Rev. 00.07 — 16 July 2009

Objective data sheet

1. Product profile

1.1 General description

The BGA7124 MMIC is a one-stage driver amplifier, offered in a low-cost leadless surface-mount package. It delivers 25 dBm output power at 1 dB gain compression and a superior performance for various narrowband-tuned application circuits for frequencies up to 2700 MHz.

1.2 Features

- 400 MHz to 2700 MHz frequency operating range
- 16 dB small signal gain at 2 GHz
- 25 dBm output power at 1 dB gain compression
- Integrated active biasing
- External matching allows broad application optimization of the electrical performance
- 3.3 V / 5 V single supply operation
- Power savings features:
 - ◆ Simple quiescent current adjustment allows class-AB operation
 - Logic-level shutdown control pin reduces supply current to 4 μA
- ESD protection at all pins

1.3 Applications

- Wireless infrastructure (base station, repeater)
- E-metering
- Broadband CPE
- Satellite Master Antenna TV (SMATV)
- Industrial applications
- W-LAN / ISM / RFID

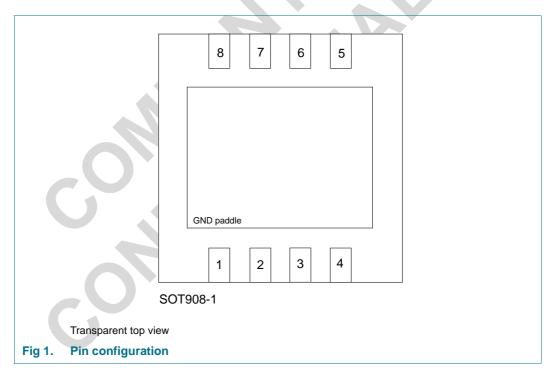
1.4 Quick reference data

Table 1. Quick reference data

 $Z_S = Z_L = 50 \ \Omega$, $\overline{SHDN} = V_{I(D)H(SHDN)}$ (shutdown disabled). Typical values at $V_{CC} = 5 \ V$; $T_{case} = 25 \ ^{\circ}\text{C}$, ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{Cq}	adjustable quiescent collector current		5	-	170	mA
f	frequency		<u>[1]</u> 400	-	2700	MHz

Table 1. Quick reference data ...continued


 $Z_S = Z_L = 50~\Omega$, $\overline{SHDN} = V_{I(D)H(SHDN)}$ (shutdown disabled). Typical values at $V_{CC} = 5~V$; $T_{case} = 25~^{\circ}C$, ; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
G_p	gain power	f = 2140 MHz	<u>[3]</u>	-	15	-	dB 🔷
P _{L(1dB)}	output power at 1 dB gain compression	f = 2140 MHz	<u>[3]</u>	-	25	-	dBm
IP3 _O	output third-order intercept point	f = 2140 MHz	[2][3]	-	38	-	dBm

- [1] Operation outside this range is possible but parameters are not guaranteed.
- [2] $P_{o(tone)} = 8 \text{ dBm}$; tone spacing = 10 MHz, $f_1 = 850 \text{ MHz}$ to 1000 MHz; $f_2 = 1800 \text{ MHz}$ to 2400 MHz; higher IMD3 product.
- [3] Applicable to class-A operation; $I_{Cq} = < tbd > mA$.

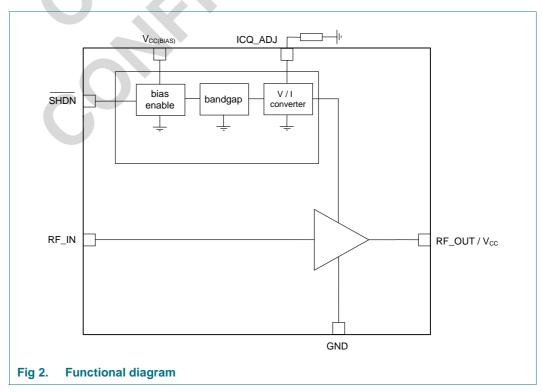
2. Pinning information

2.1 Pinning

2.2 Pin description

Table 2. Pin description

Symbol	Pin	Description	
n.c.	1, 4	not connected	90
RF_OUT/V _{CC}	2, 3	RF output for the power amplifier and DC supply input for the RF transistor collector ^[1]	
V _{CC(bias)}	5	bias supply voltage[2]	
SHDN	6	shutdown control function enabled / disabled	
RF_IN	7	RF input for the power amplifier[1]	
ICQ_ADJ	8	I _{Cq} quiescent collector current adjustment by an external resistor	
GND	GND paddle	RF ground and DC ground [3]	


- [1] This pin is DC-coupled and requires an external DC-blocking capacitor.
- [2] RF decoupled.
- [3] The center metal base of the SOT908-1 also functions as heatsink for the power amplifier.

3. Ordering information

Table 3. Ordering information

Type number	Package						
	Name	Description	Version				
BGA7124	HVSON8	plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body $3 \times 3 \times 0.85$ mm	SOT908-1				

4. Functional diagram

5. Shutdown control

Table 4. Shutdown control

				7.8
Mode	Mode description	Function description	SHDN	Unit
Idle	medium power MMIC fully off; minimal supply current	shutdown control enabled	0	digital logic
TX	medium power MMIC transmit mode	shutdown control enabled	1	digital logic

6. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-	5.2	V
I _{CC}	supply current	V _{CC} = 5.2 V	-	<tbd></tbd>	mΑ
P _{i(RF)}	RF input power		-	<tbd></tbd>	dBm
P _{tot}	total power dissipation		-	<tbd></tbd>	W
T _{case}	case temperature		-40	+85	°C
T _j	junction temperature		-	150	°C

7. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Max	Unit
R _{th(j-case)}	thermal resistance from junction to case	$T_{case} = 85 ^{\circ}C; V_{CC} = 5 V; I_{CC} = 85 \text{mA}$	25	30	K/W

8. Static characteristics

Table 7. Characteristics

 $Z_S = Z_L = 50 \ \Omega$, $\overline{SHDN} = V_{I(D)H(SHDN)}$ (shutdown disabled). Typical values at $V_{CC} = 3.3 \ V/5 \ V$; $T_{case} = 25 \ ^{\circ}C$, ; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{CC}	supply voltage	range for $V_{CC} = \langle tbd \rangle V (typ)$		3.0	3.3	3.6	V
		range for $V_{CC} = \langle tbd \rangle V (typ)$		4.8	5.0	5.2	V
I _{Cq}	adjustable quiescent collector current			5	-	170	mΑ
I _{CC}	supply current	V _{CC} = 5.2 V		-	-	<tbd></tbd>	mΑ
I _{CC(SHDN)}	shutdown supply current	$\overline{SHDN} = V_{I(D)L(SHDN)};$	[1]	2	4	<tbd></tbd>	μΑ
V _{I(D)L(SHDN)}	shutdown logic LOW digital input voltage			0	-	1.5	V
V _{I(D)H(SHDN)}	shutdown logic HIGH digital input voltage			2.5	-	V_{CC}	V
I _{I(D)L(SHDN)}	shutdown logic LOW digital input current	$\overline{SHDN} = V_{I(D)L(SHDN)}$	[1]	-	-	1	μΑ
I _{I(D)H(SHDN)}	shutdown logic HIGH digital input current	$\overline{SHDN} = V_{I(D)H(SHDN)}$	[1]	-	-	1	μΑ

^[1] Defined across V_{CC} = 3.0 V to 3.6 V and 4.8 V to 5.2 V; T_{case} = -40 °C to +85 °C.

3GA7124_1 © NXP B.V. 2009. All rights reserved.

N种调整AAATI供应商

400 MHz to 2700 MHz 1/4 W high linearity Si amplifier

Dynamic characteristics

Table 8. Characteristics at $V_{CC} = 5 \text{ V}$ $Z_S = Z_L = 50 \Omega$, $\overline{SHDN} = V_{I(D)H(SHDN)}$ (shutdown disabled). Typical values at $V_{CC} = 5 \text{ V}$; $T_{case} = 25 ^{\circ}\text{C}$, NXP application circuit;

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	frequency		[1] 400	-	2700	MHz
Gp	gain power	f = 900 MHz	[2] _	23	-	dB
		f = 1900 MHz	[2] _	16	-	dB
		f = 2140 MHz	[2] _	15	-	dB
		f = 2450 MHz	[2] _	<tbd></tbd>	-	dB
P _{L(1dB)}	output power at 1 dB gain compression	f = 900 MHz	[2] _	25	-	dBm
		f = 1900 MHz	[2] _	25	-	dBm
		f = 2140 MHz	[2] -	25	-	dBm
		f = 2450 MHz	[2] -	<tbd></tbd>	-	dB
P3 _O	output third-order intercept point	f = 900 MHz	[2][3]	38	-	dBm
		f = 1900 MHz	<u>[2][3]</u> _	38	-	dBm
		f = 2140 MHz	[2][3] _	38	-	dBm
		f = 2450 MHz	[2][3]	<tbd></tbd>	-	dB
NF	noise figure	f = 900 MHz	[2][4]	4.5	-	dB
		f = 1900 MHz	[2][4]	5.5	-	dB
		f = 2140 MHz	[2][4]	6.5	-	dB
		f = 2450 MHz	[2][4]	<tbd></tbd>	-	dB
RL _{in}	input return loss	f = 900 MHz	[2] _	-12.0	-	dB
		f = 1900 MHz	[2] _	-10.0	-	dB
		f = 2140 MHz	[2] _	-11.0	-	dB
		f = 2450 MHz	[2] _	<tbd></tbd>	-	dB
RLout	output return loss	f = 900 MHz	[2] _	-8.0	-	dB
		f = 1900 MHz	[2] _	-14.0	-	dB
		f = 2140 MHz	[2] _	-13.0	-	dB
		f = 2450 MHz	[2] _	<tbd></tbd>	-	dB
CC	supply current	$V_{CC} = 5 V$	[2] _	175	-	mA

^[1] Operation outside this range is possible but parameters are not guaranteed.

^[2] Applicable to class-A operation; $I_{Cq} = 175 \text{ mA}$.

^[3] $P_{O(tone)} = 8 \text{ dBm}$; tone spacing = 10 MHz, $f_1 = 840 \text{ MHz}$ to 960 MHz; $f_2 = 1900 \text{ MHz}$ to 2200 MHz; higher IMD3 product.

^[4] Defined at $P_{IN} = -40$ dBm; small signal conditions.

NAPIS BAR 67 PAULTERS

400 MHz to 2700 MHz 1/4 W high linearity Si amplifier

Characteristics at V_{CC} = 3.3 V Table 9.

ymbol	Parameter	Conditions	Min	Тур	Max	Unit
	frequency		<u>[1]</u> 400	-	2700	MHz
) p	gain power	f = 900 MHz	[2][3]	<tbd></tbd>	-	dB
		f = 1900 MHz	[2][3]	16	-	dB
		f = 2140 MHz	[2][3]	<tbd></tbd>	-	dB
		f = 2450 MHz	[2][3]	<tbd></tbd>	-	dB
L(1dB)	output power at 1 dB gain compression	f = 900 MHz	[2][3]	<tbd></tbd>	-	dBm
		f = 1900 MHz	[2][3]	23	-	dBm
		f = 2140 MHz	[2][3]	<tbd></tbd>	-	dBm
		f = 2450 MHz	[2][3]	<tbd></tbd>	-	dB
-3 ₀	output third-order intercept point	f = 900 MHz	[2][3][4]	<tbd></tbd>	-	dBm
		f = 1900 MHz	[2][3][4]	36	-	dBm
		f = 2140 MHz	[2][3][4]	<tbd></tbd>	-	dBm
		f = 2450 MHz	[2][3][4]	<tbd></tbd>	-	dB
F	noise figure	f = 900 MHz	[2][3][5] -	<tbd></tbd>	-	dB
		f = 1900 MHz	[2][3][5]	4.7	-	dB
		f = 2140 MHz	[2][3][5]	<tbd></tbd>	-	dB
		f = 2450 MHz	[2][3][5]	<tbd></tbd>	-	dB
L _{in}	input return loss	f = 900 MHz	<u>[3]</u> _	<tbd></tbd>	-	dB
		f = 1900 MHz	<u>[3]</u> _	<tbd></tbd>	-	dB
		f = 2140 MHz	<u>[3]</u> _	<tbd></tbd>	-	dB
		f = 2450 MHz	<u>[3]</u> _	<tbd></tbd>	-	dB
Lout	output return loss	f = 900 MHz	[3] _	<tbd></tbd>	-	dB
		f = 1900 MHz	[3] _	<tbd></tbd>	-	dB
		f = 2140 MHz	<u>[3]</u> _	<tbd></tbd>	-	dB
		f = 2450 MHz	<u>[3]</u> _	<tbd></tbd>	-	dB
CC	supply current	$V_{CC} = 3.3 \text{ V}$	[2][3]	175	-	mΑ

^[1] Operation outside this range is possible but parameters are not guaranteed.

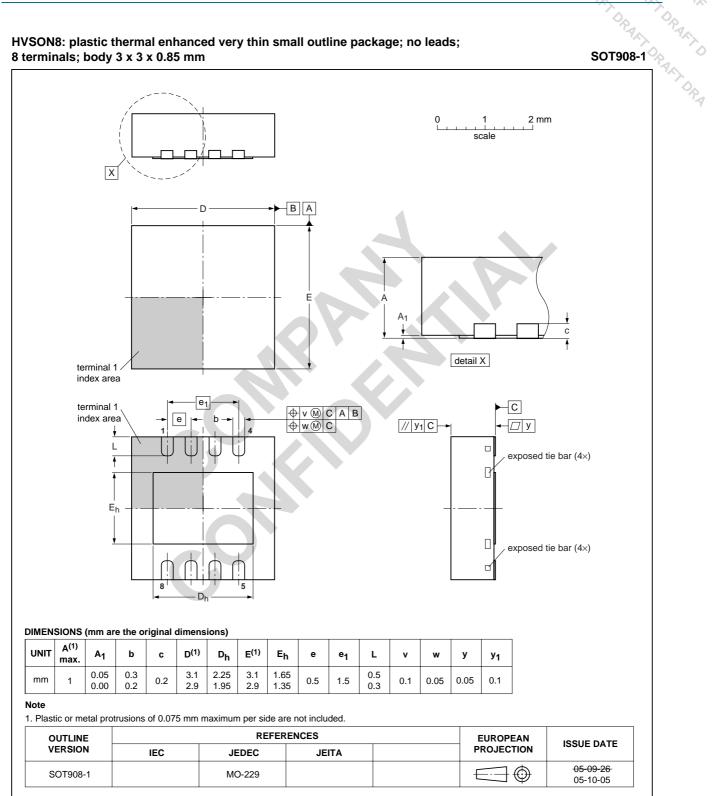
10. Reliability information

Table 10. Reliability

Life test	Conditions	Intrinsic failure rate
HTOL	confidence level 60 %; T_j = 55 °C; activation energy = 0.7 eV; acceleration factor determined by Arrhenius	XX

^[2] Defined across V_{CC} = 3.0 V to 3.6 V; T_{case} = -40 °C to +85 °C.

Applicable to class-A operation; $I_{Cq} = 175 \text{ mA}$.


^[4] $P_{o(tone)} = 8 \text{ dBm}$; tone spacing = 10 MHz, $f_1 = 850 \text{ MHz}$ to 1000 MHz; $f_2 = 1800 \text{ MHz}$ to 2400 MHz; higher IMD3 product.

Defined at $P_{IN} = -40$ dBm; small signal conditions.

11. Package outline

HVSON8: plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body 3 x 3 x 0.85 mm

Package outline SOT908-1 (HVSON8) Fig 3.

12. Abbreviations

Table 11. Abbreviations

Acronym	Description	
CPE	Customer-Premises Equipment	75
ESD	ElectroStatic Discharge	
HTOL	High Temperature Operating Life	
ISM	Industrial, Scientific and Medical	
MMIC	Monolithic Microwave Integrated Circuit	
RFID	Radio Frequency IDentification	
TX	Transmit	
W-LAN	Wideband Code Division Multiple Access	

13. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BGA7124_1	<tbd></tbd>	Objective data sheet	-	-

BGA7124_1 © NXP B.V. 2009. All rights reserved. Rev. 00.07 — 16 July 2009

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition	9
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.	
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.	
Product [short] data sheet	Production	This document contains the product specification.	

- [1] Please consult the most recently issued document before initiating or completing a design
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage.

NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

® NXP B.V. 2009. All rights reserved.

16. Contents

1	Product profile	. 1
1.1	General description	. 1
1.2	Features	. 1
1.3	Applications	. 1
1.4	Quick reference data	. 1
2	Pinning information	. 2
2.1	Pinning	. 2
2.2	Pin description	. 3
3	Ordering information	. 3
4	Functional diagram	. 3
5	Shutdown control	. 4
6	Limiting values	. 4
7	Thermal characteristics	. 4
8	Static characteristics	. 4
9	Dynamic characteristics	. 5
10	Reliability information	. 6
11	Package outline	. 7
12	Abbreviations	. 8
13	Revision history	. 8
14	Legal information	. 9
14.1	Data sheet status	. 9
14.2	Definitions	. 9
14.3	Disclaimers	
14.4	Trademarks	
15	Contact information	
16	Contents	10

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009. All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 July 2009

Document identifier: BGA7124_1