Elart8@300 and ElanSC310 Microcontrollers

Memory Management

Application Note

AMD ¢\

The Elan™SC300 and ElanSC310 microcontrollers contain a sophisticated memory management
unit (MMU), which makes PC/AT compatibility easy to achieve. However, if you wish to stray from
the standard path and do something different, there is much to be learned concerning the
capabilities and limitations of the MMU. The purpose of this application note is to explain what the
MMU is capable of and how it may be programmed to achieve your goals. This document
supplements Chapter 2, Memory and PCMCIA Management of the Elan™SC300 Microcontroller

Programmer’s Reference Manual, order #18470.

INTRODUCTION

Unless otherwise noted, the features discussed in this
document for the Elan™SC300 microcontroller apply
equally to the Elan™SC310 microcontroller. The term
“DRAM” will be used to mean either DRAM or SRAM.
SRAM for system memory is an option on the
ElanSC300 microcontroller and for the purposes of
memory management, SRAM is treated identically to
DRAM. The term “Local/ISA Bus” includes both Local
bus and ISA bus cycles. These are treated identically
for memory management. When the ElanSC300
microcontroller is configured in full ISA mode or in
internal LCD mode, all accesses are treated as ISA bus
cycles. When the ElanSC300 microcontroller is
configured in local bus mode, the local bus is first given
the cycle, and if a local bus peripheral accepts the
cycle, the ISA bus never sees it. If no local bus
peripheral accepts the cycle, it is stretched into a
slower ISA cycle, and MEMR or MEMW is asserted.

ADDRESS DECODING AND ALIASING

Most designers are familiar with address aliasing,
which simply means that if an address is only partially
decoded by a device, that device will appear to exist
multiple times throughout the address space. The
following topics that are associated with aliasing on the
ElanSC300 microcontroller must be thoroughly
understood by the designer before attempting to use
the ElanSC300 microcontroller memory management.

Aliasing within the 4-Gbyte Address
Space of the Am386" Microprocessor

The core CPU of the ElanSC300 microcontroller is an
Am386SX microprocessor, which supports 24 physical
address lines (16 Mbyte of physical address space).
The Am386 microprocessor architecture supports 32
bits of addressing, but the top 8 address bits from the
CPU are effectively ignored for all memory mapping
functions. From a programming perspective, this
means that the ElanSC300 microcontroller can “see”

16 Mbyte of memory at a time. This 16 Mbyte of
memory is aliased 256 times into the 4-Gbyte physical
address space of the Am386 processor. Although it is
true that the PCMCIA address spaces of the
ElanSC300 microcontroller support 26 bits (64 Mbyte),
these PCMCIA spaces are only accessible by
translated memory management.

Behavior at Reset and SMI

After reset or when processing a system management
interrupt (SMI), the CPU executes from the top of
memory. The processor is in Real mode and normally
can address only 1 Mbyte, but the first instruction is
fetched from address FFFFFO at the top of memory.
The initial value of the code segment, CS, is FO00, and
the initial value of the instruction pointer, IP, is FFFO.
However, the internal CPU base address associated
with the code segment is FFO000 rather than FO00O.
The processor can remain in this top 64 Kbytes of the
available system memory address space by making
near calls/jumps. If a far call/jump is executed and the
CPU is still in Real mode at the time of this far control
transfer, the far control transfer will cause the CS base
address to be set to 16 times the segment of the jump
target. This is the normal Real mode behavior. Thus,
the target of such a far jump must be in the lower 1
Mbyte. Many PC/AT-compatible BIOS implementations
have a far jump to a target in segment FOOO as the first
instruction executed.

The fact that the physical address of the code executed
at reset is nowhere near the physical address of the
code executed at the target of the first Real mode far
jump can be important for systems with boot ROMs
larger than 1 Mbyte. This is discussed in the section
entitted ROMCS Space and Non-Translated Memory
Management.

Note that the behavior described previously applies to
SMI handling as well as to reset. In both cases, you
should ensure that the target of any far jump is mapped
appropriately. For example, at FFFFFO, a system may

This document contains information on a product under development at Advanced Micro Devices. The information
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed

product without notice.

Publication# 21823 Rev: A Amendment/O
Issue Date: July 1997

AMDZ

contain a far jump to address FO000, which maps to
ROMCS moeset After booting, the processor may

disabte ROMCS for FOO00—FFFFF and map that
region to DRAM. If an SMI occurs, the jump at FFFFFO
will be executed and will now jump to FO0O00 in DRAM.
You must ensure that the appropriate code for SMI
handling remains at that location.

Special Handling for A20

Because the ElanSC300 microcontroller is designed to
be PC/AT compatible, it contains logic to allow
backward compatibility all the way to the 8088
processor. One of the 8088 features used by some
software is the address wrap, which occurs from the
top of the 8088 processor’s 1-Mbyte memory down to
the bottom of memory. The Am386 processor performs
this by using an A20 control gate, which can force A20
to always be 0. Because the Am386 processor defaults
to 8088-compatible mode, you must set the gate to
allow A20 propagation for most applications. Most
operating systems, such as MS DOS, contain code to
do this. In the case of MS DOS, HIMEM.SY'S contains
the code and has an application program interface
(AP1) to allow program control of A20. A20
automatically will be set to propagate if HIMEM.SYS is
loaded and DOS=HIGH{,UMB} is added to
CONFIG.SYS. For information about direct control
over the A20 gate, look at the descriptions for the
ElanSC300 microcontroller direct-mapped register 92h
and index registers 6Bh and 6Fh in the Elan"™SC300
Programmer’s Reference Manual, order #18470. Also,
refer to the application note entitled Elan™SC300 and
Elan™SC310 Microcontroller GATEA20 Function
Clarification, order #21811.

MULTIPLE MEMORY SPACES

One concept which may be foreign to some designers
is that of multiple, parallel memory spaces, as opposed
to a single linear space. The ElanSC300
microcontroller may address up to four distinct
16-Mbyte memory spaces: DRAM, ROMCS, DOSCS,
and the Local/ISA bus. The ElanSC300 microcontroller
additionally supports up to four distinct 64-Mbyte
PCMCIA memory spaces (there are two PCMCIA
sockets and each socket contains both data and
attribute memory spaces). The ElanSC300
microcontroller, when configured in internal video
mode, contains a small 32-Kbyte Display SRAM space.

The ElanSC300 microcontroller supports a few
different specialized memory management schemes
(most based on some form of backward compatibility),
but they can be placed into two classes, which will be
referred to as translated and non-translated memory
management. In the non-translated scheme, the MMU
hardware simply selects one of the distinct memory
spaces for the read or write, and the memory address
is passed unchanged to the hardware controlling that

space. In the translated scheme, the MMU will
translate the address in addition to choosing the space.

The DRAM, ROMCS, DOSCS, Display SRAM, and
Local/ISA bus spaces are each accessible, to one
degree or another, via non-translated memory
management. All spaces except the Local/ISA bus
space are fully accessible via use of translated memory
management.

NON-TRANSLATED MEMORY
MANAGEMENT

As noted in the previous section, when performing
non-translated memory management, the MMU simply
decides which device space will receive a given
memory cycle by examining the memory address
provided by the CPU. After examination, however, the
address is passed unchanged to the hardware
managing that space.

Memory Mapping at Reset

For most of the CPU address space, the default
memory space on reset is the Local/ISA bus. The
exceptions are:

m CPU address ranges OF0000-OFFFFF and
FFOO00—FFFFFF are mapped to ROMCS.

m Address range B8000-BFFFF maps to the
32-Kbyte Display SRAM space. This mapping
occurs even if the ElanSC300 microcontroller boots
in local bus or full ISA mode. The internal LCD
controller must be disabled in order to direct these
accesses to the Local/ISA bus.

Note: The ElanSC310 microcontroller does not
support an internal LCD controller, but a similar
disabling must be performed using the bus
configuration registers.

ROMCS Space and Non-Translated
Memory Management

At reset, the CPU address ranges 0FO000—-0FFFFF
and FFO000-FFFFFF are mapped to ROMCS. This
default mapping makes it easy to handle an early far
jump from the reset start address at FFFFFO to
segment FOOO in Real mode. This is the normal
behavior for a PC/AT-compatible BIOS. (See the
description of the processor behavior at reset in the
previous section entitled Behavior at Reset and SMI.)

Because this is non-translated memory management,
the MMU simply examines the CPU address, chooses
the ROMCS space, and passes the address
untranslated to the address lines. This means that the
two default ranges, OFO000-0OFFFFF and FFO000—
FFFFFF, will only map to identical addresses for
designs that decode fewer than 20 address lines in
ROMCS space (smaller than 1 Mbyte). You must be
aware if the boot ROM is larger than 1 Mbyte. For

2 Elan™SC300 and ElanSC310 Microcontrollers Memory Management

AMDZ1

example, in a 2-Mbyte boot ROM, the top 16 bytes of

the boop REIF ' maly| hiave to be reserved for a far jump

toa focation im segment FO0O0, which will reside
immediately below 1 Mbyte in the same boot ROM.

When the code has booted, you have some control
over which CPU addresses cause an access to
ROMCS. Using the ElanSC300 microcontroller index
registers 51h and 65h, the CPU can map to ROMCS
address space in five different 64-Kbyte regions:
A0000-AFFFF, CO000-CFFFF, DOOOO-DFFFF,
EOOOO-EFFFF, and FOOO0-FFFFF. The 64-Kbyte
region just below 16 Mbyte, FFOO00-FFFFFF, always
maps to ROMCS. These are the only regions that may
be mapped to ROMCS without using translated
memory management.

DRAM and Non-Translated Memory
Management

Before any DRAM can be used, the boot code must
program the DRAM controller (refer to the tables in the
Configuration Registers section of the ElanSC300
Microcontroller Programmer’s Reference Manual,
order #18470). Programming the controller sets the
total size of the DRAM space. DRAM-space sizes from
512 Kbyte to 16 Mbyte are supported. The DRAM
controller logically concatenates all the system DRAM
into a single unified address space that starts at
address 0. By default, CPU addresses from 0 to the top
of DRAM will be mapped to the DRAM space, in
preference to Local/lSA space. There are two
exceptions:

m The window from 640 Kbyte to 1 Mbyte (A0O000—
FFFFF) is not automatically mapped to DRAM.
Mapping in this region AOOOO-FFFFF remains what
it was before the DRAM controller was enabled. (A
description of the address range AOOOO—-FFFFF is
described in the Address Range AOOOO-FFFFF
section below.) It is possible to map addresses in
the range COO00—FFFFF to DRAM, also described
below. It is not possible to directly map addresses in
the range AOOOO-BFFFF to DRAM.

m The 64-Kbyte window at the top of CPU address
space (FFOO0O0-FFFFFF) is always mapped to
ROMCS.

The ElanSC300 microcontroller offers a limited amount
of programming control over DRAM using
non-translated memory management:

m In the region COO00-FFFFF, any 16-Kbyte region
that is mapped to Local/ISA bus (that is, not
mapped to ROMCS) can be redirected to DRAM by
setting bits in index registers 65h, 68h, and 69h.
This feature is sometimes called ROM shadowing,
because it allows shadowing of slow ROM into
faster DRAM. A flag in index register 65h allows this
shadowed memory to be write protected. Note that

the granularity for these shadowing regions is 16
Kbyte, whereas the granularity for ROMCS
mapping is 64 Kbyte. Thus, you can have a
64-Kbyte region that is a mixture of Local/ISA bus
and DRAM on 16-Kbyte boundaries, but you cannot
have a 64-Kbyte region that is a mixture of ROMCS
and DRAM.

After the DRAM size has been set by programming the
DRAM controller, any amount from 1 Mbyte to 15
Mbyte may be subtracted from the DRAM size using
index register 6Fh. The DRAM start address remains at
0 and the end address is reduced. It is even possible to
subtract the entire DRAM space using this method.
Accesses beyond the new DRAM end address revert
to Local/ISA bus space. However, the portions above 1
Mbyte can be redirected to DOSCS space, as
discussed in the following section.

DOSCS Space and Non-Translated
Memory Management

The DOSCS space is a 16-Mbyte space. No part of
DOSCS space is automatically mapped at reset. For
non-translated memory management (not using the
MMS), one can program index register B8h to map any
amount from 1 Mbyte minus 64 Kbyte up to 15 Mbyte
minus 64 Kbyte of DOSCS space in 1-Mbyte
increments. This non-translated DOSCS space always
ends at address FEFFFF. As an example, if 3 Mbyte
minus 64 Kbyte are mapped, the addresses DO0000—
FEFFFF will be mapped to DOSCS. Remember, the
region FFOO00—FFFFFF is always mapped to ROMCS,
which accounts for the minus 64 Kbyte.

In all cases, the DOSCS mapping is not allowed to
overlap with a range that is mapped to DRAM. Index
register 6Fh can be used to limit the size of DRAM
space if necessary. This DRAM limiting must be done
before DOSCS mapping is enabled.

Again, because this is non-translated memory
management, the MMU simply examines the CPU
address, chooses the DOSCS space, and passes the
untranslated address to the address lines.

Address Range AOOOO-FFFFF

The address range AOOOO-FFFFF is handled
differently for PC/AT compatibility. This section
summarizes the different ways AOOOO—-FFFFF can be
mapped.

At reset, the mapping for AOOOO—-FFFFF is:

AO000-B7FFF: Local/ISA
B8000-BFFFF: Display SRAM
COO00-EFFFF: Local/ISA
FOOOO-FFFFF: ROMCS

Elan™SC300 and ElanSC310 Microcontrollers Memory Management 3

AMDZ

The following should also be noted:

aTHe 48 play SRAM region, B8000—
BFFFF, can revert to Local/ISA by disabling the
internal video controller, or it can be moved to
BO0O0O0-B7FFF by setting the internal video
controller to HGA mode.

m When DRAM is enabled, the range AOOOO-FFFFF
is not automatically mapped to DRAM. Its mapping
remains at what it was before DRAM was enabled.

m With 64-Kbyte granularity, blocks in regions AOO00—
AFFFF and CO0000-FFFFF can be mapped to
ROMCS.

m With 16-Kbyte granularity, blocks in the region
CO000-FFFFF that are not already mapped to
ROMCS can be mapped to DRAM.

m With 16-Kbyte granularity, the four blocks in the
range AOOOO-AFFFF and up to eight consecutive
blocks in the range CO000-F3FFF can be mapped
using MMSB and MMSA, which use translated
memory management. This translated memory
management allows each 16-Kbyte region to be
mapped to any 16-Kbyte boundary in any address
space except Local/ISA bus. This is discussed
further in the next section.

TRANSLATED MEMORY MANAGEMENT

When the ElanSC300 microcontroller performs
translated memory management, it translates
addresses in addition to selecting the correct address
space for each access. A window in the CPU address
space is mapped to a particular target location in the
target address space.

The ElanSC300 microcontroller implements translated
memory management via two MMS windows: MMSA
and MMSB. MMSA consists of eight consecutive
16-Kbyte regions starting at any 16-Kbyte boundary
from C0000-D4000. MMSB consists of four
consecutive 16-Kbyte regions starting at AO000. Each
16-Kbyte region can be mapped to any 16-Kbyte
boundary in any address space except Local/ISA bus.
This allows mapping to any address in DRAM,
ROMCS, or DOSCS. On the ElanSC300
microcontroller only, you can also map to the four
PCMCIA memory spaces. Note that MMSA and MMSB
are the only means of accessing the four PCMCIA
memory spaces. They cannot be accessed via
non-translated memory management.

The particulars of programming MMSA and MMSB are
described in chapter 2 of the ElanSC300
Microcontroller Programmer’s Reference Manual,
order #18470. The following should be noted:

m All of the 16-Kbyte pages in either MMSA or MMSB
can be enabled or disabled by a global switch for
each MMS system. In addition, each individual
16-Kbyte page within MMSA or MMSB can be

enabled or disabled. When a 16-Kbyte page is
disabled, addresses in that range map to whatever
they would map to with non-translated memory
management. For example, if MMSA starts at
C0000, and page 4 (DO000-D3FFF) is disabled,
then DO000-D3FFF will go to either Local/ISA bus,
ROMCS, or to DRAM using the rules discussed in
the previous section entitled Non-Translated
Memory Management.

A page can be enabled in MMSA or MMSB only if the
non-translated mapping for that page is Local/ISA bus.
A page cannot have a non-translated mapping to
DRAM or ROMCS space. For example, if FOO00—
FFFFF is enabled for ROMCS mapping, and MMSA is
set to start at D4000, you cannot enable page 7 of
MMSA (FOO00-F3FFF) because FOOO0-F3FFF is
already mapped to ROMCS. Note, however, that if
FOOO0-FFFFF is disabled for ROMCS mapping, you
could enable page 7 of MMSA and still have F4000—
FFFFF mapped to DRAM. This is possible because
DRAM mapping in this region can be enabled or
disabled on 16-Kbyte boundaries.

Translated Memory Management in
System Management Mode

System Management Mode (SMM) on the ElanSC300
microcontroller involves the following mappings.

m When SMM is entered via an SMI, CPU addresses
60000-63FFF map to a translated DRAM location
on a 16-Kbyte boundary. The system state is saved
at the bottom of this area before the SMI execution
starts. The address that 60000 maps to in DRAM
space is programmable using index registers ASh
and AAh. This region, sometimes called SMM RAM,
can thus be mapped to a DRAM location such as
ACO00-AFFFF, which is normally unused because
ACO00-AFFFF cannot be mapped to DRAM in
normal (non-SMM) system operation. This allows
SMM RAM to be invisible to normal system
operation.

m Except for the region 60000—-63FFF, the remainder
of the CPU address mappings is identical to what it
was before the SMI. Remember that the SMI
handler execution begins at FFFFFO and that
FFFFFO always maps to ROMCS (it is entirely
independent of the mapping of the OFO000 block in
the lower 1 Mbyte). Also, remember that the
OF0000 block will not necessarily point to ROMCS
if it has been reprogrammed since processor reset.

4 Elan™SC300 and ElanSC310 Microcontrollers Memory Management

AMDZ1

REFERENCE MATERIAL

nU b h icrocontroller Data Sheet,
order #18514

m Elan™SC310 Microcontroller Data Sheet,
order #20668

m Elan™SC300 Programmer’s Reference Manual,
order #18470

m FElan™SC310 Programmer’s Reference Manual,
order #20665

m Flan™SC300 and ElanSC310 Microcontrollers
GATEAZ20 Function Clarification, order #21811

Trademarks
AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Am386 is a registered trademark and Elan is a trademark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Elan™SC300 and ElanSC310 Microcontrollers Memory Management 5

