FEATURES

```
Enhanced system-level ESD performance per IEC 61000-4-x
Safety and regulatory approvals
    UL recognition 5000 V rms for 1 minute (double protection)
    CSA Component Acceptance Notice #5A (pending)
        IEC 60950-1: 600 V rms (reinforced)
        IEC 60601-1: 250 V rms (reinforced)
    VDE Certificate of Conformity (pending)
        DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
        VIORM = 846 V peak (reinforced)
Low power operation
    5V operation
        1.4 mA per channel maximum @ 0 Mbps to 2 Mbps
        4.3 mA per channel maximum @ 10 Mbps
        34 mA per channel maximum @ 90 Mbps
    3V operation
        0.9 mA per channel maximum @ 0 Mbps to 2 Mbps
        2.4 mA per channel maximum @ 10 Mbps
        20 mA per channel maximum @ 90 Mbps
Bidirectional communication
3 V/5 V level translation
```

High temperature operation: $105^{\circ} \mathrm{C}$
High data rate: dc to $\mathbf{9 0}$ Mbps (NRZ)
Precise timing characteristics
2 ns maximum pulse width distortion
2 ns maximum channel-to-channel matching
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Output enable function
16-lead SOIC wide body package (RoHS-compliant)

APPLICATIONS

General-purpose, high voltage, multichannel isolation
Medical equipment
Motor drives
Power supplies

Rev. 0

ADuM4400／ADuM4401／ADuM4402
 查询＂A DUM 44O2BRW Z＂供业启

TABLE OF CONTENTS

Features1
Applications 1
General Description 1
Functional Block Diagrams ．． 1
Revision History ．． 2
Specifications 3
Electrical Characteristics－5 V Operation 3
Electrical Characteristics－3 V Operation． 4
Electrical Characteristics－Mixed 5 V／3 V Operation 5
Electrical Characteristics－Mixed 3 V／5 V Operation． 6
Package Characteristics 7
Regulatory Information 7
Insulation and Safety－Related Specifications ． 7
DIN V VDE V 0884－10（VDE V 0884－10）Insulation Characteristics（Pending） 8
Recommended Operating Conditions ． 8
Absolute Maximum Ratings ．． 9
ESD Caution ． 9
Pin Configurations and Function Descriptions 10
Typical Performance Characteristics 13
Applications Information 15
PC Board Layout 15
System－Level ESD Considerations and Enhancements 15
Propagation Delay－Related Parameters． 15
DC Correctness and Magnetic Field Immunity 15
Power Consumption 16
Insulation Lifetime． 17
Outline Dimensions 18
Ordering Guide 18

REVISION HISTORY

4／09—Revision 0：Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS— 5 V OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$ ．Minimum／maximum specifications apply over the entire recommended operation range of $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$ ，and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C}$ ，unless otherwise noted．Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels，unless otherwise noted．

Table 1.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			90	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL，}}$ tPLH	50	65	100	20	32	50	18	27	32	ns	50\％input to 50\％output
Pulse Width Distortion	PWD			40			3		0.5	2	ns	$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$
Change vs．Temperature			11			5			3		ps／${ }^{\circ} \mathrm{C}$	
Pulse Width	PW	1000			100				8.3	11.1	ns	Within PWD limit
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50			15			10	ns	Between any two units
Channel Matching												
Codirectional	tPskco			50			3			2	ns	
Opposing－Direction	$\mathrm{t}_{\text {PSKOD }}$			50			6			5	ns	

Table 2.

Parameter	Symbol	1 Mbps－A，B，C Grades			10 Mbps－B，C Grades			90 Mbps－C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM4400	ldD1		2.9	3.5		9.0	11.6		72	100	mA	
	$\mathrm{l}_{\text {D } 2}$		1.2	1.9		3.0	5.5		19	36	mA	
ADuM4401	IDD1		2.5	3.2		7.4	10.6		59	82	mA	
	IDD2		1.6	2.4		4.4	6.5		32	46	mA	
ADuM4402	IDD1		2.0	2.8		6.0	7.5		51	62	mA	
	IDD2		2.0	2.8		6.0	7.5		51	62	mA	

Table 3．For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	2.0			V	
Logic Low Input Threshold	VIL			0.8	V	
Logic High Output Voltage	Vor	$\begin{aligned} & V_{D D X}=0.1 \\ & V_{D D X}-0.4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.8 \end{aligned}$		V	$\begin{aligned} & \mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}} \\ & \mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{IxH}} \end{aligned}$
Input Current per Channel	1	－10	＋0．01	＋10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 \times} \leq \mathrm{V}_{\mathrm{DDX}}$
Supply Current per Channel						
Quiescent Input Supply Current	IDDI（Q）		0.57	0.83	mA	
Quiescent Output Supply Current	IDDo（0）		0.23	0.35	mA	
Dynamic Input Supply Current	IDDII （ $)$		0.20		mA／Mbps	
Dynamic Output Supply Current	$\mathrm{IDDO}(\mathrm{D})$		0.05		mA／Mbps	
AC SPECIFICATIONS						
Output Rise／Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	10\％to 90\％
Common－Mode Transient Immunity ${ }^{1}$	｜CM｜	25	35		kV／$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Output Disable Propagation Delay	$\mathrm{t}_{\text {PHz，}} \mathrm{t}_{\text {PLH }}$		6	8	ns	High／low－to－high impedance
Output Enable Propagation Delay	tpze，tpzl		6	8	ns	High impedance－to－high／low
Refresh Rate	fr_{r}		1.2		Mbps	

[^0]
ADuM4400／ADuM4401／ADuM4402
 相询＂A DuM 4402BRW＂＂供业启

ELECTRICAL CHARACTERISTICS—3 V OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$ ．Minimum／maximum specifications apply over the entire recommended operation range： $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$ ，and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C}$ ，unless otherwise noted．Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels，unless otherwise noted．

Table 4.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			90	Mbps	Within PWD limit
Propagation Delay	tpHL，tPLH	50	75	100	20	38	50	20	34	45	ns	50\％input to 50\％output
Pulse Width Distortion	PWD			40			3		0.5	2	ns	｜tPLH－tpHL
Change vs．Temperature			11			5			3		ps／${ }^{\circ} \mathrm{C}$	
Pulse Width	PW	1000			100				8.3	11.1	ns	Within PWD limit
Propagation Delay Skew	$t_{\text {PSK }}$			50			22			16	ns	Between any two units
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PSKCD }}$			50			3			2	ns	
Opposing－Direction	tPskod			50			6			5	ns	

Table 5.

Parameter	Symbol	1 Mbps－A，B，C Grades			10 Mbps－B，C Grades			90 Mbps－C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM4400	IDD1		1.6	2.1		4.8	7.1		37	54	mA	
	IDD2		0.7	1.2		1.8	2.3		11	15	mA	
ADuM4401	IDD1		1.4	1.9		0.1	5.6		31	44	mA	
	IDD2		0.9	1.5		2.5	3.3		17	24	mA	
ADuM4402	IDD1		1.2	1.7		3.3	4.4		24	39	mA	
	IDD2		1.2	1.7		3.3	4.4		24	39	mA	

Table 6．For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	1.6			V	
Logic Low Input Threshold	$V_{\text {IL }}$			0.4	V	
Logic High Output Voltage	V OH	$\begin{aligned} & V_{D D x}-0.1 \\ & V_{D D x}=0.4 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.8 \end{aligned}$			$\begin{aligned} & l_{o x}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}} \\ & \mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~lx}}=\mathrm{V}_{1 \mathrm{xH}} \end{aligned}$
Input Current per Channel	1	－10	＋0．01	＋10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 \times} \leq \mathrm{V}_{\text {DDx }}$
Supply Current per Channel						
Quiescent Input Supply Current	IDDI（0）		0.31	0.49	mA	
Quiescent Output Supply Current	lodo（e）		0.19	0.27	mA	
Dynamic Input Supply Current	$1 \mathrm{IDD(D)}$		0.10		mA／Mbps	
Dynamic Output Supply Current	$\mathrm{l}_{\text {Doo（ }}$（		0.03		mA／Mbps	
AC SPECIFICATIONS						
Output Rise／Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3		ns	10\％to 90\％
Common－Mode Transient Immunity ${ }^{1}$	｜CM｜	25	35		$\mathrm{kV} / \mathrm{\mu s}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{DDX},} \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Output Disable Propagation Delay	$\mathrm{t}_{\text {PHz，tplu }}$		6	8	ns	High／low－to－high impedance
Output Enable Propagation Delay	$\mathrm{t}_{\text {PzH, }} \mathrm{t}_{\text {PL }}$		6	8	ns	High impedance－to－high／low

[^1]
查询＂A DuM 4402BRWZ＂供应商

ELECTRICAL CHARACTERISTICS—MIXED 5 V／3 V OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$ ．Minimum／maximum specifications apply over the entire recommended operation range： $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD1}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$ ，and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C}$ ，unless otherwise noted．Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels，unless otherwise noted．

Table 7.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			90	Mbps	Within PWD limit
Propagation Delay	tphL，tPLH	50	70	50	15	35	50	20	30	40	ns	50\％input to 50\％output
Pulse Width Distortion	PWD			40			3		0.5	2	ns	｜tpLH－ $\mathrm{t}_{\text {PHL }} \mid$
Change vs．Temperature			11			5			3		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Pulse Width	PW	1000			100				8.3	11.1	ns	Within PWD limit
Propagation Delay Skew	tpsk			50			22			14	ns	Between any two units
Channel Matching												
Codirectional	$\mathrm{t}_{\text {SKKCD }}$			50			3			2	ns	
Opposing－Direction	teskod			50			6			5	ns	

Table 8.

Parameter	Symbol	1 Mbps－A，B，C Grades			10 Mbps－B，C Grades			90 Mbps－C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM4400	ldD1		2.9	3.5		9.0	11.6		72	100	mA	
	ldD2		0.7	1.2		1.8	2.3		11	15	mA	
ADuM4401	IDD1		2.5	3.2		7.4	10.6		59	82	mA	
	IDD2		0.9	1.5		2.5	3.3		17	24	mA	
ADuM4402	IDD1		2.0	2.8		6.0	7.5		46	62	mA	
	IDD2		1.2	1.7		3.3	4.4		24	39	mA	

Table 9．For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Logic High Input Threshold	V_{IH}	2.0			V	
Logic Low Input Threshold	VIL			0.8	V	
Logic High Output Voltage	Vor	$\begin{aligned} & V_{D D x}-0.1 \\ & V_{D D x}-0.4 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.8 \end{aligned}$		V	
Input Current per Channel	I	－10	＋0．01	＋10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 \times} \leq \mathrm{V}_{\text {DDx }}$
Supply Current per Channel						
Quiescent Input Supply Current	Iodi（e）		0.57	0.83	mA	
Quiescent Output Supply Current	lodo（e）		0.29	0.27	mA	
Dynamic Input Supply Current	Iodi（D）		0.20		mA／Mbps	
Dynamic Output Supply Current	lodo（0）		0.03		mA／Mbps	
AC SPECIFICATIONS						
Output Rise／Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3		ns	10\％to 90\％
Common－Mode Transient Immunity ${ }^{1}$	｜CM｜	25	35		kV／$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDX},} \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Output Disable Propagation Delay	$\mathrm{t}_{\text {PHz，}}$ tpLH		6	8	ns	High／low－to－high impedance
Output Enable Propagation Delay	$\mathrm{t}_{\text {PzH，} \mathrm{t}_{\text {PzL }}}$		6	8	ns	High impedance－to－high／low
Refresh Rate	fr_{r}		1.2		Mbps	

${ }^{1}|C M|$ is the maximum common－mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{O}>0.8 \mathrm{~V}$ DD ．The common－mode voltage slew rates apply to both rising and falling common－mode voltage edges．

ADuM4400／ADuM4401／ADuM4402
 查晿＂A DuM 4402BRW z＂供 业 启

ELECTRICAL CHARACTERISTICS—MIXED 3 V／5 V OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD1}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$ ．Minimum／maximum specifications apply over the entire recommended operation range： $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$ ；and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C}$ ，unless otherwise noted．Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels，unless otherwise noted．

Table 10.

Table 11.

Parameter	Symbol	1 MBps－A，B，C Grades			10 MBps－B，C Grades			90 MBps－C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM4400	IDD1		1.6	2.1		4.8	7.1		37	54	mA	
	$\mathrm{I}_{\text {D } 2}$		1.2	1.9		3.0	5.5		19	36	mA	
ADuM4401	$\mathrm{I}_{\mathrm{DD} 1}$		1.4	1.9		4.1	5.6		31	44	mA	
	$\mathrm{I}_{\text {D } 2}$		1.6	2.4		4.4	6.5		32	46	mA	
ADuM4402	IDD1		1.2	1.7		3.3	4.4		24	39	mA	
	$\mathrm{I}_{\mathrm{DD} 2}$		2.0	2.8		6.0	7.5		46	62	mA	

Table 12．For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS Logic High Input Threshold Logic Low Input Threshold Logic High Output Voltage Input Current per Channel Supply Current per Channel Quiescent Input Supply Current Quiescent Output Supply Current Dynamic Input Supply Current Dynamic Output Supply Current	V_{IH} V_{IL} Vон II IdoI（e） IDDo（0） IDDI（D） lodo（D）	$\begin{aligned} & 1.6 \\ & V_{D D X}-0.1 \\ & V_{D D X}-0.4 \\ & -10 \end{aligned}$	5．0 4.8 +0.01 0.31 0.19 0.10 0.05	0.4 $+10$ 0.49 0.35	V V V V $\mu \mathrm{A}$ mA mA mA／Mbps mA／Mbps	$\begin{aligned} & I_{0 x}=-20 \mu A, V_{1 x}=V_{\text {xH }} \\ & l_{0 x}=-4 m A, V_{1 x}=V_{1 x H} \\ & O V \leq V_{1 x} \leq V_{D D x} \end{aligned}$
AC SPECIFICATIONS Output Rise／Fall Time Common－Mode Transient Immunity ${ }^{1}$ Output Disable Propagation Delay Output Enable Propagation Delay Refresh Rate	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ ｜CM｜ $\mathrm{t}_{\mathrm{pHz}, \mathrm{t}}^{\mathrm{t} \text { LH }}$ tpzr，$^{\text {tplL }}$ f_{r}	25	$\begin{aligned} & 2.5 \\ & 35 \\ & \\ & 6 \\ & 6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	ns kV／$\mu \mathrm{s}$ ns ns Mbps	10\％to 90\％ $V_{\text {IX }}=V_{D D X}, V_{C M}=1000 \mathrm{~V}$ ， transient magnitude $=800 \mathrm{~V}$ High／low－to－high impedance High impedance－to－high／low

${ }^{1}|C M|$ is the maximum common－mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$ ．The common－mode voltage slew rates apply to both rising and falling common－mode voltage edges．

PACKAGE CHARACTERISTICS

Table 13.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input to Output) ${ }^{1}$	R-o		10^{12}		Ω	
Capacitance (Input to Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	$\theta_{\text {נсı }}$		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{\text {лсо }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	center of package underside

${ }^{1}$ Device considered a 2-terminal device: Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 shorted together and Pin 9, Pin 10, Pin $11, \operatorname{Pin} 12, \operatorname{Pin} 13, \operatorname{Pin} 14, \operatorname{Pin} 15$, and Pin 16 shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM440x are approved by the organizations listed in Table 14. Refer to Table 19 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 14.

UL (Pending)	CSA (Pending)	VDE (Pending)
Recognized under 1577 component recognition program ${ }^{1}$	Approved under CSA Component Acceptance Notice \#5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ${ }^{2}$
Double/reinforced insulation, 5000 V rms isolation voltage	Reinforced insulation per CSA 60950-1-03 and IEC 60950-1, 600 V rms (848 V peak) maximum working voltage Reinforced insulation per IEC 60601-1 250 V rms (353 V peak) maximum working voltage	Reinforced insulation, 846 V peak
File E214100	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577, each ADuM440x is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for 1 sec (current leakage detection limit $=10 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM440x is proof tested by applying an insulation test voltage ≥ 1590 V peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The * marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS
Table 15.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		5000	V rms	1 minute duration
Minimum External Air Gap (Clearance)	L(I01)	8.0 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(I02)	8.0 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)

ADuM4400／ADuM4401／ADuM4402
 查询＂A D uM 44O2BRW Z＂供业㞕

DIN V VDE V 0884－10（VDE V 0884－10）INSULATION CHARACTERISTICS（PENDING）

These isolators are suitable for reinforced electrical isolation only within the safety limit data．Maintenance of the safety data is ensured by means of protective circuits．
Note that the＊marking on packages denotes DIN V VDE V 0884－10 approval for 846 V peak working voltage．
Table 16.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			Ito IV	
For Rated Mains Voltage $\leq 450 \mathrm{~V}$ rms			I to｜l	
For Rated Mains Voltage $\leq 600 \mathrm{~V}$ rms			I to II	
Climatic Classification			40／105／21	
Pollution Degree（DIN VDE 0110，Table 1）			2	
Maximum Working Insulation Voltage		VIorm	846	\checkmark peak
Input－to－Output Test Voltage，Method b1	$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR，}}, 100 \%$ production test， $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$ ， partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1590	\checkmark peak
Input－to－Output Test Voltage，Method a		$V_{P R}$		
After Environmental Tests Subgroup 1	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR，}} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$ ，partial discharge $<5 \mathrm{pC}$		1375	\checkmark peak
After Input and／or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR，}}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$ ，partial discharge $<5 \mathrm{pC}$		1018	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage， $\mathrm{t}_{\text {TR }}=10$ seconds	$V_{\text {TR }}$	6000	\checkmark peak
Safety－Limiting Values	Maximum value allowed in the event of a failure； see Figure 4			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		Is_{1}	265	mA
Side 2 Current		IS2	335	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 4．Thermal Derating Curve，Dependence of Safety Limiting Values with Case Temperature per DIN V VDE V 0884－10

RECOMMENDED OPERATING CONDITIONS
Table 17.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages 1	$\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	2.7	5.5	V
Input Signal Rise and Fall Times			1.0	ms

${ }^{1}$ All voltages are relative to their respective ground．See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields．

ABSOLUTE MAXIMUM RATINGS

Table 18.

Parameter	Rating
Storage Temperature（ $\mathrm{T}_{\text {ST }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature（ T_{A} ）	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages（ $\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	-0.5 V to +7.0 V
Input Voltage（ $\left.\mathrm{V}_{14}, \mathrm{~V}_{13}, \mathrm{~V}_{1,}, \mathrm{~V}_{10}, \mathrm{~V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\mathrm{DDI}}+0.5 \mathrm{~V}$
	－0．5 V to V ${ }_{\text {DDO }}+0.5 \mathrm{~V}$
Average Output Current Per Pin ${ }^{3}$	
Side 1 （ lor_{1} ）	-18 mA to +18 mA
Side 2 （ $\mathrm{l}_{\text {O2 }}$ ）	-22 mA to +22 mA
Common－Mode Transients ${ }^{4}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective ground．
${ }^{2} \mathrm{~V}_{\text {DDI }}$ and $\mathrm{V}_{\text {DDO }}$ refer to the supply voltages on the input and output sides of a given channel，respectively．See the PC Board Layout section．
${ }^{3}$ See Figure 4 for maximum rated current values for various temperatures．
${ }^{4}$ Refers to common－mode transients across the insulation barrier．Common－ mode transients exceeding the Absolute Maximum Rating can cause latch－ up or permanent damage．

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．This is a stress rating only；functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ESD CAUTION

	ESD（electrostatic discharge）sensitive device． Charged devices and circuit boards can discharge without detection．Although this product features patented or proprietary protection circuitry，damage may occur on devices subjected to high energy ESD． Therefore，proper ESD precautions should be taken to avoid performance degradation or loss of functionality．

Table 19．Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage，Bipolar Waveform	565	V peak	50 year minimum lifetime
AC Voltage，Unipolar Waveform			
\quad Reinforced Insulation	846	V peak	Maximum approved working voltage per IEC 60950－1 and VDE V 0884－10
DC Voltage			
\quad Reinforced Insulation	846	V peak	Maximum approved working voltage per IEC 60950－1 and VDE V 0884－10

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier．See the Insulation Lifetime section for more details．

Table 20．Truth Table（Positive Logic）

$\mathrm{V}_{\text {IX }}$ Input ${ }^{1}$	V_{Ex} Input	$\mathrm{V}_{\text {DII }}$ State 1	$\mathrm{V}_{\text {DDO }}$ State ${ }^{1}$	Vox Output ${ }^{1}$	Notes
H	H or NC	Powered	Powered	H	
L	H or NC	Powered	Powered	L	
X	L	Powered	Powered	Z	
X	H or NC	Unpowered	Powered	H	Outputs return to input state within 1μ of $V_{\text {DDI }}$ power restoration．
X		Unpowered	Powered	Z	
X	X	Powered	Unpowered	Indeterminate	Outputs return to input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDO }}$ power restoration if V_{Ex} state is H or NC．Outputs return to high impedance state within 8 ns of $\mathrm{V}_{\text {DDo }}$ power restoration if $\mathrm{V}_{\text {Ex }}$ state is L ．

[^2]
ADuM4400／ADuM4401／ADuM4402

查呾＂A D UM 44O2BRW Z＂供业店

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 5．ADuM4400 Pin Configuration

Table 21．ADuM4400 Pin Function Descriptions

Pin No．	Mnemonic	Description
1	VDD1	Supply Voltage for Isolator Side 1，2．7 V to 5．5 V．
2	GND ${ }_{1}$	Ground 1．Ground reference for isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A．
4	$V_{\text {IB }}$	Logic Input B．
5	V IC	Logic Input C．
6	VID	Logic Input D．
7	NC	No Connect．
8	GND_{1}	Ground 1．Ground reference for isolator Side 1.
9	GND_{2}	Ground 2．Ground reference for isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2．Active high logic input．Vox outputs on Side 2 are enabled when $V_{E 2}$ is high or disconnected． V_{Ox} Side 2 outputs are disabled when $\mathrm{V}_{\mathrm{E} 2}$ is low．In noisy environments，connecting $\mathrm{V}_{\mathrm{E} 2}$ to an external logic high or low is recommended．
11	Vod	Logic Output D．
12	Voc	Logic Output C．
13	V ов	Logic Output B．
14	VoA	Logic Output A．
15	GND_{2}	Ground 2．Ground reference for isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2，2．7 V to 5．5 V．

$\begin{array}{r} \mathrm{V}_{\mathrm{DD} 1}=1 \\ \mathrm{GND}_{1}=2 \\ \mathrm{~V}_{\mathrm{IA}}=3 \\ \mathrm{~V}_{\mathrm{IB}}=4 \\ \mathrm{~V}_{\mathrm{IC}}=5 \\ \hline \end{array}$	ADuM4401 TOP VIEW （Not to Scale）	
		$16 \mathrm{~V}_{\mathrm{DD} 2}$
		$15 \mathrm{GND}_{2}$
		14 V VA
		$13 \mathrm{~V}_{\text {OB }}$
		12 V OC
$v_{\text {OD }} 6$		$11 v_{\text {ID }}$
$\mathrm{V}_{\mathrm{E} 1} 7$		$10 v_{E 2}$
$\mathrm{GND}_{1} 8$		$9 \mathrm{GND}_{2}$

NOTES
1．PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED， AND CONNECTING BOTH TO GND 1 IS RECOMMENDED．©
2．PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED， AND CONNECTING BOTH TO GND IS RECOMMENDED．

Figure 6．ADuM4401 Pin Configuration

Table 22．ADuM4401 Pin Function Descriptions

Pin No．	Mnemonic	Description
1	VD1	Supply Voltage for Isolator Side 1，2．7 V to 5．5 V．
2	GND_{1}	Ground 1．Ground reference for isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A．
4	$V_{\text {IB }}$	Logic Input B．
5	VIC	Logic Input C．
6	Vod	Logic Output D．
7	$V_{E 1}$	Output Enable．Active high logic input． V_{Ox} Side 1 outputs are enabled when $\mathrm{V}_{\mathrm{E} 1}$ is high or disconnected． V_{ox} Side 1 outputs are disabled when V_{E1} is low．In noisy environments，connecting $\mathrm{V}_{\mathrm{E} 1}$ to an external logic high or low is recommended．
8	GND_{1}	Ground 1．Ground reference for isolator Side 1.
9	GND_{2}	Ground 2．Ground reference for isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2．Active high logic input．Vox outputs on Side 2 are enabled when $V_{E 2}$ is high or disconnected． V_{OX} Side 2 outputs are disabled when $\mathrm{V}_{\mathrm{E} 2}$ is low．In noisy environments，connecting $\mathrm{V}_{\mathrm{E} 2}$ to an external logic high or low is recommended．
11	VID	Logic Input D．
12	Voc	Logic Output C．
13	$\mathrm{V}_{\text {ов }}$	Logic Output B．
14	VoA	Logic Output A．
15	GND_{2}	Ground 2．Ground reference for isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2，2．7 V to 5．5 V．

1．PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED，
AND CONNECTING BOTH TO GND 1 IS RECOMMENDED．$\stackrel{\circ}{\circ}$
2．PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED，
AND CONNECTING BOTH TO GND 2 IS RECOMMENDED．$\stackrel{\stackrel{\sim}{\circ}}{\circ}$
Figure 7．ADuM4402 Pin Configuration

Table 23．ADuM4402 Pin Function Descriptions

Pin No．	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1，2．7 V to 5．5 V．
2	GND_{1}	Ground 1．Ground reference for isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A．
4	$V_{\text {IB }}$	Logic Input B．
5	Voc	Logic Output C．
6	Vod	Logic Output D．
7	$\mathrm{V}_{\mathrm{E} 1}$	Output Enable 1．Active high logic input．$V_{O X}$ Side 1 outputs are enabled when $V_{E 1}$ is high or disconnected．Vox Side 1 outputs are disabled when $\mathrm{V}_{\mathrm{E} 1}$ is low．In noisy environments，connecting $\mathrm{V}_{\mathrm{E} 1}$ to an external logic high or low is recommended．
8	GND_{1}	Ground 1．Ground reference for isolator Side 1.
9	GND_{2}	Ground 2．Ground reference for isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2．Active high logic input． V_{Ox} outputs on Side 2 are enabled when $\mathrm{V}_{\mathrm{E} 2}$ is high or disconnected． $V_{0 x}$ Side 2 outputs are disabled when $V_{E 2}$ is low．In noisy environments，connecting $\mathrm{V}_{\mathrm{E} 2}$ to an external logic high or low is recommended．
11	$V_{\text {ID }}$	Logic Input D．
12	V IC	Logic Input C．
13	$V_{\text {OB }}$	Logic Output B．
14	VoA	Logic Output A．
15	GND_{2}	Ground 2．Ground reference for isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2，2．7 V to 5．5 V．

查询＂A DuM 4402BRWZ＂供应商

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8．Typical Input Supply Current per Channel vs．Data Rate（No Load）

Figure 9．Typical Output Supply Current per Channel vs．Data Rate（No Load）

Figure 10．Typical Output Supply Current per Channel vs．
Data Rate（15 pF Output Load）

Figure 11．Typical ADuM4400 VDD1 Supply Current vs． Data Rate for 5 V and 3 V Operation

Figure 12．Typical ADuM4400 VDD2 Supply Current vs． Data Rate for 5 V and 3 V Operation

Figure 13．Typical ADuM4401 VDDI Supply Current vs． Data Rate for 5 V and 3 V Operation

ADuM4400/ADuM4401/ADuM4402

Figure 14. Typical ADuM4401 VDD2 Supply Current vs.
Data Rate for 5 V and 3 V Operation

Figure 15. Typical ADuM4402 VDD1 or VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 16. Propagation Delay vs. Temperature, C Grade

APPLICATIONS INFORMATION

PC BOARD LAYOUT

The ADuM440x digital isolators require no external interface circuitry for the logic interfaces．Power supply bypassing is strongly recommended at the input and output supply pins （see Figure 17）．Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $\mathrm{V}_{\mathrm{DD} 1}$ and between Pin 15 and Pin 16 for $V_{\text {DD2 }}$ ．The capacitor value should be between 0.01 $\mu \mathrm{F}$ and $0.1 \mu \mathrm{~F}$ ．The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm ．Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side are connected close to the package．

Figure 17．Recommended Printed Circuit Board Layout
In applications involving high common－mode transients， ensure that board coupling across the isolation barrier is minimized．Furthermore，the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side．Failure to ensure this could cause voltage differentials between pins exceeding the Absolute Maximum Ratings of the device，thereby leading to latch－up or permanent damage．

SYSTEM－LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS

System－level ESD reliability（for example，per IEC 61000－4－x）is highly dependent on system design，which varies widely by application．The ADuM440x incorporate many enhancements to make ESD reliability less dependent on system design．The enhancements include
－ESD protection cells added to all input／output interfaces．
－Key metal trace resistances reduced using wider geometry and paralleling of lines with vias．
－The SCR effect，inherent in CMOS devices，minimized by using guarding and isolation techniques between PMOS and NMOS devices．
－Areas of high electric field concentration eliminated using 45° corners on metal traces．
－Supply pin overvoltage prevented with larger ESD clamps between each supply pin and its respective ground．

While the ADuM440x improve system－level ESD reliability， they are no substitute for a robust system－level design．See the AN－793 Application Note，ESD／Latch－Up Considerations with iCoupler Isolation Products，for detailed recommendations on board layout and system－level design．

PROPAGATION DELAY－RELATED PARAMETERS

Propagation delay is a parameter that describes the length of time for a logic signal to propagate through a component．The propagation delay to a logic low output can differ from the propagation delay to logic high．

Figure 18．Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal＇s timing is preserved．
Channel－to－channel matching refers to the maximum amount the propagation delay differs among channels within a single ADuM440x component．

Propagation delay skew refers to the maximum amount the propagation delay differs among multiple ADuM440x components operated under the same conditions．

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow（ $\sim 1 \mathrm{~ns}$ ）pulses to be sent via the transformer to the decoder．The decoder is bistable and is therefore either set or reset by the pulses，indicating input logic transitions．In the absence of logic transitions at the input for more than $\sim 1 \mu \mathrm{~s}$ ，a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output．If the decoder receives no internal pulses for more than approximately $5 \mu \mathrm{~s}$ ， the input side is assumed to be without power or nonfunctional； in which case，the isolator output is forced to a default state （see Table 20）by the watchdog timer circuit．

The limitation on the ADuM440x magnetic field immunity is set by the condition in which induced voltage in the trans－ former＇s receiving coil is large enough to either falsely set or reset the decoder．The following analysis defines the conditions under which this can occur．The 3 V operating condition of the ADuM440x is examined because it represents the most susceptible mode of operation．

ADuM4400／ADuM4401／ADuM4402

相询＂A DuM 4402BRW z＂供业店

The pulses at the transformer output have an amplitude greater than 1.0 V ．The decoder has a sensing threshold at about 0.5 V ， thereby establishing a 0.5 V margin in which induced voltages can be tolerated．The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \Sigma \Pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where：
β is the magnetic flux density（gauss）．
N is the number of turns in the receiving coil． r_{n} is the radius of the $\mathrm{n}^{\text {th }}$ turn in the receiving coil（ cm ）．
Given the geometry of the receiving coil in the ADuM440x and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder，a maximum allowable magnetic field is calculated as shown in Figure 19.

Figure 19．Maximum Allowable External Magnetic Flux Density
For example，at a magnetic field frequency of 1 MHz ，the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil．This is about 50% of the sensing threshold and does not cause a faulty output transition．
Similarly，if such an event were to occur during a transmitted pulse（and was of the worst－case polarity），it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V －still well above the 0.5 V sensing threshold of the decoder．

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM440x transformers．Figure 20 expresses these allowable current magnitudes as a function of frequency for selected distances．As can be seen，the ADuM440x are immune and can be affected only by extremely large currents operated at high frequency and very close to the component．For the 1 MHz example noted，one would have to place a 0.5 kA current 5 mm away from the ADuM440x to affect the component＇s operation．

Figure 20．Maximum Allowable Current for Various Current－to－ADuM440x Spacings

Note that at combinations of strong magnetic field and high frequency，any loops formed by printed circuit board traces may induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry．Care should be taken in the layout of such traces to avoid this possibility．

POWER CONSUMPTION

The supply current at a given channel of the ADuM440x isolator is a function of the supply voltage，the channel＇s data rate，and the channel＇s output load．
For each input channel，the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I}(Q) & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I}(D) \times\left(2 f-f_{r}\right)+I_{D D I}(Q) & f>0.5 f_{r}
\end{array}
$$

For each output channel，the supply current is given by：

$$
\begin{aligned}
& I_{D D O}=I_{D D O(Q)} \quad f \leq 0.5 f_{r} \\
& I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O}(Q)
\end{aligned}
$$

$$
f>0.5 f_{r}
$$

where：
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel（mA／Mbps）．
C_{L} is the output load capacitance（ pF ）．
$V_{D D O}$ is the output supply voltage (V) ．
f is the input logic signal frequency $(\mathrm{MHz}$ ，half of the input data rate，NRZ signaling）．
f_{r} is the input stage refresh rate（Mbps）．
$I_{D D I(Q)}, I_{D D O(Q)}$ are the specified input and output quiescent supply currents（mA）．

ADuM4400／ADuM4401／ADuM4402

查询＂A DuM 4402BRWZ＂供应商

In the case of unipolar ac or dc voltage，the stress on the insu－ lation is significantly lower．This allows operation at higher working voltages while still achieving a 50 －year service life． The working voltages listed in Table 19 can be applied while maintaining the 50 －year minimum lifetime，provided the voltage conforms to either the unipolar ac or dc voltage cases． Any cross－insulation voltage waveform that does not conform to Figure 22 or Figure 23 should be treated as a bipolar ac waveform，and its peak voltage should be limited to the 50 －year lifetime voltage value listed in Table 19.

Note that the voltage presented in Figure 22 is shown as sinusoidal for illustration purposes only．It is meant to represent any voltage waveform varying between 0 V and some limiting value．The limiting value can be positive or negative，but the voltage cannot cross 0 V ．

Figure 21．Bipolar AC Waveform

Figure 22．Unipolar AC Waveform

RATED PEAK VOLTAGE

Figure 23．DC Waveform

ADuM4400／ADuM4401／ADuM4402
 查晿＂A DuM 4402BRW z＂供 业 启

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS－013－AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS；INCH DIMENSIONS （IN PARENTHESES）ARE ROUNDED－OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN．

Figure 24．16－Lead Standard Small Outline Package［SOIC＿W］ Wide Body（RW－16）
Dimensions shown in millimeters and（inches）

ORDERING GUIDE

Model	Number of Inputs， $V_{D D 1}$ Side	Number of Inputs， $V_{\mathrm{DD} 2}$ Side	Maximum Data Rate （Mbps）	Maximum Propagation Delay， 5 V（ns）	Maximum Pulse Width Distortion（ns）	Temperature Range	Package Description	Package Option
ADuM4400ARWZ ${ }^{1,2}$	4	0	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16
ADuM4400BRWZ ${ }^{1,2}$	4	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16
ADuM4400CRWZ ${ }^{1,2}$	4	0	90	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16
ADuM4401ARWZ ${ }^{1,2}$	3	1	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16
ADuM4401BRWZ ${ }^{1,2}$	3	1	10	50	3	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16
ADuM4401CRWZ ${ }^{1,2}$	3	1	90	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16
ADuM4402ARWZ ${ }^{1,2}$	2	2	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16
ADuM4402BRWZ ${ }^{1,2}$	2	2	10	50	3	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16
ADuM4402CRWZ ${ }^{1,2}$	2	2	90	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16－Lead SOIC＿W	RW－16

[^3]| 查询＂A DuM4402BRWZ＂供应商 | ADuM4400／ADuM4401／ADuM4402 |
| :--- | :--- |
| NOTES | |

ADuM4400／ADuM4401／ADuM4402

查询＂A DuM 4402BRWZ＂供単商
NOTES

[^0]: ${ }^{1}|\mathrm{CM}|$ is the maximum common－mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DD}}$ ．The common－mode voltage slew rates apply to both rising and falling common－mode voltage edges．

[^1]: ${ }^{1}|C M|$ is the maximum common－mode voltage slew rate that can be sustained while maintaining $V_{O}>0.8 V_{D D}$ ．The common－mode voltage slew rates apply to both rising and falling common－mode voltage edges．

[^2]: ${ }^{1} V_{I x}$ and $V_{0 x}$ refer to the input and output signals of a given channel（ A, B, C ，or D ）．$V_{E x}$ refers to the output enable signal on the same side as the $V_{o x}$ outputs．$V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of the given channel，respectively．

[^3]: ＇Tape and reel is available．The addition of an－RL suffix designates a $13^{\prime \prime}$（1，000 units）tape and reel option．
 ${ }^{2} Z=$ RoHS Compliant Part

