DM115B

Version : A.001

Issue Date : 2007/02/07

File Name : SP-DM115B-A.001

Total Pages

8-Bit CONSTANT CURRENT LED DRIVERS with

3.3v ~ 5v supply voltage

新竹市科學園區展業一路9號7樓之1 SILICON TOUCH TECHNOLOGY INC.

9-7F-1, Prosperity Road I, Science Based Industrial Park, Hsin-Chu, Taiwan 300, R.O.C.

Tel: 886-3-5645656 Fax: 886-3-5645626

DM115B

8-Bit CONSTANT CURRENT LED DRIVERS with 3.3v ~ 5v Supply Voltage

General Description

The DM115B is the constant current driver specifically designed for LED display applications. The value of constant current can be varied using an external resistor. The devices include an 8-bit shift register, latches, and constant current drivers on a single Silicon CMOS chip.

Features

Maximum Output Voltage: 17V

Maximum Clock Frequency: 25MHz (Cascade Operation)

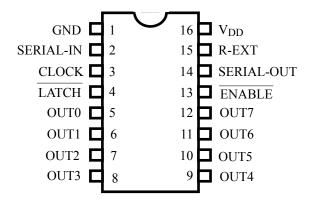
• Power Supply Voltage: 3.3V to 5.0V

CMOS Compatible Input

• Package: PDIP16, SOP16, SSOP16

• Package and Pin Layout: Pin layout and functionality are similar to those of the ST2221A.

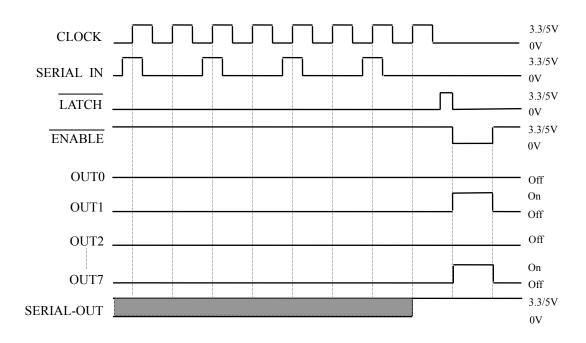
(Each characteristic value is different.)


• Constant Current Matching: $(Ta = 25^{\circ}C \cdot VDD = 5.0V)$

Chip-to-Chip: ± 10.0%

Bit-to-Bit: $\pm 4.0\%$ @ IouT = $20 \sim 60$ mA $\pm 6.0\%$ @ IouT = $5 \sim 20$ mA

Pin Connection (Top view)



Block Diagram

Timing Diagram

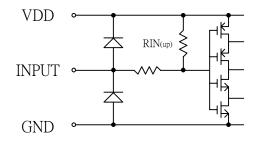
(Note) Latches are level sensitive (not edge triggered).

 $\overline{\text{LATCH}}$ -terminal = H level, latches become transparent; $\overline{\text{LATCH}}$ -terminal = L level, latches hold data.

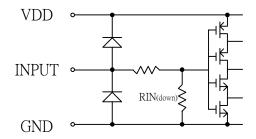
 $\overline{\text{ENABLE}}$ -terminal = H level, all outputs (OUT0 \sim 7) are off.

An external resistor is connected between R-EXT and GND for setting up the value of constant current.

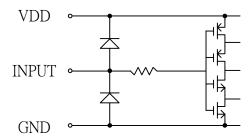
SERIAL-OUT changes state on the rising edges of clock.

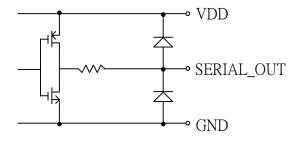

Pin Description

PIN No.	PIN NAME	FUNCTION
1	GND	GND terminal
2	SERIAL-IN	Input terminal of a data shift register
3	CLOCK	Input terminal of a clock for shift register
4	LATCH	Input terminal for data strobe
5~12	OUT0~7	Output terminals
13	ENABLE	Input terminal for output enable (active low)
14	SERIAL-OUT	Output terminal of a data shift register
15	R-EXT	Input terminal of an external resistor
16	V_{DD}	3.3/5V Supply voltage terminal



Equivalent Circuit of Inputs and Outputs


1. ENABLE terminal


2. LATCH terminal

3. CLOCK, SERIAL-IN terminal

4. SERIAL-OUT terminal

$\label{eq:maximum Ratings (Ta = 25°C, Tj_{(max)} = 150°C)} \textbf{Maximum Ratings (Ta = 25°C, Tj_{(max)} = 150°C)}$

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vdd	0 ~ 7.0	V
Input Voltage	Vin	$-0.4 \sim VDD + 0.4$	V
Output Current	Iout	60	mA
Output Voltage	Vout	- 0.3 ∼ 17	V
Clock Frequency	fclk	25	MHz
GND Terminal Current	IGND	500	mA
Power Dissipation	PD	1.64 (PDIP-16 : Ta=25°C)	
		1.08 (SOP-16 : Ta=25°C)	\exists w
		0.8 (SSOP-16 : Ta=25°C) single-layer	W
		1.47 (SSOP-16 : Ta=25°C) 4-layer	
Thermal Resistance	Rth(j-a)	76 (PDIP-16)	°C/W
		115 (SOP-16)	
		155 (SSOP-16) single-layer	
		85 (SSOP-16) 4-layer	
Storage Temperature	Tstg	-55 ∼ 150	°C

Recommended Operating Condition

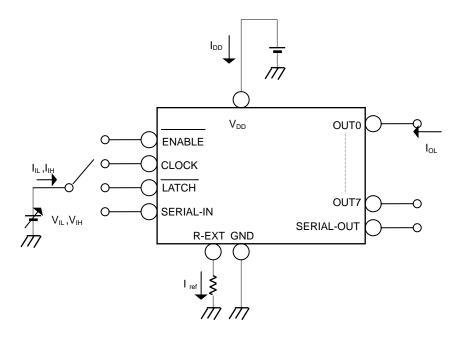
CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
Supply Voltage	Vdd		3.0		5.5	V	
Output Voltage	Vout				17	V	
Operating temperature	T_{OPR}		-40		85	$^{\circ}\!\mathbb{C}$	
	Io	OUTn			60		
Output Current	Іон	SERIAL-OUT			1.0	mA	
	IOL	SERIAL-OUT			-1.0		
Innut Voltago	Vih	_	0.7VDD	_	VDD+0.3	- V	
Input Voltage	VIL	_	-0.3 —		0.3VDD	V	
LATCH Pulse Width	tw LAT		15			ns	
CLOCK Pulse Width	tw CLK		15			ns	
Set-up Time for DATA	tsetup(D)	$V_{DD} = 3.0 \sim 5.5 \text{ V}$	10			ns	
Hold Time for DATA	thold(D)		5			ns	
Set-up Time for LATCH	tsetup(L)		15			ns	
Clock Frequency	fCLK	2 chips cascade operation			25	MHz	
	PD	$Ta = 85^{\circ}C(PDIP-16)$			0.85		
Power Dissipation		$Ta = 85^{\circ}C(SOP-16)$			0.56	W	
		$Ta = 85^{\circ}C(SSOP-16)$			0.41		

Electrical Characteristics (VDD = 5.0 V, Ta = 25°C unless otherwise noted)

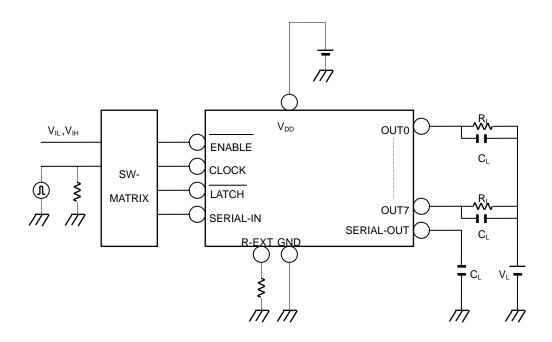
CHARACTERISTIC	SYMBOL	CONDITION		MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	Vih	_		0.7VDD		VDD	V
Input Voltage "L" Level	VIL	_		GND		0.3VDD	v
Output Leakage Current	Іон	VOH = 17 V	VOH = 17 V			1.0	uA
	Vol	IOL = 1.0 mA, VDD=5V			_	0.4	
Output Voltage (S - OUT)	Voh	IOH = -1.0 mA, VDD=5V		4.6		_	V
	Vol	IOL = 1.0 mA, VDD=3.3V				0.4	
	Voh	IOH = -1.0 mA, VDD=3.3V		2.7			
Output Current (Bit-Bit)	Δ Iout	VOUT = 1.2V (1 channel on)	REXT = 780Ω		±1.5	<u>±</u> 4	%
Output Current (Chip-Chip)	Iout	VOUT = 1.2V (1 channel on)	REXT = 780Ω	18.0	20.0	22.0	mA
Output Voltage Regulation	% / Vout	$Vdd = 3.3V \sim 5.0V$			0.1	0.5	% / V
Pull-Up Resistor	RIN(up)			200	400	600	ΚΩ
Pull-Down Resistor	RIN(down)	_		100	200	300	ΚΩ
Supply Current "OFF"	Idd (off)	REXT = OPEN, all outputs off			5.0	_	
Supply Current Off	VDD=5V	REXT = 300Ω , OUT0 \sim 7 = off			11.0	_	mA
Supply Current "ON"	Idd (on) VDD=5V	REXT = 300Ω , OUT0~7 = on			11.0		IIIA
Complet Compant "OFF"	Idd (off)	REXT = OPEN, all outputs off			1.1		
Supply Current "OFF"	VDD=3.3V	REXT = 300Ω , OUT0~7 = off			7.2		1 .
Supply Current "ON"	Idd (on) VDD=3.3V	REXT = 300Ω , OUT0~7 = on			7.2		mA

Switching Characteristics (Ta = 25 °C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation ENABLE-OUT0	4	VDD=5.0V		66	132	
Delay Time ("L" to "H")	tр _L H	VIH=VDD VIL=GND		16	20	ns
Propagation ENABLE-OUT0	4	REXT=630Ω	_	81	162	
Delay Time ("H" to "L")	tрнL	VL=5.0V RL=150Ω CL=15pF		16	20	ns
Output Current Rise Time	tor			30	60	ns
Output Current Fall Time	tof		_	32	50	ns

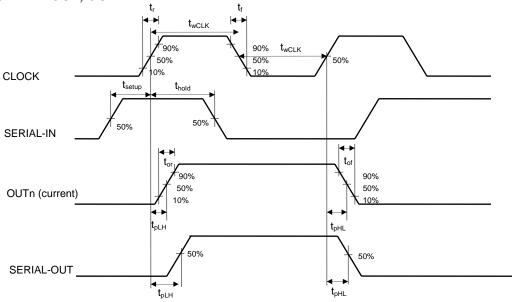

Note: (Delay between outputs)

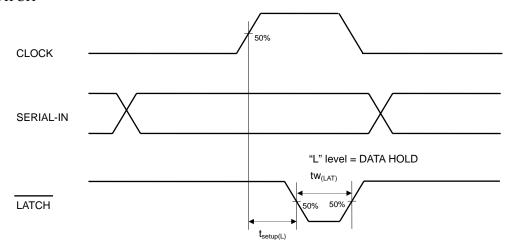
The DM115B also incorporated the delay unit between outputs. The delay time is 4 ns(typ.), out7 has no delay, out5 has 4 ns delay, out 3 has 8 ns delay, and then out 1, out 0, out 2, out 4, out6. The delay is to prevent large current impulse.



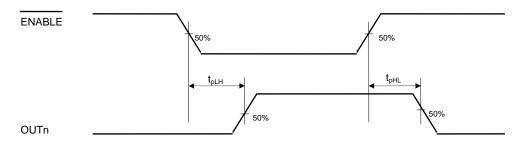
Test Circuit

DC characteristic

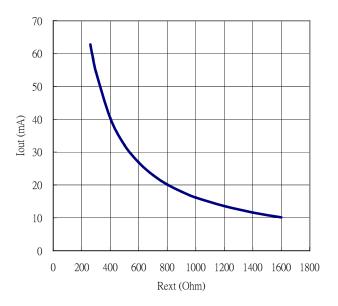

AC characteristic



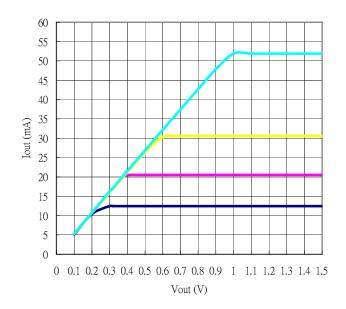
Timing Diagram


1. CLOCK-SERIAL OUT, OUTn

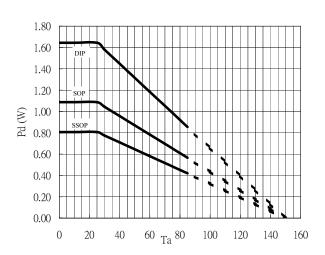
2. CLOCK-LATCH

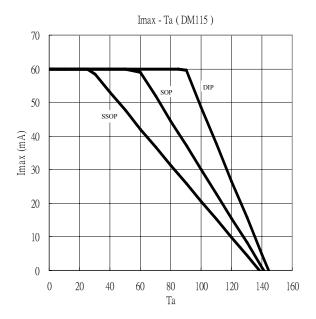


3. ENABLE-OUTn (Current)



Output Current vs. External Resistor


Iout $\approx 1.3 \text{V} / \text{Rext} * 12.5$


Output Current Performance vs. Output Voltage

Note: In order to obtain a good constant current output, a suitable output voltage is necessary. Users can get related information about the minimum output voltage from the above graph.

Note

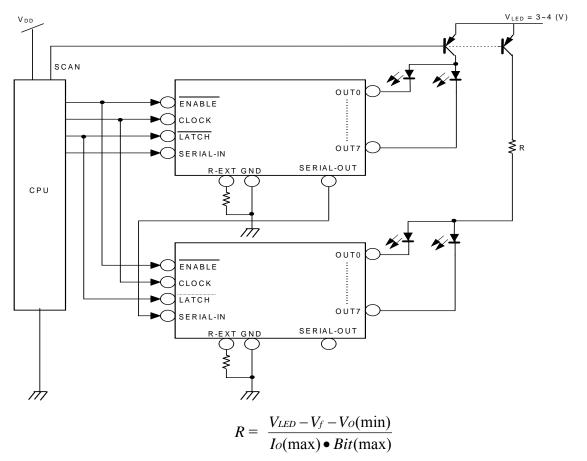
As the power dissipation of a semiconductor chip is limited its package and ambient temperature, this device requires a maximum output current be calculated for a given operating condition. The maximum allowable power consumption (Pd (max)) of this device is calculated as follows:

$$Pd(\max)(Watt) = \frac{(\text{Tj (junction temperature) (max) - Ta (ambient temperature))(^{\circ}C)}{\text{Rth (}^{\circ}C/Watt)}$$

Based on the Pd (max), the maximum allowable current can be calculated as follows:

$$Iout = (Pd - V_{DD} \cdot I_{DD}) / (\# outputs \cdot Vo \cdot Duty)$$

System Configuration Example

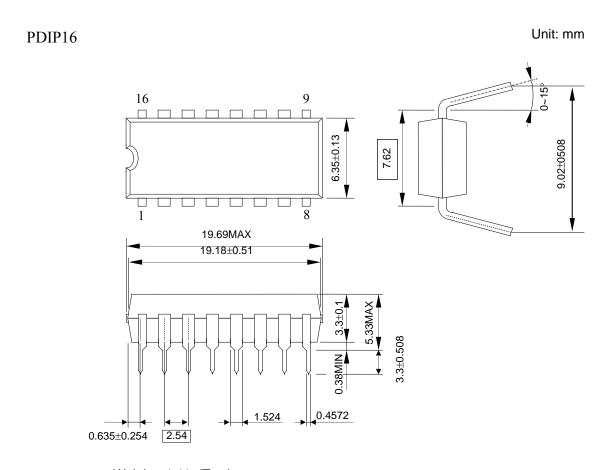

[1] Output current (I_{OUT})

Sink current is set by the external resistor as shown in figure (Iout vs. Rext).

[2] LED supply voltage (V_{LED}) setup

$$V_{LED} = V_{CE} (T_r V_{sat}) + V_f (LED \text{ forward voltage}) + V_O (IC \text{ supply voltage})$$

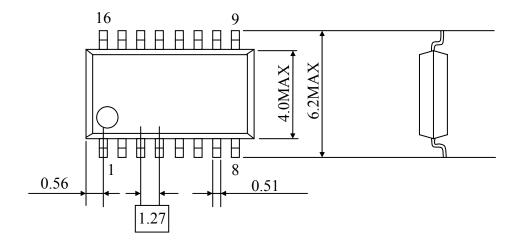
To prevent too much power dissipated by the device due to higher V_{LED} , an additional R can be used to reduce the Vout when the outputs consume current:

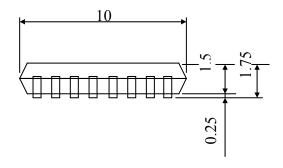


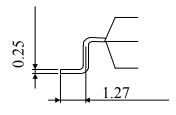
Note

This device has only one ground pin shared by signal, output sink current, and power ground. It is advisable to pattern the ground layout with minimized inductance such that the switching noise induced by the input signals and the output sink current would not cause chip malfunction. To prevent the drivers' outputs from damage by overshoot stress, it is also advisable not to turn off the drivers and scan transistors simultaneously.

Package Outline

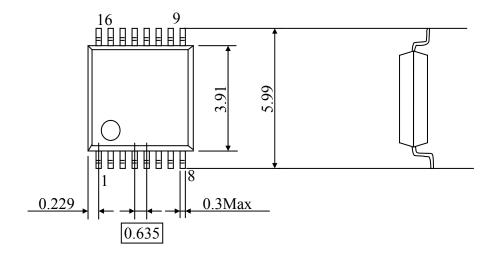


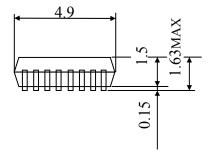

Weight: 1.11g(Typ.)

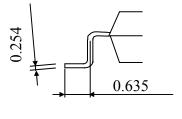


Package Outline

SOP16 Unit: mm







Package Outline

SSOP16 Unit: mm

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.