查询"74HC4052D-T"供应商 DUAL4-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

FEATURES

- Wide analog input voltage range: ± 5 V.
- Low "ON" resistance: 80 Ω (typ.) at V_{CC} - V_{EE} = 4.5 V 70 Ω (typ.) at V_{CC} - V_{EE} = 6.0 V 60 Ω (typ.) at V_{CC} - V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- Output capability: non-standard
- ICC category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4052 are high-speed Si-gate CMOS devices and are pin compatible with the "4052" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4052 are dual 4-channel analog multiplexers/demultiplexers with common select logic. Each multiplexers with four independent inputs/outputs (nY0 to nY3) and a common input/output (nZ). The common channel select logics include two digital select inputs (S0 and S1) and an active LOW enable input (E).

With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by S₀ and S₁. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S₀ and S₁.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S₀ and S₁, and E). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY₀ to nY₃, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. V_{CC} - V_{EE} may not exceed 10.0 V. For operation as a digital

multiplexer/demultiplexer, VEE is connected to GND (typically ground).

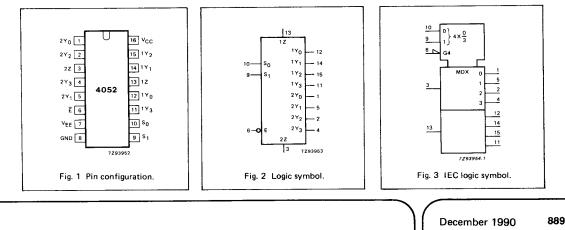
			TYF	ICAL	
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT
tPZH/ tPZL	turn "ON" time Ē or S _n to V _{os}	$C_L = 15 \text{ pF}$		18	ns
^t PHZ [/] ^t PLZ	turn "OFF" time Ē or S _n to V _{os}	$R_{L} = 1 k\Omega$ V _{CC} = 5 V	21	13	ns
CI	input capacitance		3.5	3.5	рF
CPD	power dissipation capacitance per switch	notes 1 and 2	57	57	pF
CS max. switch capacitance independent (Y) common (Z)			5 12	5 12	pF pF

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

Notes

- 1. CPD is used to determine the dynamic power dissipation (PD in μ W):
 - $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma \{(C_{L} + C_{S}) \times V_{CC}^{2} \times f_{o} \} \text{ where:}$
 - $f_i = input frequency in MHz$ $f_o = output frequency in MHz$ $<math>\Sigma \left\{ (C_L + C_S) \times V_{CC}^2 \times f_o \right\} = sum of outputs$

 C_L = output load capacitance in pF C_S = max. switch capacitance in pF V_{CC} = supply voltage in V

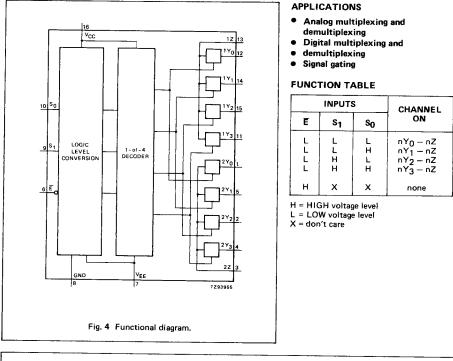

2. For HC the condition is VI = GND to VCC For HCT the condition is VI = GND to VCC - 1.5 V

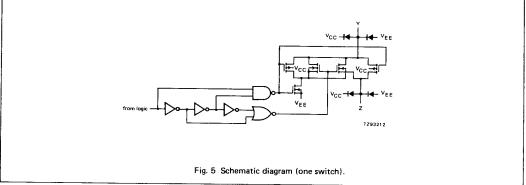
PACKAGE OUTLINES

16-lead DIL; plastic (SOT38Z). 16-lead mini-pack; plastic (SO16; SOT109A).

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	
1, 5, 2, 4 6	2Y ₀ to 2Y ₃ E	independent inputs/outputs enable input (active LOW)	
7 8	V _{EE} GND	negative supply voltage ground (0 V)	
10, 9	S ₀ , S ₁	select inputs	
12, 14, 15, 11	1Y0 to 1Y3	independent inputs/outputs	
13, 3	1Z, 2Z	common inputs/outputs	
16	Vcc	positive supply voltage	




Powered by ICminer.com Electronic-Library Service CopyRight 2003

890

January 1986

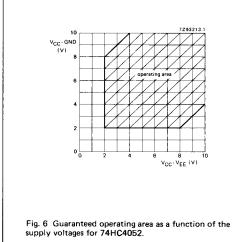
查询"74HC4052D-T"供应商

Powered by ICminer.com Electronic-Library Service CopyRight 2003

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages are referenced to VEE = GND (ground = 0 V)


SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
Vcc	DC supply voltage	-0.5	+11.0	v	
±IIК	DC digital input diode current		20	mA	for V _I $<$ –0.5 V or V _I $>$ V _{CC} + 0.5 V
±ISK	DC switch diode current		20	mA	for V_S $<$ –0.5 V or V_S $>$ V_CC + 0.5 V
±IS	DC switch current		25	mA	for -0.5 V < V_{S} < V_{CC} + 0.5 V
±ΙΕΕ	DC V _{EE} current		20	mA	
^{±I} CC; ^{±I} GND	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
PS '	power dissipation per switch		100	mW	

Note to ratings

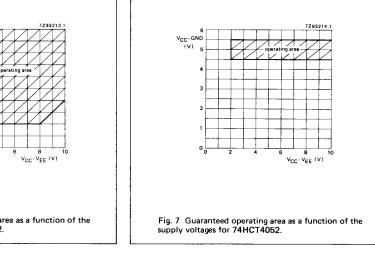
To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

			74HC			74HCT	•		CONDITIONS
SYMBOL	PARAMETER	min.	typ.	max.	min.	typ.	max.	UNIT	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V
Vcc	DC supply voltage V _{CC} –GND	2.0	5.0	10.0	4.5	5.0	5.5	v	see Figs 6 and 7
Vcc	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	v	see Figs 6 and 7
VI	DC input voltage range	GND		Vcc	GND		vcc	v	
VS	DC switch voltage range	VEE		Vcc	VEE		Vcc	v	
Tamb	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
Tamb	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	V _{CC} = 4.5 V

DC CHARACTERISTICS FOR 74HC/HCT

				-	Г _{атb} (°C)					TEST	COND	ITION	s
SYMBOL	PARAMETER			7	4HC/H	ют			UNIT	V	V _{EE} V			
STWIDOL	FARAMETER		+25		-40	to +85	-40 t	o +125		Vcc V		IS μA	Vis	VI
		min.	typ.	max.	min.	max.	min.	max.						
RON	ON resistance (peak)		 100 90 70	- 180 160 130		 225 200 165		- 270 240 195	ດ ດ ດ ດ	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC} to V _{EE}	VIN or VIL
RON	ON resistance (rail)		150 80 70 60	- 140 120 105		- 175 150 130	-	_ 210 180 160	ດ ດ ດ	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	VEE	VIH or VIL
R _{ON}	ON resistance (rail)		150 90 80 65	 160 140 120		 200 175 150		 240 210 180	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	vcc	VIH or VIL
∆R _{ON}	maximum ∆ON resistance between any two channels		- 986						ດ ດ ດ	2.0 4.5 6.0 4.5	0 0 0 -4.5		V _{CC} to V _{EE}	VIH or VIL


Notes to DC characteristics

1. At supply voltages (V_{CC} - V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

2. For test circuit measuring RON see Fig. 8.

892

March 1988

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

				Т	amb (°C)					TEST	COND	ITIONS
					74H0	:				Vaa	Ver	Vi	OTHER
SYMBOL	PARAMETER		+25		-40	to +85	-40 te	o +125	UNIT	∨ _{CC} ∨	VEE V	*1	
		min.	typ.	max.	min.	max.	min.	max.					
VIH	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		v	2.0 4.5 6.0 9.0			
VIL	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	v	2.0 4.5 6.0 9.0			
±łį	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μA	6.0 10.0	0 0	V _{CC} or GND	
±İS	analog switch OFF-state current per channel			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} - V _{EE} (see Fig. 10)
±IS	analog switch OFF-state current all channels			0.2		2.0		2.0	μA	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} - V _{EE} (see Fig. 10)
±IS	analog switch ON-state current			0.2		2.0		2.0	μA	10.0	0	VIH or VIL	V _S = V _{CC} - V _{EE} (see Fig. 11)
lcc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0		6.0 10.0	0 0	V _{CC} or GND	$V_{is} = V_{EE}$ or V _{CC} ; V _{os} = V _{CC} or V _{EE}

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				Т	amb (°C)				TEST CONDITIONS			
					74H0	;				Vcc	V	OTHER RL = ∞; CL = 50 pF (see Fig. 18)	
SYMBOL	PARAMETER	+25		+25		40 to +8540		-40 to +125		VCC	VEE	OTHER RL = ∞; CL = 50 pF (see Fig. 18)	
		min.	typ.	max.	min.	max.	min.	max.					
^t PHL [/] ^t PLH	propagation delay V _{is} to V _{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 -4.5		
^t PZH [/] ^t PZL	turn "ON" time Ē to V _{os} S _n to V _{os}		105 38 30 26	325 65 55 46		405 81 69 58		490 98 83 69	ns	2.0 4.5 6.0 4.5	0 0 -4.5	RL = ∞; CL = 50 pF (see Figs 19, 20 and 21)	
tpHZ/ tPLZ	turn "OFF" time Ē to V _{os} S _n to V _{os}		74 27 22 22	250 50 43 38		315 63 54 48		375 75 64 57	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_{L} = 1 k\Omega; C_{L} = 50 pF$ (see Figs 19, 20 and 21)	

MSI

查询"74HC4052D-T"供应商

DC CHARACTERISTICS FOR 74HCT

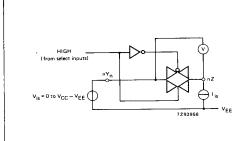
Voltages are referenced to GND (ground = 0)

				•	T _{amb}	(°C)					TEST	COND	TIONS
SYMBOL	DADAMETED				74HC	т]				
STMBUL	PARAMETER		+25		40	to +85	-40 t	o +125		V _{CC} V	VEE V	VI	OTHER
		min.	typ.	max.	min.	max.	min.	max.	1				
VIH	HIGH level input voltage	2.0	1.6		2.0		2.0		v	4.5 to 5.5			
VIL	LOW level input voltage		1.2	0.8		0.8		0.8	v	4.5 to 5.5			
±łı	input leakage current			0.1		1.0		1.0	μA	5.5	0	V _{CC} or GND	
±۱s	analog switch OFF-state current per channel			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} − V _{EE} (see Fig. 10)
±ΙS	analog switch OFF-state current all channels			0.2		2.0		2.0	μA	10.0	0	V _{IH} or V _{IL}	IV _S I = V _{CC} — V _{EE} (see Fig. 10)
±IS	analog switch ON-state current			0.2		2.0		2.0	μA	10.0	0	V _{IH} or V _{IL}	IV _S I = V _{CC} — V _{EE} (see Fig. 11)
'cc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μA	5.5 5.0	0 -5.0	V _{CC} or GND	V _{is} = V _{EE} or V _{CC} ; V _{os} = V _{CC} or V _{EE}
∆ICC	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μA	4.5 to 5.5	0	V _{CC} - 2.1V	other inputs at V _{CC} or GND

Note to HCT types

The value of additional quiescent supply current (△I_{CC}) for a unit load of 1 is given here. To determine △I_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD
Sn	0.45
Ē	0.45


894

January 1986

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				т	amb (°C)					TEST	CONDITIONS	
					74HC	т			UNIT	Vaa	Vee	CONDITIONS OTHER $R_{L} = \infty$; $C_{L} = 50 \text{ pF}$ (see Fig. 18) $R_{L} = 1 \text{ k}\Omega$; $C_{L} = 50 \text{ pF}$ (see Figs 19, 20 and 21) $R_{L} = 1 \text{ k}\Omega$; $C_{L} = 50 \text{ pF}$ (see Figs 19, 20 and 21)	
SYMBOL PARAMETER	PARAMETER	+25			40 to +85		40 to +125			VCC V	VEE	UTHER	
		min.	typ.	max.	min.	max.	min.	max.					
^t PHL/ ^t PLH	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 4.5	R _L = ∞; C _L = 50 pF (see Fig. 18)	
^t PZH [/] ^t PZL	turn "ON" time Ē to V _{os} S _n to V _{os}		41 28	70 48		88 60		105 72	ns	4.5 4.5	0 4.5	$R_L = 1 k\Omega; C_L = 50 pF$ (see Figs 19, 20 and 21)	
^t PHZ [/] ^t PLZ	turn "OFF" time E to V _{os} S _n to V _{os}		26 21	50 38		63 48		75 57	ns	4.5 4.5	0 -4.5	$R_L = 1 k\Omega; C_L = 50 pF$ (see Figs 19, 20 and 21)	

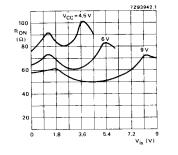
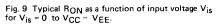
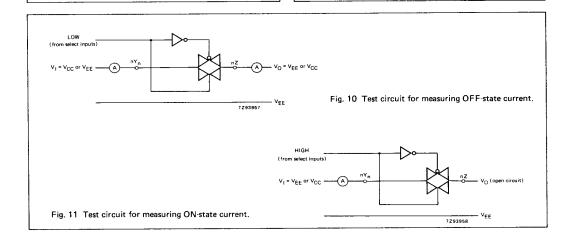




Fig. 8 Test circuit for measuring $\ensuremath{\mathsf{R}}_{\ensuremath{\mathsf{ON}}}$.

January 1986

895

MSI

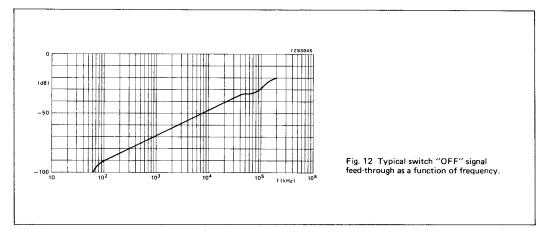
查询"74HC4052D-T"供应商

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

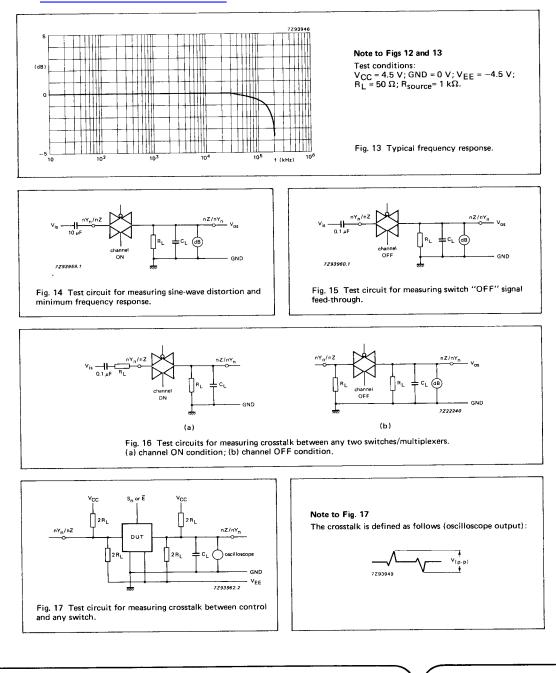
GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	Vcc V	VEE V	Vis(p—p) V	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	%	2.25 4.5	-2.25 -4.5	4.0 8.0	R _L = 10 kΩ; C _L = 50 pF (see Fig. 14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	2.25 4.5	4.0 8.0	R _L = 10 kΩ; C _L = 50 pF (see Fig. 14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_{L} = 600 \Omega; C_{L} = 50 pF;$ f = 1 MHz (see Figs 12 and 15)
	crosstalk between any two switches/ multiplexers	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	R _L = 600 Ω; C _L = 50 pF; f = 1 MHz (see Fig. 16)
V _(p−p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 4.5		
f _{max}	minimum frequency response (3dB)	170 180	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	R _L = 50 Ω; C _L = 50 pF (see Figs 13 and 14)
CS	maximum switch capacitance independent (Y) common (Z)	5 12	pF pF				


Notes to AC characteristics

General note

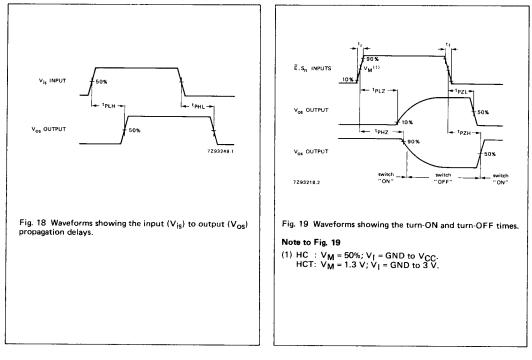
 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input. V_{0s} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output.


Notes

1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω). 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

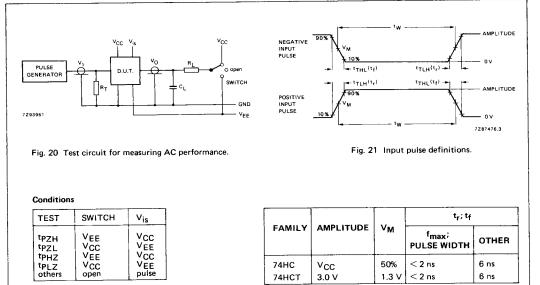
896

March 1988



Powered by ICminer.com Electronic-Library Service CopyRight 2003

897


March 1988

AC WAVEFORMS

898 January 1986

TEST CIRCUIT AND WAVEFORMS

Definitions for Figs 20 and 21:

- C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
- $\label{eq:RT} \begin{array}{l} \textbf{R}_T = & termination \ resistance \ should \ be \ equal \\ & to \ the \ output \ impedance \ Z_O \ of \ the \\ & pulse \ generator. \end{array}$
- $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor.

January 1986