
查询"5962-86891012A"供应商 REVISIONS DATE APPROVED LTR DESCRIPTION REV PAGE REV **REV STATUS OF PAGES** PAGES 2 3 4 5 6 7 8 9 10 1 PREPARED BY MILITARY DRAWING **Defense Electronics Supply Center** This drawing is available for use by Dayton, Ohio CHECKED BY all Departments and Agencies of the Department of Defense TITLE: MICROCIRCUITS, DIGITAL HIGH-SPEED CMOS 4-BIT BINARY UP/DOWN COUNTER **Original date** APP of drawing: MONOLITHIC SILICON b 5 June 1987 CODE IDENT. NO. NO. SIZE DWG 5962-86891 14933 А AMSC N/A REV PAGE OF 1 17 5962-E194-2

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DESC FORM 193

MAY 86

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Maximum operating frequency (f _{MAX}))				
$T_{C} = +25^{\circ}C:$ $V_{CC} = 2.0 V $			– 4 MHz		
$V_{CC} = 2.0 V $			- 20 MHz		
$1 = -55 \ \text{L} \ \text{TO} \ \text{TI25} \ \text{L}$					
$V_{CC} = 2.0 V $			- 2.8 MH		
$V_{CC}^{CC} = 4.5 V $			– 13 MH – 15 MH		
Minimum setup time, data A. B. C.	D to load	(t _{SU1}):			
$T_{C} = +25^{\circ}C:$			- 150 ns		
$V_{CC} = 2.0 V $			- 30 ns		
$V_{CC}^{CC} = 6.0 V $					
$V_{CC} = 2.0 V $			- 230 ns		
$V_{CC} = 4.5 V $			– 46 ns – 38 ns		
I minimum setup time, enable to cloc	k, (t _{SU2})	:	- 30 113		
$T_{C} = +25^{\circ}C:$			- 205 ns		
$V_{CC} = 2.0 V$			- 41 ns		
$V_{CC} = b_1 U V_{$			– 35 ns		
$T_{C} = -55^{\circ}C, +125^{\circ}C:$ $V_{CC} = 2.0 V $			– 306 ns		
$V_{CC}^{CC} = 4.5 V $			- 61 ns - 53 ns		
Minimum hold time, data A, B, C, D	after lo	ad (t _{H1}):	55 115		
$T_{C} = +25^{\circ}C:$ $V_{CC} = 2.0 V $			- 5 ns		
$V_{CC} = 4.5 V $			– 5 ns		
$V_{CC}^{CC} = 6.0 V $			- 5 ns		
T _C = -55°C, +125°C: V _{CC} = 2.0 V			- 5 ns		
$V_{\rm CC} = 4.5 V $			– 5 ns		
V _{CC} = 6.0 V			– 5 ns		
$T_{C} = +25^{\circ}C:$			5		
V _{CC} = 2.0 V			- 5 ns - 5 ns		
V _{CC} = 6.0 V			- 5 ns		
$V_{cc} = 2.0 V $			- 5 ns		
VCC = 4.5 V			- 5 ns		
Width of clock or load input nule	a (+).				
$T_{C} = +25^{\circ}C:$ $Y_{CC} = 2.0 V $			- 125 ns		
$v_{CC}^{CC} = 4.5 V $			- 25 ns		
V _{CC} ^{CC} = 6.0 V			- 21 ns		
$V_{\rm CC} = 2.0 \ V =$			- 190 ns		
$V_{CC} = 4.5 V $			- 38 ns - 32 ns		
V _{CC} = 6.0 V			- 52 113		
$T_{C} = +25^{\circ}C:$ $V_{CC} = 2.0 V $			- 150 ns		
$V_{CC} = 4.5 V $			- 130 ms		
$V_{CC}^{CC} = 6.0 V $			- 25 ns		
	SIZE	CODE ID		DWG NO.	
MILITARY DRAWING	A	149	33	5962-86891	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO			A		
		RE	v	PAGE	3
DESC FORM 193A FEB 86					
FED 00		I			

 $T_{C} = -55^{\circ}C, +125^{\circ}C:$ $V_{CC} = 2.0 V - - - V_{CC} = 4.5 V - - - -$ 225 ns 45 ns ۷_{ČC} = 6.0 V 38 ns Unless otherwise specified all voltages are referenced to ground. For $T_{C} = +100^{\circ}C$ to $+125^{\circ}C$, derate linearly at 12 mW/°C. When a thermal resistance for this case is published in MIL-M-38510, appendix C, that value $\frac{2}{3}$ shall supersede the value indicated herein. 2. APPLICABLE DOCUMENTS 2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein. SPECIFICATION MIL ITARY MIL-M-38510 - Microcircuits, General Specification for. STANDARD MILITARY MIL-STD-883 Test Methods and Procedures for Microelectronics. (Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.) 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. REQUIREMENTS 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein. 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1. 3.2.2 Truth table. The truth table shall be as specified on figure 2. 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 3. 3.2.4 Case outline. The case outline shall be in accordance with 1.2.2 herein. 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range. 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein. CODE IDENT. NO. SIZE DWG NO. MILITARY DRAWING 14933 5962-86891 A DEFENSE ELECTRONICS SUPPLY CENTER REV 4 DAYTON, OHIO PAGE **DESC FORM 193A FEB 86**

<u> 查询"5962-86891012A"供应商</u>

Test	 Symbol	Conditi -55°C < To	ons 1/	I Group A subgroups	1	nits Max	Unit
	<u> </u>	-55°C < TC (Unless otherwis	e specified)		 	 	
ligh-level output voltage	₩он	$V_{IN} = V_{IH} \text{ or } V_{IL}$	V _{CC} = 2.0 V	1, 2, 3	1.9	! ! 	
			V _{CC} = 4.5 V		4.4	 	
			VCC = 6.0 V		5.9	. 	! ! !
		 VIN = VIH or VIL IO < 4.0 mA	V _{CC} = 4.5 V		3.7		1
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ V_{IN} \leq 5.2 \text{ mA}$	$V_{\rm CC} = 6.0 V$		5.2		
Low-level output voltage	I V _{OL}	 V _{IN} = V _{IH} or V _{IL} I ₀ <u><</u> 20 µA	$V_{\rm CC} = 2.0 V$	1, 2, 3	 	0.1	i v
			$V_{\rm CC} = 4.5 V$		 	0.1	
	4 		V _{CC} = 6.0 V		i I I	0.1	
		 VIN = VIH or VIL IO <u><</u> 4.0 mA	V _{CC} = 4.5 V			0.4	[]
		$V_{IN} = V_{IH} \text{ or } V_{IF}$	V _{CC} = 6.0 V			0.4	
High level input voltage <u>2</u> /	VIH		VCC = 2.0 V	1, 2, 3	1.5		v
	i I I	 	V _{CC} = 4.5 V		3.15		
	1	1	V _{CC} = 6.0 V		4.2		
Low level input voltage <u>2</u> /	VIL		$V_{\rm CC} = 2.0 V$	1, 2, 3		0.3	۷
		1 1 1	$V_{\rm CC} = 4.5 V$	 		0.9	
	 	 	VCC = 6.0 V			1.2	
See footnotes at end of table.		•	· · · · · · · · · · · · · · · · · · ·			· ·	
MILITARY DRAWI			10ENT. NO. D	WG NO. 5962-868	391		
DEFENSE ELECTRONICS SUPPLY DAYTON, OHIO	CENTER		REV	PAG	E	5	<u>-</u> `

<u>查询"5962-86891012A"供应商</u>

-

T		1	• /		Limits	1
Test	Symbol	Conditio -55°C < TC < Unless otherwise	: +125 C	Group A	Min Max	Unit
nput capacitance	CIN	VIN = 0 V TC = 4 See 4.3.1c	25°C	4	10	pF
uiescent current	ICC	$V_{CC} = 6.0 V, I_0 = V_{IN} = V_{CC} \text{ or } GND$	= Ο μ Α	1, 2, 3	160	μΑ
nput leakage current	IIN	$V_{CC} = 6.0 V$ $V_{IN} = V_{CC} \text{ or GND}$		1, 2, 3	±1	μ A
unctional test		See 4.3.1d		7	1	
ropagation delay time, load to Q_A , Q_B , Q_C ,	 tphl1 tplH1	T _C = +25°C C _L = 50 pF ±10%	$V_{\rm CC} = 2.0$ V	9	264	ns
Q _D 3/ See figure 4			V _{CC} = 4.5 V		53	
	 		V _{CC} = 6.0 V		45	
		 T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	10, 11	396	ns
			V _{CC} = 4.5 V		79	
			V _{CC} = 6.0 V		67	
copagation delay time, data A, B, C, D to Q_A , Q_B , Q_C , Q_D <u>3</u> /	tPHL2 t _{PLH2}	$T_{C} = +25^{\circ}C$ $C_{L} = 50 \text{ pF} \pm 10\%$	V _{CC} = 2.0 V	9 	240	ns
Q_B , Q_C , $Q_D = \frac{3}{4}$ See figure 4			V _{CC} = 4.5 V		48	
		, 	V _{CC} = 6.0 V	<u> </u>	41	
		TC = -55°C, +125°C CL = 50 pF ±10%	V _{CC} = 2.0 V	10, 11	360	ns
			V _{CC} = 4.5 V	i - -	72	
			$V_{CC} = 6.0 V$		61	

Test IS	Symbol	Conditio	ons 1/	Group A	Limits	 Unit
		-55°C < TC (Unless otherwise	< +125 [•] C	subgroups	Min Max _	
Propagation delay time, t clock to ripple clock <u>3</u> / t See figure 4	PHL3 PLH3	T _C = +25°C C _L = 50 pF ±10%	$V_{CC} = 2.0 V$	9	150	ns
			VCC = 4.5 V		30	
		 	$V_{\rm CC} = 6.0 V$		26	
		 Tc = -55°C, +125°C CL = 50 pF ±10%	$V_{CC} = 2.0 V$	10, 11	225	ns
			V _{CC} = 4.5 V		45	
		 	$V_{\rm CC} = 6.0 V$		38	
clock to Q_A , Q_B , Q_C , [t	PHL4 PLH4	I T _C = +25°C C _L = 50 pF ±10%	V _{CC} = 2.0 V		220	ns
QD <u>3</u> / See figure 4			V _{CC} = 4.5 V		44	
		 	V _{CC} = 6.0 V		37	
		TC = -55°C, +125°C CL = 50 pF ±10%	V _{CC} = 2.0 V	10, 11	330	ns
			V _{CC} = 4.5 V		66	
			V _{CC} = 6.0 V		56	
	PHL5 PLH5	T _C = +25°C C _L = 50 pF ±10%	V _{CC} = 2.0 V		255	ns
			V _{CC} = 4.5 V		51	
			V _{CC} = 6.0 V		43	
		TC = -55°C, +125°C CL = 50 pF ±10%	V _{CC} = 2.0 V	10, 11	385	ns
			V _{CC} = 4.5 V		77	
			$V_{\rm CC} = 6.0 V$		65	
ee footnotes at end of table.		SIZE CODE I	DENT. NO. DW	G NO.		
MILITARY DRAWIN			333	5962-86	891	
DEFENSE ELECTRONICS SUPPLY CE DAYTON, OHIO	NTER		EV	PAGE	<u> </u>	

١,

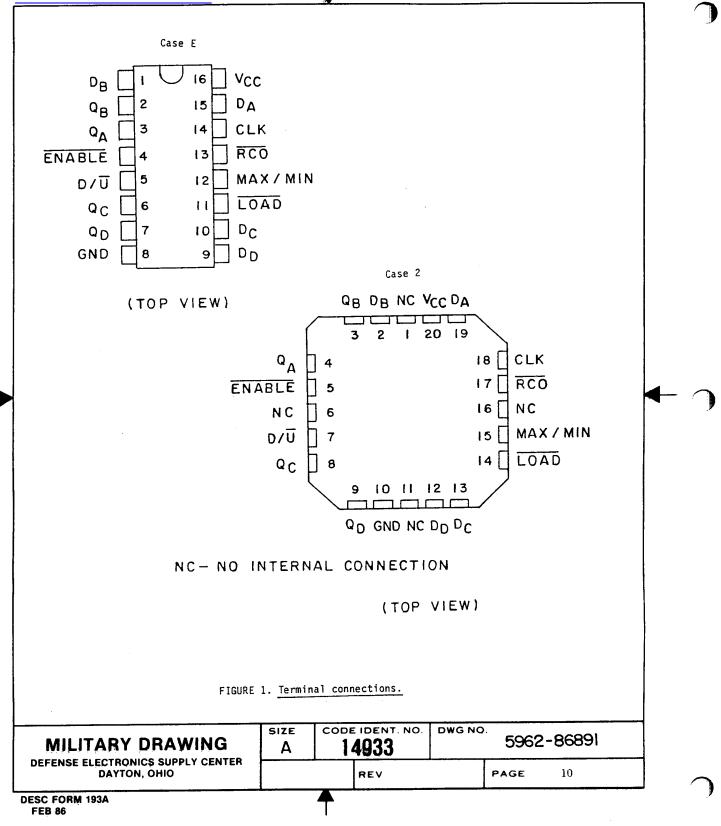
ee footnotes at end of table.		·						
			V _{CC} = 6.0 V			38		
		!∪L = 50 p⊦ ±10% 	$V_{\rm CC} = 4.5 V$	-¦ 		45		
		TC = -55°C, +125°C CL = 50 pF ±10%	Vcc = 2.0 V	10, 11		225	ns	
	1		V _{CC} = 6.0 V			26		
See figure 4	FLNO		V _{CC} = 4.5 V	-i † I I		30		
ropagation delay time, enable to ripple clock 3/	t _{PHL8} t _{PLH8}	$ T_{C} = +25^{\circ}C$ $ C_{L} = 50 \text{ pF } \pm 10\%$	$V_{\rm CC} = 2.0 V$	9		150	ns	
			V _{CC} = 6.0 V			51		
			V _{CC} = 4.5 V			60		
		 TC = -55°C, +125°C CL = 50 pF ±10%	VCC = 2.0 V	10, 11		300	ns	-
			VCC = 6.0 V			34		1
· · J · · ·		1	V _{CC} = 4.5 V			40		
ropagation delay time, down/up to MAX/MIN <u>3</u> / See figure 4	tphl7 tplh7	T _C = +25°C C _L = 50 pF ±10%	$V_{\rm CC} = 2.0 V$	9		200	ns	
			V _{CC} = 6.0 V			59		
			V _{CC} = 4.5 V			68		
		T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	10, 11 _		342	ns	
			V _{CC} = 6.0 V			38		
			V _{CC} = 4.5 V			46		
ropagation delay time, down/up to ripple clock <u>3/</u> See figure 4	^t PHL6 ^t PLH6	$T_{C} = +25^{\circ}C$ $C_{L} = 50 \text{ pF} \pm 10\%$	V _{CC} = 2.0 V	9		228	ns	
	 	Conditio -55°C < TC < (Unless otherwise		subgroups	Min	 		
Test	Symbol	Conditio	ons 1/	Group A		nits	Unit	

1

<u> 查询"5962-86891012A"</u>供应商

Test	Symbol	/mbol Conditions 1/ -55°C < TC < +125°C (Unless otherwise specified)		Group A	Limits	 Unit
				subgroups	Min Max	†
Transition time <u>4</u> / See figure 4	t _{THL} t _{TLH}	TC = +25°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	9	75	ns
			V _{CC} = 4.5 V		15	
			V _{CC} = 6.0 V		13	[]
	1	T _C = -55°C, +125°C C _L = 50 pF ±10%	$V_{\rm CC} = 2.0 V$	10,11	110	ns I
	 		$V_{\rm CC} = 4.5 V$		22	
			VCC = 6.0 V		19	
$\frac{1}{1}$ For a power supply of at 4.5 V. Thus the 4. V _{IH} and V _{IL} occur at 3.8 V). The worst cas voltage and so the 6. 45 pF, determines the V _{CC} , and the no load	5 V values s V _{CC} = 5.5 V e leakage cu 0 V should b no load dyr	hould be used when and 4.5 V respectiv rrent (I _{IN} , I _{CC} , an e used. Power dissi amic power consumpt	designing with ely. (The VIH v d I _{OZ}) occur fo pation capacita ion, P _D = C _{PD} v	this supply value at 5.5 or CMOS at t unce (Cpp), /cc 2 f + Ic	v. Worst cas V is he higher typically	e
<u>2</u> / Test not required if	applied as a	forcing function f	or V _{OH} or V _{OL} .			
3/ AC testing at Vrr = 2	2.0 V and Vcc	= 6.0 V shall be q	uaranteed, if r	not tested.	to the	

- $\frac{3}{1000}$ AC testing at V_{CC} = 2.0 V and V_{CC} = 6.0 V shall be guaranteed, if not tested, to the specified parameters.
- $\underline{4}/$ Transition times (t_{THL}, t_{TLH}), if not tested, shall be guaranteed to the specified parameters.

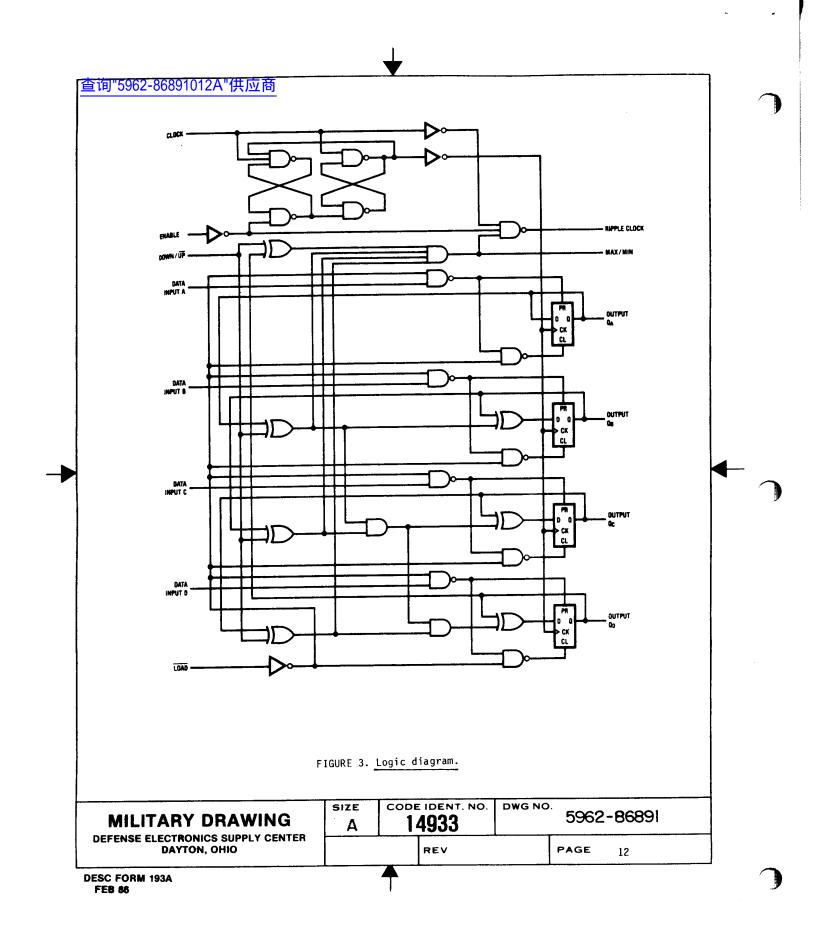

3.5 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.

3.6 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).

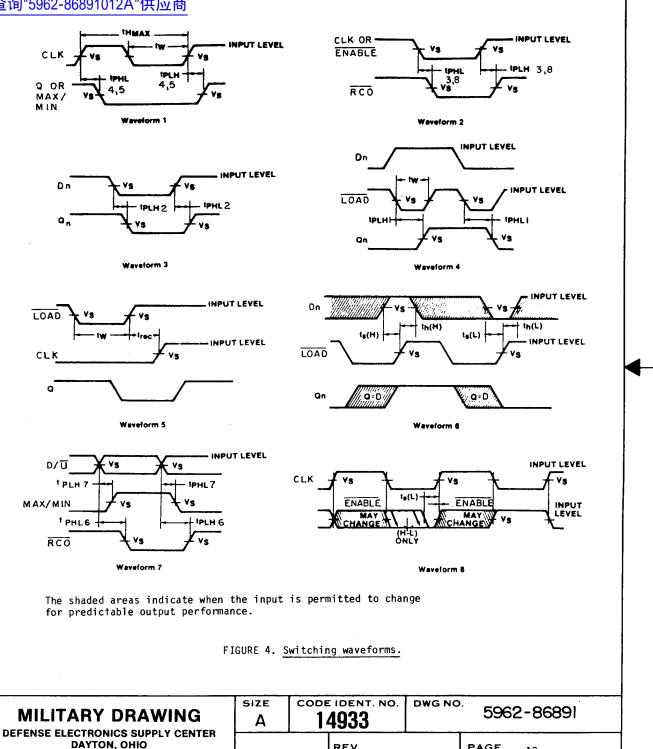
3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	CODE IDENT. NO. 14933	DWG NO. 5962-86891
		REV	PAGE 9
DESC FORM 193A FEB 86	•	•	• • • •


Load	Enable	Down/ Up	Clock	Function
н	L	L	1	Count Up
н	L	н	1	Count Down
L	X	X	X	Load
н	н	X	X	No Change

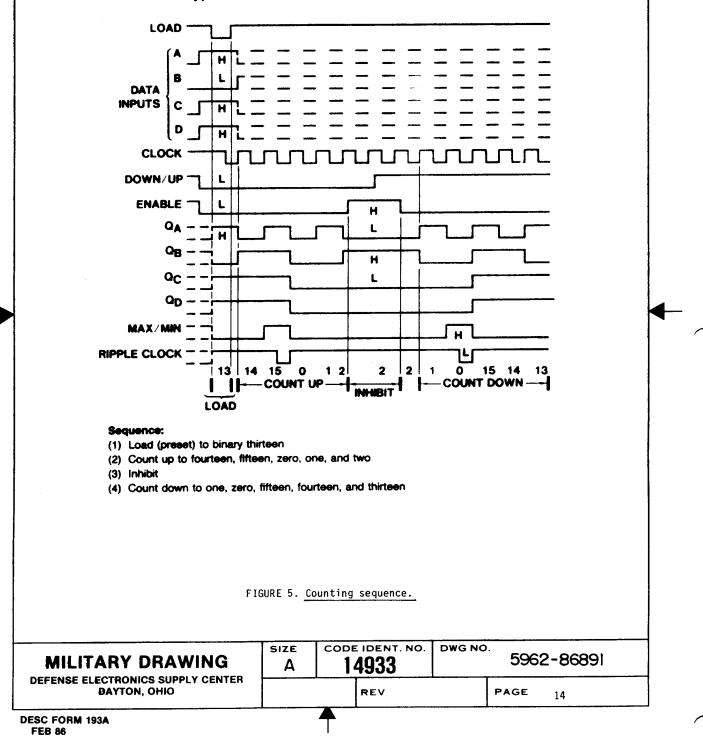
Asynchronous inputs Low input to load sets Q_{A} = A, Q_{B} = B, Q_{C} = C, and Q_{D} = D

FIGURE 2. Truth table.


MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	size A	CODE IDENT. NO. 14933	DWG NO. 5962-86891
		REV	PAGE 11
DESC FORM 193A FEB 86			

1

......


REV

PAGE

13

DESC FORM 193A FEB 86

杏谄	1"5962	-86891	012A	"仕)	应商

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

- 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroup 7 tests sufficiently to verify the truth table.
- 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	CODE IDENT. NO. 14933	DWG NO. 5962-86891
		REV	PAGE 15

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 9
lGroup A test requirements (method 5005) 	1, 2, 3, 4, 7 9, 10, 11**
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3
Additional electrical subgroups for group C periodic inspections	

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.

6.2 Replaceability. Replaceability is determined as follows:

- a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/66305.

6.3 <u>Comments</u>. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

MILITARY DRAWING	SIZE	CODE IDENT. NO. 14933	DWG NO. 5962-86891
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	REV		PAGE 16
DESC FORM 193A FEB 86	4	A	·····

查<u>询"5962-86891012A"供应商</u>

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number
5962-8689101EX	01295	SNJ54HC191J CD54HC191F/3A	M38510/66305BEX
5962-86891012X	01295	SNJ54HC191FK	M38510/66305B2X

 $\frac{1}{to this}$ number may not satisfy the performance requirements of this drawing.

Vendor CAGE number 01295 Vendor name and address

18714

Texas Instruments, Inc. P. O. Box 6448 Midland, TX. 79701 RCA Solid State Division Route 202 Somerville, NJ. 08876

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	CODE IDENT. NO. 14933	DWG NO. 5962-86891
		REV	PAGE 17