FEATURES

± 15 kV ESD protection on output pins
400 Mbps (200 MHz) switching rates
100 ps typical differential skew
400 ps maximum differential skew
2 ns maximum propagation delay
3.3 V power supply
$\pm 350 \mathrm{mV}$ differential signaling
Low power dissipation (13 mW typical)
Interoperable with existing 5 V LVDS receivers
High impedance on LVDS outputs on power-down
Conforms to TIA/EIA-644 LVDS standards
Industrial operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Available in surface-mount SOIC package and low profile
TSSOP package

APPLICATIONS

Backplane data transmission

Cable data transmission
Clock distribution

GENERAL DESCRIPTION

The ADN4665 is a quad-channel, CMOS, low voltage differential signaling (LVDS) line driver offering data rates of over 400 Mbps (200 MHz) and ultralow power consumption.

The device accepts low voltage TTL/CMOS logic signals and converts them to a differential current output of typically $\pm 3.5 \mathrm{~mA}$ for driving a transmission medium such as a twisted pair cable. The transmitted signal develops a differential voltage of typically $\pm 350 \mathrm{mV}$ across a termination resistor at the receiving end. This voltage is converted back to a TTL/CMOS logic level by an LVDS receiver.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADN4665 also offers active high and active low enable/ disable inputs (EN and $\overline{\mathrm{EN}}$). These inputs control all four drivers and turn off the current outputs in the disabled state to reduce the quiescent power consumption to typically 10 mW .
The ADN4665 offers a new solution to high speed, point-to-point data transmission and offers a low power alternative to emittercoupled logic (ECL) or positive emitter-coupled logic (PECL).

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No \#license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the property of their respective owners.

ADN4665

查询＂ADN4665＂供应商

TABLE OF CONTENTS

Features 1
Applications ． 1
Functional Block Diagram ． 1
General Description 1
Revision History 2
Specifications 3
Timing Characteristics 4
Absolute Maximum Ratings 6
ESD Caution6
Pin Configuration and Function Descriptions ．． 7
Typical Performance Characteristics ． 8
Theory of Operation ．． 9
Enable Inputs ．． 9
Applications Information ．． 9
Outline Dimensions 10
Ordering Guide 10

REVISION HISTORY

5／09—Revision 0：Initial Version

查询＂ADN4665＂供应商

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to GND ，all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．All typical values are given for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Conditions／Comments ${ }^{1,2}$
LVDS OUTPUTS（Doutx，Doutx－）						
Differential Output Voltage	$V_{\text {OD }}$	250	350	450	mV	See Figure 2 and Figure 4
Change in Magnitude of V od for Complementary Output States	$\Delta \mathrm{V}_{\text {OD }}$		4	35	｜mV｜	See Figure 2 and Figure 4
Offset Voltage	Vos	1.125	1.25	1.375	V	See Figure 2 and Figure 4
Change in Magnitude of Vos for Complementary Output States	$\Delta \mathrm{Vos}$		5	25	｜mV｜	See Figure 2 and Figure 4
Output High Voltage	$\mathrm{V}_{\text {OH }}$		1.38	1.6	V	See Figure 2 and Figure 4
Output Low Voltage	VoL	0.90	1.03		V	See Figure 2 and Figure 4
INPUTS（ DiNx ，EN，$\overline{\mathrm{EN}}$ ）						
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\text {cc }}$	V	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	GND		0.8	V	
Input High Current	IH_{H}	－10	＋1	＋10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$ or 2.5 V
Input Low Current	IL	－10	＋1	＋10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or 0.4 V
Input Clamp Voltage	$\mathrm{V}_{\text {cL }}$	－1．5	－0．8		V	$\mathrm{ICL}=-18 \mathrm{~mA}$
LVDS OUTPUT PROTECTION（Doutx + ，Doutx －						
Output Short－Circuit Current ${ }^{3}$	los		－6．0	－9．0		Enabled， $\mathrm{Dinx}_{\mathrm{x}}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{Doutx}+=0 \mathrm{~V}$ or $\mathrm{D}_{\text {INx }}=\mathrm{GND}$ ， $\mathrm{Doutx}_{\text {co }}=0 \mathrm{~V}$
Differential Output Short－Circuit Current ${ }^{3}$	losd		－6．0	－9．0	mA	Enabled， $\mathrm{V}_{\text {OD }}=0 \mathrm{~V}$
LVDS OUTPUT LEAKAGE（ $\mathrm{Doutx}_{\text {＋}}$ ， $\mathrm{Doutx}_{\text {－}}$ ）						
Power－Off Leakage	Ioff	－20	± 1	＋20		$V_{\text {OUT }}=0 \mathrm{~V}$ or $3.6 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=0 \mathrm{~V}$ or open
Output Three－State Current	loz	－10	± 1	＋10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{EN}=0.8 \mathrm{~V}, \overline{\mathrm{EN}}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
POWER SUPPLY						
No Load Supply Current，Drivers Enabled	Icc		5.0	8.0	mA	$\mathrm{D}_{\mathrm{INx}}=\mathrm{V}_{\text {cc }}$ or GND
Loaded Supply Current，Drivers Enabled	IccL		23	30	mA	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega \text { all channels, } \\ & \mathrm{D}_{\mathrm{INx}}=\mathrm{V}_{\mathrm{cc}} \text { or GND (all inputs) } \end{aligned}$
No Load Supply Current，Drivers Disabled	Iccz		2.6	6.0	mA	$\begin{aligned} & \mathrm{D}_{\mathrm{INx}}=\mathrm{V}_{\mathrm{cc}} \text { or } \mathrm{GND}, \mathrm{EN}=\mathrm{GND}, \\ & \mathrm{EN}=\mathrm{V}_{\mathrm{cc}} \end{aligned}$
ESD PROTECTION						
Doutx ，Doutx－Pins			± 15		kV	Human body model
All Pins Except Doutx ${ }^{\text {，}}$ Doutx－			± 4.5		kV	Human body model

[^0]
ADN4665

查询＂ADN 4665＂供应商

TIMING CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}{ }^{1}=15 \mathrm{pF}$ to GND ，all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．All typical values are given for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．

Table 2.

Parameter ${ }^{2}$	Symbol	Min	Typ	Max	Unit	Conditions／Comments ${ }^{\text {3，4 }}$
AC CHARACTERISTICS						
Differential Propagation Delay，High to Low	tpHLD	0.8	1.18	2.0	ns	See Figure 3 and Figure 4
Differential Propagation Delay，Low to High	tpLHD	0.8	1.25	2.0	ns	See Figure 3 and Figure 4
Differential Pulse Skew｜t PHLD $^{-}$t $_{\text {PLHD }} \mid$	$\mathrm{t}_{\text {SKO1 }}{ }^{5}$	0	0.07	0.4	ns	See Figure 3 and Figure 4
Channel－to－Channel Skew	tsKD2 ${ }^{6}$	0	0.1	0.5	ns	See Figure 3 and Figure 4
Differential Part－to－Part Skew	tskob^{7}	0		1.0	ns	See Figure 3 and Figure 4
Differential Part－to－Part Skew	$\mathrm{tsKD4}^{8}$	0		1.2	ns	See Figure 3 and Figure 4
Rise Time	$\mathrm{t}_{\text {tLH }}$		0.38	1.5	ns	See Figure 3 and Figure 4
Fall Time	tтhl		0.4	1.5	ns	See Figure 3 and Figure 4
Disable Time High to Inactive	$\mathrm{t}_{\text {PHZ }}$			5	ns	See Figure 5 and Figure 6
Disable Time Low to Inactive	$\mathrm{t}_{\text {PLZ }}$			5	ns	See Figure 5 and Figure 6
Enable Time Inactive to High	tPZH			7	ns	See Figure 5 and Figure 6
Enable Time Inactive to Low	tpzL			7	ns	See Figure 5 and Figure 6
Maximum Operating Frequency	$\mathrm{f}_{\text {max }}{ }^{9}$	200	250		MHz	See Figure 5 and Figure 6

${ }^{1} C_{L}$ includes probe and jig capacitance．
${ }^{2} \mathrm{AC}$ parameters are guaranteed by design and characterization．
${ }^{3}$ Generator waveform for all tests，unless otherwise specified： $\mathrm{f}=50 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1 \mathrm{~ns}$ ，and $\mathrm{t}_{\mathrm{f}} \leq 1 \mathrm{~ns}$ ．
${ }^{4}$ All input voltages are for one channel，unless otherwise specified．Other inputs are set to GND．
${ }^{5}$ tsKD1 $=\mid$ t $_{\text {PHLD }}-$ t $_{\text {PLLLD }} \mid$ is the magnitude difference in differential propagation delay time between the positive－going edge and the negative－going edge of the same channel．
${ }^{6}{ }^{6}$ SkD2 is the differential channel－to－channel skew of any event on the same device．
${ }^{7}$ t $_{\text {SKD }}$ ，differential part－to－part skew，is defined as the difference between the minimum and maximum specified differential propagation delays．This specification applies to devices at the same $\mathrm{V}_{c c}$ and within $5^{\circ} \mathrm{C}$ of each other within the operating temperature range．
${ }^{8}$ t SkDLA $^{\prime}$ ，part－to－part skew，is the differential channel－to－channel skew of any event between devices．This specification applies to devices over the recommended operating temperature and voltage ranges，and across process distribution． $\mathrm{t}_{\text {SKD } 4}$ is defined as \mid maximum－minimum \mid differential propagation delay．
${ }^{9} \mathrm{f}_{\text {MAX }}$ generator input conditions： $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<1 \mathrm{~ns}(0 \%$ to $100 \%), 50 \%$ duty cycle， 0 V to 3 V ．Output criteria：duty cycle $=45 \%$ to 55% ，Vod $>250 \mathrm{mV}$ ，all channels switching．

Test Circuits and Timing Diagrams

NOTES
1．DRIVER IS ENABLED．
Figure 2．Test Circuit for Driver $V_{O D}$ and $V_{O S}$

NOTES
1． C_{L} INCLUDES PROBE AND JIG CAPACITANCE．
Figure 3．Test Circuit for Driver Propagation Delay and Transition Time

Figure 4．Driver Propagation Delay and Transition Time Waveforms

NOTES

1． C_{L} INCLUDES LOAD AND TEST JIG CAPACITANCE．
2．S1 CONNECTED TO v_{CC} FOR $\mathrm{t}_{\mathrm{PHZ}}$ AND $\mathrm{t}_{\mathrm{PZH}}$ TEST． 3．S1 CONNECTED TO GND FOR $\mathrm{t}_{\mathrm{PLZ}}$ AND $\mathrm{t}_{\text {PZL }}$ TEST．

Figure 5．Test Circuit for Driver Three－State Delay

Figure 6．Driver Three－State Delay Waveforms

ADN4665

查询＂ADN 4665＂供应商

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless otherwise noted．
Table 3.

Parameter	Rating
V cc to GND	-0.3 V to＋4V
Input Voltage（ $\mathrm{Dinx}^{\text {）}}$ ）to GND	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Enable Input Voltage（EN，EN）to GND	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Output Voltage（Doutx＋，Doutx－）to GND	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Short－Circuit Duration（Doutx＋， Doutx $^{\text {）to GND }}$	Continuous
Industrial Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature（T，max）	$150^{\circ} \mathrm{C}$
Power Dissipation	$\left(T_{J} \max -\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
$\theta_{\text {JA }}$ Thermal Impedance	
TSSOP Package	$150.4^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package	$125^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature（10 sec）	$260^{\circ} \mathrm{C}$ max

查询＂ADN4665＂供应商

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 7．Pin Configuration

Table 4．Pin Function Descriptions

Pin No．	Mnemonic	Description
1	DIN1	Driver Channel 1 Logic Input．
2	Dout1＋	Channel 1 Noninverting Output Current Driver．When $\mathrm{D}_{1 \mathrm{~N} 1}$ is high，current flows out of Dout1＋．When Din1 is low， current flows into Dout1＋．
3	Dout1－	Channel 1 Inverting Output Current Driver．When $D_{\mathbb{N} 1}$ is high，current flows into $D_{o u t 1}$ ．When $D_{\text {IN }}$ is low，current flows out of Douti－．
4	EN	Active High Enable and Power－Down Input（ 3 V TTL／CMOS）．If $\overline{\mathrm{EN}}$ is held low or open circuit， EN enables the drivers when high and disables the drivers when low．
5	Dout2－	Channel 2 Inverting Output Current Driver．When DiN2 is high，current flows into Dout2－．When DiN2 is low，current flows out of Dout2－．
6	Dout2＋	Channel 2 Noninverting Output Current Driver．When $\mathrm{D}_{1 \mathrm{~N} 2}$ is high，current flows out of Dout2＋．When $\mathrm{D}_{\mathrm{N} 2}$ is low， current flows into Dout2＋．
7	$\mathrm{D}_{\text {IN2 }}$	Driver Channel 2 Logic Input．
8	GND	Ground Reference Point for All Circuitry on the Part．
9	Din3	Driver Channel 3 Logic Input．
10	Dout3＋	Channel 3 Noninverting Output Current Driver．When $\mathrm{D}_{\mathrm{IN} 3}$ is high，current flows out of $\mathrm{D}_{\text {out3＋}}$ ．When $\mathrm{D}_{\mathrm{IN3}}$ is low， current flows into Dout3＋．
11	Dout3－	Channel 3 Inverting Output Current Driver．When Dinз is high，current flows into Doutз－．When Dinз is low，current flows out of Douts－．
12	$\overline{\mathrm{EN}}$	Active Low Enable and Power－Down Input with Pull－Down（3 VTTL／CMOS）．If EN is held high，$\overline{\mathrm{EN}}$ enables the drivers when low or open circuit and disables the drivers and powers down the device when high．
13	Dout4－	Channel 4 Inverting Output Current Driver．When $D_{\text {IN4 }}$ is high，current flows into Douta－．When $D_{\mathbb{N} 4}$ is low，current flows out of Dout4－．
14	Dout4＋	Channel 4 Noninverting Output Current Driver．When $D_{\text {IN4 }}$ is high，current flows out of $D_{o u t 4+}$ ．When $D_{\text {IN4 }}$ is low， current flows into Dout4＋．
15	DiN4	Driver Channel 4 Logic Input．
16	V cc	Power Supply Input．This part can be operated from 3.0 V to 3.6 V ．The supply should be decoupled with a $10 \mu \mathrm{~F}$ solid tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to GND．

ADN4665

查询＂A D N 4665＂供应商

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8．Single－Ended Driver Output Voltage vs．Load Resistance

Figure 9．Driver Output vs．Load Resistance

THEORY OF OPERATION

The ADN4665 is a quad line driver for low voltage differential signaling．It takes a single－ended 3 V logic signal and converts it to a differential current output．The data can then be trans－ mitted for considerable distances，over media such as a twisted pair cable or PCB backplane，to an LVDS receiver such as the ADN4666， where it develops a voltage across a termination resistor， R_{T} ．This resistor is chosen to match the characteristic impedance of the medium，typically around 100Ω ．The differential voltage is detected by the receiver and converted back into a single－ended logic signal．
When $\mathrm{D}_{\mathrm{INx}}$ is high（Logic 1），current flows out of the Doutx + pin（current source）through R_{T} and back into the Doutx－pin （current sink）．At the receiver，this current develops a positive differential voltage across R_{T}（with respect to the inverting input） and results in a Logic 1 at the receiver output．When $\mathrm{D}_{\mathrm{INx}}$ is low， Doutx＋sinks current and Doutx－sources current；a negative dif－ ferential voltage across R_{T} results in a Logic 0 at the receiver output．
The output drive current is between $\pm 2.5 \mathrm{~mA}$ and $\pm 4.5 \mathrm{~mA}$ （typically $\pm 3.5 \mathrm{~mA}$ ），developing between $\pm 250 \mathrm{mV}$ and $\pm 450 \mathrm{mV}$ across a 100Ω termination resistor．The received voltage is centered around the receiver offset of 1.25 V ．Therefore，the noninverting receiver input is typically 1.375 V （that is， $1.2 \mathrm{~V}+[350 \mathrm{mV} / 2]$ ）and the inverting receiver input is 1.025 V （that is， $1.2 \mathrm{~V}-[350 \mathrm{mV} / 2]$ ） for Logic 1 ．For Logic 0 ，the inverting and noninverting output voltages are reversed．Note that because the differential voltage reverses polarity，the peak－to－peak voltage swing across R_{T} is twice the differential voltage．
Current－mode drivers offer considerable advantages over voltage－ mode drivers such as RS－422 drivers．The operating current remains fairly constant with increased switching frequency， whereas the operating current of voltage－mode drivers increases exponentially in most cases．This is caused by the overlap current as internal gates switch between high and low，which causes currents to flow from the device power supply to ground．A current－mode device simply reverses a constant current between its two outputs， with no significant overlap currents．

This is similar to emitter－coupled logic（ECL）and positive emitter－coupled logic（PECL），but without the high quiescent current of ECL and PECL．

ENABLE INPUTS

The active high and active low enable inputs deactivate all the current drivers when the drivers are in the disabled state．This also powers down the device and reduces the current consumption from typically 23 mA to typically 2.6 mA ．A truth table for the enable inputs is shown in Table 5.

Table 5．Enable Inputs Truth Table

Pin Logic Level			Doutx＋	Doutx－
EN	$\overline{\mathrm{EN}}$	$\mathrm{D}_{\text {INX }}$		
Low	High	X ${ }^{1}$	Inactive	Inactive
Low	Low	Low	IsINk	Isource
Low	Low	High	Isource	$\mathrm{I}_{\text {SIINK }}$
High	Low	Low	IsINK	Isource
High	Low	High	Isource	Isİk

${ }^{1} \mathrm{X}=$ don＇t care．

APPLICATIONS INFORMATION

Figure 10 shows a typical application for point－to－point data transmission using the ADN4665 as the driver．

ADN4665

查询＂A DN 4665＂供应商

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS－012－AC CONTROLLING DIMENSIONS ARE IN MILLIMETERS；INCH DIMENSIONS （IN PARENTHESES）ARE ROUNDED－OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN．

Figure 11．16－Lead Standard Small Outline Package［SOIC＿N］
Narrow Body
（ R－16）
Dimensions shown in millimeters and（inches）

Figure 12．16－Lead Thin Shrink Small Outline Package［TSSOP］ （RU－16）
Dimensions shown in millimeters
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADN4665ARZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16－Lead Standard Small Outline Package［SOIC＿N］	R－16
ADN4665ARZ－REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16－Lead Standard Small Outline Package［SOIC＿N］	R－16
ADN4665ARUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16－Lead Thin Shrink Small Outline Package［TSSOP］	RU－16
ADN4665ARUZ－REEL71 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16－Lead Thin Shrink Small Outline Package［TSSOP］	RU－16

[^1]| 查询＂ADN4665＂供应商 | ADN4665 |
| :--- | :---: |

NOTES

ADN4665

NOTES

[^0]: ${ }^{1}$ Current into device pins is defined as positive．Current out of device pins is defined as negative．All voltages are referenced to ground except $\mathrm{V}_{\text {Oo }}, \Delta \mathrm{V}_{\text {OD }}$ ，and $\Delta \mathrm{V}_{\text {os }}$ ．
 ${ }^{2}$ The ADN4665 is a current－mode device and functions within data sheet specifications only when a resistive load is applied to the driver outputs．Typical range is 90Ω to 110Ω ．
 ${ }^{3}$ Output short－circuit current（los）is specified as magnitude only；minus sign indicates direction only．

[^1]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part．

