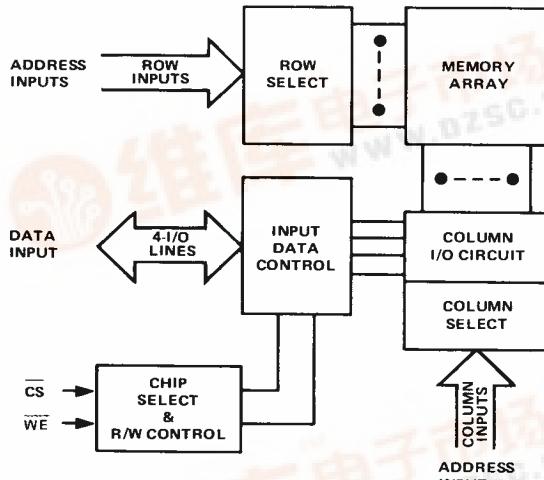


查询"2114-2CA"供应商

2114

SEMI 2114 STATIC, TTL IN/OUT 1024x4 N-MOS RAM's

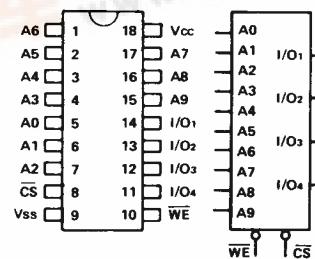

FEATURES

- 1024 words x 4 bits
- Three access times (200, 300, and 450 nsec)
- Low operating power — 175 mW typical
- Standard power — 222 mW typical
- Common output bus
- Three-state output drivers
- Fully STATIC — no clock or refresh
- Single +5V power supply
- TTL compatible interface
- 18-pin ceramic, plastic or cerdip package

GENERAL DESCRIPTION

SEMI's Series 2114 RAMs are 1024 word x 4 bit static N-MOS Random Access Memories. These fully static memory cells require no external clocks, strobes or data refresh circuitry. TTL compatible THREE-STATE output drivers allow the use of common I/O lines—ideally suited for microprocessor interfacing to a common I/O bus. A single +5V input is the only power supply requirement. Read/ Write functions are controlled by the low state of Chip Select (CS) and the concurrent high or low level of Write Enable (WE) to initiate a Read or Write cycle respectively—with no pulse or edge triggering required. With CS high (STANDBY), a high impedance is reflected to the I/O bus—resulting in a no-load condition when non-selected. The 2114 is available in a choice of access times, power dissipation and packaging to meet your particular requirement.

BLOCK DIAGRAM



TRUTH TABLE

CS	WE	DI/DO	STATUS	MODE
H	Don't Care	High Z	Deselect	Standby
L	H	Data	Selected	Read
L	L	L	Selected	Write 0
L	L	H	Selected	Write 1

PIN CONFIGURATION AND LOGIC SYMBOL

AN Address Inputs
I/ON Data Input/Output
CS Chip Select
WE Write Enable
Vss Ground
Vcc +5 V Power Supply

EMI SEMI, INC.

A Subsidiary of Electronics Memories & Magnetics Corporation • 2000 West 14th Street, Tempe, Arizona 85281 • (602) 968-4431

RECOMMENDED OPERATING CONDITIONS ($T_{AMB} = 0^\circ C$ to $70^\circ C$)

PARAMETER	SYMBOL	MIN	NOM	MAX	UNITS
Supply Voltage	V_{CC}	4.75	5.0	5.25	V
Input High Level	V_{IH}	2.0	—	5.25	V
Input Low Level	V_{IL}	-0.5	—	0.8	V

DC ELECTRICAL CHARACTERISTICS (Full Operating Voltage and Temperature Range)

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Leakage Current	I_{LI}	-10	—	+10	μA	$V_{IN} = 0$ to 5.25V
I/O Leakage Current	I_{LO}	-10	—	+10	μA	$V_{I/O} = 0.4$ to 5.25V, CS = 2.4V
Output Voltage High	V_{OH}	2.4	—	—	V	$I_o = -1.0$ ma
Output Voltage Low	V_{OL}	—	—	0.4	V	$I_o = 2.1$ ma
Power Supply Current						
2114-2,3	I_{CC}	—	50	70	ma	$T_{AMB} = 25^\circ C$
	I_{CC}	—	—	100	ma	$T_{AMB} = 0^\circ C$ to $70^\circ C$
L2114-2,3	I_{CC}	—	35	65	ma	$T_{AMB} = 25^\circ C$
	I_{CC}	—	—	70	ma	$T_{AMB} = 0^\circ C$ to $70^\circ C$
2114-U	I_{CC}	—	45	75	ma	$T_{AMB} = 25^\circ C$
	I_{CC}	—	65	100	ma	$T_{AMB} = 0^\circ C$ to $70^\circ C$
L2114-U	I_{CC}	—	35	45	ma	$T_{AMB} = 25^\circ C$
	I_{CC}	—	40	70	ma	$T_{AMB} = 0^\circ C$ to $70^\circ C$

READ CYCLE — AC CHARACTERISTICS (CONDITIONS—Full Operating Voltage and Temperature Range)

		2114-2, L2114-2			2114-3, L2114-3			2114-U, L2114-U			UNIT
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Read Cycle Time	T_{RC}	200	—	∞	300	—	∞	450	—	∞	ns
Access Time	T_A	—	—	200	—	—	300	—	—	450	ns
Chip Select-to-Output, Valid	T_{CO}	—	—	70	—	—	100	—	—	120	ns
Chip Select-to-Output, Active	T_{CX}	20	—	—	20	—	—	20	—	—	ns
Output Hold After Address Change	T_{OHA}	50	—	—	50	—	—	50	—	—	ns
Output Disable After Chip Deselection	T_{OTD}	—	—	60	—	—	80	—	—	100	ns

WRITE CYCLE — AC CHARACTERISTICS (CONDITIONS—Full Operating Voltage and Temperature Range)

		2114-2, L2114-2			2114-3, L2114-3			2114-U, L2114-U			UNIT
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Write Cycle Time	T_{WC}	200	—	∞	300	—	∞	450	—	∞	ns
Write Pulse Width	T_W	120	—	—	150	—	—	200	—	—	ns
Write Recovery Time	T_{WR}	0	—	—	0	—	—	0	—	—	ns
Data Setup Time	T_{DW}	120	—	—	150	—	—	200	—	—	ns
Data Hold Time	T_{DH}	0	—	—	0	—	—	0	—	—	ns
Output Disable From Write or Chip Enable Time	T_{OTW}	—	—	60	—	—	80	—	—	100	ns

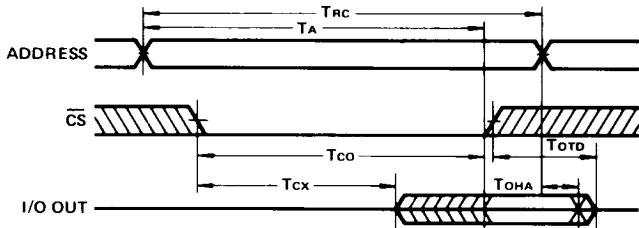
CAPACITANCE

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Capacitance	C_{IN}	—	4	5	pF	$V_{IN} = 0$ V
Output Capacitance	$C_{I/O}$	—	4	5	pF	$V_{I/O} = 0$ V

A Subsidiary of Electronic Memories & Magnetics Corporation • 2000 West 14th Street, Tempe, Arizona 85281 • (602) 968-4431

[查询"2114-2CA"供应商](#)

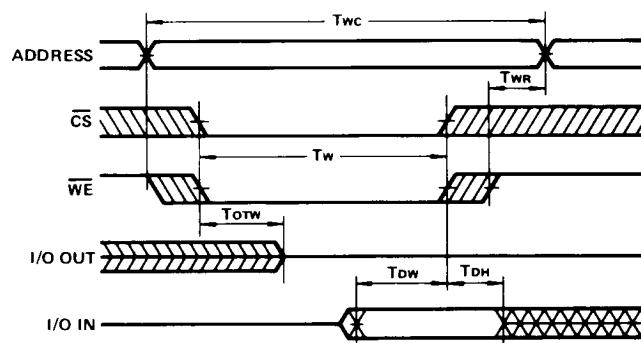
ABSOLUTE MAXIMUM RATINGS
(See Note 1) (Referenced to GND)


RATING	VALUE	UNIT
Voltage on Any Pin With Respect to GND	-0.5 to +7.0	Vdc
Power Dissipation	1.0 (NOTE 2)	W
Operating Ambient Temperature Range (T_{AMB})	0 to +70	°C
Temperature Under Bias (T_{BIAS})	-10 to +80	°C
Storage Temperature (T_{STOR})	-65 to +150	°C
Current Into/From Output (I_o)	50	ma

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated values.

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended or maximum voltages for extended periods of time could affect device reliability.

NOTE 2: At 25°C Ambient. Derate 13.5 mw/°C.


READ CYCLE TIMING

NOTES:

1. WE is high for a Read Cycle.
2. Tw is measured from the latter of CS or WE going low to the earlier of CS or WE going high.
3. WE or CS must be high prior to a write cycle to prevent an erroneous write during the address transitions.

WRITE CYCLE TIMING

FUNCTIONAL DESCRIPTION

EMM SEMI's 2114 is a 4096 bit static RAM, organized in a 1024 word by 4 bit configuration. Each word is selectively accessed by address lines A_0 through A_9 , with data being read or written on common data input/output lines (I/O₁ through I/O₄), as controlled by the Chip Select (CS) and Write Enable (WE) functions.

Since no address setup time is required, data access is quite simple. With WE high and CS low, the array may be read by simply toggling the input address. Valid data output becomes available after time T_A , following each address change. However, should CS be used to control the read mode, valid data access time must be equal to or greater than T_A , but cannot occur earlier than T_{CO} from CS going low.

The write mode is enabled whenever CS and WE are both low. Stored data integrity is therefore preserved as long as either CS or WE is high. To write valid

data, the address input may be applied simultaneously with the write enable (CS and WE both low), but must remain stable for the period T_{WC} while writing.

Possible write modes are as follows:

1. CS is held low. Tw is then defined by WE going from a high state to a low state and T_{WR} is defined by WE going from a low state to a high state.
2. WE is held low. CS going low is then used to define Tw. CS going high is used to define T_{WR} .
3. CS and WE are both used. Tw timing is defined by the latter of CS or WE going low, and T_{WR} timing is determined by the earlier of CS or WE going high.

The address must remain stable for the full Write cycle. However, data inputs are not required to remain stable for the full cycle. The correct logic level will be entered as long as input data is stable for the time period T_{OW} during the write cycle.

EMM SEMI, INC.

A Subsidiary of Electronic Memories & Magnetics Corporation • 2000 West 14th Street, Tempe, Arizona 85281 • (602) 968-4431

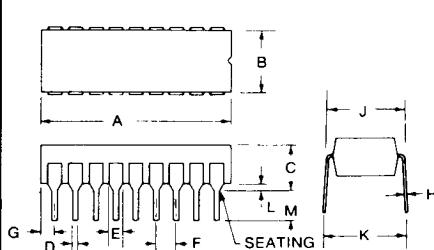
EMM SEMI 2114 STATIC, TTL IN/OUT 1024x4 N-MOS RAM's

FUNCTIONAL NOTES:

查询"2114-2CA"供应商

1. t_{w} is measured from the latter of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going low.

2. t_{w} is measured from the latter of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going low, to the earlier of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
3. t_{WR} is measured from the earlier of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
4. $t_{\text{D}\text{H}}$ and $t_{\text{D}\text{L}}$ are measured from the earlier of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
5. $t_{\text{D}\text{H}}$ is measured from $\overline{\text{WE}}$ going low or $\overline{\text{CS}}$ going high, whichever occurs first.
6. Timing diagrams are based on loading to simu-


late the capacitive effect of twenty (20) additional outputs connected in parallel (100 pf) plus the current loading effect of one TTL input load.

7. Input pulse levels are 0.8 volts for logic low, to 2.0 volts for logic high.
8. Input rise and fall times are of equal value (10 ns).
9. Timing is measured from the 1.5 volt level whether the level is going high or low.
10. Each I/O line is a high impedance during the write mode, or when $\overline{\text{CS}}$ is high. Inputs always represent a high impedance.

ORDERING INFORMATION

DEVICE	ACCESS TIME	MAXIMUM POWER DISSIPATION	PACKAGE	TEMP. RANGE
2114-2CA	200ns	525mw	18-pin Ceramic	0° C to 70° C
2114-2CB	200ns	525mw	18-pin Plastic	0° C to 70° C
2114-2CE	200ns	525mw	18-pin Cerdip	0° C to 70° C
L2114-2CA	200ns	368mw	18-pin Ceramic	0° C to 70° C
L2114-2CB	200ns	368mw	18-pin Plastic	0° C to 70° C
L2114-2CE	200ns	368mw	18-pin Cerdip	0° C to 70° C
2114-3CA	300ns	525mw	18-pin Ceramic	0° C to 70° C
2114-3CB	300ns	525mw	18-pin Plastic	0° C to 70° C
2114-3CE	300ns	525mw	18-pin Cerdip	0° C to 70° C
L2114-3CA	300ns	368mw	18-pin Ceramic	0° C to 70° C
L2114-3CB	300ns	368mw	18-pin Plastic	0° C to 70° C
L2114-3CE	300ns	368mw	18-pin Cerdip	0° C to 70° C
2114-UCA	450ns	525mw	18-pin Ceramic	0° C to 70° C
2114-UCB	450ns	525mw	18-pin Plastic	0° C to 70° C
2114-UCE	450ns	525mw	18-pin Cerdip	0° C to 70° C
L2114-UCA	450ns	315mw	18-pin Ceramic	0° C to 70° C
L2114-UCB	450ns	315mw	18-pin Plastic	0° C to 70° C
L2114-UCE	450ns	315mw	18-pin Cerdip	0° C to 70° C

TYPICAL OUTLINE DRAWING

PACKAGING DIMENSIONS

DIM.	"B" PLASTIC PACKAGE		"A" CERAMIC PACKAGE		"E" CERDIP PACKAGE	
	MILLIMETERS	INCHES	MILLIMETERS	INCHES	MILLIMETERS	INCHES
A	21.590	23.622	0.850	0.930	22.606	23.114
B	6.096	7.493	0.240	0.295	7.061	7.569
C	—	5.588	—	0.210	—	4.826
D	0.381	0.584	0.015	0.023	0.381	0.584
E	1.143	1.778	0.045	0.070	1.016	1.778
F	2.286	2.794	0.090	0.110	2.286	2.794
G	0.635	2.159	0.025	0.085	0.762	1.778
H	0.203	0.305	0.006	0.012	0.203	0.305
J	7.366	8.255	0.290	0.325	7.620	8.077
K	7.366	10.414	0.290	0.410	7.620 REF.	—
L	0.508	1.278	0.020	0.050	0.635	1.651
M	2.540	4.191	0.100	0.165	2.540	3.810

WARNING:

MOS CIRCUITS ARE SUBJECT TO DAMAGE FROM STATIC DISCHARGE

Internal static discharge circuits are provided to minimize part damage due to environmental static electrical charge build-ups. Industry established recommendations for handling MOS circuits include:

1. Ship and store product in conductive shipping tubes or in conductive foam plastic. Never ship or store product in non-conductive plastic containers or non-conductive plastic foam material.
2. Handle MOS parts only at conductive work stations.
3. Ground all assembly and repair tools.

Represented in your area by:

EMM SEMI reserves the right to make changes at any time in order to improve design and to supply the best product possible.

A Subsidiary of Electronic Memories & Magnetics Corporation
2000 West 14th Street, Tempe, Arizona 85281
Telephone (602) 968-4431

JUL 31 1991

GEORGE ✓

ORIGINAL

PUBLISHED IN U.S.A., JUNE 1979