
		•						REVIS	IONS										
LTR 古法	<u>"506</u>		0204			CRIPTIC	ON					DA	TE (Y	R-MO-	DA)		APP	ROVE	>
A Eth	Mak	e char	nges to	o 1.3 and 32-93.		st in tab	le I. Ir	accoi	rdance	with			93-0	5-05			M. A.	FRYE	:
В	Mak N.O.	e char .R. 596	nges to 62-R1	^{D V} OUT 41-94.	and C _{IN}	tests ir	table	i. In a	iccord	ance v	vith		94-0)3-31		M. A. FRYE			
С				CMRR t 26-95.	est in ta	ble I. Ir	accor	dance	with				94-1	0-28		M. A. FRYE			
D				al electri 2-R192-9		meters	in tabl	ell. ir		rdance	9		95-0	8-25		M. A. FRYE			
E	Mak GFP	e char H, GF	nges ta R, HD	^{2 +1} IN ^{, -1} 2, HD3,	IN ^{, V} IO [,] and SR	I _{CC} , F tests in	SRR, table	CMRR I. Red	, SSB rawn.	W, GF	PL,		96-1	1-13			R. M	ONNIN	1
THE ORIGINA	AL FIR	ST SF	IEET	OF THIS	DRAW	ING HA	S BEE	N REF	PLACE	D.									
REV						1					<u> </u>						r —		
SHEET																			
REV	Е	Е	Е																
SHEET	15	16	17				1												
REV STATUS	5			REV		E	Е	E	E	E	E	Е	E	Е	E	Е	E	Е	Е
UF SHEETS				SHEE	т	1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A					RED BY OFFICE					I	DEFE				NTER 110 4:		IMBU	s	
STAN MICRO	CIR	CUI	т		(ED BY SH PITH	IADIA			 										
DRA THIS DRAWIN FOR US	IG IS A	VAILA	BLE		OVED BY				HIG	H SP	IRCU EED, THIC	PRO	GRAN	, ope Mmae	ERATI	ionai Uppl	L AMI Y CU	PLIFIE RREN	ΞR, IT,
DEPAR AND AGEN DEPARTMEN	RTMEN	ITS OF THE		DRAW	ING APP 91	ROVAL	DATE		SIZE			E COL		[
AMSC	N/A			REVIS	ION LEVI	EL		<u></u>	1.	1		726			59	<i>1</i> 62.	-909	993	
					E				SHE	ET	1		OF	1	7				
DESC FORM 193	3			I			90	3470	8 0	0253	3.5 4	888							
JUL 94 DISTRIBUTIO	N STA	TEME	<u>NT A</u>	Approved	l for publi	c release												5962-	E031-97

1. SCOPE

1.12 Scope This drawing drowing product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	<u>Generic number</u>	Circuit function
01	CLC505	High-speed programmable supply current operational amplifier

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class		Device r	equirements documentation
М		AN class level B r	to the requirements for MIL-STD-883 compliant, nicrocircuits in accordance with MIL-PRF-38535,
Q or V	Certific	cation and qualified	cation to MIL-PRF-38535
1.2.4 Case outline(s).	The case outline(s) are as de	esignated in MIL-	STD-1835 and as follows:
Outline letter	Descriptive designator	<u>Terminals</u>	Package style
P	GDIP1-T8 or CDIP2-T8	8	Dual-in-line

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

	ANDARD RCUIT DRAWING	SIZE A		5962-90993
	LY CENTER COLUMBUS 5, OHIO 43216-5000		REVISION LEVEL E	SHEET 2
DESC FORM 193A	9004708	0025355 7	·14 🚥	

1.3 Absolute maximum ratings. 1/ 查询与的公司留容公认MPC"供应商 Output current (I _{OUT}) Common mode input voltage (V _{CM}) Differential input voltage (V _{ID}) Power dissipation (P _D) Junction temperature Storage temperature (soldering, 10 seconds) Thermal resistance, junction-to-case (Θ _{JC})	· · · · · · · · · · · · · · · · · · ·	70 mA ±7 V dc 10 V dc 1.2 W +175°C 65°C to +150°C +300°C	
1.4 Recommended operating conditions.			
Supply voltage (V _S) Gain range (A _V) Ambient operating temperature range (T _A)	· · · · · · · · · · · · · · · · · · ·	±5 V dc +2 to +21 and -1 to -2 55°C to +125°C	0
2. APPLICABLE DOCUMENTS			
2.1 <u>Government specification, standards, and handbooks</u> . T part of this drawing to the extent specified herein. Unless othen the issue of the Department of Defense Index of Specifications a solicitation.	vise specified the	issues of these document	e are these listed in
SPECIFICATION			
MILITARY			
MIL-PRF-38535 - Integrated Circuits, Manufacturing,	General Specifica	ation for.	
STANDARDS			
MILITARY			
MIL-STD-883 - Test Methods and Procedures for Mic MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines.	roelectronics.		
HANDBOOKS			
MILITARY			
MIL-HDBK-103 - List of Standard Microcircuit Drawings MIL-HDBK-780 - Standard Microcircuit Drawings.	, s (SMD's).		
(Unless otherwise indicated, copies of the specification, stand Document Order Desk, 700 Robbins Avenue, Building 4D, Phila	lards, and handbo delphia, PA 1911	oks are available from the I-5094.)	Standardization
1/ Stresses above the absolute maximum rating may cause perr maximum levels may degrade performance and affect reliabil	nanent damage to ity.	o the device. Extended op	eration at the
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90993
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 3
DESC FORM 193A 9004708 (025356 65		

-

٠

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes orgenedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 49 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90993
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	4

JUL 94

查询"5 <u>9</u> 62-909930 Test	1MPC"供应	向 Conditions <u>1</u> /	Group A	Device	Lir	 nits	Unit	
		$-55^{\circ}C \le T_A \le +125^{\circ}C$ unless otherwise specified	subgroups	type	Min	Max		
nput bias current	+i _{IN}		1,2	01	-18	+18	μA	
(noninverting)		I _{CC} = 9 mA, <u>2</u> / R _P = 33 kΩ, R _L = 250 Ω	3		-36	+36		
		I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	1,2		-6	+6		
		$R_{\rm P} = 100 \rm k\Omega, R_{\rm L} = 500 \Omega$	3		-12	+12		
		l _{CC} = 1 mA, <u>2</u> / R _P = 300 kΩ, R _L = 1 kΩ	1		-2.5	+2.5		
		$R_{\rm P} = 300 \text{ k}\Omega, R_{\rm L} = 1 \text{ k}\Omega$	2		-3.0	+3.0		
			3		-5	+5		
nput bias current (inverting)	-I _{IN}	$I_{CC} = 9 \text{ mA}, \frac{2}{2}$ $R_{P} = 33 \text{ k}\Omega, R_{L} = 250 \Omega$	1	01	-38	+38	μA	
(inverting)		$R_{\rm p} = 33 \text{km}, R_{\rm L} = 250 \Omega$	2		-40	+40		
			3		-60	+60		
		$I_{CC} = 3.4 \text{ mA},$ $R_{P} = 100 \text{ k}\Omega, R_{L} = 500 \Omega$	1		-14	+14		
			2		-15	+15		
			3		-22	+22		
		l _{CC} = 1 mA, <u>2</u> / R _P = 300 kΩ, R _L = 1 kΩ	1		-7	+7		
			2		-11	+11		
		· · · · · · · · · · · · · · · · · · ·	3		-10	+10		
nput offset voltage	v _{io}	$I_{CC} = 9 \text{ mA}, \ \underline{2}/R_{P} = 33 \text{ k}\Omega, R_{L} = 250 \Omega, R_{S} = 50 \Omega$	1	01	-8.0	+8.0	mV	
		$R_{\rm S} = 50 \Omega$	2	-	-14.0	+14.0		
			3		-12.8	+12.8		
		$l_{CC} = 3.4 \text{ mA},$ $R_{P} = 100 \text{ k}\Omega, R_{L} = 500 \Omega,$	1	4	-7.0	+7.0		
		$R_{\rm S} = 50 \Omega$	2	-	-13.0	+13.0		
			3		-12.8	+12.8		
		$I_{CC} = 1 \text{ mA}, \frac{2}{2}$ $R_{P} = 300 \text{ k}\Omega, R_{L} = 1 \text{ k}\Omega,$ $R_{S} = 50 \Omega$	1		-7.0	+7.0	ļ	
		$R_{S} = 50 \Omega$	2	4	-14.5	+14.5	1	
		L	3		-13.0	+13.0		
See footnotes at end of ta	ble.							
MICROC	TANDARD	ING	IZE A			596	2-9099	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			RE	REVISION LEVEL E		SHEE	SHEET 5	

Powered by ICminer.com Electronic-Library Service CopyRight 2003

···· ____

查询"5962-9099301M	IPC作用	Electrical performance cha	aracteristics -	Continued.			
Test	Symbol	Conditions 1/	Group	A Device	Lir	nits	Unit
		$-55^{\circ}C \le T_A \le +125^{\circ}C$ unless otherwise specified	subgroup	ps type	Min	Max	
Average +input bias 2/	т _с	l _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	2	01	-100	+100	nA/°C
current drift	(+1 _{IN})	$R_{\rm P}$ = 33 kΩ, $R_{\rm L}$ = 250 Ω	3		-225	+225	
		l _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	2		-50	+50	
		$R_{\rm P} = 100 {\rm k\Omega}, R_{\rm L} = 500 \Omega$	3		-75	+75	
		l _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	2		-30	+30	
		$R_{\rm P} = 300 \text{k}\Omega$, $R_{\rm L} = 1 \text{k}\Omega$	3		-32	+32	
Average -input bias 2/	тс	I _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	2	01	-125	+125	nA/°C
current drift	(-I _N)	$R_{\rm P} = 33 {\rm km}, R_{\rm L} = 250 {\rm m}$	3		-275	+275	
		l _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	2		-60	+60	
		$R_{\rm P} = 100 {\rm km}, R_{\rm L} = 500 {\rm m}$	3		-100	+100	
		l _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	2		-35	+35	
		Np - 300 K2, NL - 1 K2	3		-38	+38	
Average offset voltage <u>2</u> / drift	TC	l _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	2,3	01	-50	+50	μV/°C
	(V _{IO})	I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω			-60	+60	
		l _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ			-75	+75	
Supply current	^I cc	$R_P = 33 \text{ k}\Omega$, no load 2/	1,3	01		11	mA
			2			12	
		R _P = 100 kΩ, no load	1,3			3.8	
			2			4.2	
		$R_P = 300 \text{ k}\Omega$, no load 2/	1			1.3	
			2,3			1.4	
See footnotes at end of table.							
MICROCIRC DEFENSE SUPPLY	CENTER C	NG OLUMBUS	SIZE A	REVISION LE	VEL	596	2-90993
COLUMBUS, C	DHIO 43216	-5000		E	•	GHEE	6
DESC FORM 193A JUL 94		9004708 002	5359 36	T 📕	-		

۴

.

查问 5962-9099301M Test	PC"供应 Symbol	Conditions 1/	***	Group A	Device	Lin	nits	Unit
		$-55^{\circ}C \le T_A \le +125^{\circ}$ unless otherwise spe	cified	subgroups	type	Min	Max]
ower supply rejection <u>3</u> /	PSRR	$I_{CC} = 9 \text{ mA}, \frac{2}{2}$ $R_{P} = 33 \text{ k}\Omega, R_{L} = 250$		1	01	48		dB
1410		$R_{\rm P} = 33 {\rm km}, {\rm R}_{\rm L} = 250$	012	2,3		45		
		$I_{CC} = 3.4 \text{ mA},$ R _P = 100 kΩ, R _L = 50	00.0	1		48		
		Rp = 100 k2, RL = 5		2,3		4 5		
		$I_{CC} = 1 \text{ mA}, \frac{2}{2}$ $R_{P} = 300 \text{ k}\Omega, R_{L} = 1$	۲O	1		48		
	L	тър = 500 км2, тър = 1	K12	2,3		45		
Common mode rejection <u>2</u> / ratio	CMRR	$I_{CC} = 9 \text{ mA}, V_{CM} = 4$ $R_{P} = 33 \text{ k}\Omega, R_{L} = 250$	£1 V,	4	01	48		dB
		$R_{\rm P} = 33 \text{ k}\Omega, R_{\rm L} = 250 \Omega$		5,6	_	45		
		$I_{CC} = 3.4 \text{ mA},$		4		48		
		l _{CC} = 3.4 mA, V _{CM} = ±1 V, R _P = 100 kΩ, R _L = 500 Ω		5,6		45		
		$I_{CC} = 1 \text{ mA}, V_{CM} = \pm 1 \text{ V}, R_{P} = 300 \text{ k}\Omega, R_{L} = 1 \text{ k}\Omega$		4		48		
				5,6		45		
nput resistance <u>2</u> /	+R _{IN}	$I_{CC} = 9 \text{ mA},$ $R_{P} = 33 \text{ k}\Omega, R_{L} = 25$	0.0	1	01	800		kΩ
			0.12	2		1600		
				3		400		
		I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 5	00 0	1		2		мΩ
			00 12	2		4		
				3		1		
		^I _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ		1		5		
				2	_	10		
				3		2.5		
Dutput impedance at dc <u>2</u> /	ROUT	$I_{CC} = 9 \text{ mA},$ R _P = 33 kΩ, R _L = 25	0 Ω	1	01		0.3	Ω
				2	_		0.2	4
				3	_		1.2	4
		I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 5	Ω 00	1	_		0.5	4
				2	_		0.2	4
		1		3			1.6	
ee footnotes at end of table.								
MICROCIRC				ZE A			59	62-9099
DEFENSE SUPPLY COLUMBUS, C			_	R	EVISION LE E	VEL	SHEE	т 7

.

.

<u>查询"5962-9099301№</u> Test	Symbol	Conditions 1/	Group A	Device	Lir	nits	Unit
		$-55^{\circ}C \leq T_A \leq +125^{\circ}C$ unless otherwise specified	subgroups	type	Min	Max	
Output impedance at dc 2/	ROUT	l _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	1	01		1.0	Ω
		Rp - 300 K12, RL - 1 K12	2			0.5	
			3			3.0	
Input capacitance 2/	C _{IN}	$I_{CC} = 9 \text{ mA},$ $R_{P} = 33 \text{ k}\Omega, R_{L} = 250 \Omega,$ See 4.4.1c, $T_{A} = +25^{\circ}\text{C}$	4	01		2	pF
Output voltage swing 4/		$I_{CC} = 3.4$ mA, R _P = 100 kΩ, R _L = 500 Ω, See 4.4.1c, T _A = +25°C				2	
		$I_{CC} = 1 \text{ mA},$ R _P = 300 kΩ, R _L = 1 kΩ, See 4.4.1c, T _A = +25°C				2	
Output voltage swing <u>4</u> /	VOUT	$I_{CC} = 9 \text{ mA}, \frac{2}{2}$ R _P = 33 kΩ, R _L = 250 Ω	4,5	01	2.7		v
		кр - 33 ки, к _L - 250 и	6		2.5		
		$I_{CC} = 3.4 \text{ mA},$ $R_{P} = 100 \text{ k}\Omega, R_{L} = 500 \Omega$	4,5		2.7		
		Кр = 100 K22, КL = 500 22	6		2.5		
		I _{CC} = 1 mA, <u>2</u> / R _P = 300 kΩ, R _L = 1 kΩ	4,5		2.5		
			6		1.2		
Output current 2/	^I OUT	$I_{CC} = 9 \text{ mA},$ R _P = 33 kΩ, R _L = 250 Ω	1	01	36		mA
			2		36		
			3		18		
	$I_{CC} = 3.4 \text{ mA},$ $R_{P} = 100 \text{ k}\Omega, R_{L} = 8$	$I_{CC} = 3.4 \text{ mA},$ $R_{P} = 100 \text{ k}\Omega, R_{L} = 500 \Omega$	1		18		
			2		18		
			3		9		
		I _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	1		5		
			2		5		
			3		2.5		
ee footnotes at end of table.							
MICROCIRC		NG	A			596	2-9099:
DEFENSE SUPPLY	CENTER C		RE	ISION LE	/EL	SHEE	г 8

\$

<u>查询"5962-9099301M</u> Test	Symbol	Conditions <u>1</u> /	Group A	Device	Lii	nits	Unit	
		$-55^{\circ}C \leq T_A \leq +125^{\circ}C$ unless otherwise specified	subgroups	type	Min	Max	1	
Common mode input <u>2</u> / voltage range	CMIR	l _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	1	01	-1.8	+1.8	V	
vollage range		$R_{\rm P} = 33 {\rm km}, R_{\rm L} = 250 {\rm m}$	2		-2.0	+2.0	1	
			3		-1.5	+1.5		
		l _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	1		-1.8	+1.8		
		нр = 100 ки, к <u>г</u> = 500 ш	2		-2.0	+2.0		
			3		-1.5	+1.5		
		I _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	1		-1.8	+1.8		
			2		-2.0	+2.0		
			3		-1.5	+1.5		
mall signal bandwidth	SSBW	-3 dB bandwidth, $2/$	4	01	115		MHz	
		$V_{OUT} < 2 V_{PP},$ $I_{CC} = 9 \text{ mA},$ $R_{P} = 33 \text{ k}\Omega, R_{L} = 250 \Omega$	5		100			
			6		115			
		-3 dB bandwidth,	4		80			
		V _{OUT} < 2 V _{PP} , I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	5 <u>2</u> /		65			
			6 <u>2</u> /		80			
		-3 dB bandwidth, <u>2</u> / V _{OUT} < 2 V _{PP} , I _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	4 .		35		ļ	
		$R_{\rm P}$ = 300 kΩ, $R_{\rm L}$ = 1 kΩ	5,6		30			
arge signal bandwidth <u>2</u> /	LSBW	-3 dB bandwidth, V _{OUT} < 5 V _{PP} ,	4,6	01	95		MHz	
		V _{OUT} < 5 V _{PP} , I _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	5		80			
		-3 dB bandwidth, V _{OUT} < 5 V _{PP} ,	4,6		50			
		V _{OUT} < 5 V _{PP} , I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	5		40			
		-3 dB bandwidth,	4		20	······································]	
		V _{OUT} < ⁵ V _{PP} , I _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	5		18			
ee footnotes at end of table.								
MICROCIRC		NG	ZE A			596	2-9099:	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			REV	REVISION LEVEL		SHEE	SHEET 9	

Powered by ICminer.com Electronic-Library Service CopyRight 2003

· · · _ · · _

•

ډ

<u>查询"5962-9099301</u> ₩ 	Symbol	Conditions 1/	Group A	Device	Lir	nits	Unit
		$-55^{\circ}C \le T_A \le +125^{\circ}C$ unless otherwise specified	subgroups	type	Min	Max	
Gain flatness peaking low	GFPL	0.1 MHz to 25 MHz, <u>2</u> /	4	01		0.3	dB
		V _{OUT} < 2 V _{PP} , I _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	5,6		•	0.4]
		0.1 MHz to 20 MHz,	4			0.2]
		V _{OUT} < 2 V _{PP} , I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	5,6 <u>2</u> /			0.3	
		0.1 MHz to 10 MHz, <u>2</u> / V _{OUT} < 2 V _{PP} ,	4			0.1	
		$I_{CC} = 1 \text{ mA},$ $R_{P} = 300 \text{ k}\Omega, R_{L} = 1 \text{ k}\Omega$	5,6			0.2	
Gain flatness peaking high	GFPH	> 25 MHz, <u>2</u> / Vout < 2 Vpp,	4	01		0.5	dB
		V _{OUT} < 2 V _{PP} , I _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	5,6] [0.6	
		> 20 MHz, V _{OUT} < 2 V _{PP} ,	4] [0.4	
		V _{OUT} < 2 V _{PP} , I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	5,6 <u>2</u> /] [0.5	
		> 10 MHz, <u>2</u> / V _{OUT} < 2 V _{PP} , I _{CC} = 1 mA,	4			0.2	
		$I_{CC} = 1 \text{ mA},$ $R_{P} = 300 \text{ k}\Omega, R_{L} = 1 \text{ k}\Omega$	5,6			0.3	
Gain flatness rolloff	GFR	0.1 MHz to 50 MHz, <u>2</u> / VOUT < 2 Vpp,	4,6	01		1.0	dB
		V _{OUT} < 2 V _{PP} , I _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	5			1.3	
		0.1 MHz to 40 MHz, Volut ≤ 2 Vpp,	4	4		1.0	
		V _{OUT} < 2 V _{PP} , I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	5 <u>2</u> /	-		1.3	
		0.1 MHz to 20 MHz. 2/	6 <u>2</u> / 4,6	-		1.0 1.0	
		$V_{OUT} < 2 V_{PP},$ $I_{CC} = 1 \text{ mA},$ $R_{P} = 300 \text{ k}\Omega, R_{L} = 1 \text{ k}\Omega$	5	-		1.3	
See footnotes at end of table.							
MICROCIRC		NG	ZE A			596	62-9099
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			RE	VISION LEV	/EL	SHEE	т 10

ç

Powered by ICminer.com Electronic-Library Service CopyRight 2003

─ <u>查询"5962-9099301</u> Խ ── Test	Symbol	Conditions <u>1</u> /	Group A	Device	Lin	nits	Unit
		-55°C ≤ T _A ≤ +125°C unless otherwise specified	subgroups	s type	Min	Max	1
inear phase deviation 2/		< 50 MHz, V _{OUT} = 2 V _{PP} ,	4,6	01	1.0		Degree
		$I_{CC} = 9 \text{ mA},$ $R_{P} = 33 \text{ k}\Omega, R_{L} = 250 \Omega$	5		1.2		
		< 40 MHz, V _{OUT} = 2 V _{PP} ,	4,6		1.0		
		$V_{OUT} = 2 V_{PP}$, $I_{CC} = 3.4 \text{ mA}$, $R_{P} = 100 \text{ k}\Omega$, $R_{L} = 500 \Omega$	5		1.2		
		< 20 MHz, VOUT = 2 V _{PP} ,	4,6		0.8		
		$I_{CC} = 1 \text{ mA}, F$ $R_{P} = 300 \text{ k}\Omega, R_{L} = 1 \text{ k}\Omega$	5		1.0		
2nd harmonic distortion	HD2	2 V _{PP} at 20 MHz, <u>2</u> / VOUT = 2 V _{PP} ,	4,5	01		-45	dBc
		$V_{OUT} = 2 V_{PP},$ $I_{CC} = 9 \text{ mA},$ $R_{P} = 33 \text{ k}\Omega, R_{L} = 250 \Omega$	6			-40	
		$2 V_{PP}$ at 10 MHz,	4			-45	
		$V_{OUT} = 2 V_{PP},$ $I_{CC} = 3.4 \text{ mA},$ $R_{P} = 100 \text{ k}\Omega, R_{L} = 500 \Omega$	5 <u>2</u> /			-45	
		RP = 100 k22, RL = 500 12	6 2/			-40	
		2 VPP at 5 MHz, <u>2</u> / V _{OUT} = 2 V _{PP} ,	4,5			-45	
· · · · · · · · · · · · · · · · · · ·		$I_{CC} = 1 \text{ mA},$ $R_{P} = 300 \text{ k}\Omega, \text{ R}_{L} = 1 \text{ k}\Omega$	6			-40	
3rd harmonic distortion	HD3	2 V _{PP} at 20 MHz, <u>2</u> / V _{OUT} = 2 V _{PP} , I _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	4,5,6	01		-55	dBc
		2 V _{PP} at 10 MHz, V _{OUT} = 2 V _{PP} ,	4			-55	
		V _{OUT} = 2 V _{PP} , I _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500 Ω	5,6 <u>2</u> /			-55	
		2 VPP at 5 MHz, <u>2</u> / V _{OUT} = 2 V _{PP} , I _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	4,5,6			-55	
See footnotes at end of table.							
MICROCIRC			IZE A	 		59	62-9099
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			RE	VISION LE	VFI	SHEE	ΞT

Powered by ICminer.com Electronic-Library Service CopyRight 2003

_

4

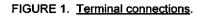
<u>查询"5962-9099301</u> Test	Symbol	Conditions <u>1</u> /		Group A	Device	Limits		Unit
		-55°C ≤ T _A ≤ +125°C unless otherwise specifi	C îed	subgroups	type	Min	Мах	
Noise floor <u>2/ 5</u> /	NF	$> 1 \text{ MHz}, I_{CC} = 9 \text{ mA},$	> 1 MHz, I_{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	4,6	01		-154	dBm (1 Hz)
		$R_{P} = 33 \text{ k}\Omega, R_{L} = 250 \Omega$.2	5			-153	
		> 1 MHz, I _{CC} = 3.4 mA R _P = 100 kΩ, R ₁ = 500	, ,	4,6			-153	
		$R_{P} = 100 \text{ k}\Omega, R_{L} = 500 \Omega$	5			-152]	
		>1 MHz, I _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ		4,6			-150	
		$R_{P} = 300 \text{ k}\Omega, R_{L} = 1 \text{ k}\Omega$	2	5			-149	
Integrated noise <u>2/ 5</u> /	INV	1 MHz to 200 MHz,		4,6	01		65	μV
		l _{CC} = 9 mA, R _P = 33 kΩ, R _L = 250 Ω	2	5			70	
		1 MHz to 200 MHz,		4,6			70	
		l _{CC} = 3.4 mA, R _P = 100 kΩ, R _L = 500	Ω	5			80	
		1 MHz to 100 MHz, I _{CC} = 1 mA, R _P = 300 kΩ, R ₁ = 1 kΩ		4,6			70	
			2	5			80	
Slew rate 2/	SR	$I_{CC} = 9 \text{ mA},$ R _P = 33 kΩ, R _L = 250 Ω,		9,10	01	1200		V/µs
	$A_V = +2, V_{OUT} = 3 V,$ measured at ±1 V		11		1000			
		$I_{CC} = 3.4 \text{ mA},$ $R_{P} = 100 \text{ k}\Omega, R_{L} = 500 \Omega,$		9,10		800		
		$A_V = +2$, $V_{OUT} = 3 V$, measured at ±1 V		11	_	700		
		l _{CC} = 1 mA, R _P = 300 kΩ, R _L = 1 kΩ	2,	9,10	_	600		
		$R_P = 300 k\Omega$, $R_L = 1 k\Omega$ $A_V = +2$, $V_{OUT} = 3 V$, measured at ±1 V		11		500		
Settling time 2/	^t s	$I_{CC} = 9 \text{ mA},$ $R_P = 33 \text{ k}\Omega, R_1 = 250 \Omega$ 2 V step at ±0.1% of the fixed value	2, 9	9,10,11	01		16	ns
		$I_{CC} = 3.4 \text{ mA},$ $R_{p} = 100 \text{ k}\Omega, R_{1} = 500$ 2 V step at ±0.05% of the fixed value	Ω, ie	9,10,11			22	Ň
		$I_{CC} = 1 \text{ mA},$ R_{D} = 300 kQ, R_{1} = 1 kQ	$\overline{)}$	9,10			60	
	$R_{\rm p}$ = 300 kΩ, R ₁ = 1 kΩ, 2 V step at ±0.05% of the 11 fixed value	11			70	1		
See footnotes at end of table	e.							
	ANDARD CUIT DRAWI	NG	siz A	1			596	2-9099:
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000				RI	EVISION LEV	VEL	SHEE	т 12

υ

•	TABLE	. Electrical performance ch	aracteristics - C	ontinued.			
── <u>查询"5962-9099301</u> 1 Test	/IPC"供应i Symbol) Conditions <u>1</u> / -55°C ≤ T _A ≤ +125°C	Group A	Device	Lim	its	Unit
······································		unless otherwise specifie	subgroups	type	Min	Max	
Rise and fall time 2/	t _F	I _{CC} = 9 mA, 2 V step, R _P = 33 kΩ, R _L = 250 Ω	9,11	01		3.0	ns
		κ _P - 33 kΩ, κ _L - 230 Ω	10			3.5	
		3.7					
		Nр = 33 ки, к _L = 280 и	10			4.4]
	t⊨	I _{CC} = 3.4 mA, 2 V step, R _P = 100 kΩ, R _L = 500 Ω	9,11			4.4	
		Кр = 100 K22, КL = 300 S.	10			5.4]
	^t R	I _{CC} = 3.4 mA, 5 V step, R _P = 100 kΩ, R _L = 500 Ω	9,11			7.0]
		$R_{\rm P} = 100 \text{k}\Omega, R_{\rm L} = 500 \Omega$	10			8.8	1
	t _F	I _{CC} = 1 mA, 2 V step, R _P = 300 kΩ, R _L = 1 kΩ	9			10	
		$R_{\rm P} = 300 \text{ k}\Omega, R_{\rm L} = 1 \text{ k}\Omega$	10,11			12	
	^t R	I _{CC} = 1 mA, 5 V step, R _P = 300 kΩ, R _L = 1 kΩ	9			18	
	_	$R_{P} = 300 \text{ k}\Omega, R_{L} = 1 \text{ k}\Omega$	10,11			20	1
Overshoot 2/	os	$I_{CC} = 9$ mA, 2 V step, $R_P = 33$ kΩ, $R_L = 250$ Ω $I_{CC} = 3.4$ mA, 2 V step, $R_P = 100$ kΩ, $R_L = 500$ Ω	9	01		12	%
			10,11			15	
			9			10	
			10,11			12	
		I _{CC} = 1 mA, 2 V step, R _P = 300 kΩ, R _L = 1 kΩ	9	7		5	
		$R_{\rm P} = 300 \ {\rm k}\Omega, R_{\rm L} = 1 \ {\rm k}\Omega$	10,11			8	
 Unless otherwise specifie (R_F) = 1000 Ω, peak capa If not tested, shall be gua -V = -4.5 V to -5.0 V and -4/ Group A tested only. Noise tests are performed 1 MHz to 100 MHz for I_C(ranteed to the +V = +4.5 V t d from 1 MHz	e limits specified in table I h o +5.0 V.	erein.				
		OLUMBUS	SIZE A	EVISION LE E	VEL	596 Shee	52-90993
ESC FORM 193A JUL 94		9004708 0025	366 STT			1	10

¢

查询"5962-9099301MPC"供应商


.

Device type	01
Case outline	Р
Terminal number	Terminal symbol
1	NC
2	-INPUT
3	+INPUT
4	-V _S
5	NC
6	V _{OUT}
7	V _{OUT} +V _S
8	R _P

ç

NC = No connection

,

.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		SIZE A		5962-90993
			REVISION LEVEL E	SHEET 14
DESC FORM 193A JUL 94	9004708	0025367 43	36 🛲	

Powered by ICminer.com Electronic-Library Service CopyRight 2003

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

- 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition B. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7 and 8 in table I, method of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90993
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 15
DESC FORM 193A			

JUL 94

9004708 0025368 372 🖬

62-9099301MPC"供应商_ Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgroups (in accordance with MIL-PRF-38535, table III	
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)			
Final electrical parameters (see 4.2)	1,2,3 <u>1</u> /	1,2,3 <u>1</u> /	1,2,3 <u>1</u> /
Group A test requirements (see 4.4)	1,2,3,4,5,6, <u>2</u> / 9,10,11	1,2,3,4,5,6,9, 10,11	1,2,3,4,5,6, 9,10,11
Group C end-point electrical parameters (see 4.4)	1	1	1
Group D end-point electrical parameters (see 4.4)	1	1	1
Group E end-point electrical parameters (see 4.4)	1	1	1

TABLE II. Electrical test requirements.

1/ PDA applies to subgroup 1.

2/ Subgroups 9, 10, and 11, if not tested, shall be guaranteed to the limits specified in table I.

4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition B. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.

查询"

c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-90993
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 16
DESC FORM 193A	0A 0025369 20		

JUL 94

4.4.4 Group E inspection. Group E inspection is required only for parts intended to be marked as radiation hardness assumed see 95 merciny.01 MPC 供应

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.
- 5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 Substitutability. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		SIZE A		5962-90993
			REVISION LEVEL E	SHEET 17
DESC FORM 193A JUL 94	9004708	0025370 Ta	20 🔳	

查询"5962-9099301MPC"供应商

1

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 96-11-13

Approved sources of supply for SMD 5962-90993 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 during the next revision. MIL-HDBK-103 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9099301MPC	62839	CLC505A8D

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. The device manufacturers listed herein are authorized to supply alternate lead finishes "A", "B", or "C" at their discretion. Contact the listed approved source of supply for further information.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u> Vendor name and address

62839

Comlinear Corporation 4800 Wheaton Drive Fort Collins, CO 80525

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

9004708 0025371 967 📰