circ}C$ with $4.5V \le V_S \le 18V$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
INPUT	1					•
V _{IH}	Logic 1 Input Voltage		2.4	1.3		V
V _{IL}	Logic 0 Input Voltage			1.2	0.8	V
I _{IN}	Input Current	$0 \le V_{IN} \le V_S$	-1		1	μA
OUTPUT						
V _{OH}	High Output Voltage	I _{LOAD} = 10mA	V _S -0.15			V
V _{OL}	Low Output Voltage	I _{LOAD} = 10mA			0.15	V
R _O	Output Resistance	I _{OUT} = 10mA, V _S = 18V		5	15	Ω
I _{PK}	Peak Output Current			1.2		A
I	Latch-Up Protection Withstand Reverse Current		>500			mA
SWITCHIN	IG TIME					
t _R	Rise Time	Test Figure 1		14	25	ns
t _F	Fall Time	Test Figure 1		13	25	ns
-						1

Test Figure 1

Test Figure 1

t_{D1}

t_{D2}

 I_{S}

POWER SUPPLY

Delay Time

Delay Time

Supply

Power Supply Current

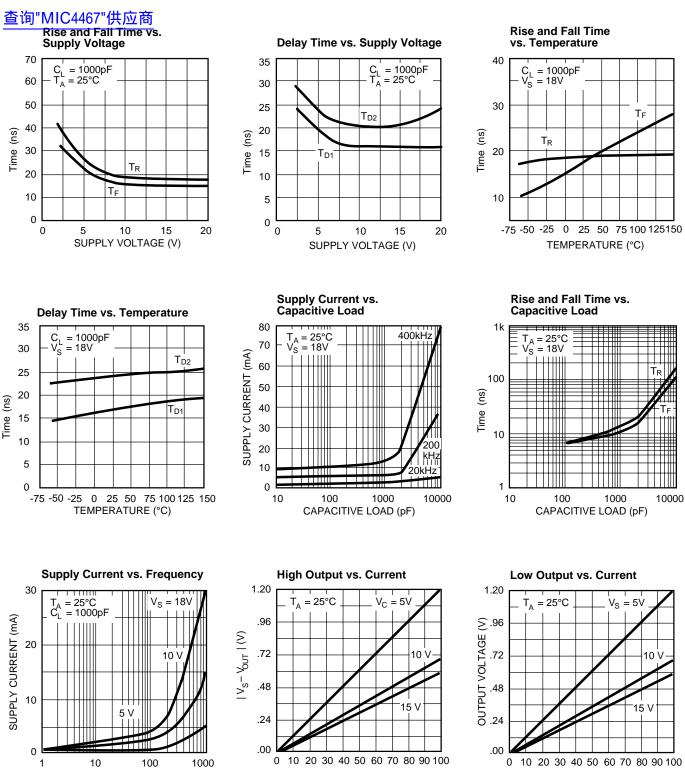
Electrical Characteristics:

Measured over operating temperature range with $4.5V \le V_S \le 18V$ unless otherwise specified.

<u>르</u> !	町 MIC4407℃ 供应向					
Symbol	Parameter	Conditions	Min	Тур	Max	Units
INPUT						
V _{IH}	Logic 1 Input Voltage		2.4	1.4		V
V _{IL}	Logic 0 Input Voltage			1.0	0.8	V
I _{IN}	Input Current	$0 \le V_{IN} \le V_S$	-1		1	μA
OUTPUT	_			_	_	_
V _{OH}	High Output Voltage	I _{LOAD} = 10 mA	V _S -0.3			V
V _{OL}	Low Output Voltage	I _{LOAD} = 10 mA			0.3	V
R _O	Output Resistance	I _{OUT} = 10 mA, V _S = 18V		7	30	Ω
I _{PK}	Peak Output Current			1.2		А
I	Latch-Up Protection Withstand Reverse Current		500			mA

SWITCHING TIME

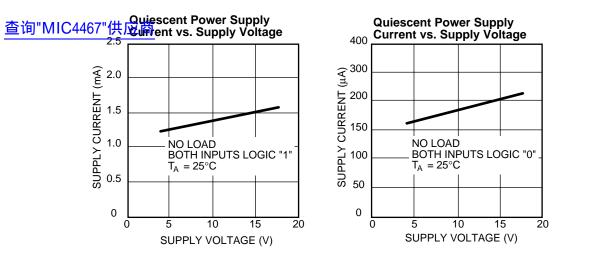
t _R	Rise Time	Test Figure 1	17	50	ns
t _F	Fall Time	Test Figure 1	16	50	ns
t _{D1}	Delay Time	Test Figure 1	35	100	ns
t _{D2}	Delay Time	Test Figure 1	55	100	ns

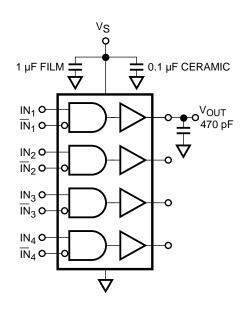

POWER SUPPLY

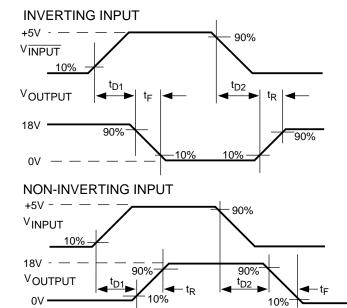
I _S	Power Supply Current Supply		0.4	8	mA

NOTE 1: Functional operation above the absolute maximum stress ratings is not implied.

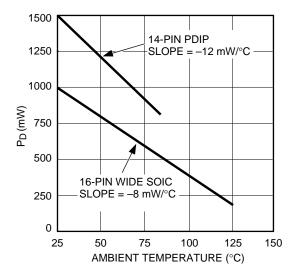
NOTE 2: Static sensitive device. Store only in conductive containers. Handling personnel and equipment should be grounded to prevent static damage.

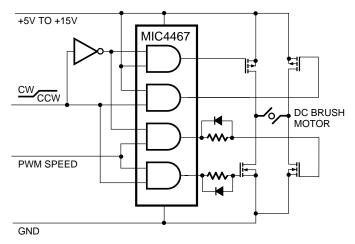

Typical Characteristics


FREQUENCY (kHz)


CURRENT SOURCED (mA)

CURRENT SUNK (mA)





Package Power Dissipation

Quad Driver Drives H Bridge to Control Motor Speed and Direction

