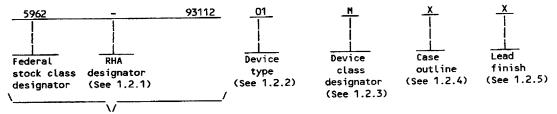
	r						·	RE	VISI	ONS		Т				T				
LTR	查询"				DE	SCR	IPTIO	N					DATE	(YR-	MO-DA)			APPRO	OVED	
												-				I				
REV							1													
REV SHEET																				
SHEET REV	15	16	17	18	19															
SHEET REV SHEET REV STATU	us	16	17	18 RE'	1															
SHEET	us	16	17	RE	1		1	2	3	4	5	6	7	8	9	10	11	12	13	14
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A	I S		17	RE' SHI	V EET Ared B		1 1	ł	3			SE EI	LECTR		s su	10 10 9PLY 454	CEN	<u>i </u>	13	14
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MICRO	US S	RD CUIT	L	RE' SHI PREP/	V EET Ared B	Josepl	<u> </u>	erby	I	DI	EFEN	SE EI		ONIC N, C	S SU	PPLY 454	CEN 44	TER	13	14
SHEET REV SHEET OF SHEETS PMIC N/A STA MICRO DRI THIS DRAWIN FOR USE BY	US S ANDAI OCIRC AWIN NG IS A ALL DE	RD CUIT G AVAILAI PARTME	BLE	RE SHI PREP/ CHECI	V EET Ared B	Josepi Mo	h A. Ke	erby Poeli	king	DI MIC PRC	ROC	SE EI I IRCU MMAI	JIT,	ONIC ON, C DIC SKEV	S SU DHIO GITA	PPLY 454	CEN 44 CMOS	TER		14
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MICRO DR THIS DRAWIN FOR USE BY AND AGEN DEPARTMEN	US S ANDAI CIRC AVIN NG IS A ALL DE NCIES C NT OF I	RD CUIT G AVAILAN PARTME DF THE	BLE	RE SHI PREP/ CHECI	V EET ARED B KED BY	Josepi Mo IY M	h A. Ke nica L. onica L	erby Poeli	king	DI MIC PRC	EFEN: ROC OGRA	SE EI I IRCU MMAH THIC	JIT,	DIC SKEV	S SU DHIO GITA	2 PPLY 454	CEN 44 CMOS BUF	TER	,	14
SHEET REV SHEET OF SHEETS PMIC N/A STA MICRO DRJ THIS DRAWIN FOR USE BY AND AGES	US S ANDAI CIRC AVIN NG IS A ALL DE NCIES C NT OF I	RD CUIT G AVAILAN PARTME DF THE	BLE	RE SHI PREP/ CHECI APPRO	V EET ARED B KED BY	Ho Ho SY M PPROVA	h A. Ke nica L. onica L	Poell	king	DI MIC PRC MON	EFEN: ROC OGRA	SE EI IRCU MMAI THIC	JIT, BLE	DIC SKEV LICC	S SU DHIO GITA	2 PPLY 454	CEN 44 CMOS BUF	TER	,	14


,

M 9004708 0006680 703 M

1. SCOPE

1.1 变词:55%45 % availed the average of a one part - one part number documentation system (see 6.6 herein). Two product assurance classes consisting of military high reliability (device classes Q and M) and space application (device class V), and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). Device class M microcircuits represent non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 PIN. The PIN shall be as shown in the following example:

Drawing number

1.2.1 RHA designator. Device class M RHA marked devices shall meet the MIL-I-38535 appendix A specified RHA levels and shall be marked with the appropriate RHA designator. Device classes Q and V RHA marked devices shall meet the MIL-1-38535 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

<u>Device type</u>	<u>Generic number</u>	<u>Circuit function</u>	Skew error
01	7B992	Programmable skew clock buffer	0.7 ns

1.2.3 Device class designator. The device class designator shall be a single letter identifying the product assurance level as follows:

Device class	Device requirements documentation
M	Vendor self-certification to the requirements for non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883
Q or V	Certification and qualification to MIL-I-38535
	the second second in Mill CTD 1975 and as follows:

1.2.4 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	<u>Package style</u>
x	CQCC1-N32	32	Leadless chip carrier

1.2.5 Lead finish. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein) for class M or MIL-I-38535 for classes Q and V. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93112
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 2

DESC FORM 193A JUL 91

🛲 9004708 0006681 64T 🛲

1.3 Absolute maximum ratings. 1/2/3/			
Simple Ovol 1999 120PF (人の) 供应语 Output voltage range (VIN) Output current into outputs (low) (I _{OL}) Storage temperature range (T _{STG})	64 64 91 +2 Se	.5 V dc to +7.0 V dc .5 V dc to +7.0 V dc mA 5°C to +150°C 1 mW 60°C ee MIL-STD-1835 75°C	
1.4 <u>Recommended operating conditions</u> . $2/3/$			
Supply voltage range (V_{CCN}, V_{CCQ}) Input voltage range (V_{IN})		5.5 V dc to +5.5 V dc O V dc to V _{CCQ} O V dc to V _{CCN}	
V _{IH}	v _c v _c v _c	$c_{CQ} = 1.35$ V dc to V _{CCQ} <u>4</u> / $c_{CQ} = 1.00$ V dc to V _{CCQ} <u>5</u> / <u>6</u> / $c_{CQ}/2 \pm 500$ mV dc <u>5</u> /	
V_{IL}	0.).0 V dc to 1.35 V dc <u>4</u> / .0 V dc to 1.0 V dc <u>5/ 6</u> / 55°C to +125°C	
$(0.2V_{CC} \text{ to } 0.8V_{CC}; 0.8V_{CC} \text{ to } 0.2V_{CC}) = $	0	to 3 ns 40 mA	
$(0.2V_{CC} \text{ to } 0.8V_{CC}; 0.8V_{CC}^{r'} \text{ to } 0.2V_{CC}) Maximum high level output current (I_{OH}) Maximum low level output current (I_{OL})$	+4	46 mA	
1.5 Digital logic testing for device classes Q and V.			
<u>1</u> / Stresses above the absolute maximum rating may cause pump maximum levels may degrade performance and affect reliant the structure of t		ge to the device. Extended o	peration at the
 Unless otherwise specified, all voltages are referenced 			
3/ Unless otherwise specified the values listed above sha operating range. For the absolute maximum parameters, ranges and case temperature range of -55°C to +125°C.	ll apply over	the full V _{CCN} , V _{CCQ} and T _C r hall apply over the full spec	ecommended ified V _{CCN} / V _{CCQ}
$\underline{4}$ / This voltage range applies to the REF and FB inputs on	ly.		
$5/$ This voltage range applies to the TEST, FS, and mFn in or left unconnected, (actual threshold voltages vary a unconnected inputs at $V_{CCQ}/2$. If these inputs are swi the phase-lock-loop (PLL) may require an additional T	s a percentag tched the fun	e of V _{CCQ}), internal terminat ction and timing of the outpu	ion resistors hold ts may glitch and
$\underline{6}$ / Negative undershoots of -2.0 V dc are allowed with a p	ulse width <	20 ns.	
7/ Values will be added when they become available.			
STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-93112
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 3
DESC FORM 1934			

DESC FORM 193A JUL 91

Г

.

.

🔳 9004708 0006682 586 🎟

2. APPLICABLE DOCUMENTS

2.1 <u>Revenment specification, standards</u>, bulletin, and handbook. Unless otherwise specified, the following specification, standards, bulletin, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-1-38535

- Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

MILITARY

MIL-STD-883 MIL-STD-973 MIL-STD-1835	Test Methods and Procedures for Microelectronics. Configuration management. Microcircuit Case Outlines
BULLETIN	

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD's).

HANDBOOK

MILITARY

MIL-HDBK-780 - Standardized Military Drawings.

(Copies of the specification, standards, bulletin, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device class M shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. The individual item requirements for device classes Q and V shall be in accordance with MIL-I-38535, the device manufacturer's Quality Management (QM) plan, and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) for device class N and MIL-I-38535 for device classes Q and V and herein.

3.2.1 Case outline. The case outline shall be in accordance with 1.2.4 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Frequency range and the calculation and programmable skew configuration</u>. The frequency range and tu calculation and programmable skew configuration shall be as specified on figure 2.

3.2.4 Block diagram. The logic diagram shall be as specified on figure 3.

3.2.5 <u>Switching waveforms and test circuit</u>. The switching waveforms and test circuit shall be as specified on figure 4.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93112
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 4

DESC FORM 193A JUL 91

9004708 0006683 412

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified hereing the electrical performance pharacteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. Marking for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein). In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103. Marking for device classes Q and V shall be in accordance with MIL-I-38535.

3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-STD-883 (see 3.1 herein). The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-I-38535.

3.6 <u>Certificate of compliance</u>. For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7.2 herein). For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.1 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device class M the requirements of MIL-STD-883 (see 3.1 herein), or for device classes Q and V, the requirements of MIL-I-38535 and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device class M in MIL-STD-883 (see 3.1 herein) or for device classes Q and V in MIL-I-38535 shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DESC-EC of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.

3.9 <u>Verification and review for device class M</u>. For device class M, DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 132 (see MIL-I-38535, appendix A).

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device class M, sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein). For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-1-38535 and the device manufacturer's QM plan.

4.2 <u>Screening</u>. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device classes Q and V, screening shall be in accordance with MIL-I-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.

4.2.1 Additional criteria for device class M.

a. Burn-in test, method 1015 of MIL-STD-883.

(1) Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.

(2) $T_A = +125^{\circ}C$, minimum.

b. Interim and final electrical test parameters shall be as specified in table II herein, except that interim electrical tests prior to burn in are optional at the discretion of the manufacturer for device class M.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93112
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 5

JUL 91

9004708 0006684 359

		TABLE I. <u>Electrical perf</u>	ormance characteris	sti <u>cs</u> .				·····
查福\$5962-931120 MIL-STD-883	1 <mark>sylnx</mark> ox"	供应商 Test condition	ons 2/	Device type	Group A subgroups	Limits	<u>3</u> /	Un it
test method <u>1</u> /		$-55^{\circ}C \le T_{C} \le$ +4.5 V \le V_{CCN}, V_{C} unless otherwise	cQ ≤ +5.5 V specified			Min	Max	
High level output voltage 3006	^v oн	For all inputs affecting $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{IH} = V_{CC} - 1.35 V$ $V_{IL} = 1.35 V$ $I_{OH} = -40 \text{ mA}$ $V_{CCQ} = V_{CCN} = 4.5 V$	output under test	ALL	1,2,3	v _{ccy5} -0.75		v
Low level output voltage 3007	v _{o∟}	For all inputs affecting $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{IH} = V_{CC} -1.35 \text{ V}$ $V_{IL} = 1.35 \text{ V}$ $I_{OL} = 46 \text{ mA}$ $V_{CCQ} = V_{CCN} = 4.5 \text{ V}$	output under test	ALL	1,2,3		0.45	v
Input leackage current, high, (REF and FB inputs only) 3010	IH	For input under test $V_{IN} = V_{CCQ}$ $V_{CCN} = V_{CCQ} = 5.5 V$		ALL	1,2,3		10.0	μΑ
Input leakage current, low, (REF and FB inputs only) 3009	IL	For input under test V _{IN} = 0.4 V V _{CCN} = V _{CCQ} = 5.5 V		ALL	1,2,3	-500		μA
Input current, high, (test, FS, mFn) 3010	1 ^{IHH}	For input under test $V_{IN} = V_{CCQ}$ $V_{CCN} = V_{CCQ} = 5.5 V$		ALL	1,2,3		200	μΑ
Input current, mid, (test, FS, mFn) 3010	IIMM	For input under test $V_{IN} = V_{CCQ}/2$ $V_{CCN} = V_{CCQ} = 5.0 V$		ALL	1,2,3	-50.0	+50.0	μA
Input current, low, (test, FS, mFn) 3010	IILL	For input under test $V_{IN} \stackrel{=}{=} GND$ $V_{CCN} = V_{CCQ} = 5.5 V$		ALL	1,2,3	-200.0		μA
Operating current used by internal circuitry 3005	ICCO	REF = FB = 0.0 V Test = FS = mFn = open $V_{CCN} = V_{CCQ} = 5.5 V$ $I_{OUT} = 0.0 mA$		ALL	1,2,3		90	mA
Output buffer current per output pair 3005	^I ccn <u>4</u> /	Frequency = 50 MHz $V_{CCN} = V_{CCQ} = 5.5 V$ $I_{OUT} = 0.0 \text{ mA}$ Input selects open		ALL	4,5,6		19.0	mA
Power dissipation per output pair	P _D <u>5</u> /	FS = 5.5 V, TEST = 0.0 V FB connected to 3Q0		ALL	4,5,6		104	Wm
See footnotes at end of	table.							
MILI	ANDARDI TARY DE		SIZE A			59	62-93	112
		45444		REVISIO	N LEVEL	SHE	ET	

JUL 91

9004708 0006685 295 🛲

查道5982-931120	1 [X]"\$ \$*"(t 広商 Test conditions 	2/ 25°C	Device type	Group A subgroups	Limits	s <u>3</u> /	Unit
test method $\frac{1}{2}$		+1.5 V ≤ V _{CCN} , V _{CCQ} +4.5 V ≤ V _{CCN} , V _{CCQ} unless otherwise s	≤ +5.5 V pecified		· · · · g · · · ·	Min	Max	
nput capacitance 3012	CIN	REF and FB inputs only frequency = 1 MHz V _{CCQ} = V _{CCN} = 5.0 V see 4.4.1b		ALL	4		10	pF
unctional testing 3014		$V_{IL} = 0.0 V \frac{6}{V}$ verify output V ₀ $V_{CCQ} = V_{CCN} = V_{IH} = 4.5 V$ See 4.4.1c	and 5.5 V	ALL	7,8			
perating clock			FS = low	ALL	9,10,11	15	30	MHz
frequency			FS = mid			25	50	
			FS = high			40	50	
EF pulse width, high	t _{RPWH}	C _L = 50 pF minimum R1 = R2 = 100Ω		ALL	9,10,11	5.0	ļ	ns
EF pulse width, low	t _{RPWL}	See figure 4		ALL	9,10,11	5.0	1	ns
Programmable skew unit	t _U			ALL	9,10,11	2	/	
Programmable skew unit error	t _{UE} 10/ 16/			ALL	9,10,11	-0.7	+0.7	ns
Zero output matched- pair skew (mQO, mQ1)	t _{SKEWPR}			ALL	9,10,11		0.25	ns
Zero output skew (all outputs)	t _{skew0}			ALL	9,10,11		0.75	ns
Dutput skew (rise – rise, fall – fall, same class outputs)	t _{SKEW1} 11/14/			ALL	9,10,11		1.0	ns
Dutput skew (rise – fall, nominal – inverted, divided – divided)	^t skew2 <u>11</u> / <u>14/</u>			All	9,10,11		1.5	ns
Dutput skew (rise – rise, fall – fall, different class putputs)	^t skew3 <u>11</u> / <u>14</u> /			ALL	9,10,11		1.2	ns
potnotes at end of table	e.							
MILIT	NDARDIZ ARY DRA RONICS	WING	SIZE A			5	962-9	311:
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444					N LEVEL		EET	

DESC FORM 193A JUL 91

.

٠

9004708 0006686 121 📟

	TARI F	I. <u>Electrical performa</u>	nce characteristic	s - Continu	ed.			
 查阅15-982-9311		// Test conditi	ons <u>2</u> /	Device type	Group A subgroups	Limits	<u>3</u> /	Un it
test method <u>1</u> /		<u>供</u> 」(村本市) -55°C ≤ T _C ≤ +4.5 V ≤ V _{CCN} , V unless otherwise	cq ≤ +5.5 V specified			Min	Max	
Output skew (rise - fall, nominal - divided, divided - inverted)	^t skew4 <u>11</u> / <u>14</u> /	C _L = 50 pF minimum R1 = R2 = 100Ω See figure 4		ALL	9, 10, 11		1.7	ns
Device-to-device skew	t 15/ 16/			ALL	9, 10, 11		0.2	ns
Propagation delay, REF rise to FB rise 3005	t _{PD}			ALL	9, 10, 11	-0.7	+0.7	ns
Output duty cycle valation	t _{opcv} <u>17</u> 7			ALL	9, 10, 11	-1.2	+1.2	ns
Output high time, deviation from 50 percent	t _{PWH}	<u>18</u> / Not shown in figure 4		ALL	9, 10, 11		5.5	ns
Output low time, deviation from 50 percent	t _{PWL}						5.5	ns
Output rise time	tORISE	$C_1 = 50 \text{ pF minimum}$	<u></u>	ALL	9, 10, 11	0.5	5.0	ns
Output fall time	t _{ofall}	RT = R2 = 100Ω See figure 4		ALL	9, 10, 11	0.5	5.0	ns
Phase-locked-loop lock time	^t Lоск <u>19</u> 7			ALL	9, 10, 11		0.5	ms
Cycle-to-cycle output jitter peak-to-peak	t _{JR} 16/			ALL	9, 10, 11		0.5	%
<pre>conditions listed 2/ Each input and out Output terminals r which the output t circuit such that 3/ For negative and p GND and the direct to the minimum and 4/ I_{ICCN} can be appro I_{ICCN} = [(3.5 + .17) where: F = frequency C = capacitance Z = line impeded 2/ Each input and interval C = capacitance C = line impeded 2/ Each input and interval C = capacitance C = line impeded 2/ Each input and interval C = capacitance C = line impeded 2/ Each input and interval C = capacitance C = line impeded C = capacitance C = capacitance C = line impeded C = line</pre>	herein. Al put, as app iot designat cerminal sha all current cositive vol cion of current maximum li pximated by c) + [((1160 in MHz e load in plance in ohm		at the specified t .ogic, low level lo ming these tests, . the sign designat the absolute value sted herein.	emperature gic, or ope the current ces the pote	for the spec n, except du meter shall ntial differ	ified lin ring I _{CC} be place	nits. tests, ed in t	for he ce to
MIL	TANDARDI ITARY DE CTRONICS		SIZE A			590	62-93	112
	ON, OHIO			REVISIO	N LEVEL	SHE	ET 8	
DESC FORM 193A JUL 91	0006681	7 068 🔳						

TABLE I. Electrical performance characteristics - Continued.

	TABLE 1. ELECTRICAL performan		<u>sone maca.</u>					
_	The following expression that includes device power dissipation of the following expression that includes device power dissipation of the following expression that includes device power dissipation $P_p = [(19.25 + 0.94F) + [((700 - 6F)/2) + (.017FC)]N] *$ where variables are defined as in footnote 6. CMOS buf MHz reference frequency. Testing is done initially and parameter; values are guaranteed to the limits given in	tion plus power 1.1. ffer current and after any design	dissipation due to the log power dissipation are spec n or process changes that	ad circuit: cified at the 50				
<u>6</u> /	Functional testing is guaranteed when inputs are conditioned with the worst case input voltage as specified in 1.4 herein.							
	For all three-level inputs, High = V_{CC} , Mid = open connunconnected input to $V_{CC}/2$. When the FS pin is selected until V_{CC} has reached 4.3 V.	nection, Low = GN nd high the REF i	D. Internal termination and the second se	circuitry holds an upon power-up				
<u>8</u> /	The level to be set on FS is determined by the "normal" Generator. Nominal frequency (f_{NOM}) always appears at undivided modes (see figure 2). The frequency appearin connected to FB in undivided. The frequency of the REF configured for a frequency multiplication by using a di	1QO and the othe ng at the REF and F and FB inputs w	r outputs when they are of IFB inputs will be f _{NOM} w vill be f _{NOM} /2 or f _{NOM} /4 w	d Time Unit perated in their hen the output hen the part is				
<u>9</u> /	See figure 2 herein, Frequency range select and t_U calc	ulation.						
<u>10</u> /	t_{UE} is a measure of the timing error from t_U as calcula calculation). The major contributors to the error incl variations between package pins and between signal line multiple t_U delays.	lude output edge	variations, cross talk, a	nd load-induced				
<u>11</u> /	Skew is defined as the time between the earliest and the same $t_{\boldsymbol{U}}$ delay has been selected when all are loaded with							
<u>12</u> /	/ t _{SKEWPR} is defined as the skew between a pair of outputs (mQO and mQ1) when all eight outputs are selected for Dt _U .							
<u>13</u> /	/ t _{SKEWD} is defined as the skew between all eight outputs when all are selected for Ot _U . Other outputs are divided or inverted but not shifted.							
<u>14</u> /	/ For the purpose of this specification, there are three classes of outputs, defined as follows: nominal (multiple of ty delay), inverted (4QO and 4Q1 only with 4FO and 4F1 = High), and divided (3Qn and 4Qn only in divide-by-2 or divide-by-4 mode).							
<u>15</u> /	$t_{\sf SKEW5}$ is the output-to-output skew between the outputs under the same conditions (e.g., $V_{\sf CC}$ level, ambient temparts is $t_{\sf SKEW5}$ plus the skews associated with each part	mperature, air fl						
<u>16</u> /	Testing is done initially and after any design or proce guaranteed to the limits given in table I herein.	ess changes that	affect this parameter; va	lues are				
<u>17</u> /	t_{ODCV} is the deviation of the output from a 50% duty $c_{\rm 3}$ and t_{SKEW4} parameters.	ycle. Output pul	se width variations are i	ncluded in t _{SKEW2}				
<u>18</u> /	Tested with outputs loaded with 50 pF; devices are term tpwL is measured at $0.2V_{CC}$.	minated through 5	50Ω to V _{CC} /2. tp _{WH} is mea	sured at 0.8V _{CC} ;				
<u>19</u> /	t_{LOCK} is the time that is required before synchronizatiss stable and within normal operating limits. This particularly at REF or FB until t_{PD} is within specified limits.	rameter is measur	This specification is va red from the application o	ulid only after V _{CC} of a new signal or				
			· · · ·					
			•					
	STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A	~	5962-93112				
	DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 9				
DES	C FORM 193A	L	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
	UL 91		•					

🎟 9004708 0006688 TT4 📖

	Device type		01	
查询"5962-9311201	Case Hutting		X	
	Terminal number	Terminal symbol	Terminal number	Terminal symbol
	1	REF	17	FB
	2	V _{cca}	18	VCCN
	3	FS	19	201
	4	3F0	20	200
	5	3F1	21	GND
	6	4F0	22	GND
	7	4F1	23	1Q1
	8	v _{ccq}	24	100
	9	VCCN	25	V _{CCN}
	10	4Q1	26	1F0
	11	400	27	1F1
	12	GND	28	GND
	13	GND	29	2F0
	14	301	30	2F1
	15	3Q0	31	TEST
	16	VCCN	32	GND

Terminal symbol	1/0	Description
REF	I	Reference frequency input. This input supplies the frequency and timing against which all functional variation is measured.
FB	I	Phase-locked loop feedback input (typically connected to one of the eight inputs.)
FS	I	Three-state frequency range select (see figure 2 herein.)
mFn (m = 1 to 4, n = 0 to 1)	I	Three-state function select inputs.
TEST	I	Test mode select. In normal operation, this input will be wired to GND. See 6.5
mQn, mQn (m = 1 to 4) (n = 0 or 1)	0	Outputs. Three-state input pairs (i.e. 1F1, 2F1,) are matched with output pairs (i.e. 1Q1, 2Q1,)
V _{CCN}	PWR	Power supply for output drives.
V _{CCQ}	PWR	Power supply for internal circuitry.
GND	PWR	Ground.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93112
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 10

DESC FORM 193A JUL 91

9004708 0006689 930 🛲

查询"5962-9311201MXX"供应商

	f _{NOM} (MHz)		f_{NOM} (MHz) $t_U = \frac{1}{f_{NOM} \times N}$		Approximate frequency at	
FS <u>2</u> /	Min	Max	where N =	which t _U = 1.0 ns		
Low	15	30	44	22.7 MHz		
Mid	25	50	26	38.5 MHz		
High	40	80 <u>3</u> /	16	62.5 MHz		

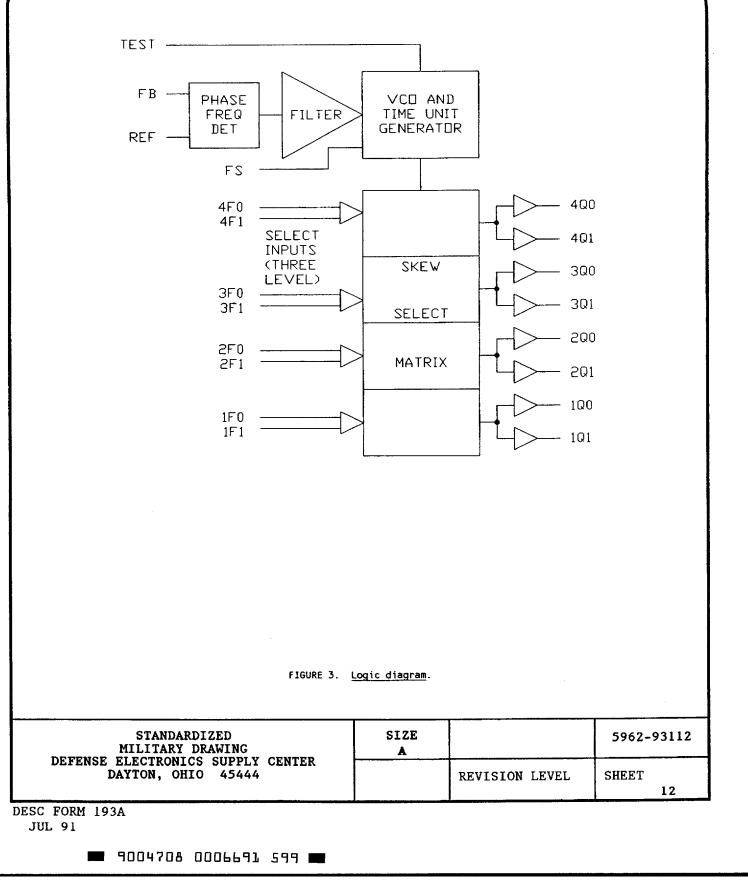
Frequency range select and t_{ij} calculation $\frac{1}{2}$

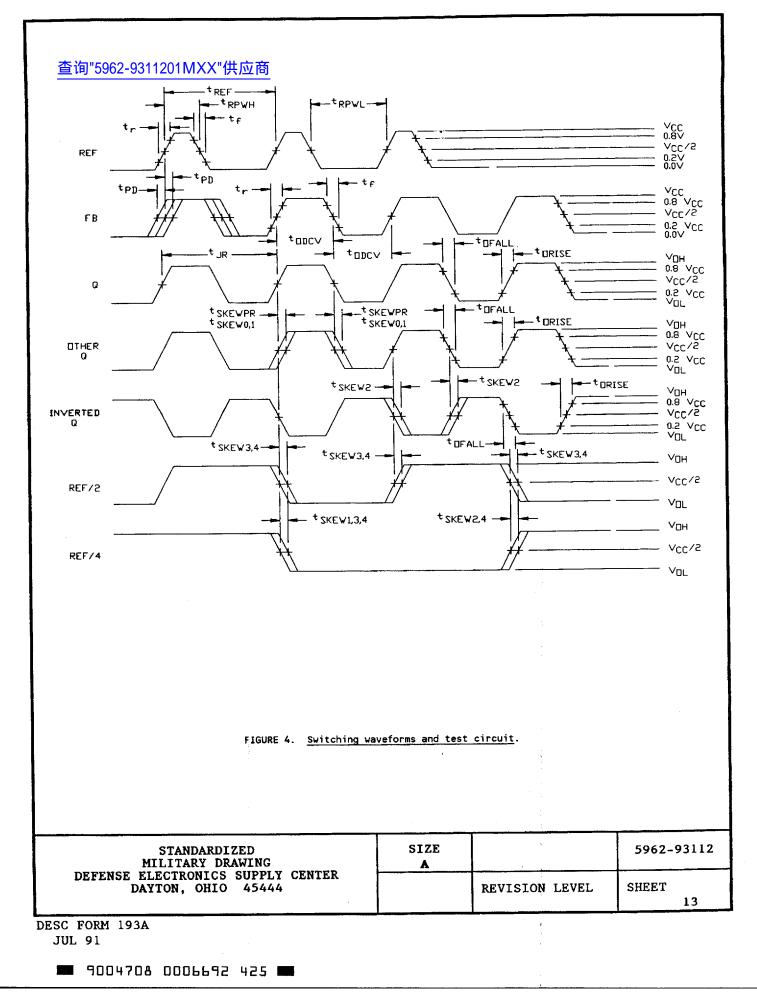
Programmable skew configurations 1/4/

Function	selects	Output functions				
mF1	mFO	1Qy, 2Qy	3Qy	4Qy		
Low	Low	-4t _U	Divide by 2	Divide by 2		
Low	Mid	-3t _U	-6t _U	-6t _U		
Low	High	-2t _U	-4t _U	-4t _U		
Mid	Low	-1t _U	-2t _U	-2t _U		
Mid	Mid	Ot _U	Ot _u	Ot _U		
Mid	High	+1t _U	+2t _U	+2t _U		
High	Low	+2t _U	+4t _U	+4t _U		
High	Mid	+3t _U	+6t _U	+6t _U		
High	High	+4t _U	Divide by 4	Inverted		

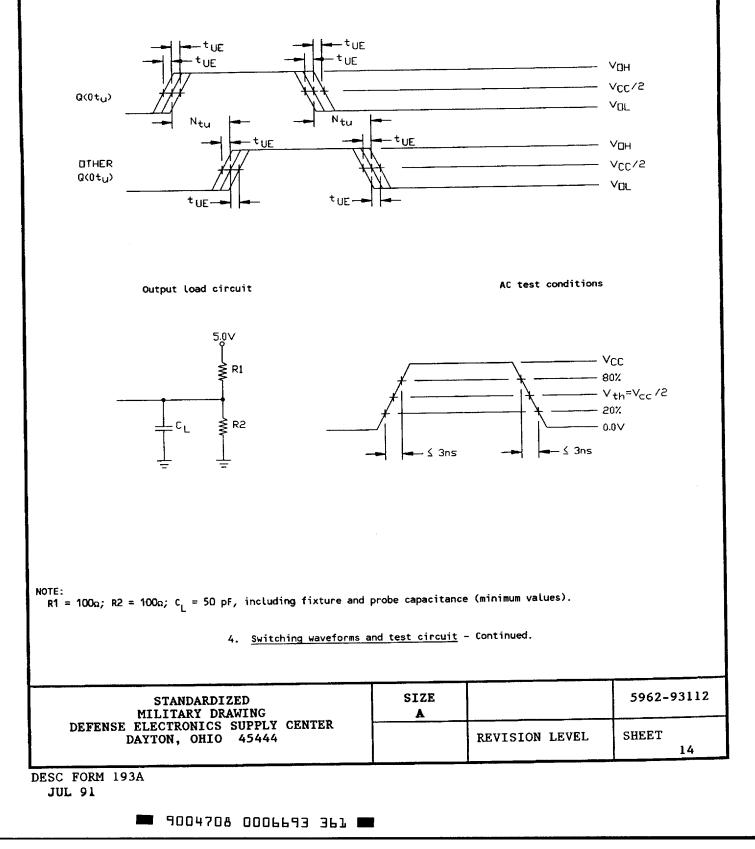
NOTES:

- 1/ For all three-state inputs (FS and mFn), High indicates a connection to V_{CC} , Mid indicates an open connection, and Low indicates a connection to GND. Internal termination circuitry holds an unconnected input to $V_{CC}/2$.
- 2/ The level to be set on FS is determined by the "normal" operating frequency (f_{NOM}) of the V_{CO} and Time unit generator (see figure 3 herein). Nominal frequency (f_{NOM}) always appears at 1QO and the other outputs when they are operated in their undivided modes. The frequency appearing at the REF and FB inputs will be f_{NOM} when the output connected to FB is undivided. The frequency of the REF and FB inputs will be $f_{NOM}/2$ or $f_{NOM}/4$ when the part is configured for a frequency multiplication by using a divided output as the FB input.
- 3/ The value, 80 MHz in the frequency range select and t_U calculation, is a reference value only and not to be construed as a maximum frequency device type 01 can achieve.
- 4/ The skew select matrix (see figure 3 herein) is comprised of four independent sections. Each section has two low-skew, high-fanout drivers (xQO, xQ1), and two corresponding three-level function select inputs (mFO, mF1). This table shows the nine possible output functions for each section as determined by the function select inputs. All times are measured with respect to the REF input assuming that the output connected to the FB input has Oty selected.


FIGURE 2. Frequency range and tu calculation and programmable skew configuration.


STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-93112
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 11

DESC FORM 193A JUL 91


9004708 0006690 652 🔳

查询"5962-9311201MXX"供应商

查询"5962-9311201MXX"供应商

4.2.2 Additional criteria for device classes Q and V.

- 查询"5962-93 1220 11/20 1
- b. Interim and final electrical test parameters shall be as specified in table II herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-I-38535.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-I-38535. Inspections to be performed shall be those specified in MIL-I-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). Technology conformance inspection for classes Q and V shall be in accordance with MIL-I-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-I-38535 permits alternate in-line control testing.

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. C_{IN} shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} shall be measured between the designated terminal and GND at a frequency of 1 MHz. This test may be performed at 10 NHz and guaranteed, if not tested, at 1 MHz. The DC bias for the pin under test (V_{BIAS}) = 2.5 V or 3.0 V. For C_{IN} test all applicable pins on five devices with zero failures.

For C_{IN} a device manufacturer may qualify devices by functional groups. A specific functional group shall be composed of function types, that by design, will yield the same capacitance values when tested in accordance with table I, herein. The device manufacturer shall set a function group limit for the C_{IN} tests. The device manufacturer may then test one device functional group to the limits and conditions specified herein. All other device functions in that particular functional group shall be guaranteed, if not tested, to the limits and test conditions specified in table I, herein. The device manufacturer shall submit to DESC-EC the device functions listed in each functional group and the test results for each device tested.

c. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2, herein. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.5 herein).

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93112
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET

DESC FORM 193A

JUL 91

I 9004708 00066942T8 🔳

TABLE	II. <u>Electrical test</u>	requirements.		
5962-9311201MXX"供应商 Test requirements	Subgroups (in accordance with MIL-STD-883, TM 5005, table I)	(in accord	roups dance with , table III)	
	Device class M	Device class Q	Device class V	
Interim electrical parameters (see 4.2)			1	
Final electrical parameters (see 4.2)	1/ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	1/ 1, 2, 3, 7, 8, 9, 10, 11	2/ 1, 2, 3, 8, 9, 10, 1	
Group A test requirements (see 4.4)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	1, 2, 3, 4, 5 6, 7, 8, 9, 10, 11	
Group C end-point electrical parameters (see 4.4)	1, 2, 3, 4	1, 2, 3	1, 2, 3, 7, 8 9, 10, 11	
Group D end-point electrical parameters (see 4.4)	1, 2, 3, 4	1, 2, 3	1, 2, 3	
Group E end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9	

<u>1</u>/ PDA applies to subgroup 1 and 4 (I_{CCN} only).

 $\overline{2}$ / PDA applies to subgroups 1, 4 (I_{CCN} only) and 7 .

4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB, in accordance with MIL-I-38535, and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005.

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table II herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes Q and V shall be M, D, R, and H and for device class M shall be M and D.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-I-38535, appendix A, for the RHA level being tested. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-I-38535 for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.

c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

4.5 Methods of inspection. Methods of inspection shall be specified as follows:

STANDARDIZED MILITARY DRAWING	SIZE A		5962-93112
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 16

DESC FORM 193A JUL 91

9004708 0006695 134 🎟

4.5.1 Voltage and current. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal. 查询"5962-9311201MXX"供应商

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein) for device class M and MIL-I-38535 for device classes Q and V.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

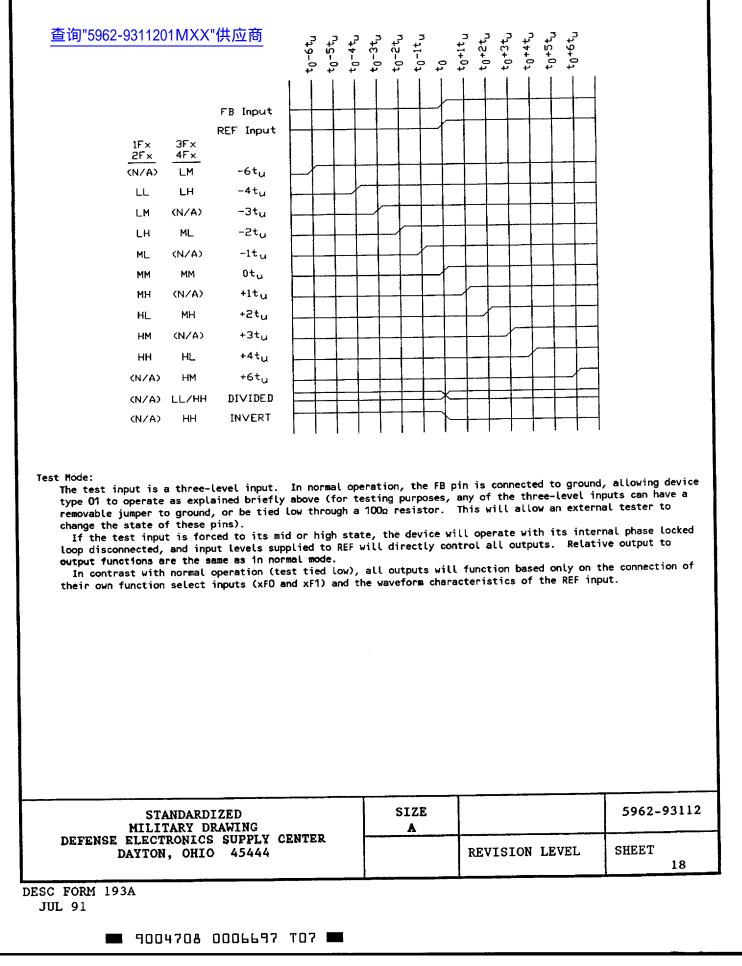
6.1.1 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.3 Record of users. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and which SMD's are applicable to that system. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.

6.4 Comments. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377.


and definitions. The abbreviations, symbols, and definitions used herein are defined 6.5 Abbreviations, symbols, in MIL-I-38535 and MIL-STD-1331.

C, Input terminal capacitance. GND Ground zero voltage potential. I_CC Supply current. I_I Input current. T_C Case temperature. V_C Positive supply voltage (5.0 V). REF Reference frequency input. This input supplies the frequency and timing against which all functional variation is measured. FB PLL feedback input (typically connected to one of the eight outputs). FS Three-level frequency range select. 1F0, 1F1 Three-level function select inputs for output pair 1 (1Q0, 1Q1). 2F0, 2F1 Three-level function select inputs for output pair 3 (3Q0, 3Q1). 3F0, 3F1 Three-level function select inputs for output pair 3 (3Q0, 3Q1). 4F0, 4F1 Three-level select	
<pre>Input current. Input current. T</pre>	
<pre>T¹ Case temperature. VC Positive supply voltage (5.0 V). REF Reference frequency input. This input supplies the frequency and timing against which all functional variation is measured. FB PLL feedback input (typically connected to one of the eight outputs). FS Three-level frequency range select. 1F0, 1F1 Three-level function select inputs for output pair 1 (1Q0, 1Q1). 2F0, 2F1 Three-level function select inputs for output pair 2 (2Q0, 2Q1). 3F0, 3F1 Three-level function select inputs for output pair 3 (3Q0, 3Q1). 4F0, 4F1 Three-level function select inputs for output pair 4 (4Q0, 4Q1).</pre>	
 V^L Positive supply voltage (5.0 V). REF Reference frequency input. This input supplies the frequency and timing against which all functional variation is measured. FB	
REF	
all functional variation is measured. FB PLL feedback input (typically connected to one of the eight outputs). FS Three-level frequency range select. 1F0, 1F1 Three-level function select inputs for output pair 1 (1Q0, 1Q1). 2F0, 2F1 Three-level function select inputs for output pair 2 (2Q0, 2Q1). 3F0, 3F1 Three-level function select inputs for output pair 3 (3Q0, 3Q1). 4F0, 4F1 Three-level function select inputs for output pair 4 (4Q0, 4Q1).	
FBPLL feedback input (typically connected to one of the eight outputs).FSThree-level frequency range select.1F0, 1F1Three-level function select inputs for output pair 1 (1Q0, 1Q1).2F0, 2F1Three-level function select inputs for output pair 2 (2Q0, 2Q1).3F0, 3F1Three-level function select inputs for output pair 3 (3Q0, 3Q1).4F0, 4F1Three-level function select inputs for output pair 4 (4Q0, 4Q1).	
FSThree-level frequency range select.1F0, 1F1Three-level function select inputs for output pair 1 (1Q0, 1Q1).2F0, 2F1Three-level function select inputs for output pair 2 (2Q0, 2Q1).3F0, 3F1Three-level function select inputs for output pair 3 (3Q0, 3Q1).4F0, 4F1Three-level function select inputs for output pair 4 (4Q0, 4Q1).	
1F0, 1F1 Three-level function select inputs for output pair 1 (1Q0, 1Q1). 2F0, 2F1 Three-level function select inputs for output pair 2 (2Q0, 2Q1). 3F0, 3F1 Three-level function select inputs for output pair 3 (3Q0, 3Q1). 4F0, 4F1 Three-level function select inputs for output pair 4 (4Q0, 4Q1).	
2F0, 2F1 Three-level function select inputs for output pair 2 (2Q0, 2Q1). 3F0, 3F1 Three-level function select inputs for output pair 3 (3Q0, 3Q1). 4F0, 4F1 Three-level function select inputs for output pair 4 (4Q0, 4Q1).	
3F0, 3F1 Three-level function select inputs for output pair 3 (3Q0, 3Q1). 4F0, 4F1 Three-level function select inputs for output pair 4 (4Q0, 4Q1).	
4F0, 4F1 Three-level function select inputs for output pair 4 (4Q0, 4Q1).	
V _{ccu} Power supply for output drivers.	
V _{CCN} Power supply for output drivers. V _{CCQ} Power supply for internal circuitry.	
cca	

STANDARDIZED MILITARY DRAWING	SIZE A	×	5962-93112
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 17

DESC FORM 193A JUL 91

> 9004708 0006696 070 🛲

6.6 <u>One part - one part number system</u>. The one part - one part number system described below has been developed to allow for transitions between identical generic devices covered by the three major microcircuit requirements documents (MIL=136554/ONTC-136595) and 1.254/ONTC-136595 (And 1.254/ONTC-136595) and 1.254/ONTC-136595 (And 1.254/ONTC-13659) and 1.254/ONTC-13659 (And 1.254/

Military documentation format	Example PIN under new system	Manufacturing source listing	Document listing
New MIL-H-38534 Standard Microcircuit Drawings	5962-XXXXXZZ(H or K)YY	QML-38534	MIL-BUL-103
New MIL-I-38535 Standard Microcircuit Drawings	5962-XXXXXZZ(Q or V)YY	QML-38535	MIL-BUL-103
New 1.2.1 of MIL-STD-883 Standard Microcircuit Drawings	5962-XXXXXZZ(M)YY	MIL-BUL-103	MIL-BUL-103

6.7 Sources of supply.

•

١

6.7.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DESC-EC and have agreed to this drawing.

6.7.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-93112
		REVISION LEVEL	SHEET 19

JUL 91

9004708 0006698 943