

www.ti.com

## SN65LVPE502

SLLSE29 - APRIL 2010

# **Dual Channel USB3.0 Redriver/Equalizer**

Check for Samples: SN65LVPE502

### FEATURES

- Single Lane USB 3.0 Equalizer/Redriver
- Selectable Equalization, De-emphasis and Output Swing Control
- Integrated Termination
- Hot-Plug Capable
- Receiver Detect
- Low Power:
  - 315mW(TYP), V<sub>CC</sub> = 3.3V
- Auto Low Power Modes:
  - 5mW (TYP) When no Connection Detected
  - 70mW (TYP) When in U2/U3 Mode

- Excellent Jitter and Loss Compensation Capability: to 24"
  - 24" of 6 mil Stripline on FR4
  - 12" on Input and 4m, 26AWG USB 3.0 Cable on Output
- Small foot print 24 Pin (4mm × 4mm) QFN Package
- High Protection Against ESD Transient
  - HBM: 5,000 V
  - CDM: 1,500 V
  - MM: 200 V

### APPLICATIONS

• Notebooks, Desktops, Docking Stations, Backplane and Cabled Application

### DESCRIPTION

The SN65LVPE502 is a dual channel, single lane USB 3.0 redriver and signal conditioner supporting data rates of 5.0Gbps. The device complies with USB 3.0 spec revision 1.0, supporting electrical idle condition and low frequency periodic signals (LFPS) for USB 3.0 power management modes.

#### Programmable EQ, De-Emphasis and Amplitude Swing

The SN65LVPE502 is designed to minimize signal degradation effects such as crosstalk and inter-symbol interference (ISI) that limits the interconnect distance between two devices. The input stage of each channel offers selectable equalization settings that can be programmed to match loss in the channel. The differential outputs provide selectable de-emphasis to compensate for the anticipated distortion USB 3.0 signal will experience. Level of de-emphasis will depend on the length of interconnect and its characteristics. The SN65LVPE502 provides a unique way to tailor output de-emphasis on a per channel basis with use of DE and OS pins. All Rx and Tx equalization settings supported by the device are programmed by six 3-state pins as shown in Table 2.

#### Low Power Modes

The device supports three low power modes as described below.

1. Sleep Mode

Initiated anytime EN\_RXD undergoes a high to low transition or when device powers up with EN\_RXD set low. In sleep mode both input and output terminations are held at HiZ and device ceases operation to conserve power. Sleep mode max power consumption is 1mW, entry time is 2µs, device exits sleep mode to Rx.Detect mode after EN\_RXD is driven to  $V_{CC}$ , exit time is 100µs max.

2. RX Detect Mode – When no remote device is connected

Anytime SN65LVPE502 detects a break in link (i.e., when upstream device is disconnected) or after powerup fails to find a remote device, SN65LVPE502 goes to Rx Detect mode and conserves power by shutting down majority of the internal circuitry. In this mode, input termination for both channels are driven to Hi-Z. In Rx Detect mode device power is <10mW(TYP) or less than 5% of its normal operating power This feature is useful in saving system power in mobile applications like notebook PC where battery life is critical.



df.dzsc.com

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



## <u>si 響閉 "\$185 2019 E502"供应商</u>

www.ti.com

Anytime an upstream device gets reconnected the redriver automatically senses the connection and goes to normal operating mode. This operation requires no setting to the device.

3. U2/U3 Mode

With the help of internal timers the device tracks when link enters USB 3.0 low power modes U2 and U3, in these modes link is in electrical idle state. SN65LVPE502 will selectively turn-off internal circuitry to save on power. Typical power saving is about 75% lower than normal operating mode. The device will automatically revert to active mode when signaling activity (LFPS) is detected.



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### **DESCRIPTION CONTINUED**

#### **Receiver Detection**

RX.Detect cycle is performed by first setting Rx termination for each channel to Hi-Z, device then starts sensing for receiver termination that may be attached at the other end of each TX.

If receiver is detected on both channel:

• The TX and RX terminations are switched to Z<sub>DIFF-TX</sub>, Z<sub>DIFF-RX</sub>, respectively

If no receiver is detected on one or both channels:

- The transmitter is pulled to Hi-Z
- The channel is put in low power mode
- Device attempts to detect Rx termination in 12 ms (TYP) interval until termination is found or the device is put in sleep mode.

#### **USB Compliance Mode**

The device enters USB compliance mode when both EN\_RXD and CM pins are set H. This mode is used to test the transmitter for compliance to voltage and timing specifications per USB 3.0 compliance specs. In this mode each channel will maintain its low-impedance termination  $R_{DC-RX}$ , while auto Rx detect operation in the device is disabled.

#### **Electrical Idle Support**

The electrical idle support is needed for low frequency periodic signaling (LFPS) used in USB 3.0 side band communication. A link is in an electrical idle state when the TX± voltage is held at a steady constant value like the common mode voltage. SN65LVPE502 detects an electrical idle state when RX± voltage at the device pin falls below  $V_{RX\_IDLE\_DIFFpp}$  min. After detection of an idle state in a given channel the device asserts electrical idle state in its corresponding TX. When RX± voltage exceeds  $V_{RX\_IDLE\_DIFFpp}$  max normal operation is restored and output start passing input signal. The electrical idle exit and entry time is specified at ≤6 ns.



SLLSE29 - APRIL 2010

## ₩28 14 15 LVPE502"供应商

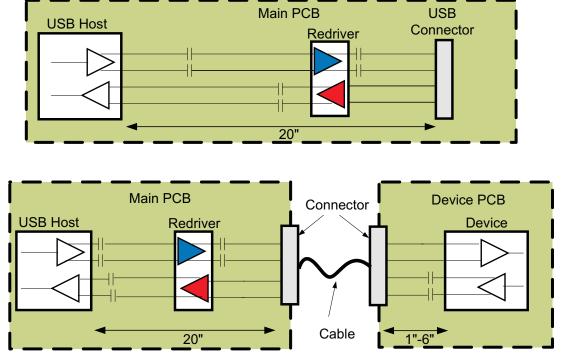



Figure 1. Typical Application



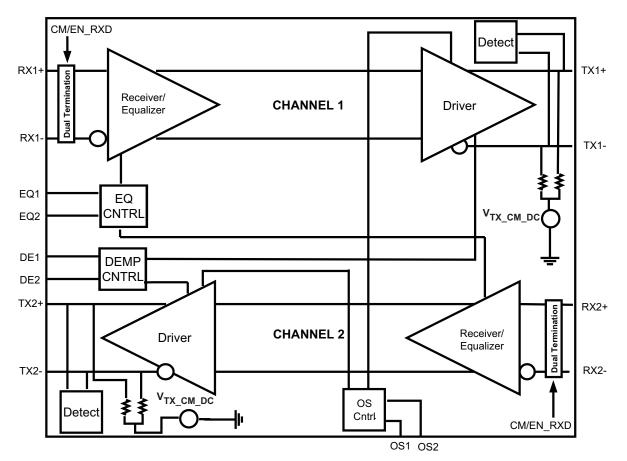



Figure 2. Data FLow Block Diagram



# <u>\*警销驾№65LVPE502"供应商</u>

SLLSE29 - APRIL 2010

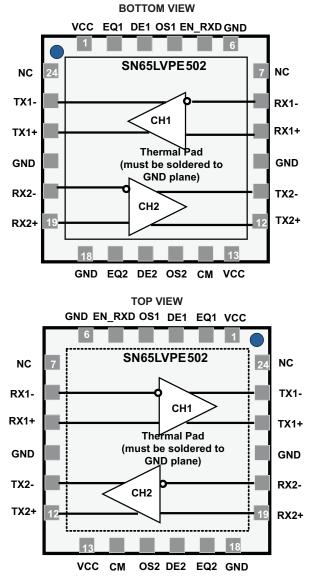



Figure 3. Flow-Through Pin-Out

| Table ' | 1. Pin | Description |
|---------|--------|-------------|
|---------|--------|-------------|

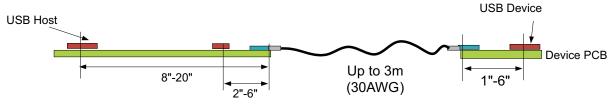
| P                    | PIN          |          |                                                                                              |  |  |  |  |
|----------------------|--------------|----------|----------------------------------------------------------------------------------------------|--|--|--|--|
| NUMBER NAME I/O TYPE |              | I/O TYPE | DESCRIPTION                                                                                  |  |  |  |  |
| HIGH SPEED D         | DIFFERENTIAL | I/O PINS |                                                                                              |  |  |  |  |
| 8                    | RX1–         | I, CML   |                                                                                              |  |  |  |  |
| 9                    | RX1+         | I, CML   | Non-inverting and inverting CML differential input for CH 1 and CH 2. These pins are tied to |  |  |  |  |
| 20                   | RX2–         | I, CML   | an internal voltage bias by dual termination resistor circuit                                |  |  |  |  |
| 19                   | RX2+         | I, CML   |                                                                                              |  |  |  |  |
| 23                   | TX1–         | O, CML   |                                                                                              |  |  |  |  |
| 22                   | TX1+         | O, CML   | Non-inverting and inverting CML differential output for CH 1 and CH 2. These pins are        |  |  |  |  |
| 11                   | TX2–         | O, CML   | internally tied to voltage bias by termination resistors                                     |  |  |  |  |
| 12                   | TX2+         | O, CML   |                                                                                              |  |  |  |  |

TEXAS INSTRUMENTS

www.ti.com

SI查销"SNB5201PE502"供应商

#### Table 1. Pin Description (continued)


| Р           | PIN                 |           |                                                                                            |
|-------------|---------------------|-----------|--------------------------------------------------------------------------------------------|
| DEVICE CONT | ROL PIN             |           |                                                                                            |
| 5           | EN_RXD              | I, LVCMOS | Sets device operation modes per Table 2. Internally pulled to VCC                          |
| 14          | СМ                  | I, LVCMOS | Sets device in compliance mode when pulled to VCC, internally pulled to GND                |
| 7,24        | NC                  |           | Pads not internally connected                                                              |
| EQ CONTROL  | PINS <sup>(1)</sup> |           |                                                                                            |
| 3,16        | DE1, DE2            | I, LVCMOS | Selects de-emphasis settings for CH 1 and CH 2 per Table 2. Internally tied to $V_{CC}/2$  |
| 2,17        | EQ1, EQ2            | I, LVCMOS | Selects equalization settings for CH 1 and CH 2 per Table 2. Internally tied to $V_{CC}/2$ |
| 4, 15       | OS1, OS2            | I, LVCMOS | Selects output amplitude for CH 1 and CH 2 per Table 2. Internally tied to $V_{CC}/2$      |
| POWER PINS  |                     |           |                                                                                            |
| 1,13        | VCC                 | Power     | Positive supply should be $3.3V \pm 10\%$                                                  |
| 6,10,18,21  | GND                 | Power     | Supply ground                                                                              |

(1) Internally biased to  $V_{CC}/2$  with >200k $\Omega$  pull-up/pull-down. When pins are left as NC board leakage at this pin pad must be < 1  $\mu$ A otherwise drive to  $V_{CC}/2$  to assert mid-level state.

| os                 | x <sup>(1)</sup>        | TRANSITION BIT AMPLITUDE<br>(TYP mVpp) |                        |  |
|--------------------|-------------------------|----------------------------------------|------------------------|--|
| NC (d              | efault)                 | 1000                                   |                        |  |
| (                  | D                       | 87                                     | 70                     |  |
|                    | 1                       | 10                                     | 85                     |  |
| EQ                 | x <sup>(1)</sup>        | EQUALIZ                                | ATION dB               |  |
| NC (d              | efault)                 | (                                      | )                      |  |
| (                  | D                       | 7                                      | 7                      |  |
|                    | 1                       | 15                                     |                        |  |
| DEx <sup>(1)</sup> | OSx <sup>(1)</sup> = NC | OSx <sup>(1)</sup> = 0                 | OSx <sup>(1)</sup> = 1 |  |
| NC                 | –3.5 dB                 | –2.2 dB                                | -4.4 dB                |  |
| 0                  | –6.0 dB                 | –5.2 dB                                | –6.0 dB                |  |
| 1                  | –8.5 dB                 | –8.9 dB                                | –7.6 dB                |  |
| EN_                | RXD                     | DEVICE F                               | UNCTION                |  |
| 1 (de              | efault)                 | Normal ope                             | rating mode            |  |
| (                  | 0                       | Sleep mode                             |                        |  |
| С                  | м                       | DEVICE FUNCTION                        |                        |  |
| 0 (de              | efault)                 | Normal Mode                            |                        |  |
|                    | 1                       | Compliar                               | nce mode               |  |

#### Table 2. Signal Control Pin Setting

(1) Applies to Channel 1 and Channel 2 at 2.5 GHz.







SLLSE29 - APRIL 2010

## 

#### ORDERING INFORMATION<sup>(1)</sup>

| PART NUMBER     | PART MARKING | PCAKAGE                 |
|-----------------|--------------|-------------------------|
| SN65LVPE502RGER | LVPE502      | 24-pin RGE Reel (large) |
| SN65LVPE502RGET | LVPE502      | 24-pin RGE Reel (small) |

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

### **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                     |                                     | UNITS / VALUES                   |
|-------------------------------------|-------------------------------------|----------------------------------|
| Supply Voltage Range <sup>(2)</sup> | V <sub>CC</sub>                     | –0.5 V to 4 V                    |
| Valtara Danza                       | Differential I/O                    | –0.5 V to 4 V                    |
| Voltage Range                       | Control I/O                         | -0.5 V to V <sub>CC</sub> + 0.5V |
|                                     | Human Body Model <sup>(3)</sup>     | ±5000V                           |
| Electrostatic discharge             | Charged Device Model <sup>(4)</sup> | ±1500V                           |
|                                     | Machine Model <sup>(5)</sup>        | ±200V                            |
| Continuous power dissipation        |                                     | See Dissipation Rating Table     |

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to network ground terminal.

(3) Tested in accordance with JEDEC Standard 22, Test Method A114-B.

(4) Tested in accordance with JEDEC Standard 22, Test Method C101-A.

(5) Tested in accordance with JEDEC Standard 22, Test Method A115-A.

### PACKAGE CHARACTERIZATION

over operating free-air temperature range (unless otherwise noted)

| PARAMETER       |                                               | TEST CONDITIONS                                                               |  | TYP | MAX | UNIT |
|-----------------|-----------------------------------------------|-------------------------------------------------------------------------------|--|-----|-----|------|
| PD              | Device power dissipation                      | CM, EN_RXD, EQ cntrl pins = NC, K28.5 pattern at 5 Gbps, $V_{ID}$ = 1000 mVpp |  | 330 | 450 | mW   |
| P <sub>SD</sub> | Device power dissipation under low power mode | EN_RXD= GND                                                                   |  | 0.3 | 1   | mW   |

#### THERMAL INFORMATION

|                              |                                                             | SN65LVPE502 |       |
|------------------------------|-------------------------------------------------------------|-------------|-------|
|                              | THERMAL METRIC <sup>(1)</sup>                               | RGE         | UNITS |
|                              |                                                             | 24 PINS     |       |
| $\theta_{JA}$                | Junction-to-ambient thermal resistance <sup>(2)</sup>       | 46          |       |
| θ <sub>JC(TOP)</sub>         | Junction-to-case(top) thermal resistance (3)                | 42          |       |
| $\theta_{JB}$                | Junction-to-board thermal resistance (4)                    | 13          | °C/W  |
| ΨJT                          | Junction-to-top characterization parameter <sup>(5)</sup>   | 0.5         | C/VV  |
| ΨJB                          | Junction-to-board characterization parameter <sup>(6)</sup> | 9           |       |
| $\theta_{\text{JC(BOTTOM)}}$ | Junction-to-case(bottom) thermal resistance (7)             | 4           |       |

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific

JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter,  $\psi_{JT}$ , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining  $\theta_{JA}$ , using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter,  $\psi_{JB}$ , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining  $\theta_{JA}$ , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

Copyright © 2010, Texas Instruments Incorporated

## **RECOMMENDED OPERATING CONDITIONS**

over operating free-air temperature range (unless otherwise noted)

|                       |                                | MIN | TYP | MAX | UNIT |
|-----------------------|--------------------------------|-----|-----|-----|------|
| V <sub>CC</sub>       | Supply Voltage                 | 3   | 3.3 | 3.6 | V    |
| C <sub>COUPLING</sub> | AC Coupling Capacitor          | 75  |     | 200 | nF   |
|                       | Operating free-air temperature | 0   |     | 85  | °C   |

#### **DEVICE POWER**

The SN65LVPE502 is designed to operate from a single 3.3 V supply.

### **ELECTRICAL CHARACTERISTICS**

over operating free-air temperature range (unless otherwise noted)

|                            | PARAMETER                                                 | TEST CONDITIONS                                                                                               | MIN  | TYP | MAX      | UNIT |  |
|----------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|-----|----------|------|--|
| DEVICE PARAM               | METERS                                                    |                                                                                                               |      |     |          |      |  |
| I <sub>CC</sub>            |                                                           | EN_RXD, CM, EQ cntrl = NC,<br>K28.5 pattern at 5 Gbps, V <sub>ID</sub> = 1000 mV <sub>pp</sub>                |      | 100 | 120      |      |  |
| ICC <sub>Rx.Detect</sub>   | Supply Current                                            | In Rx.Detect mode                                                                                             |      | 2   | 5        | mA   |  |
| ICC <sub>sleep</sub>       |                                                           | EN_RXD = GND                                                                                                  |      |     | 0.1      |      |  |
| ICC <sub>U2-U3</sub>       |                                                           | Link in USB low power state                                                                                   |      | 21  |          |      |  |
|                            | Maximum Data Rate                                         |                                                                                                               |      |     | 5        | Gbps |  |
| t <sub>ENB</sub>           | Device Enable Time                                        | Sleep mode exit time EN_RXD L $\rightarrow$ H With Rx termination present                                     |      |     | 100      | μs   |  |
| t <sub>DIS</sub>           | Device Disable Time                                       | Sleep mode entry time EN_RXD $H \rightarrow L$                                                                |      |     | 2        | μs   |  |
| T <sub>RX.DETECT</sub>     | Rx.Detect Start Event                                     | Power-up time                                                                                                 |      |     | 100      | μs   |  |
| CONTROL LOG                | IC (under recommended operating conc                      | litions)                                                                                                      |      |     |          |      |  |
| V <sub>IH</sub>            | High level Input Voltage                                  |                                                                                                               | 1.4  |     | $V_{CC}$ | V    |  |
| V <sub>IL</sub>            | Low Level Input Voltage                                   |                                                                                                               | -0.3 |     | 0.5      | V    |  |
| V <sub>HYS</sub>           | Input Hysteresis                                          |                                                                                                               |      | 150 |          | mV   |  |
| l <sub>iH</sub>            |                                                           | OSx, EQx, DEx = $V_{CC}$                                                                                      |      |     | 30       |      |  |
|                            | High Level Input Current                                  | $EN_RXD = V_{CC}$                                                                                             |      |     | 1        | μA   |  |
|                            |                                                           | $CM = V_{CC}$                                                                                                 |      |     | 30       | )    |  |
|                            |                                                           | OSx, EQx, DEx = GND                                                                                           | -30  |     |          |      |  |
| IIL                        | Low Level Input Current                                   | EN_RXD = GND                                                                                                  | -30  |     |          | μA   |  |
|                            |                                                           | CM = GND                                                                                                      | -1   |     |          |      |  |
| RECEIVER AC/               | DC                                                        | *                                                                                                             |      |     |          |      |  |
| Vin <sub>diff_pp</sub>     | RX1, RX2 Input Voltage Swing                              | AC coupled differential RX peak to peak signal                                                                | 100  |     | 1200     | mVpp |  |
| V <sub>CM_RX</sub>         | RX1, RX2 Common Mode Voltage                              |                                                                                                               |      | 3.3 |          | V    |  |
| Vin <sub>COM_P</sub>       | RX1, RX2 AC Peak common mode voltage                      | Measured at Rx pins with termination enabled                                                                  |      |     | 150      | mVP  |  |
| Z <sub>DC_RX</sub>         | DC common mode impedance                                  |                                                                                                               | 18   | 26  | 30       | Ω    |  |
| Z <sub>diff_RX</sub>       | DC differential input impedance                           |                                                                                                               | 72   | 80  | 120      | Ω    |  |
| Z <sub>RX_High_IMP+</sub>  | DC Input High Impedance                                   | Device in sleep mode Rx termination not<br>powered. Measured with respect to GND<br>over 500mV max            | 50   | 85  |          | kΩ   |  |
| V <sub>RX-LFPS-DETpp</sub> | Low Voltage Periodic Signaling (LFPS)<br>Detect Threshold | Measured at receiver pin, below minimum<br>output is squelched, above max input signal<br>is passed to output | 100  |     | 300      | mVpp |  |
|                            | Differential Paturn Lass                                  | 50 MHz – 1.25 GHz                                                                                             | 10   | 11  |          | d۲   |  |
| RL <sub>RX-DIFF</sub>      | Differential Return Loss                                  | 1.25 GHz – 2.5 GHz                                                                                            | 6    | 7   |          | dB   |  |
| RL <sub>RX-CM</sub>        | Common Mode Return Loss                                   | 50 MHz – 2.5 GHz                                                                                              | 11   | 13  |          | dB   |  |





# \* 查街 \$\$ N65L VPE502 "供应商

SLLSE29 - APRIL 2010

#### ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted)

|                                                   | PARAMETER                                                        | TEST CONDITIONS                                                                                                  | MIN  | TYP  | MAX  | UNIT                |
|---------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------|------|------|---------------------|
| TRANSMITTER A                                     | .C/DC                                                            |                                                                                                                  |      |      |      |                     |
|                                                   |                                                                  | $R_L = 100\Omega + 1\%$ , DEx, OSx = NC, Transition<br>Bit                                                       | 800  | 1000 | 1200 |                     |
| V <sub>TXDIFF_TB_PP</sub>                         |                                                                  | $R_{L}$ =100 $\Omega$ +1%, DEx, OSx = GND<br>Transition Bit                                                      |      | 870  |      |                     |
|                                                   | Differential peak-to-peak Output                                 | $R_L = 100\Omega + 1\%$ , DEx, OSx = VCC<br>Transition Bit                                                       |      | 1085 |      |                     |
|                                                   | Voltage<br>(VID = 800, 1200 mVpp, 5Gbps)                         | $R_L = 100\Omega + 1\%$ , DEx=NC,<br>OSx = 0,1,NC Non-Transition Bit                                             |      | 665  |      | mV                  |
| V <sub>TXDIFF_NTB_PP</sub>                        |                                                                  | $R_{L} = 100\Omega + 1\%$ , DEx=0,<br>OSx = 0,1,NC <b>Non-Transition Bit</b>                                     |      | 510  |      |                     |
|                                                   |                                                                  | $R_L = 100\Omega + 1\%$ , DEx=1<br>OSx = 0,1,NC <b>Non-Transition Bit</b>                                        |      | 375  |      |                     |
|                                                   |                                                                  |                                                                                                                  | -3.0 | -3.5 | -4.0 |                     |
|                                                   | De-Emphasis Level                                                | OS1,2 = NC (for OS1,2 = 1 and 0 see<br>Table 2)                                                                  |      | -6.0 |      | dB                  |
|                                                   |                                                                  |                                                                                                                  |      | -8.5 |      |                     |
| T <sub>DE</sub>                                   | De-Emphasis Width                                                |                                                                                                                  |      | 0.85 |      | UI                  |
| Z <sub>diff_TX</sub>                              | DC Differential Impedance                                        |                                                                                                                  | 72   | 90   | 120  | Ω                   |
| Z <sub>CM_TX</sub>                                | DC Common Mode Impedance                                         | Measured w.r.t to AC ground over 0-500mV                                                                         | 18   | 23   | 30   | Ω                   |
|                                                   | Differential Datum Land                                          | f = 50 MHz – 1.25 GHz                                                                                            | 9    | 10   |      |                     |
| RL <sub>diff_TX</sub>                             | Differential Return Loss                                         | f = 1.25 GHz – 2.5 GHz                                                                                           | 6    | 7    |      | dB                  |
| RL <sub>CM_TX</sub>                               | Common Mode Return Loss                                          | f = 50 MHz – 2.5 GHz                                                                                             | 11   | 12   |      | dB                  |
| I <sub>TX_SC</sub>                                | TX short circuit current                                         | TX± shorted to GND                                                                                               |      |      | 60   | mA                  |
| V <sub>TX_CM_DC</sub>                             | Transmitter DC common-mode voltage                               |                                                                                                                  | 2.0  | 2.6  | 3.0  | V                   |
| V <sub>TX_CM_AC_Active</sub>                      | TX AC common mode voltage active                                 |                                                                                                                  |      | 30   | 100  | mVpp                |
| V <sub>TX_idle_diff-AC-pp</sub>                   | Electrical idle differential peak to peak output voltage         | HPF to remove DC                                                                                                 | 0    |      | 10   | mV                  |
| V <sub>TX_CM_DeltaU1-U0</sub>                     | Absolute delta of DC CM voltage<br>during active and idle states |                                                                                                                  |      | 35   | 200  | mV                  |
| V <sub>TX_idle_diff</sub> -DC                     | DC Electrical idle differential output voltage                   | Voltage must be low pass filtered to remove any AC component                                                     | 0    |      | 10   | mV                  |
| V <sub>detect</sub>                               | Voltage change to allow receiver detect                          | Positive voltage to sense receiver termination                                                                   |      |      | 600  | mV                  |
| t <sub>R</sub> ,t <sub>F</sub>                    | Output Rise/Fall time                                            | 20%-80% of differential voltage measure 1"                                                                       | 30   | 50   |      | ps                  |
| t <sub>RF_MM</sub>                                | Output Rise/Fall time mismatch                                   | from the output pin                                                                                              |      |      | 20   | ps                  |
| $T_{diff\_LH},T_{diff\_HL}$                       | Differential Propagation Delay                                   | De-Emphasis = -3.5dB (CH 0 and CH 1).<br>Propagation delay between 50% level at<br>input and output See Figure 5 |      | 290  | 350  | ps                  |
| t <sub>idleEntry</sub> t <sub>idleExit</sub>      | Idle entry and exit times                                        | See Figure 6                                                                                                     |      | 4    | 6    | ns                  |
| C <sub>TX</sub>                                   | Tx input capacitance to GND                                      | At 2.5 GHz                                                                                                       |      | 1.25 |      | pF                  |
| EQUALIZATION                                      |                                                                  | · L                                                                                                              |      |      |      |                     |
| T <sub>TX-EYE</sub> (1)(2)                        | Total Jitter (Tj) at point A                                     |                                                                                                                  |      | 0.14 | 0.5  |                     |
| DJ <sub>TX</sub> <sup>(2)</sup>                   | Deterministic Jitter (Dj)                                        | Device setting: OS1 = L, DE1 = H, EQ1 = L                                                                        |      | 0.06 | 0.3  | UIpp <sup>(3)</sup> |
| RJ <sub>TX</sub> <sup>(2)(4)</sup>                | Random Jitter (Rj)                                               |                                                                                                                  |      | 0.08 | 0.2  |                     |
| T <sub>TX-EYE</sub> <sup>(1)</sup> <sup>(2)</sup> | Total Jitter (Tj) at point B                                     |                                                                                                                  |      | 0.14 | 0.5  |                     |
| DJ <sub>TX</sub> <sup>(2)</sup>                   | Deterministic Jitter (Dj)                                        | Device setting: OS2 = H, DE2 = H, EQ2 = L                                                                        |      | 0.06 | 0.3  | UIpp <sup>(3)</sup> |
| RJ <sub>TX</sub> <sup>(2)(4)</sup>                | Random Jitter (Rj)                                               |                                                                                                                  |      | 0.08 | 0.2  |                     |

(1) Includes Rj at 10<sup>-12</sup>

(2) Measured at the end of reference channel in Figure 8 with K28.5 pattern, V<sub>ID</sub>=1000mVpp, 5Gbps, -3.5dB DE from source.

(3) UI = 200ps

(4) Rj calculated as 14.069 times the RMS random jitter for 10<sup>-12</sup> BER

Copyright © 2010, Texas Instruments Incorporated



www.ti.com

<u>si 響閉"\$1% 2019 E502"供应商</u>

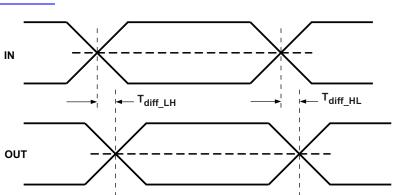



Figure 5. Propagation Delay

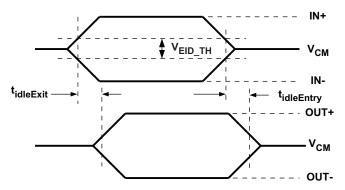



Figure 6. Electrical Idle Mode Exit and Entry Delay

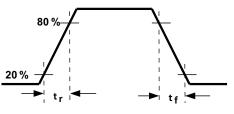



Figure 7. Output RIse and Fall Times



SLLSE29 - APRIL 2010

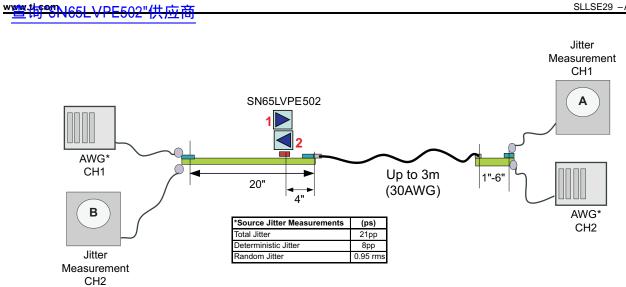



Figure 8. Jitter Measurement Setup

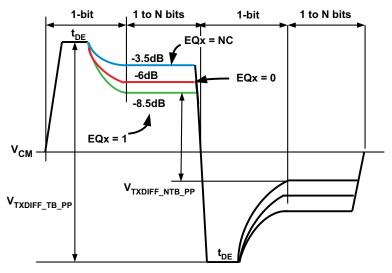
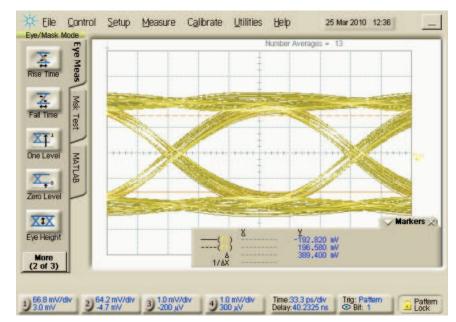



Figure 9. Output De-Emphasis Levels OSx = NC




www.ti.com

# 

#### **Typical Eye Diagram and Performance Curves**

Input Signal Characteristics: Data Rate = 5 Gbps,  $V_{ID}$  = 1000 mVpp, DE = -3.5 dB, Pattern = K28.5 Device Operating Conditions: VCC = 3.3 V, Temp = 25°C



#### Input Trace Length Held Constant and Output Cable Length Varied

Figure 10. Input Trace = 12 Inches, 6 mil and Output USB 3 Cable Length = 1 M

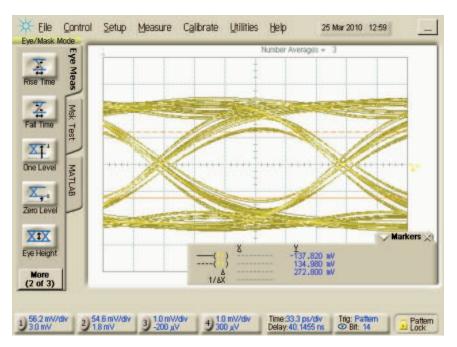



Figure 11. Input Trace = 12 Inches, 6 mil and Output USB 3 Cable Length = 2 M

SLLSE29 - APRIL 2010



\*暨特驾N65LVPE502"供应商

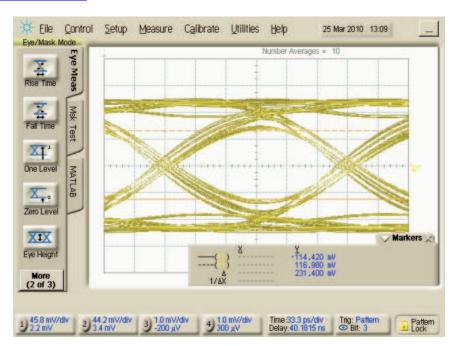



Figure 12. Input Trace = 12 Inches, 6 mil and Output USB 3 Cable Length = 3 M

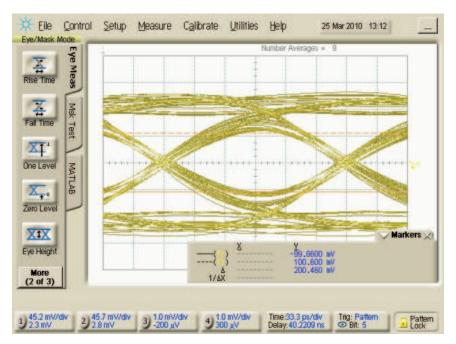



Figure 13. Input Trace = 12 Inches, 6 mil and Output USB 3 Cable Length = 4 M

TEXAS INSTRUMENTS

www.ti.com

## <u>SI查销"\$1%852019PE502"供应商</u>



Figure 14. Jitter Performance Over Different Cable Lengths

### Input Trace Length Held Constant and Output Trace Varied

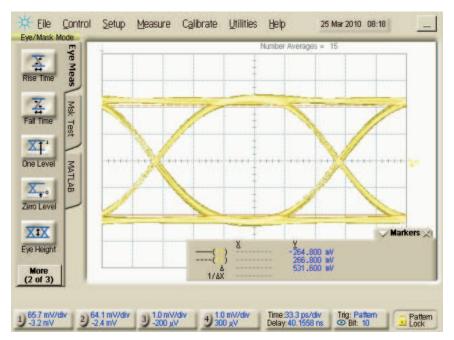



Figure 15. Input Trace = 4 Inches, 6 mil and Output Trace = 4 Inches, 6 mil

SLLSE29 - APRIL 2010



\*暨特驾N65LVPE502"供应商

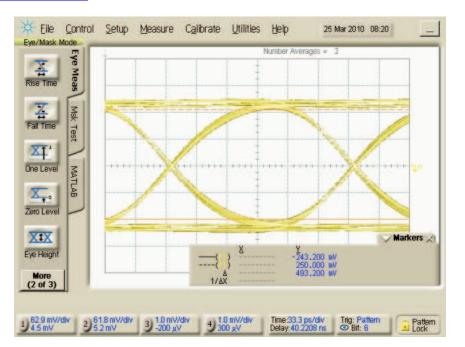



Figure 16. Input Trace = 4 Inches, 6 mil and Output Trace = 8 Inches, 6 mil

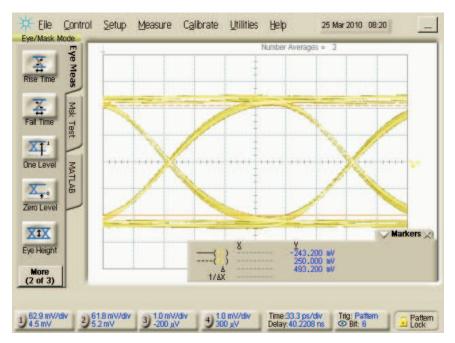



Figure 17. Input Trace = 4 Inches, 6 mil and Output Trace = 12 Inches, 6 mil



www.ti.com

## <u>SI查销"\$1%852019PE502"供应商</u>

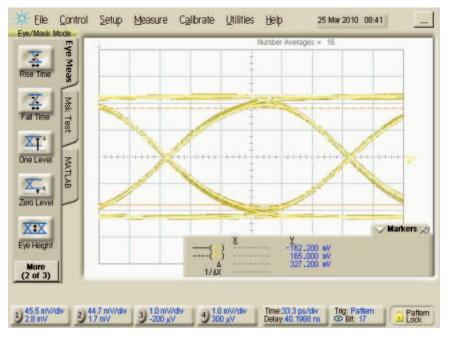



Figure 18. Input Trace = 4 Inches, 6 mil and Output Trace = 16 Inches, 6 mil

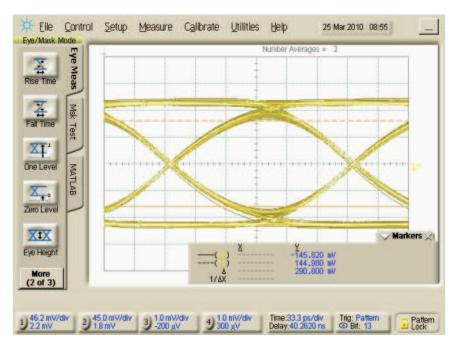



Figure 19. Input Trace = 4 Inches, 6 mil and Output Trace = 20 Inches, 6 mil



SLLSE29 - APRIL 2010

## 



Figure 20. Jitter Performance Over Different Output Trace Lengths

### **Output Trace Length Held Constant and Input Trace Length Varied**

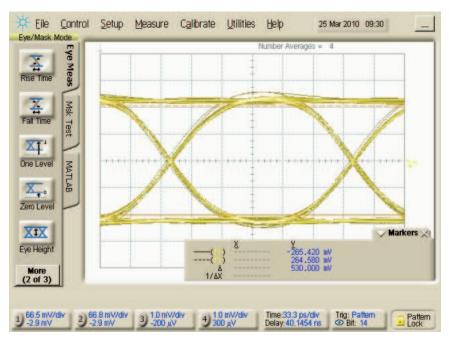



Figure 21. Input Trace = 4 Inches, 6 mil and Output Trace = 4 Inches, 6 mil



www.ti.com

<u>SI查销"\$1%852019PE502"供应商</u>

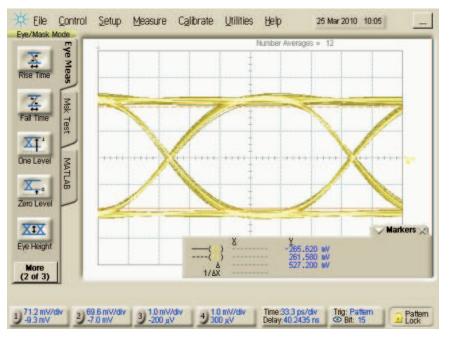



Figure 22. Input Trace = 8 Inches, 6 mil and Output Trace = 4 Inches, 6 mil

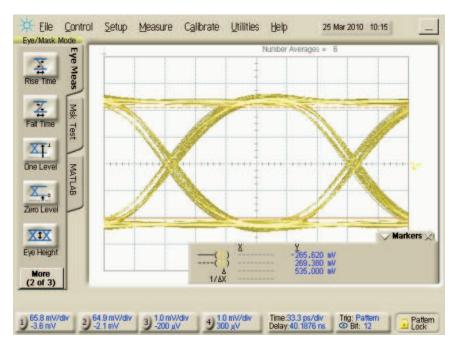



Figure 23. Input Trace = 12 Inches, 6 mil and Output Trace = 4 Inches, 6 mil

SLLSE29 - APRIL 2010



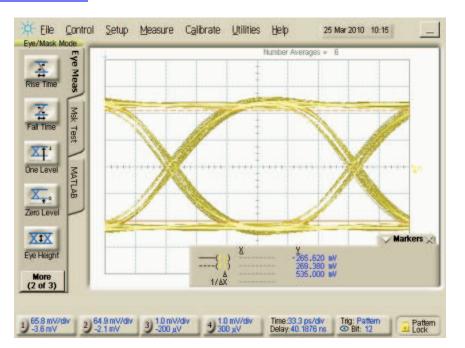



Figure 24. Input Trace = 16 Inches, 6 mil and Output Trace = 4 Inches, 6 mil

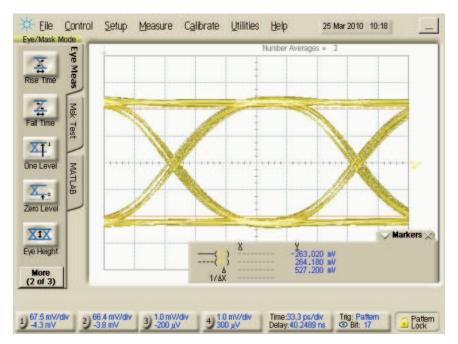



Figure 25. Input Trace = 20 Inches, 6 mil and Output Trace = 4 Inches, 6 mil



www.ti.com

<u>SI查销"\$1%852019PE502"供应商</u>

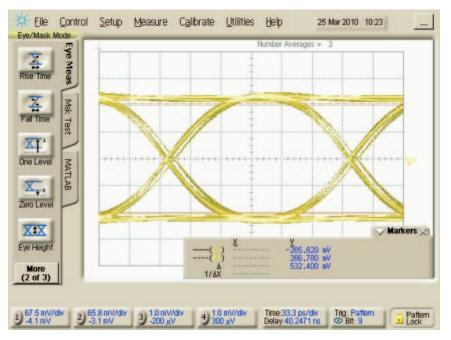



Figure 26. Input Trace = 28 Inches, 6 mil and Output Trace = 4 Inches, 6 mil

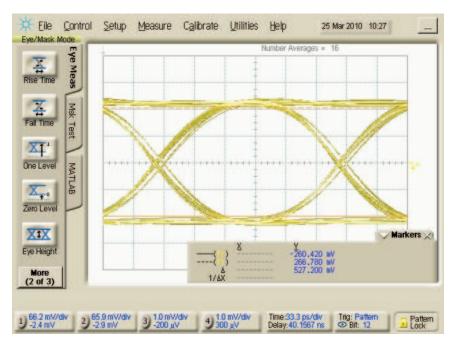



Figure 27. Input Trace = 32 Inches, 6 mil and Output Trace = 4 Inches, 6 mil



#### SLLSE29 - APRIL 2010

# <u>₩豐簡♥₩65LVPE502"供应商</u>



Figure 28. Jitter Performance Over Different Input Trace Lengths

#### PACKAGING INFORMATION

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins F | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|--------|----------------|---------------------------|------------------|------------------------------|
| SN65LVPE502RGER  | ACTIVE                | VQFN            | RGE                | 24     | 3000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-2-260C-1 YEAR          |
| SN65LVPE502RGET  | ACTIVE                | VQFN            | RGE                | 24     | 250            | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-2-260C-1 YEAR          |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

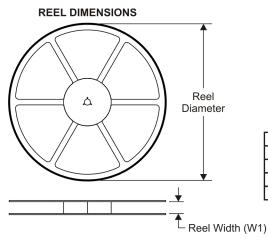
**OBSOLETE:** TI has discontinued the production of the device.

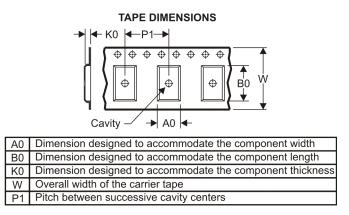
<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

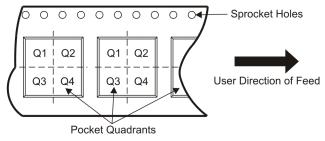
**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

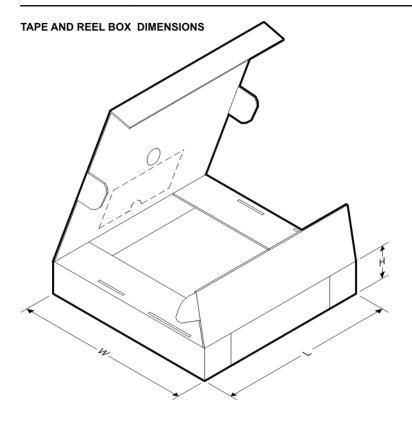

₩ Texas INSTRUMENTS 查询"SN65LVPE502"供应商

### TAPE AND REEL INFORMATION





### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal |                 |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN65LVPE502RGER             | VQFN            | RGE                | 24 | 3000 | 330.0                    | 12.4                     | 4.25       | 4.25       | 1.15       | 8.0        | 12.0      | Q2               |
| SN65LVPE502RGET             | VQFN            | RGE                | 24 | 250  | 180.0                    | 12.4                     | 4.25       | 4.25       | 1.15       | 8.0        | 12.0      | Q2               |



# PACKAGE MATERIALS INFORMATION

20-Jul-2010



\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN65LVPE502RGER | VQFN         | RGE             | 24   | 3000 | 346.0       | 346.0      | 29.0        |
| SN65LVPE502RGET | VQFN         | RGE             | 24   | 250  | 190.5       | 212.7      | 31.8        |

# **MECHANICAL DATA**

## 查询"SN65LVPE502"供应商



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

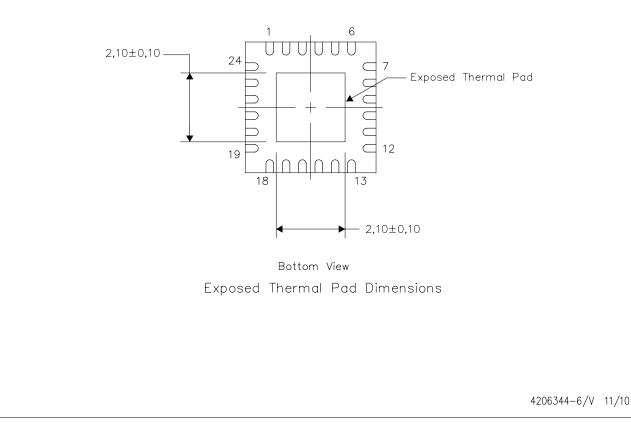
- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Falls within JEDEC MO-220.



### 查询"SN65LVPE502"供应商


| RGE (S-PVQFN-N24)                      | PLASTIC QUAD FLATPACK NO-LEAD |
|----------------------------------------|-------------------------------|
| $NGL \left( S = F VQI N = NZ4 \right)$ | FLASHC QUAD ILAIFACK NU-LLAD  |

#### THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



#### NOTES: A. All linear dimensions are in millimeters



### 查询"SN65LVPE502"供应商

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications                  |                                   |
|-----------------------------|------------------------|-------------------------------|-----------------------------------|
| Amplifiers                  | amplifier.ti.com       | Audio                         | www.ti.com/audio                  |
| Data Converters             | dataconverter.ti.com   | Automotive                    | www.ti.com/automotive             |
| DLP® Products               | www.dlp.com            | Communications and<br>Telecom | www.ti.com/communications         |
| DSP                         | dsp.ti.com             | Computers and<br>Peripherals  | www.ti.com/computers              |
| Clocks and Timers           | www.ti.com/clocks      | Consumer Electronics          | www.ti.com/consumer-apps          |
| Interface                   | interface.ti.com       | Energy                        | www.ti.com/energy                 |
| Logic                       | logic.ti.com           | Industrial                    | www.ti.com/industrial             |
| Power Mgmt                  | power.ti.com           | Medical                       | www.ti.com/medical                |
| Microcontrollers            | microcontroller.ti.com | Security                      | www.ti.com/security               |
| RFID                        | www.ti-rfid.com        | Space, Avionics & Defense     | www.ti.com/space-avionics-defense |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        | Video and Imaging             | www.ti.com/video                  |
|                             |                        | Wireless                      | www.ti.com/wireless-apps          |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated