查询"74HC175D-T"供应商 QUADD TYPE FLIP FLOP WITH RESET; POSITIVE EDGE TRIGGER

FEATURES

- Four edge-triggered D flip-flops
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT175 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT175 have four edgetriggered, D-type flip-flops with individual D inputs and both Q and $\overline{\mathbf{Q}}$ outputs.

The common clock (CP) and master reset (\overline{MR}) inputs load and reset (clear) all flip-flops simultaneously. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Ω_n) of the

flip-flop. All \mathbf{Q}_n outputs will be forced LOW independently of clock or data inputs by a LOW voltage level on the $\overline{\mathbf{MR}}$ input.

The device is useful for applications where both the true and complement outputs are required and the clock and master reset are common to all storage elements.

		CONDITIONS	TYP		
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT
[†] PHL	propagation delay <u>CP</u> to Q _n , Q _n MR to Q _n	CL = 15 pF VCC = 5 V	17 15	16 19	ns ns
^t PLH	propagation delay CP to Q_n , \overline{Q}_n MR to \overline{Q}_n	V _{CC} = 5 V	17 15	16 16	ns ns
f _{max}	maximum clock frequency		83	54	MHz
Cl	input capacitance		3.5	3.5	рF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	32	34	рF

$$GND = 0 V; T_{amh} = 25 °C; t_r = t_f = 6 ns$$

Notes

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

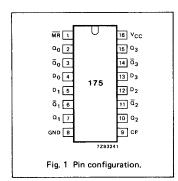
PD = CPD x
$$VCC^2$$
 x f_i + Σ (CL x VCC^2 x f_o) where:

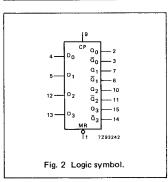
f; = input frequency in MHz CL

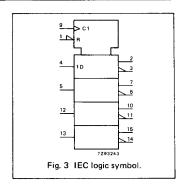
CL = output load capacitance in pF

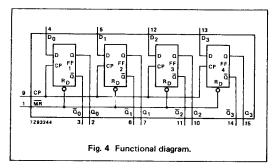
 Σ (C_L x V_{CC}² x f_O) = sum of outputs

2. For HC the condition is V_I = GND to V_{CC}
For HCT the condition is V_I = GND to V_{CC} - 1.5 V

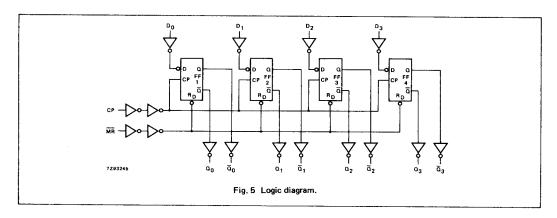

PACKAGE OUTLINES


16-lead DIL; plastic (SOT38Z).


16-lead mini-pack; plastic (SO16; SOT109A).


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	MR	master reset input (active LOW)
2, 7, 10, 15	Qn to Q3	flip-flop outputs
3, 6, 11, 14	$\overline{\mathbf{Q}}_{0}$ to $\overline{\mathbf{Q}}_{3}$	complementary flip-flop outputs
4, 5, 12, 13	D ₀ to D ₃	data inputs
8	GND	ground (0 V)
9	CP	clock input (LOW-to-HIGH, edge-triggered)
16	Vcc	positive supply voltage


FUNCTION TABLE

ODEDATING MODES		INPUTS	OUTPUTS		
OPERATING MODES	MR	СР	Dn	Q _n	ᾱn
reset (clear)	L	х	×	L	Н
load "1"	н	1	h	н	L
load,"0"	н	1	ı	L	Н

H = HIGH voltage level = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition L = LOW voltage level I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition

↑ = LOW-to-HIGH CP transition

X = don't care

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL				7	r _{amb} (°C)		TEST CONDITIONS			
		74HC								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	WAVEFORMS
	PARAMETER	+25			40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
^t PHL/ ^t PLH	propagation delay CP to Ω_n , $\overline{\Omega}_n$		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig. 6
t _{PHL} /	propagation delay MR to Q _n , Q _n		50 18 14	150 30 26	_	190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 8
t _{THL} /	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 6
tW	clock pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 6
tw	master reset pulse width LOW	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 8
t _{rem}	removal time MR to CP	5 5 5	-33 -12 -10		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig. 8
t _{su}	set-up time D _n to CP	80 16 14	3 1 1		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 7
th	hold time CP to D _n	25 5 4	2 0 0		30 6 5		40 8 7		ns	2.0 4.5 6.0	Fig. 7
f _{max}	maximum clock pulse frequency	6.0 30 35	25 75 89		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig. 6

DC CHARACTERISTICS FOR 74HCT

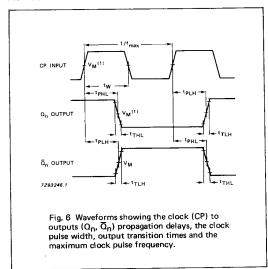
For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

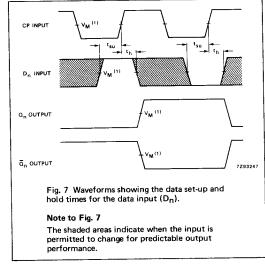
Output capability: standard

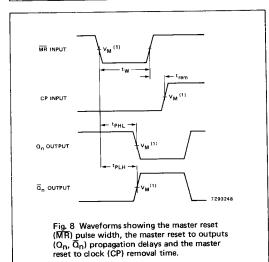
ICC category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
MR	1.00
CP	0.60
D _n	0.40


AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
										,,	MAVESORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay CP to Ω_n , $\overline{\Omega}_n$		19	33		41		50	ns	4.5	Fig. 6
^t PHL	propagation delay MR to Q _n		22	38		48		57	ns	4.5	Fig. 8
^t PLH	propagation delay \overline{MR} to \overline{Q}_n		19	35		44		53	ns	4.5	Fig. 8
^t THL/ ^t TLH	output transition time		7	15		19		22	ns	4.5	Fig. 6
tw	clock pulse width HIGH or LOW	20	12		25		30		ns	4.5	Fig. 6
^t w	master reset pulse width LOW	20	11		25		30		ns	4.5	Fig. 8
^t rem	removal time MR to CP	5	-10		5		5		ns	4.5	Fig. 8
t _{su}	set-up time D _n to CP	16	5		20		24		ns	4.5	Fig. 7
^t h	hold time CP to D _n	5	0		5		5		ns	4.5	Fig. 7
f _{max}	maximum clock pulse frequency	25	49		20		17		MHz	4.5	Fig. 6

AC WAVEFORMS

Note to AC waveforms

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3$ V; $V_I = GND$ to 3 V.