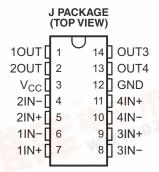


www.ti.com SCLS720 – NOVEMBER 2010


QUAD DIFFERENTIAL COMPARATOR

Check for Samples: LM139-SP, LM139A-SP

FEATURES

- QML-V Qualified, SMD 5962-7700801VCA, 5962-9673802VCA and 5962-9673802V9B
- Rad-Tolerant: 40 kRad (Si)
 TID (ELDERS Free)
 (5962-9673802VCA and 5962-9673802V9B) (1)
- Wide Supply Ranges
 - Single Supply: 2 V to 36 V (Tested to 30 V)
 - Dual Supplies: ±1 V to ±18 V
 (Tested to ±15 V)
- Low Supply-Current Drain Independent of Supply Voltage: 0.8 mA (Typ)
- Low Input Bias Current: 25 nA (Typ)
- Low Input Offset Current: 3 nA (Typ) (LM139)
- (1) Radiation tolerance is a typical value based upon initial device qualification with dose rate = 10 mrad/sec. Radiation lot acceptance testing is available - contact factory for details.

- Low Input Offset Voltage: 2 mV (Typ)
- Common-Mode Input Voltage Range Includes
 Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: ±36 V
- Low Output Saturation Voltage
- Output Compatible With TTL, MOS, and CMOS

DESCRIPTION/ORDERING INFORMATION

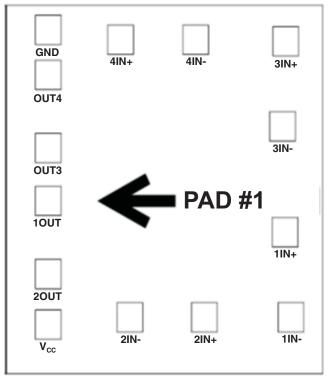
These devices consist of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies also is possible, as long as the difference between the two supplies is 2 V to 36 V, and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

The LM139 and LM139A are characterized for operation over the full military temperature range of -55°C to 125°C.

Table 1. ORDERING INFORMATION⁽¹⁾

T _A	V _{IO} max AT 25°C	MAX V _{CC}	PACKAGE ⁽²⁾	ORDERABLE PART NUMBER		TOP-SIDE MARKING
	5 mV	30 V	7-TV 100	LM139	5962-7700801VCA	5962-7700801VCA
-55°C to 125°C	2 mV	30 V	0750	LM139A	5962-9673802VCA ⁽³⁾	5962-9673802VCA
	2 mV	30 V	KGD	5962-9673802V9B ⁽³⁾		N/A

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- (3) Radiation tolerant



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

BARE DIE INFORMATION

DIE THICKNESS	BACKSIDE FINISH	BACKSIDE POTENTIAL	BON PAD METALLIZATION COMPOSITION	BOND PAD THICKNESS
15 mils	Silicon with backgrind	Floating	AlCu (0.5%)	0.055 mils

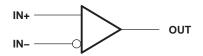
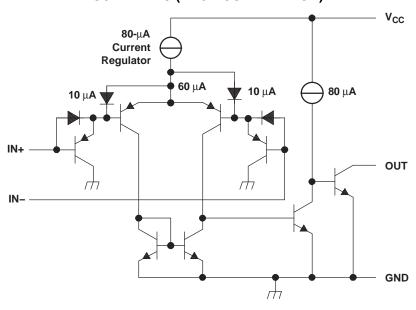


Table 2. Bond Pad Coordinates in Microns


DISCRIPTION	PAD NUMBER	Xmin	Ymin	Xmax	Ymax
1OUT	1	22.86	455.93	124.46	557.53
2OUT	2	22.86	203.2	124.46	304.8
Vcc	3	22.86	27.94	124.46	129.54
2IN-	4	345.44	53.34	447.04	154.94
2IN+	5	640.08	53.34	741.68	154.94
1IN-	6	981.71	53.34	1083.31	154.94
1IN+	7	958.85	347.98	1060.45	449.58
3IN-	8	948.69	713.74	1050.29	815.34
3IN+	9	961.39	1008.38	1062.99	1109.98
4IN-	10	605.79	1013.46	707.39	1115.06
4IN+	11	308.61	1013.46	410.21	1115.06
GND	12	22.86	1047.75	124.46	1149.35
OUT4	13	22.86	891.54	124.46	993.14
OUT3	14	22.86	638.81	124.46	740.41

Submit Documentation Feedback

SYMBOL (EACH COMPARATOR)

SCHEMATIC (EACH COMPARATOR)

All current values shown are nominal.

ISTRUMENTS

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾	Supply voltage (2)			
V_{ID}	Differential input voltage (3)		±36	V	
V_{I}	Input voltage range (either input)		-0.3	36	٧
Vo	Output voltage			36	V
Io	Output current		20	mA	
	Duration of output short circuit to ground ⁽⁴⁾		Ur	limited	
θ_{JC}	Package thermal impedance, junction to case (5) (6)	J package		15.05	°C/W
T_{J}	Operating virtual-junction temperature	•		150	ů
	Lead temperature 1,6 mm (1/16 in) from case for 60 s	J package		300	°C
T _{stg}	Storage temperature range		-65	150	ů

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential voltages, are with respect to network ground.

Differential voltages are at IN+ with respect to IN-. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

Maximum power dissipation is a function of T_J (max), θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J \text{ (max)} - T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with MIL-STD-883.

SCLS720 - NOVEMBER 2010

ELECTRICAL CHARACTERISTICS FOR LM139

at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS ⁽¹⁾	T _A (2)	MIN	TYP	MAX	UNIT
		$V_{CC} = 5 \text{ V to } 3$		25°C		1		
V_{IO}	Input offset voltage	$V_{IC} = V_{ICR} \text{ min},$ $V_{O} = 1.4 \text{ V}$		Full range			4	mV
	Input offeet ourrent	V = 1.4.V		25°C		3	25	nA
I _{IO}	Input offset current	V _O = 1.4 V		Full range			100	ΠA
	lament bing assument			25°C		-25	-100	A
I _{IB}	Input bias current	$V_0 = 1.4 \text{ V}$		Full range			-300	nA
	Common-mode input-voltage			25°C	0 to V _{CC} - 1.5			V
V _{ICR}	range ⁽³⁾			Full range	0 to V _{CC} - 2			V
A _{VD}	Large-signal differential-voltage amplification	$V_{CC+} = \pm 7.5 \text{ V},$ $V_{O} = -5 \text{ V to 5 V}$		25°C	50	200		V/mV
	Liber level entent enement	V 4.V	V _{OH} = 5 V	25°C		0.1		nA
I _{OH}	High-level output current	$V_{ID} = 1 V$	V _{OH} = 30 V	Full range			1	μΑ
.,		., .,		25°C		150	400	
V_{OL}	Low-level output voltage	$V_{ID} = -1 V$,	$I_{OL} = 4 \text{ mA}$	Full range			700	mV
I _{OL}	Low-level output current	$V_{ID} = -1 V$,	V _{OL} = 1.5 V	25°C	6	16		mA
I _{CC}	Supply current (four comparators)	V _O = 2.5 V,	No load	25°C		0.8	2	mA

⁽¹⁾ All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

⁽²⁾ Full range (MIN to MAX) for LM139 and LM139A is -55°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

⁽³⁾ The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} – 1.5 V; however, one input can exceed V_{CC}, and the comparator will provide a proper output state as long as the other input remains in the common-mode range. Either or both inputs can go to 30 V without damage.

ELECTRICAL CHARACTERISTICS FOR LM139A

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾	T _A ⁽²⁾	MIN	TYP ⁽³⁾ MAX	UNIT	
I _{CC}	Supply current	R _L = ∞, V+ = 30 V	Full range		2	mA	
I _{CEX}	Output leakage current	V+ = 30 V, V _{OUT} = 30 V	Full range		1	μA	
	Caturatian valtana	1 4 4	25°C		400	\/	
V _{SAT}	Saturation voltage	I _{SINK} = 4 mA	Full range		700	mV	
I _{SINK}	Output sink current	V _{OUT} = 1.5 V	25°C		6	mA	
		V. 5 V V 0 V	25°C		±2	\/	
		$V+ = 5 V, V_{CM} = 0 V$	Full range		±4	mV	
		V. 20 V V 0 V	25°C		±2	mV	
		$V+ = 30 \text{ V}, V_{CM} = 0 \text{ V}$	Full range		±4	mv	
V _{IO}	Input offset voltage	V+ = 30 V, V _{CM} = 28.5 V, V _{OUT} = 1.5 V	25°C		±2	mV	
		V+ = 30 V, V _{CM} = 28 V, V _{OUT} = 1.5 V	Full range		±4	mV	
	Land bina annual	V 45V	25°C	-100	-1	nA	
IB	Input bias current	V _{OUT} = 1.5 V	Full range	-300	-1		
	land offers account	V 45V	25°C		±25	n 1	
I _{IO}	Input offset current	V _{OUT} = 1.5 V	Full range		±100	nA	
PSRR	Power supply rejection ratio	V+ = 5 V to 30 V	25°C	60	100	dB	
CMRR	Common-mode rejection ratio	V+ = 30 V, $V_{CM} = 0 V \text{ to } 28.5 V$	25°C	60		dB	
A_{V}	Voltage gain	V+ = 15 V, $R_L ≥ 15 kΩ$, $V_{OUT} = 1 V to 11 V$	25°C	50		V/mV	
V _{CM} ⁽⁴⁾	Common made valtage range	V+ = 30 V	25°C	0	V+ - 1.5	V	
VCM`	Common mode voltage range	V+ = 30 V	Full range	0	V+ - 2	V	
V _{DIFF} (5)	Differential input valtege	V+ = 30 V, V- = 0 V, V _{IN+} = 36 V, V _{IN-} = 0 V	Full range		500	~ ^	
V DIFF (3)	Differential input voltage	V+ = 30 V, V- = 0 V, V _{IN+} = 0 V, V _{IN-} = 36 V	Full range		500	nA	
	Posnonco timo	V _{OD} (overdrive) = 5 mV	25°C		5		
RLH	Response time	V _{OD} (overdrive) = 50 mV	25 0		0.8	μs	
	Poononce time	V _{OD} (overdrive) = 5 mV	3500		2.5	1:0	
t _{RHL}	Response time	V _{OD} (overdrive) = 50 mV	25°C		0.8	μs	

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 30 V.

⁽²⁾ Full range is -55°C to 125°C for LM139A.

⁽³⁾ All typical values are at T_A = 25°C.

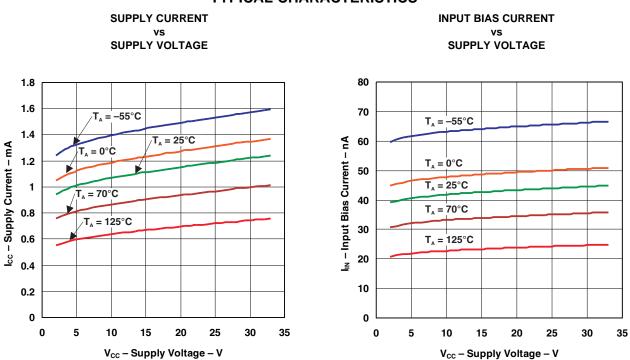
⁽⁴⁾ The input common mode voltage or either input signal voltage should not be allowed to go negative by more that 0.3 V. The upper end of the common mode voltage range is V+ -1.5 V for T_A = 25°C or V+ -2.0 V for T_A = Full range, but either or both inputs can go to +30 V dc without damage independent of the magnitude of V+.

⁽⁵⁾ Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V dc or 0.3 V dc below the magnitude of the negative power supply, if used.

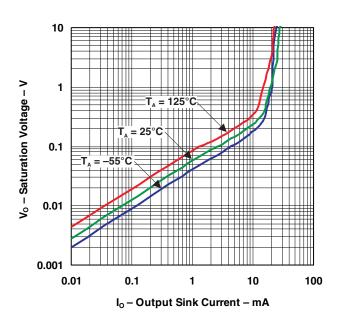
<u>₩**營**特</u>•**™**M139 SP"供应商

SCLS720 - NOVEMBER 2010

SWITCHING CHARACTERISTICS

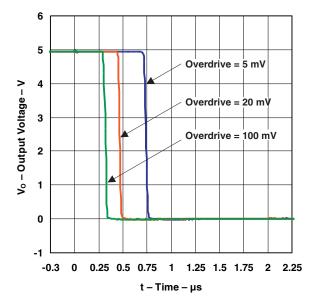

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

PARAMETER	TEST COM	TYP	UNIT	
D	R _L connected to 5 V through 5.1 kΩ,	100-mV input step with 5-mV overdrive	1.3	_
Response time	C _L = 15 pF ⁽¹⁾ (2)	TTL-level input step	0.3	μS

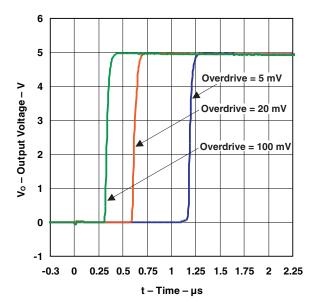

 ⁽¹⁾ C_L includes probe and jig capacitance.
 (2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

TYPICAL CHARACTERISTICS

OUTPUT SATURATION VOLTAGE



www.描formw139 SP"供应商


SCLS720 - NOVEMBER 2010

TYPICAL CHARACTERISTICS (continued)

RESPONSE TIME FOR VARIOUS OVERDRIVES NEGATIVE TRANSITION

RESPONSE TIME FOR VARIOUS OVERDRIVES POSITIVE TRANSITION

PACKA

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pea
5962-7700801VCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg
5962-9673802V9B	PREVIEW	XCEPT	KGD	14		TBD	Call TI	Call TI
5962-9673802VCA	PREVIEW			14		TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

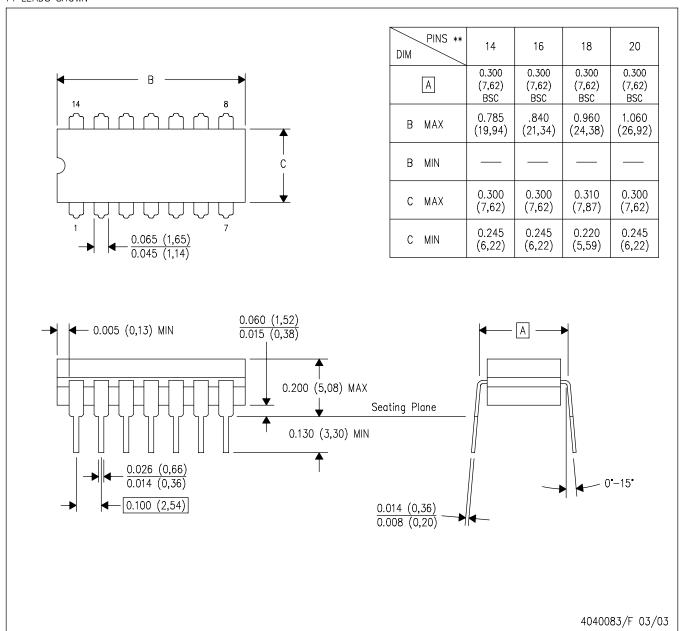
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate in continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical at TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu

OTHER QUALIFIED VERSIONS OF LM139-SP:

NOTE: Qualified Version Definitions:

PACKA


Catalog - TI's standard catalog product

查询"LM139-SP"供应商

J (R-GDIP-T**)

CERAMIC DUAL IN-LINE PACKAGE

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

查询"LM139-SP"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps