

Isolated Profibus RS-485 Transceiver with Integrated Transformer Driver

Check for Samples: ISO1176T

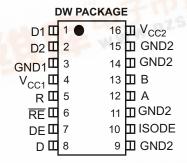
FEATURES

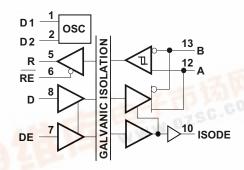
- 4000V_{peak} Isolation, 560V_{peak} V_{IORM}
- Meets or Exceeds the Requirements of EN 50170 and TIA/EIA RS-485
- Signaling Rates up to 40 Mbps
- Differential Output exceeds 2.1V (54Ω Load)
- Low Bus Capacitance 10pF (MAX)
- 50kV/µs Typical Transient Immunity
- UL 1577, IEC 60747-5-2 (VDE 0884, Rev. 2) **Approvals Pending**

Fail-safe Receiver for Bus Open, Short, or Idle

APPLICATIONS

- Factory Automation WWW.DZSG.COM.
- Motor/motion Control
- **HVAC and Building Automation Networks**
- **Networked Security Stations**


DESCRIPTION


The ISO1176T is an isolated differential line transceiver with integrated oscillator outputs that provide the primary voltage for an isolation transformer. The device is ideal for long transmission lines because the ground loop is broken to allow the device to operate with a much larger common-mode voltage range. The symmetrical isolation barrier of each device is tested to provide 2500Vrms of isolation between the line transceiver and the logic-level interface.

The galvanically isolated differential bus transceiver is an integrated circuit designed for bi-directional data communication on multipoint bus-transmission lines. The transceiver combines a galvanically isolated differential line driver and differential input line receiver. The driver has an active-high enable with isolated enable-state output on the ISODE pin (pin 10) to facilitate direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC2} = 0$.

Any cabled I/O can be subjected to electrical noise transients from various sources. These noise transients can cause damage to the transceiver and/or near-by sensitive circuitry if they are of sufficient magnitude and duration. The ISO1176T can significantly reduce the risk of data corruption and damage to expensive control circuits.

The device is characterized for operation over the ambient temperature range of -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Profibus is a registered trademark of Profibus International.

df.dzsc.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS(1)

					VALUE	UNIT	
V _{CC1} , V _{CC2}	Input supply vo	oltage ⁽²⁾			-0.5 to 7	V	
V	Voltage at any	bus I/O terminal			–9 to 14	V	
Vo	Voltage at D1,		14	V			
VI	Voltage input a		-0.5 to 7	V			
Io	Receiver outpu	±10	mA				
I _{D1,} I _{D2}	Transformer D	450	mA				
		Human Body Model	JEDEC Standard 22, Test Method A114-C.01	Bus pins to GND1	±6	kV	
				Bus pins to GND2	±16		
ESD	Electrostatic Discharge		7.114 0.01	all pins	±4	İ	
	Discharge	Charged Device Model	JEDEC Standard 22, Test Method C101	all mine	±1	kV	
		Machine Model	ANSI/ESDS5.2-1996	all pins	±200	V	
T_{J}	Maximum junction temperature					°C	
T _{STG}	Storage tempe	erature			-65 to 150	°C	

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{CC}	Logic side supply voltage, V _{CC1} (with	respect to GND1)	3		5.5	V
	Bus side supply voltage, V _{CC2} (with re	espect to GND2)	4.75		5.25	
V_{CM}	Voltage at either bus I/O terminal	A, B	-7		12	V
\/	Lligh level input veltage	RE	2		V _{CC1}	V
V _{IH}	High-level input voltage	D, DE	0.7 V _{CC1}			
V	I am laval in a structural to a s	RE	0		0.8	V
V_{IL}	Low-level input voltage	D, DE			0.3 V _{CC1}	
V _{ID}	Differential input voltage	A with respect to B	-12		12	V
	Output Current	RS-485 driver	-70		70	mA
IO	Output Current	Receiver	-8		8	
T _A	Ambient temperature				85	°C
T _J	Operating junction temperature				150	°C
1 / t _{UI}	Signaling Rate				40	Mbps

⁽²⁾ All voltage values except differential I/O bus voltages are with respect to the referenced network ground terminal and are peak voltage values.

INSTRUMENTS

SUPPLY CURRENT

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICC1 \''	Logic-side quiescent supply current	$V_{CC1} = 3.3 \text{ V} \pm 10\%, \text{ DE}, \overline{\text{RE}} = 0 \text{V or } V_{CC1},$ No load		4.5	8	mA
		$V_{CC1} = 5 \text{ V} \pm 10\%$, DE, $\overline{RE} = 0 \text{V}$ or V_{CC1} , No load		7	11	mA
I _{CC2} ⁽¹⁾	Bus-side quiescent supply current	$V_{CC2} = 5 \text{ V} \pm 5\%$, DE, $\overline{RE} = 0\text{V}$ or V_{CC1} , No load		13.5	18	mA

⁽¹⁾ I_{CC1} and I_{CC2} are measured when device is connected to external power supplies. D1 and D2 are disconnected from external transformer.

ISODE-PIN ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	Lligh lovel output voltoge	$I_{OH} = -8mA$	V _{CC2} - 0.8	4.6		\/
V _{OH}	High-level output voltage	$I_{OH} = -20\mu A$	V _{CC2} - 0.1	5		V
\ /	I am laval autout valtana	I _{OL} = 8mA		0.2	0.4	V
V _{OL}	Low-level output voltage	$I_{OL} = 20\mu A$		0	0.1	V

RS-485 DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TES	ST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{OD}	Open-circuit differential output voltage	V _A - V _B , See	Figure 1	1.5		V_{CC2}	V	
	Chandy state differential autout valtage	See Figure 2	See Figure 2 and Figure 6					
$ V_{OD(SS)} $	Steady-state differential output voltage magnitude	See Figure 3, Common-mode loading with Vtest from –7V to +12V		2.1			V	
$ \Delta V_{OD(SS)} $	Change in steady-state differential output voltage between logic states	See Figure 4 and Figure 5, $R_L = 54\Omega$		-0.2		0.2	V	
V _{OC(SS)}	Steady-state common-mode output voltage			2		3		
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage	See Figure 4 and Figure 55, $R_L = 54\Omega$		-0.2		0.2	V	
V _{OC(pp)}	Peak-to-peak common-mode output voltage			0.5				
V _{OD(ring)}	Differential output voltage over and under shoot	See Figure 6	and Figure 9			10%	$V_{OD(pp)}$	
II	Input current	D, DE at 0V o	r V _{CC1}	-10		10	μΑ	
I _{O(OFF)}	Power-off output current	$V_{CC2} = 0 V$		Coo rossis	or innut			
l _{OZ}	High-impedance output current	DE at 0V		See receiv	er input d	Jurrent		
I _{OS(P)}	Peak short-circuit output current	See Figure 8	$V_{OS} = -7V$ to 12V	-250		250		
	Other than a factor of the set of	and Figure 19,	V _{OS} = 12V, D at GND1	60		135 mA	mA	
OS(SS)	Steady-state short-circuit output current	DE at V _{CC1}	$V_{OS} = -7V$, D at V_{CC1}	-135		-60		
C _{OD}	Differential output capacitance			See receiver C _{IN}				
CMTI	Common-mode transient immunity	See Figure 19)	25			kV/µs	

RS-485 DRIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAMETER	· · · · · · · · · · · · · · · · · · ·	·	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Prop delay time	$V_{CC1} = 5V \pm 10\%$				35	
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})	$V_{CC2} = 5V \pm 5\%$			2	5	ns
t _{PLH} , t _{PHL}	Prop delay time	$V_{CC1} = 3.3V \pm 10\%,$	Soo Figure 0			40	no
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})	$V_{CC2} = 5V \pm 5\%$	See Figure 9		2	5	ns
t _r	Differential output signal rise	e time		2	3	7.5	
t _f	Differential output signal fall time			2	3	7.5	ns
t _{pDE}	DE to ISODE prop delay		See Figure 13			30	ns
$t_{t(MLH)}$, $t_{t(MHL)}$	Output transition skew		See Figure 10			1	ns
$t_{p(AZH)}, t_{p(BZH)}, t_{p(AZL)}, t_{p(BZL)}$	Propagation delay, high-imp	edance-to-active output	See Figure 11 and			80	no
$\begin{array}{c} t_{p(AHZ)}, \ t_{p(BHZ)}, \\ t_{p(ALZ)}, \ t_{p(BLZ)} \end{array}$	Propagation delay, active-to	Figure 12, C _L = 50 pF, RE at 0 V			80	ns	
$\begin{array}{c c} \mid t_{p(AZL)} - t_{p(BZH)} \mid \\ \mid t_{p(AZH)} - t_{p(BZL)} \mid \end{array}$	Enable skew time				0.55	1.5	ns
t _(CFB)	Time from application of short-circuit to current fold back		See Figure 8		0.5		μs
t _(TSD)	Time from application of sho	ort-circuit to thermal shutdown	See Figure 8, T _A = 25°C	100			μs

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	commended operating cor	iditions (diffess of						
PARAI	METER		TEST CONDITIONS	i	MIN	TYP	MAX	UNIT
$V_{IT(+)}$	Positive-going input thresho	ld voltage	See Figure 15	$I_O = -8mA$		-80	-10	
$V_{IT(-)}$	Negative-going input thresh	old voltage	tage $I_0 = 8$		-200	-120		mV
V_{hys}	Hysteresis voltage (V _{IT+} – V	lysteresis voltage (V _{IT+} – V _{IT-})				25		
V	High-level output voltage		V _{ID} = 200 mV, See	$I_{OH} = -8mA$	V _{CC1} - 0.4	3		V
V _{OH}	r ligh-level output voltage	$V_{CC1} = 3.3V \pm 10\%$ and $V_{CC2} =$	Figure 15	$I_{OH} = -20\mu A$	V _{CC1} - 0.1	3.3		V
V _{OL}	Low-level output voltage	5V ± 5%	V _{ID} = -200 mV, See	$I_{OL} = 8mA$		0.2	0.4	V
VOL	Low-level output voltage		Figure 15	$I_{OL} = 20\mu A$		0	0.1	V
V _{OH}	High-level output voltage		V _{ID} = 200 mV, See	$I_{OH} = -8mA$	V _{CC1} - 0.8	4.6		V
VOH	r ligh-level output voltage	$V_{CC1} = 5V \pm$	Figure 15	$I_{OH} = -20\mu A$	V _{CC1} - 0.1	5		V
V_{OL}	Low-level output voltage	$\begin{array}{c} 10\% \text{ and } V_{CC2} = \\ 5V \pm 5\% \end{array}$	$V_{ID} = -200 \text{ mV},$ See Figure 15	I _{OL} = 8mA		0.2	0.4	V
				$I_{OL} = 20\mu A$		0	0.1	
I _A , I _B	Bus pin input current		$V_{I} = -7 \text{ or } 12V,$	V _{CC2} = 4.75V or 5.25V	-160		200	μA
$I_{A(off)}, I_{B(off)}$	Bus piir input current		Other input = 0 V	V _{CC2} = 0V			200	μΑ
l _l	Receiver enable input curre	nt	RE = 0 V		-50		50	μΑ
I_{OZ}	High-impedance state output	ıt current	$\overline{RE} = V_{CC1}$		-1		1	μΑ
R _{ID}	Differential input resistance		A, B		60			kΩ
C _{ID}	Differential input capacitance		Test input signal is a wave with 1Vpp amp measured across A	olitude. CD is		7	10	pF
CMR	Common mode rejection		See Figure 18			4		V

₩營物®O1176T"供应商

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	$V_{CC1} = 5V \pm 10\%,$			50	65	
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})	$V_{CC2} = 5V \pm 5\%$	Con Figure 45		2	5	
t _{PLH} , t _{PHL}	Propagation delay time	$V_{CC1} = 3.3V \pm 10\%,$	See Figure 15		53	70	
t _{sk(p)}	Pulse skew (tpHL - tpLH)	$V_{CC2} = 5V \pm 5\%$			2	5	
t _r	Output signal rise time			2	4		
t _f	Output signal fall time				2	4	ns
t _{PZH}	Propagation delay, high-impedance	-to-high-level output	DE at V Con Figure 46		13	25	
t _{PHZ}	Propagation delay, high-level-to-hig	DE at V _{CC1} , See Figure 16		13	25		
t _{PZL}	Propagation delay, high-impedance	DE -111 0-2 Elman 47		13	25		
t _{PLZ}	Propagation delay, low-level-to-high	n-impedance output	DE at V _{CC1} , See Figure 17		13	25	

TRANSFORMER DRIVER CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
4	Oscillator frequency	V_{CC1} = 5V ± 10%, D1 and D2 connected to Transforme	350	450	550	l√∐-a	
fosc	Oscillator frequency	V_{CC1} = 3.3V ± 10%, D1 and D2 connected to Transformer	300	400	500	kHz	
R _{ON}	Switch on resistance	D1 and D2 connected to 50-Ω pull-up resistors		1	2.5	Ω	
R _{OFF}	Switch off resistance	D1 and D2 connected to 50-Ω pull-up resistors	1	5		kΩ	
	D1, D2 output rise time	V_{CC1} = 5V ± 10%, See Figure 20, D1 and D2 connected to 50-Ω pull-up resistors	40	80	110	ns	
ι _{r_D}		V_{CC1} = 3.3V ± 10%, See Figure 20, D1 and D2 connected to 50- Ω pull-up resistors	30	70	110	113	
	D4 D2 output fall time	V_{CC1} = 5V ± 10%, See Figure 20, D1 and D2 connected to 50-Ω pull-up resistors	20	55	70		
t _{f_D}	D1, D2 output fall time	V_{CC1} = 3.3V ± 10%, See Figure 20, D1 and D2 connected to 50- Ω pull-up resistors	40	80	140	ns	
f _{St}	Startup frequency	V _{CC1} = 1.9 V, D1 and D2 connected to Transformer		230		kHz	
	Durally hafana madra tima a dalay.	V_{CC1} = 5V ± 10%, See Figure 20, D1 and D2 connected to 50-Ω pull-up resistors	12	38	75	ns	
t _{BBM}	Break before make time delay	V_{CC1} = 3.3V ± 10%, See Figure 20, D1 and D2 connected to 50- Ω pull-up resistors	100	140	200		

PARAMETER MEASUREMENT INFORMATION

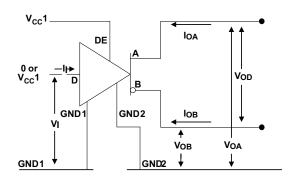


Figure 1. Open Circuit Voltage Test Circuit

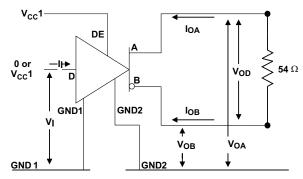


Figure 2. V_{OD} Test Circuit

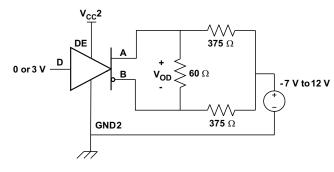


Figure 3. Driver V_{OD} with Common-mode Loading Test Circuit

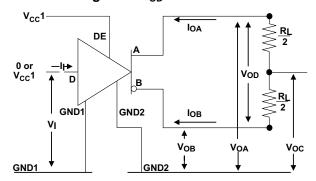


Figure 4. Driver V_{OD} and V_{OC} Without Common-Mode Loading Test Circuit

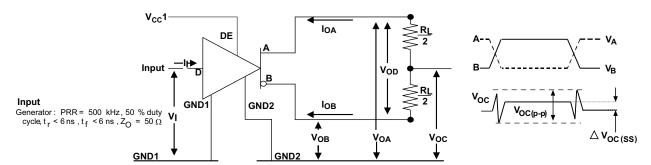


Figure 5. Steady-State Output Voltage Test Circuit and Voltage Waveforms

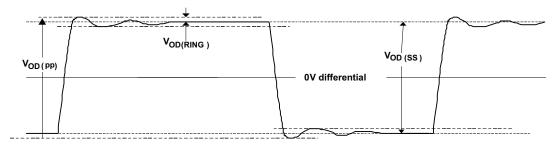


Figure 6. V_{OD(RING)} Waveform and Definitions

NSTRUMENTS

150 | 176 | 17.12/18)

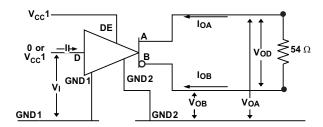


Figure 7. Input Voltage Hysteresis Test Circuit



Figure 8. Driver Short-Circuit Test Circuit and Waveforms (Short Circuit applied at Time t=0)

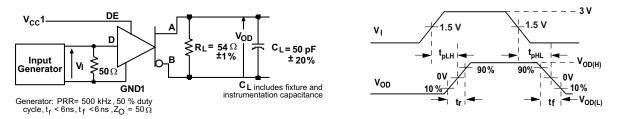


Figure 9. Driver Switching Test Circuit and Waveforms

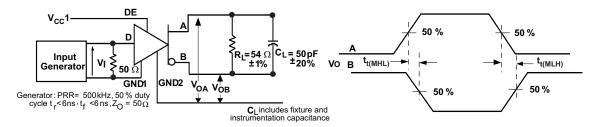


Figure 10. Driver Output Transition Skew Test Circuit and Waveforms

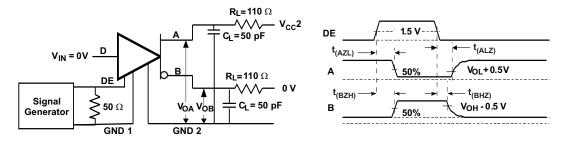


Figure 11. Driver Enable/Disable Test, D at Logic Low Test Circuit and Waveforms

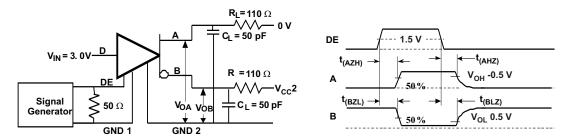


Figure 12. Driver Enable/Disable Test, D at Logic High Test Circuit and Waveforms

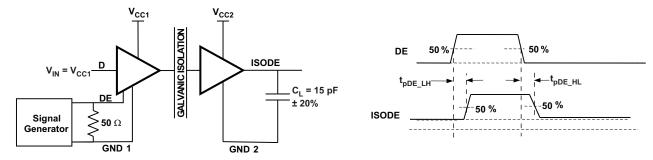


Figure 13. DE to ISODE Prop Delay Test Circuit and Waveforms

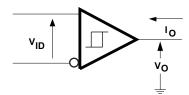


Figure 14. Receiver DC Parameter Definitions

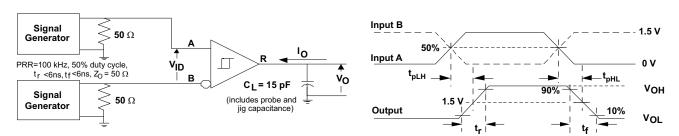


Figure 15. Receiver Switching Test Circuit and Waveforms

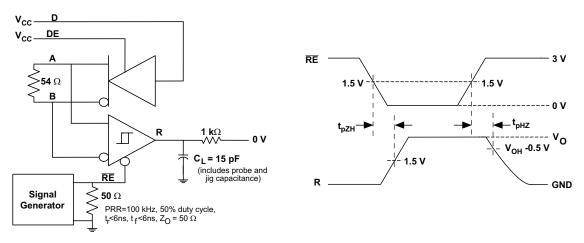


Figure 16. Receiver Enable Test Circuit and Waveforms, Data Output High

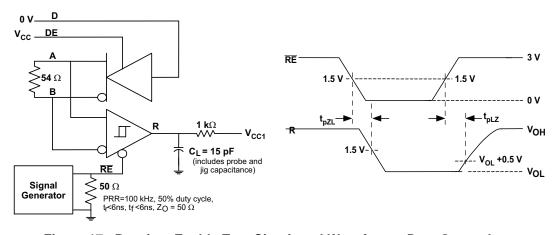


Figure 17. Receiver Enable Test Circuit and Waveforms, Data Output Low

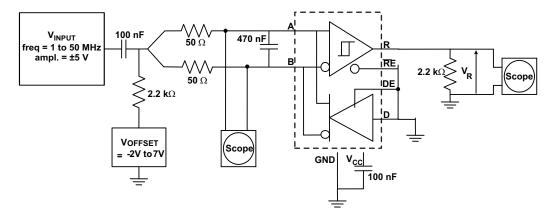


Figure 18. Common-Mode Rejection Test Circuit

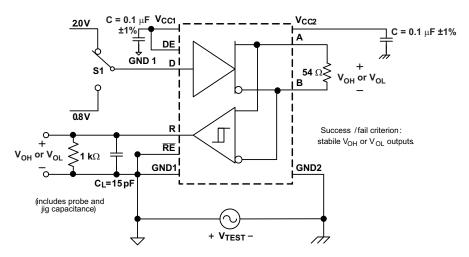


Figure 19. Common-Mode Transient Immunity Test Circuit

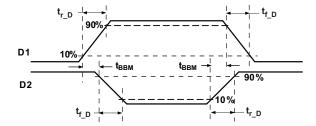


Figure 20. Transition Times and Break Before Make Time Delay for D1, D2 Outputs

DEVICE INFORMATION

PIN DESCRIPTIONS

NAME	PIN#	FUNCTION			
D1	1	Transformer Driver Terminal 1, Open Drain Ouput			
D2	2	ransformer Driver Terminal 2, Open Drain Ouput			
GND1	3	Logic-side Ground			
V _{CC1}	4	Logic-side Power Supply			
R	5	Receiver Output			
RE	6	Receiver Enable Input. This pin has complementary logic.			
DE	7	Driver Enable Input			
D	8	Driver Input			
GND2	9, 11, 14, 15	Bus-side Ground. All pins are internally connected.			
ISODE	10	Bus-side Driver Enable Output Status			
Α	12	Non-inverting Driver Output / Receiver Input			
В	13	Inverting Driver Output / Receiver Input			
VCC2	16	Bus-side Power Supply			

Table 1. DRIVER FUNCTION TABLE⁽¹⁾

	V	INPUT	ENABLE INPUT	ENABLE	OUTF	PUTS
V _{CC1}	V _{CC2}	(D)	(DE)	OUTPUT (ISODE)	Α	В
PU	PU	Н	Н	Н	Н	L
PU	PU	L	Н	Н	L	Н
PU	PU	Χ	L	L	Z	Z
PU	PU	Х	open	L	Z	Z
PU	PU	open	Н	Н	Н	L
PD	PU	X	X	L	Z	Z
PU	PD	X	X	L	Z	Z
PD	PD	Χ	X	L	Z	Z

(1) PU = Powered Up, PD = Powered Down, H = High Level, L= Low Level, X = Don't Care, Z = High Impedance (off)

Table 2. RECEIVER FUNCTION TABLE(1)

V _{CC1}	V _{CC2}	DIFFERENTIAL INPUT V _{ID} = (V _A - V _B)	ENABLE (RE)	OUTPUT (R)
PU	PU	-0.01V ≤ V _{ID}	L	Н
PU	PU	-0.2V < V _{ID} < -0.01V	L	?
PU	PU	V _{ID} ≤ -0.2V	L	L
PU	PU	X	Н	Z
PU	PU	X	open	Z
PU	PU	Open circuit	L	Н
PU	PU	Short Circuit	L	Н
PU	PU	Idle (terminated) bus	L	Н
PD	PU	Х	Х	Z
PU	PD	Х	L	Н
PD	PD	X	X	Z

(1) PU = Powered Up, PD = Powered Down, H = High Level, L= Low Level, X = Don't Care, Z = High Impedance (off), ? = Indeterminate

****室筒**RO1176T****供应商

PACKAGE CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance) ⁽¹⁾	Shortest terminal to terminal distance through air	8.3			mm
L(102)	Minimum external tracking (Creepage) ⁽¹⁾	Shortest terminal to terminal distance across the package surface	8.1			mm
СТІ	Tracking resistance (Comparative Tracking Index)	DIN IEC 60112 / VDE 0303 Part 1	400			V
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500 V, all pins on each side of the barrier tied together creating a two-terminal device		>10 ¹²		Ω
C _{IO}	Barrier capacitance Input to output	$V_I = V_{CC}/2 + 0.4 \sin(2\pi ft), f = 1 \text{ MHz}, V_{CC} = 5 \text{ V}$		2		рF
CI	Input capacitance to ground	$V_1 = 0.4 \sin (2\pi ft), f = 1 MHz$		2		pF
P _D	Device power dissipation	V_{CC1} = 5.5V, V_{CC2} = 5.25V, T_J = 150°C, C_L = 15 pF, Input a 20 MHz 50% duty cycle square wave			TBD	mW

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to make sure that the mounting pads of the isolator on the printed circuit board do not reduce this distance.

Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications

IEC 60664-1 RATINGS TABLE

PARAMETER TEST CONDITIONS		SPECIFICATION
asic isolation group Material group		IIIa
	Rated mains voltage ≤ 150V _{rms}	I-IV
Installation classification	Rated mains voltage ≤ 300V _{rms}	I-III
	Rated mains voltage ≤ 400V _{rms}	I-II

IEC 60747-5-2 INSULATION CHARACTERISTICS(1)

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SPECIFICATION	UNIT
V_{IORM}	Maximum working insulation voltage		560	Vpeak
V_{PR}	Input to output test voltage	Method b1, $V_{PR} = V_{IORM} \times 1.875$, 100% Production test with t = 1 s, Partial discharge < 5pC	1050	Vpeak
		Method a, After environmental tests subgroup 1, V _{PR} = V _{IORM} × 1.6, t = 10 s, Partial discharge < 5pC	896	
		After Input/Output Safety Test Subgroup 2/3, V _{PR} = V _{IORM} x 1.2, t = 10 s, Partial discharge < 5 pC	672	
V _{IOTM}	Transient overvoltage	t = 60s (qualification), t = 1s (100% production)	4000	Vpeak
R _S	Insulation resistance	$V_{IO} = 500V \text{ at } T_S = 150^{\circ}C$	> 10 ⁹	Ω
	Pollution degree		2	

(1) Climatic Classification 40/125/21

REGULATORY INFORMATION

VDE	UL
Certified according to IEC 60747-5-2	Recognized under 1577 Component Recognition Program ⁽¹⁾
File Number: Pending	File Number: Pending

(1) Production tested ≥ 3000 V_{rms} for 1 second in accordance with UL 1577.

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
Is	Safety input, output, or supply current	DW-16	$\theta_{JA} = 212$ °C/W, $V_I = 5.5$ V, $T_J = 170$ °C, $T_A = 25$ °C			128	mA
T_S	Maximum case temperature	DW-16				150	°C

The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Characteristics table is that of a device installed in the JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages and is conservative. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	PINS	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	48	
$\theta_{JC(top)}$	Junction-to-case(top) thermal resistance		
θ_{JB}	Junction-to-board thermal resistance		°C/W
ΨЈТ	Junction-to-top characterization parameter	29	C/VV
ΨЈВ	Junction-to-board characterization parameter	n/a	
θ _{JC(bottom)}	Junction-to-case(bottom) thermal resistance	7	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

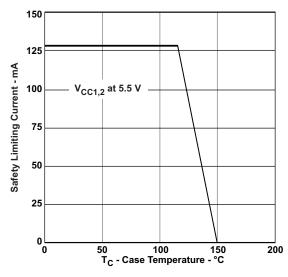
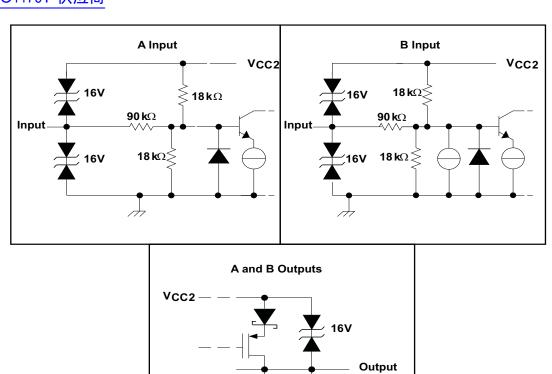


Figure 21. DW-16 θ_{JC} THERMAL DERATING CURVE per IEC 60747-5-2


Submit Documentation Feedback

₩實制®01176T"供应商

EQUIVALENT CIRCUIT SCHEMATICS

TYPICAL CHARACTERISTICS

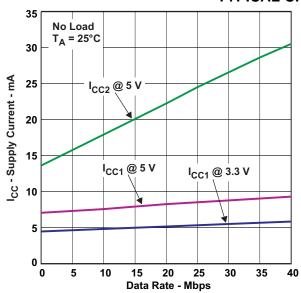


Figure 22. RMS SUPPLY CURRENT (I $_{\rm CC1}$ and I $_{\rm CC2}$) vs SIGNALING RATE WITH NO LOAD

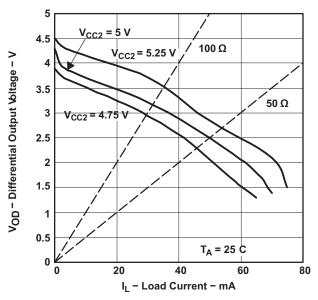


Figure 24. DIFFERENTIAL OUTPUT VOLTAGE vs LOAD CURRENT

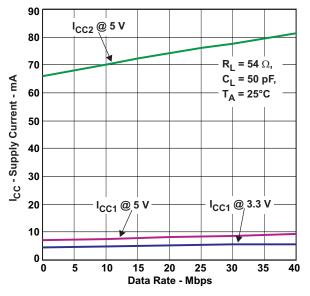


Figure 23. RMS SUPPLY CURRENT (I_{CC1} and I_{CC2}) vs SIGNALING RATE WITH LOAD

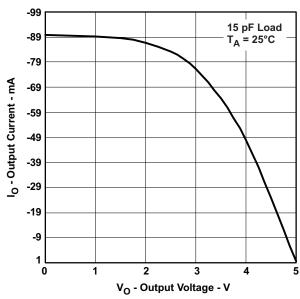


Figure 25. RECEIVER HIGH-LEVEL OUTPUT VOLTAGE vs
HIGH-LEVEL OUTPUT CURRENT

TYPICAL CHARACTERISTICS (continued)

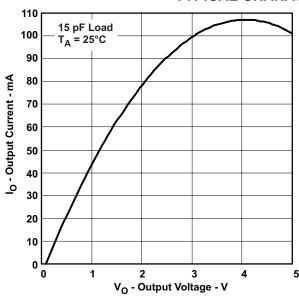


Figure 26. RECEIVER LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT

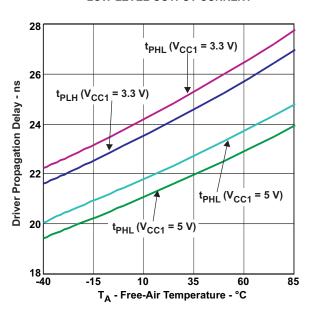


Figure 28. DRIVER PROPAGATION DELAY vs FREE-AIR TEMPERATURE

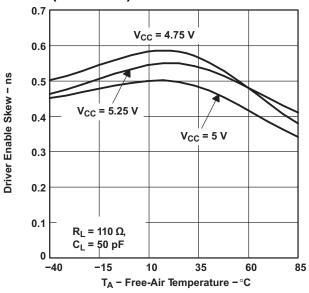


Figure 27. DRIVER ENABLE SKEW vs FREE-AIR TEMPERATURE

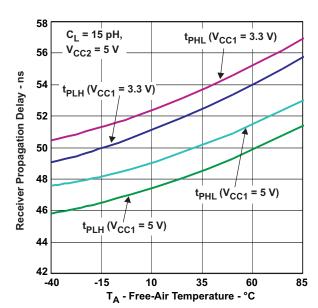


Figure 29. RECEIVER PROPAGATION DELAY vs FREE-AIR TEMPERATURE

APPLICATION INFORMATION

REFERENCE DESIGN

ISO1176T Reference design documentation and boards are available at TBD location

TRANSIENT VOLTAGES

Isolation of a circuit insulates it from other circuits and earth so that noise develops across the insulation rather than circuit components. The most common noise threat to data-line circuits is voltage surges or electrical fast transients that occur after installation and the transient ratings of ISO1176T are sufficient for all but the most severe installations. However, some equipment manufacturers use their ESD generators to test transient susceptibility of their equipment and can exceed insulation ratings. ESD generators simulate static discharges that may occur during device or equipment handling with low-energy but high voltage transients.

Figure 30 models the ISO1176T bus IO connected to a noise generator. C_{IN} and R_{IN} is the device and any other stray or added capacitance or resistance across the A or B pin to GND2, C_{ISO} and R_{ISO} is the capacitance and resistance between GND1 and GND2 of ISO1176T plus those of any other insulation (transformer, etc.), and we assume stray inductance negligible. From this model, the voltage at the isolated bus return is Z_{ISO}

 $v_{GND2} = v_N \frac{Z_{ISO}}{Z_{ISO} + Z_{IN}}$ and will always be less than 16 V from V_N . If ISO1176T is tested as a stand-alone device, $R_{IN} = 6 \times 10^4 \Omega$, $C_{IN} = 16 \times 10^{-12}$ F, $R_{ISO} = 10^9 \Omega$ and $C_{ISO} = 10^{-12}$ F.

Note from Figure 30 that the resistor ratio determines the voltage ratio at low frequency and it is the inverse capacitance ratio at high frequency. In the stand-alone case and for low frequency,

$$\frac{v_{GND2}}{v_N} = \frac{R_{ISO}}{R_{ISO} + R_{IN}} = \frac{10^9}{10^9 + 6 \times 10^4}$$
 or essentially all of noise appears across the barrier. At very high frequency,

 $\frac{v_{\text{GND2}}}{v_{\text{N}}} = \frac{\frac{1}{C_{\text{ISO}}}}{\frac{1}{C_{\text{ISO}}} + \frac{1}{C_{\text{IN}}}} = \frac{1}{1 + \frac{C_{\text{ISO}}}{C_{\text{IN}}}} = \frac{1}{1 + \frac{1}{16}} = 0.94$

94% of V_N appears across the barrier. As long as $R_{\rm ISO}$ is greater than $R_{\rm IN}$ and $C_{\rm ISO}$ is less than $C_{\rm IN}$, most of transient noise appears across the isolation barrier, as it should.

We recommend the reader not test equipment transient susceptibility with ESD generators or

consider product claims of ESD ratings above the barrier transient ratings of an isolated interface. ESD is best managed through recessing or covering connector pins in a conductive connector shell and installer training.

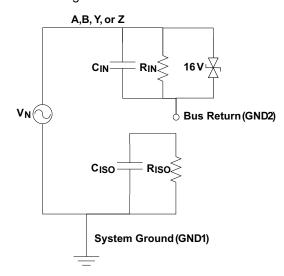


Figure 30. Noise Model

PACKA(

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pea
ISO1176TDW	PREVIEW	SOIC	DW	16	40	TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

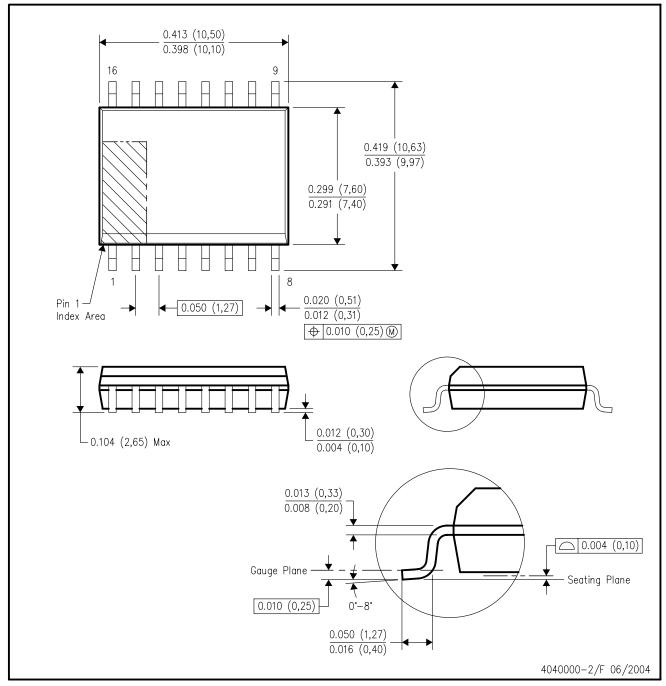
 $\label{eq:obsolete:total} \textbf{OBSOLETE:} \ \ \textbf{TI} \ \ \text{has discontinued the production of the device}.$

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate in continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical at TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

查询"ISO1176T"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps