June 1989 # DM54S251/DM74S251 TRI-STATE® 1 of 8 Line Data Selector/Multiplexer ### **General Description** These data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources, and feature a strobe-controlled TRI-STATE output. The strobe must be at a low logic level to enable these devices. The TRI-STATE outputs permit direct connection to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totempole outputs. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time. #### **Features** - TRI-STATE version of S151 - Interface directly with system bus - Perform parallel-to-serial conversion - Permit multiplexing from N-lines to one line - Complementary outputs provide true and inverted data - Max no. of common outputs 54S 39 - 74S 129 Typical propagation delay time (D to Y) 8 ns - Typical power dissipation 275 mW #### **Connection Diagram** TL/F/6480-1 Order Number DM54S251J or DM74S251N See NS Package Number J16A or N16E #### **Function Table** | Inputs | | | | Outputs | | | |--------|---|---|--------|---------|----|--| | Select | | | Strobe | v | w | | | С | В | Α | s | • | •• | | | Х | Χ | Χ | Н | Z | Z | | | L | L | L | L | D0 | D0 | | | L | L | Н | L | D1 | D1 | | | L | Н | L | L | D2 | D2 | | | L | Н | Н | L | D3 | D3 | | | Н | L | L | L | D4 | D4 | | | Н | L | Н | L | D5 | D5 | | | Н | Н | L | L | D6 | D6 | | | Н | Н | Н | L | D7 | D7 | | H = High Logic Level, L = Low Logic Level X = Don't Care, Z = High Impedance (Off) D0, D1 ... D7 = The Level of the respective D input TRI-STATE® is a registered trademark of National Semiconductor Corporation. ## 查询"DM74S251"供应商 #### **Absolute Maximum Ratings (Note)** If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 7V Input Voltage 5.5V Operating Free Air Temperature Range Storage Temperature Range -65°C to $+150^{\circ}\text{C}$ Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. #### **Recommended Operating Conditions** | Symbol | Parameter | DM54S251 | | | DM74S251 | | | Units | |-----------------|--------------------------------|----------|-----|-----|----------|-----|------|-------| | | T drameter | Min | Nom | Max | Min | Nom | Max | Onits | | V _{CC} | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V | | V _{IH} | High Level Input Voltage | 2 | | | 2 | | | V | | V _{IL} | Low Level Input Voltage | | | 0.8 | | | 0.8 | ٧ | | Іон | High Level Output Current | | | -2 | | | -6.5 | mA | | l _{OL} | Low Level Output Current | | | 20 | | | 20 | mA | | T _A | Free Air Operating Temperature | -55 | | 125 | 0 | | 70 | °C | ## **Electrical Characteristics** over recommended operating free air temperature (unless otherwise noted) | Symbol | Parameter | Parameter Conditions | | Min | Typ
(Note 1) | Max | Units | |------------------|---|--|------|-----|-----------------|------|-------| | VI | Input Clamp Voltage | $V_{CC} = Min, I_I = -18 \text{ mA}$ | | | | -1.2 | V | | V _{OH} | V _{OH} High Level Output Voltage | $V_{CC} = Min, I_{OH} = Max$
$V_{IL} = Max, V_{IH} = Min$ | DM54 | 2.4 | 3.4 | | V | | | | | DM74 | 2.4 | 3.2 | | | | V _{OL} | Low Level Output Voltage | $V_{CC} = Min, I_{OL} = Max$
$V_{IH} = Min, V_{IL} = Max$ | | | | 0.5 | V | | II | Input Current @ Max
Input Voltage | $V_{CC} = Max, V_I = 5.5V$ | | | | 1 | mA | | I _{IH} | High Level Input | $V_{CC} = Max, V_I = 2.7V$ | | | | 50 | μΑ | | I _{IL} | Low Level Input Current | $V_{CC} = Max, V_I = 0.5V$ | | | | -2 | mA | | lozh | Off-State Output Current
with High Level
Output Voltage Applied | $V_{CC} = Max, V_O = 2.4$
$V_{IH} = Min, V_{IL} = Max$ | | | | 50 | μΑ | | I _{OZL} | Off-State Output Current
with Low Level
Output Voltage Applied | $V_{CC} = Max, V_O = 0.5$
$V_{IH} = Min, V_{IL} = Max$ | | | | -50 | μΑ | | los | Short Circuit | V _{CC} = Max | DM54 | -40 | | -100 | mA | | | Output Current | (Note 2) | DM74 | -40 | | -100 | 111/4 | | Icc | Supply Current | V _{CC} = Max (Note 3) | | | 55 | 85 | mA | Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with the outputs open and all inputs at 4.5V. # 查询"DM74S251"供应商 $\textbf{Switching Characteristics} \text{ at V}_{CC} = 5 \text{V and T}_{A} = 25 ^{\circ}\text{C (See Section 1 for Test Waveforms and Output Load)}$ | Symbol | Parameter | From (Input) To (Output) | | | | | | |------------------|--|-------------------------------|------------------------|------|------------------------|------|-------| | | | | C _L = 15 pF | | C _L = 50 pF | | Units | | | | 10 (Output) | Min | Max | Min | Max | | | t _{PLH} | Propagation Delay Time
Low to High Level Output | A, B, or C
(4 Levels) to Y | | 18 | | 21 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | A, B, or C
(4 Levels) to Y | | 19.5 | | 23 | ns | | t _{PLH} | Propagation Delay Time
Low to High Level Output | A, B, or C
(3 Levels) to W | | 15 | | 18 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | A, B, or C
(3 Levels) to W | | 13.5 | | 17 | ns | | t _{PLH} | Propagation Delay Time
Low to High Level Output | D to Y | | 12 | | 15 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | D to Y | | 12 | | 15 | ns | | t _{PLH} | Propagation Delay Time
Low to High Level Output | D to W | | 7 | | 10 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | D to W | | 7 | | 10 | ns | | t _{PZH} | Output Enable Time
to High Level Output | Strobe
to Y | | | | 19.5 | ns | | t _{PZL} | Output Enable Time
to Low Level Output | Strobe
to Y | | | | 21 | ns | | t _{PHZ} | Output Disable Time
to High Level Output (Note 1) | Strobe
to Y | | 8.5 | | | ns | | t_{PLZ} | Output Disable Time to Low Level Output (Note 1) | Strobe
to Y | | 14 | | | ns | | t _{PZH} | Output Enable Time
to High Level Output | Strobe
to W | | | | 19.5 | ns | | t _{PZL} | Output Enable Time
to Low Level Output | Strobe
to W | | | | 21 | ns | | t _{PHZ} | Output Disable Time
to High Level Output (Note 1) | Strobe
to W | | 8.5 | | | ns | | t_{PLZ} | Output Disable Time
to Low Level Output (Note 1) | Strobe
to W | | 14 | | | ns | **Note 1:** C_L = 5 pF. ## **Logic Diagram** #### Physical Dimensions inches (millimeters) (Continued) 16-Lead Molded Dual-In-Line Package (N) Order Number DM74S251N NS Package Number N16E #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. **National Semiconductor** National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 **National Semiconductor** Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408