查<u>询"FDD5N50NZF"</u>供应商

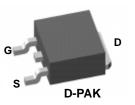
FAIRCHILD

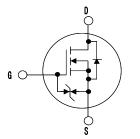
SEMICONDUCTOR®

FDD5N50NZF N-Channel MOSFET 500V, 3.7A, 1.75Ω

Features

- $R_{DS(on)} = 1.47\Omega (Typ.) @ V_{GS} = 10V, I_D = 1.85A$
- Low Gate Charge (Typ. 9nC)
- Low C_{rss} (Typ. 4pF)
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- ESD Imoroved Capability
- RoHS Compliant




November 2009 UniFET-II[™]

Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advance technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switching mode power supplies and active power factor correction.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

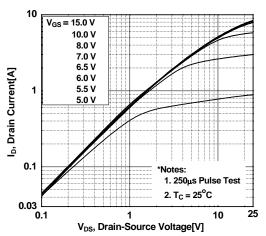
Symbol		FDD5N50NZF	Units			
V _{DSS}	Drain to Source Voltage			500	V	
V _{GSS}	Gate to Source Voltage			±25	V	
	Droin Current	-Continuous ($T_C = 25^{\circ}C$)		3.7	A	
I _D	Drain Current	-Continuous ($T_C = 100^{\circ}C$)		2.2		
I _{DM}	Drain Current	- Pulsed	(Note 1)	14	А	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	165	mJ	
I _{AR}	Avalanche Current		(Note 1)	3.3	А	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	6.25	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	15	V/ns	
P _D	Dower Dissinction	$(T_{C} = 25^{\circ}C)$		62.5	W	
	Power Dissipation	- Derate above 25°C		0.5	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

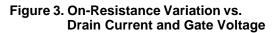
Thermal Characteristics

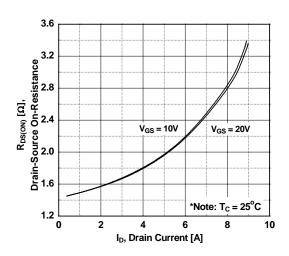
Symbol	Parameter	FDD5N50NZF	Units	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	2	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	62.5		

Device Marking FDD5N50NZF		Device	Package	Reel Size	Tap	e Width		Quantit	v
		FDD5N50NZFTM	D-PAK			6mm	2500		
	-	racteristics T _c =							
Symbol		Parameter	25°C unless our	Test Condition	26	Min.	Тур.	Max.	Units
Off Charac	teristic			Test Condition	13		iyp.	Wax.	Onita
BV _{DSS}	-	o Source Breakdown Vo	ltage Ir	₀ = 250μA, V _{GS} = 0V, T	c = 25°C	500	-	-	V
ΔBV _{DSS} ΔT.I	Breakd	Breakdown Voltage Temperature Coefficient		$I_D = 250\mu$ A, Referenced to 25° C		-	0.5	-	V/°C
				$V_{DS} = 500V, V_{GS} = 0V$ $V_{DS} = 400V, V_{GS} = 0V, T_C = 125^{\circ}C$		-	-	10	μA
DSS	SS Zero Gate Volta		nt			-	-	100	
GSS	Gate to Body Leakage Current		. V	$_{GS} = \pm 25 \text{V}, \text{V}_{DS} = 0 \text{V}$	-	-	-	±10	μA
On Charac	teristic	S							
V _{GS(th)}	Gate T	hreshold Voltage	V	_{GS} = V _{DS} , I _D = 250μA		3.0	-	5.0	V
R _{DS(on)}		Drain to Source On Resi		$I_{GS} = 10V, I_D = 1.85A$		-	1.47	1.75	Ω
JFS		d Transconductance		_{DS} = 20V, I _D = 1.85A	(Note 4)	-	4.2	-	S
Dynamic C	haract	eristics							
C _{iss}	Input C	apacitance					365	485	pF
C _{oss}	Output	Capacitance		′ _{DS} = 25V, V _{GS} = 0V = 1MHz		-	50	65	pF
C _{rss}	Revers	e Transfer Capacitance		- 1101112		-	4	8	pF
Q _{g(tot)}	Total G	ate Charge at 10V				-	9	12	nC
ୁ C _{gs}	Gate to	Source Gate Charge		$V_{DS} = 400 V I_D = 3.7 A$ $V_{GS} = 10 V$ (Note		-	2	-	nC
ସ _{gd}	Gate to	Drain "Miller" Charge	V			-	4	-	nC
Switching	Charac	teristics							
d(on)	-	n Delay Time				-	12	35	ns
r	Turn-O	n Rise Time		_{DD} = 250V, I _D = 3.7A	-	-	19	50	ns
d(off)	Turn-O	ff Delay Time	V	V_{GS} = 10V, R_{GEN} = 25 Ω		-	31	70	ns
f	Turn-O	ff Fall Time			(Note 4, 5)	-	22	55	ns
Drain-Sou	rce Dio	de Characteristics	5						
Is	Maximum Continuous Drain to Source Diode Forward Current				-	-	3.7	Α	
SM	Maximum Pulsed Drain to Source Diode Fo		ce Diode Forwa	orward Current		-	-	14	Α
V _{SD}	Drain to	Source Diode Forward	Voltage V	_{GS} = 0V, I _{SD} = 3.7A		-	-	1.5	V
t _{rr}	Reverse	e Recovery Time	V	_{GS} = 0V, I _{SD} = 3.7A		-	87	-	ns
Q _{rr}	Boyoro	e Recovery Charge		$dI_{F}/dt = 100A/\mu s$			0.15		μC

2. L = 23mH, I_{AS} = 3.7A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}\text{C}$


3. $I_{SD} \le 3.7A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$


4. Pulse Test: Pulse width \leq 300 μ s, Dual Cycle \leq 2%


5. Essentially Independent of Operating Temperature Typical Characteristics

查询"FDD5N50NZF"供应商 Typical Performance Characteristics

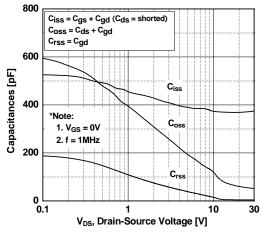
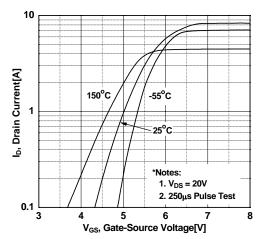
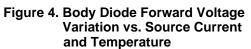




Figure 2. Transfer Characteristics

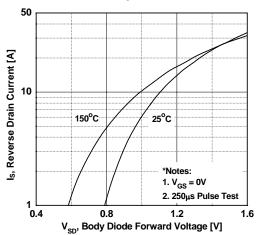
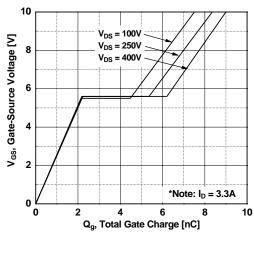
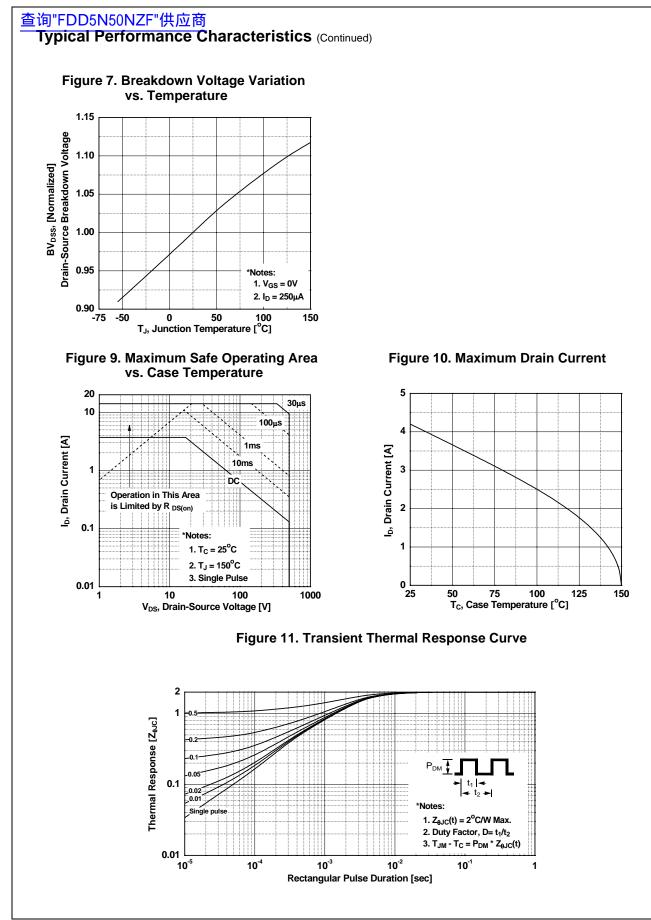
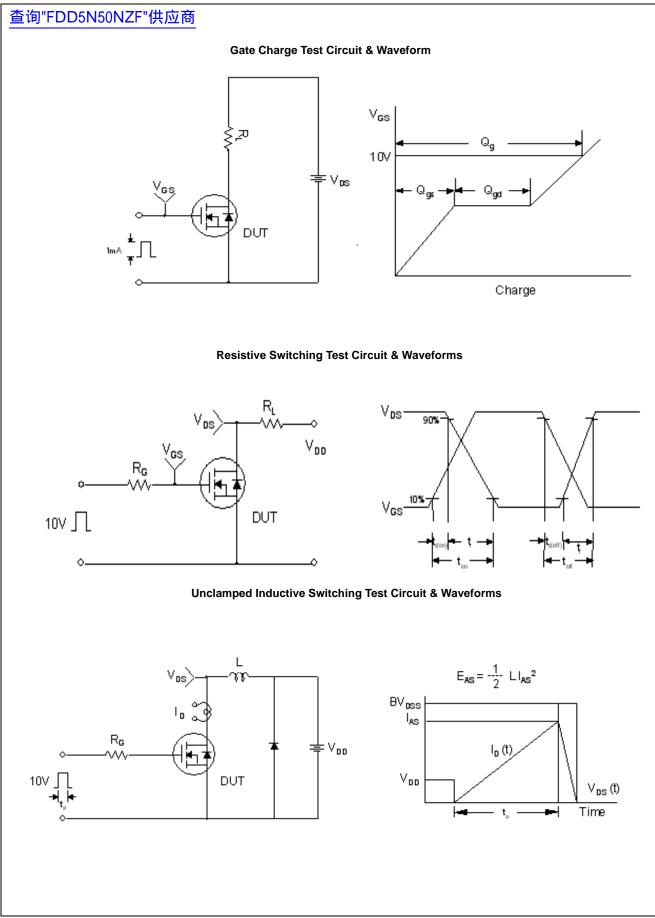
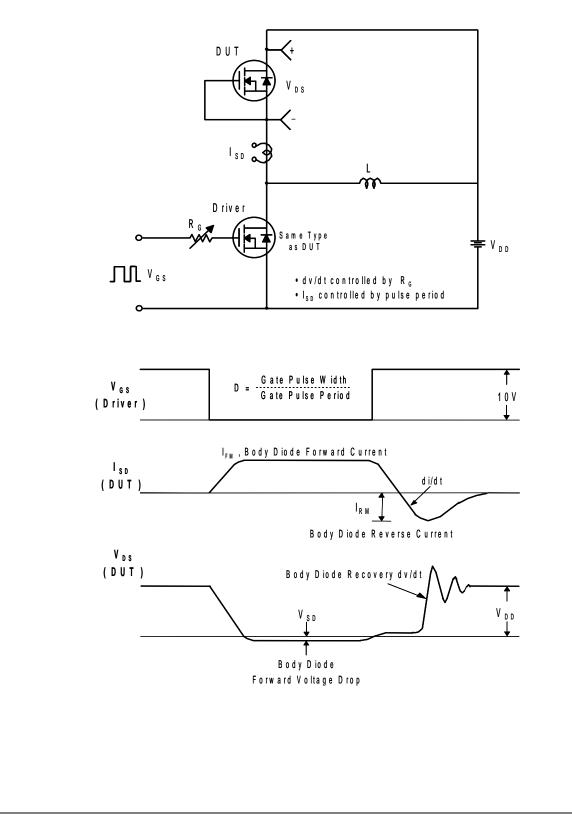
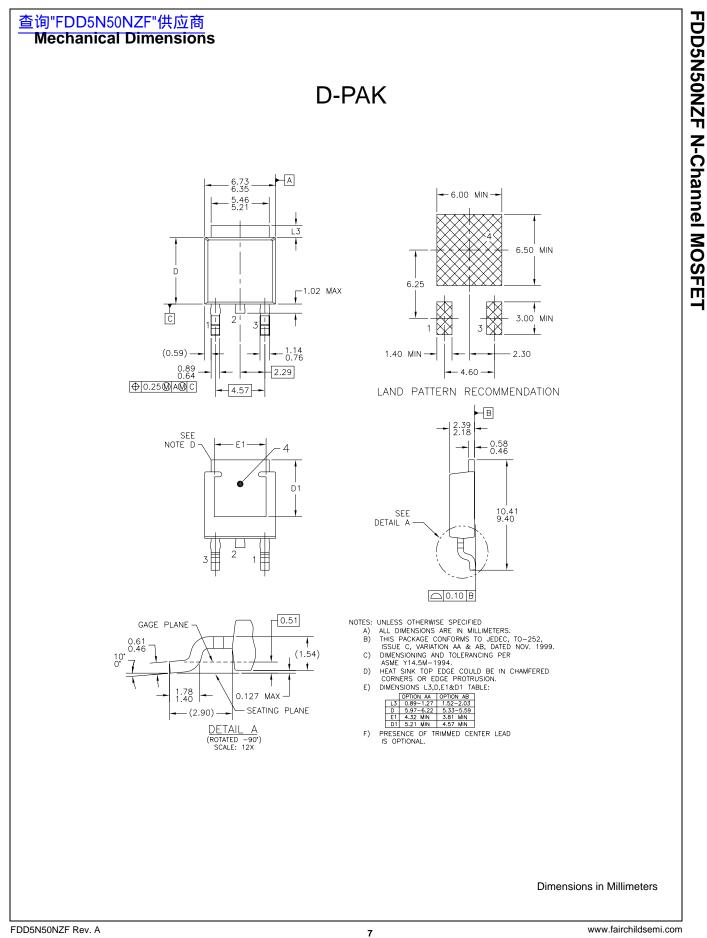





Figure 6. Gate Charge Characteristics


FDD5N50NZF N-Channel MOSFET



FDD5N50NZF N-Channel MOSFET

查询"FDD5N50NZF"供应商

Peak Diode Recovery dv/dt Test Circuit & Waveforms

查询#FDD5N50NZF"供应商

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK**[®] EfficientMax™ EZSWITCH™* Ľ. DEUXPEED™ R F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™

FlashWriter® FPS™ F-PES™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]** PDP SPM™

Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ Отм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 . SuperSOT™-6 SuperSOT™-8 SupreMOS™

The Power Franchise®

franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* µSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS ON NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

Sync-Lock™

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 143