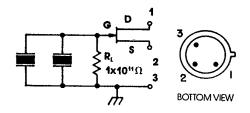
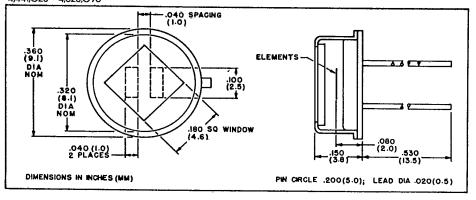


Model 5195 consists of two physically separate lithium tantalate sensing elements and an FET source follower sealed into a low profile TO-39 housing with an optical filter.


The sensing elements are connected electrically in a parallel opposed dual (POD) configuration for common mode signal cancellation. Signals from radiation falling on both active areas simultaneously will be cancelled, whereas a defined beam passing from one element to the next will produce two pulses; one positive and one negative.

A source resistor is needed to set the drain current and consequently the operating parameters of the JFET. A47K Ω or greater value resistor is recommended for connection between output (source) and ground.

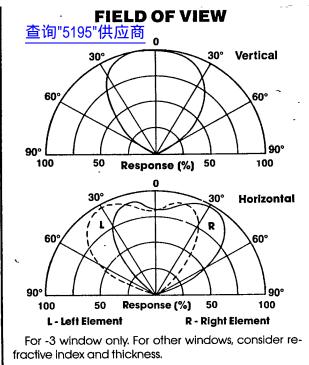
Applications


- Intrusion Detection
- Lighting Control
- Robotics
- Motion Sensing
- Automatic Door Control
- Safety Warning

1. V+ 2. OUTPUT 3. GND/CASE

5195 Parallel Opposed Dual Low Profile PIR Detector With Source Follower

Manufactured under one or more of the following U.S. patents: 3,839,640 - 4,218,620 - 4,326,663 - 4,384,207 - 4,437,003 - 4,441,023 - 4,523,095



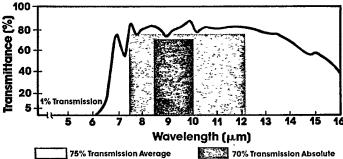
Characteristics		5195	Unit	Test Conditions	ELTECdata Reference
Detector Type		POD	_		
Element Size		1.0 x 2.5	mm	nominal, each	
Element Spacing		1.0	mm	nominal	
Responsivity (Each Element)	min typ max	2000 2700 3500	V/W	8-14µm@1Hz	
Common Mode Rejection Ratio	min typ	5:1 15:1		8-14µm@1Hz	
Noise	typ max	20.0 54.0	μV/√Hz	1,0Hz p-p (1 minute)	
NEP	typ max	1.9 x 10 ⁻⁹ 6.8 x 10 ⁻⁹	W/√Hz	8-14µm @1Hz, BW 1 Hz	100
D*	min typ	0.2 x 10 ⁸ 0.7 x 10 ⁸	cm√Hz/W	8-14µm @1Hz, BW 1Hz	100
Operating Voltage	min max	3 15	VDC	V₀ to Gnd	104 (4.1.c)
Operating Current Limits ¹	min max	0.1 40	μА	Rs Dependent	104 (4.1.c)
Offset Voltage	min max	0.2 0.8	VDC	$R_s = 22K\Omega$	104 Flg. 4
Offset Voltage	min max	0.3 1.2	VDC	$R_8 = 100 \text{K}\Omega$	104 Flg. 4
Output Impedance		20	KΩ		
Thermal Breakpoint f	typ	0.2	Hz		102
Electrical Breakpoint fe	typ	0.05	Hz	$R_L = 1 \times 10^{11} \Omega$	102
Recommended Operating Temp.		-10 + 50	့		
Responsivity vs. Temperature	max	0,2	%/°Ç	Unity Gain Circuit	104 (3.5)
Storage Temperature		-55 + 125	ပ္	ΔT<5°C/minute	· · · · · · · · · · · · · · · · · · ·

Characteristics at 25°C, with -3 Window, $V_D=5$ VDC, $R_S=100$ K Ω unless otherwise stated. Data is established on a sample basis and is believed to be representative,

^{&#}x27;Actual current is given by offset voltage and external circuit,

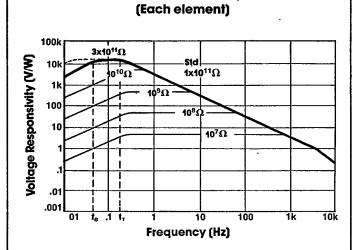
ELTEC INSTRUMENTS INC

For best results, the following precautions and recommendations should be observed. (See ELTECdata 101):


Mounting: Avoid mechanical stresses on case and leads.

Soldering: Use minimum heat and heat sink between case and leads. Leave minimum lead length of .250 inch (6.0mm.) DO NOT MACHINE SOLDER.

Static Discharge: Protect detectors from electrostatic charges.


Thermal Shock: Temperature changes and rate of change must be kept to a minimum (<5°C/min.) to prevent damage.

For information on other standard windows available, refer to ELTECdata #101.

FREQUENCY RESPONSE

The voltage response of this detector is dependent on the pulse rate or equivalent frequency of input. The frequency response of the detector can be linearized by using a lower value resistor, but at the expense of lower responsivity and a lower D*. Load resistor values other than the standard 1X10 $^{11}\Omega$ can be specified.

Noise: As a resolution or lower information limit, noise is not established only the detector. Other noise sources are:

- Radiated and conducted RF signals
- Subsequent amplification or signal conditioning stages
- Power supply noise
- Components such as high value resistors and tantalum or electrolytic capacitors
- Mechanical contacts and weak solder joints
- Microphonics or vibration
- Outside thermal influences on the detector other than the desired infrared input, i.e. drafts

All these noise sources should be considered carefully when the information signal is <1mV.

Optical Design: Use of a detector with a window in an optical system may require consideration of the image displacement toward the window. This displacement (= s) caused by the insertion of a planoparallel plate (window thickness = t; refractive index = N) is given by s = (t/N) (N-1).

Optical Bandwidth: The detector is sensitive in a range from 1.5 to 1000 μ m depending on window used. For more information, see ELTEC data #101.

Light Leakage: Sensitivity to visible light leaking through the glass-to-metal seal on the base may be observed. Eltec recommends shielding the base of the detector from visible light.

ELTEC INSTRUMENTS, INC. BOX 9610 DAYTONA BEACH, FLORIDA 32020 TWX 810 / 832 / 6294 (800) 874-7780