LP3958

Lighting Management Unit with High Voltage Boost Converter

General Description

LP3958 is a Lighting Management Unit for portable applications. It is used to drive display backlight and keypad LEDs. The device can drive 5 separately connected strings of LEDs with high voltage boost converter.
The keypad LED driver allows driving LEDs from high voltage boost converter or separate supply voltage.The MAIN and SUB outputs are high resolution current mode drivers. Keypad LED outputs can be used in switch mode and current mode. External PWM control can be used for any selected outputs.
The device is controlled through 2 -wire low voltage $1^{2} \mathrm{C}$ compatible interface that reduces the number of required connections.
LP3958 is offered in a tiny 25 -bump micro-SMD package.

Features

- High efficiency boost converter with programmable output voltage
- 2 individual drivers for serial display backlight LEDs
- 3 drivers for serial keypad LEDs
- Automatic dimming controller
- Stand alone serial keypad LEDs controller
- 3 general purpose IO pins
- 25-bump micro SMD Package: (2.54mm x $2.54 \mathrm{~mm} x$ 0.6 mm)

Applications

- Cellular Phones and PDAs
- MP3 Players
- Digital Cameras

PACKAGE MARK

20175596

ORDERING INFORMATION

Order Number	Package Marking	Supplied As	Spec/Flow
LP3958TL	SJHB	TNR 250	NoPb
LP3958TLX	SJHB	TNR 3000	NoPb

Connection Diagrams and Package Mark Information

Pin \#	Name	Type	Description
$5 E$	SW	Output	Boost Converter Power Switch
5D	FB	Input	Boost Converter Feedback
5C	KEY1	Output	Keypad LED Output 1 (Current Sink)
5B	KEY2	Output	Keypad LED Output 2 (Current Sink)
5A	KEY3	Output	Keypad LED Output 3 (Current Sink)
4E	GND_SW	Ground	Power Switch Ground
4D	NRST	Input	External Reset, Active Low
4C	SCL	Logic Input	Clock Input for IC Compatible Interface
4B	IKEY	Input	External Keypad LED Maximum Current Set Resistor
4A	GND_KEY	Ground	Ground for KEY LED Currents
3E	VDD2	Power	Supply Voltage 3.0...5.5 V
3D	VDDIO	Power	Supply Voltage for Digital Input/Output Buffers and Drivers
3C	SDA	Logic Input/Output	Data Input/Output for I²C Compatible Interface
3B	GPIO[2]	Logic Input/Output	General Purpose Logic Input/Output
3A	GPIO[0] / PWM	Logic Input/Output	General Purpose Logic Input/Output / External PWM Input
2E	GND_WLED	Ground	Ground for White LED Currents (MAIN and SUB Outputs)
2D	GNDT	Ground	Ground
2C	VDD1	Power	Supply Voltage 3.0...5.5 V
2B	VREF	Output	Reference Voltage (1.23V)
2A	GPIO[1]	Logic Input/Output	General Purpose Logic Input/Output
1E	MAIN	Output	MAIN Display White LED Current Output (Current Sink)
1D	SUB	Output	SUB Display White LED Current Output (Current Sink)
1C	VDDA	Output	Internal LDO Output (2.80V)
1B	GND	Ground	Ground for Core Circuitry
1A	IRT	Input	Oscillator Frequency Set Resistor

Electrical Characteristics (Notes 2, 8)

 $\left(-30^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}\right)$. Unless otherwise noted, specifications apply to the LP3958 Block Diagram with: $\mathrm{V}_{\mathrm{DD} 1,2}=3.0 \ldots 5.5 \mathrm{~V}$, $\mathrm{C}_{\mathrm{VDD}}=\mathrm{C}_{\mathrm{VDDIO}}=100 \mathrm{nF}, \mathrm{C}_{\text {OUT }}=2 \times 4.7 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{VDDA}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{VREF}}=100 \mathrm{nF}, \mathrm{L} 1=10 \mu \mathrm{H}, \mathrm{R}_{\mathrm{KEY}}=8.2 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{RT}}=$ 82k (Note 9).

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {VDD }}$	Standby supply current ($\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$)	$\begin{array}{\|l\|} \hline \text { NSTBY = L } \\ \text { Register 0DH=08H (Note 10) } \end{array}$		1.7	7	$\mu \mathrm{A}$
	No-boost supply current ($\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$)	$\begin{aligned} & \text { NSTBY }=\mathrm{H}, \\ & \text { EN_BOOST }=\mathrm{L} \end{aligned}$		300	800	$\mu \mathrm{A}$
	No-load supply current $\left(\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)$	$\begin{aligned} & \text { NSTBY }=\mathrm{H}, \\ & \text { EN_BOOST }=\mathrm{H} \\ & \text { Autoload OFF } \end{aligned}$		750	1300	uA
$\mathrm{V}_{\text {DDA }}$	Output voltage of internal LDO	$\mathrm{I}_{\mathrm{VDDA}}=1 \mathrm{~mA}$	-3	2.80	+3	$\begin{aligned} & \hline \mathrm{V} \\ & \% \end{aligned}$
$\mathrm{V}_{\text {REF }}$	Reference voltage (Note 11)			1.23		V

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.
Note 2: All voltages are with respect to the potential at the GND pins.
Note 3: Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ (typ.) and disengages at $\mathrm{T}_{\mathrm{J}}=130^{\circ} \mathrm{C}$ (typ.).
Note 4: For detailed soldering specifications and information, please refer to National Semiconductor Application Note AN1112 : Micro SMD Wafer Level Chip Scale Package
Note 5: The Human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. MIL-STD-883 3015.7
Note 6: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature ($\mathrm{T}_{\mathrm{A}-\mathrm{MAX}}$) is dependent on the maximum operating junction temperature ($\mathrm{T}_{\mathrm{J} \text {-MAX-OP }}=125^{\circ} \mathrm{C}$), the maximum power dissipation of the device in the application ($\mathrm{P}_{\mathrm{D}-\mathrm{MAX}}$), and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $\mathrm{T}_{\text {A-MAX }}=\mathrm{T}_{\mathrm{J} \text {-MAX-OP }}-\left(\theta_{\mathrm{JA}} \times \mathrm{P}_{\mathrm{D}-\mathrm{MAX}}\right)$.
Note 7: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
Note 8: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.
Note 9: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
Note 10: Boost output voltage set to $8 \mathrm{~V}(08 \mathrm{H}$ in register 0 DH$)$ to prevent any unneccessary current consumption.
Note 11: No external loading allowed for $\mathrm{V}_{\text {REF }}$ pin.

20175574

Modes of Operation

RE韩询＂LP3958T ln＂䣏度商T mode all the internal registers are reset to the default values．Reset is entered always if input NRST is LOW or internal Power On Reset is active．Power On Reset（POR）will activate during the chip startup or when the supply voltages $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ fall below 1.5 V ．Once $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ rises above 1.5 V ， POR will inactivate and the chip will continue to the STANDBY mode．NSTBY control bit is low after POR by default．
STANDBY：The STANDBY mode is entered if the register bit NSTBY is LOW and Reset is not active．This is the low power consumption mode，when all circuit functions are disabled．Registers can be written in this mode and the control bits are effective immediately after start up．
STARTUP：When NSTBY bit is written high，the INTERNAL STARTUP SEQUENCE powers up all the needed internal blocks（ $\mathrm{V}_{\text {REF }}$ ，Bias，Oscillator etc．）．To ensure the correct oscillator initialization，a 10 ms delay is generated by the internal state－machine．If the chip temperature rises too high，the Thermal Shutdown（THSD） disables the chip operation and STARTUP mode is entered until no thermal shutdown event is present．
BOOST STARTUP：Soft start for boost output is generated in the BOOST STARTUP mode．The boost output is raised in low current PWM mode during the 20 ms delay generated by the state－machine．All LED outputs are off during the 20ms delay to ensure smooth startup．The Boost startup is entered from Internal Startup Sequence if EN＿BOOST is HIGH or from Normal mode when EN＿BOOST is written HIGH．
NORMAL：During NORMAL mode the user controls the chip using the Control Registers．The registers can be written in any sequence and any number of bits can be altered in a register in one write．

20175576

Magnetic Boost DC/DC Converter

The LP3958 Boost DC/DC Converter generates an 8...18V supply voltage for the LEDs from single Li-Ion battery $(3 \mathrm{~V} \ldots 4.5 \mathrm{~V})$. The output voltage is controlled with an 8 -bit register in 10 steps. The converter is a magnetic switching PWM mode DC/DC converter with a current limit. Switching frequency is 1 MHz , when timing resistor RT is $82 \mathrm{k} \Omega$. Timing resistor defines the internal oscillator frequency and thus directly affects boost frequency and KEY timings.
EMI filter (R_{SW} and C_{Sw}) on the SW pin can be used to suppress EMI caused by fast switching. These components should be as near as possible to the SW pin to ensure reliable operation. The LP3958 Boost Converter uses pulseskipping elimination to stabilize the noise spectrum. Even with light load or no load a minimum length current pulse is
fed to the inductor. An active load is used to remove the excess charge from the output capacitor at very light loads. Active load can be disabled with the EN_AUTOLOAD bit. Disabling active load will increase slightly the efficiency at light loads, but the downside is that pulse skipping will occur. The Boost Converter should be stopped when there is no load to minimise the current consumption.
The topology of the magnetic boost converter is called CPM control, current programmed mode, where the inductor current is measured and controlled with the feedback. The user can program the output voltage of the boost converter. The output voltage control changes the resistor divider in the feedback loop. The following figure shows the boost topology with the protection circuitry. Four different protection schemes are implemented:

1. Over voltage protection, limits the maximum output voltage

- Keeps the output below breakdown voltage.
- Prevents boost operation if battery voltage is much higher than desired output.

2. Over current protection, limits the maximum inductor current

- Voltage over switching NMOS is monitored; too high voltages turn the switch off.

3. Feedback break protection. Prevents uncontrolled operation if FB pin gets disconnected.
4. Duty cycle limiting, done with digital control.

Boost Converter Topology

Magnetic Boost DC/DC Converter (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{I}_{\text {LOAD }}$	Maximum Continuous Load Current	$\begin{array}{\|l\|} \hline 3.0 \mathrm{~V}=\mathrm{V}_{\mathrm{IN}} \\ \mathrm{~V}_{\text {OUT }}=18 \mathrm{~V} \\ \hline \end{array}$			70	mA
$\mathrm{V}_{\text {OUT }}$	Output Voltage Accuracy (FB Pin)	$\begin{array}{\|l} \hline 3.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=18 \mathrm{~V} \\ \hline \end{array}$	-3.5		+3.5	\%
RDS ${ }_{\text {ON }}$	Switch ON Resistance	$\mathrm{I}_{\text {SW }}=0.5 \mathrm{~A}$		0.15	0.3	Ω
$\mathrm{f}_{\text {PWM }}$	PWM Mode Switching Frequency	$\mathrm{RT}=82 \mathrm{k} \Omega$		1.0		MHz
	Frequency Accuracy	$\mathrm{RT}=82 \mathrm{k} \Omega$	$\begin{aligned} & \hline-7 \\ & -9 \end{aligned}$		$\begin{aligned} & \hline+7 \\ & +9 \end{aligned}$	\%
$\mathrm{t}_{\text {PULSE }}$	Switch Pulse Minimum Width	no load		45		ns
$\mathrm{t}_{\text {Startup }}$	Startup Time	Boost startup from STANDBY to $\mathrm{V}_{\text {OUT }}$ $=18 \mathrm{~V}$, no load		15		ms
$\mathrm{I}_{\text {max }}$	SW Pin Current Limit			800	1150	mA

BOOST STANDBY MODE

User can set the Boost Converter to STANDBY mode by writing the register bit EN_BOOST low. When EN_BOOST is written high, the converter starts for 20 ms in low current PWM mode and then goes to normal PWM mode. All LED outputs are off during the 20 ms delay to ensure smooth startup.

BOOST OUTPUT VOLTAGE CONTROL

User can control the boost output voltage by Boost Output 8 -bit register.

Boost Output [7:0] Register 0DH		Boost Output Voltage (typical)
Bin	Dec	
00001000	8	8.0 V
00001001	9	9.0 V
00001010	10	10.0 V
00001011	11	11.0 V
00001100	12	12.0 V
00001101	13	13.0 V
0000110	14	14.0 V
00001111	15	15.0 V
00010000	16	16.0 V
00010001	17	17.0 V
00010010	18	18.0 V

20175578

If register value is lower than 8 , then value of 8 is used internally.
If register value is higher than 18 , then value of 18 is used internally.

20175581
Boost Line Regulation 3.0V-3.6V, no load

Boost Converter Typical Performance Characteristics

查询＂LP3958T L＂供应商
Boost Load Transient Response 25 mA －70mA

20175585

Autoload Effect on Input Current，No Load

Boost Maximum Current vs．Output Voltage

$\stackrel{\infty}{\infty}$ Functionality of Keypad LED

LP3958 has three individual keypad LED output pins. Output pins can be used in switch mode or constant current mode. Output mode can be selected with the control register (address 00 H) bit CC_SW. If the bit is set high, then keypad LED outputs are in switch mode, otherwise in constant current mode. These modes are described later in separate chapters.
Keypad LED output control can be done in three ways:

1. Defining the expected balance and brightness in Keypad register (address 01H)
2. Direct setting each LED ON/OFF via Keypad control register (address 00H)
3. External PWM control

BRIGHTNESS CONTROL WITH KEYPAD REGISTER

If the keypad LED output is used by defining the balance and brightness in the Keypad register, then one needs to set EN_KEYP bit high and KEYP_PWM bit high in the Control register (address 00H). K1SW, K2SW and K3SW are used to enable each LED output, enabled when written high. CC_SW defines the LED output mode. A single register is used for defining the balance and brightness for keypad LED output:

KEYPAD REGISTER (01H)		
Name	Bit	Description
BALANCE[2:0]	$6: 4$	Balance of KEY1, KEY2 and KEY3 outputs
BRIGHT[2:0]	$3: 1$	Brightness control
OVL	0	Overlapping mode selection: $0=$ non-overlapping mode $1=$ overlapping mode

Brightness control is logarithmic and is programmed as follows:

Bright[2:0]	Brightness [\%]	Ratio to max brightness
000	0	0
001	1.56	$1 / 64$
010	3.12	$1 / 32$
011	6.25	$1 / 16$
100	12.5	$1 / 8$
101	25	$1 / 4$
110	50	$1 / 2$
111	100	$1 / 1$

The LED balance can be selected as follows. This is valid only in non-overlapping mode.

Balance [2:0]	KEY1 active [\%]	KEY2 active [\%]	KEY3 active [\%]
000	100	0	0
001	0	100	0
010	0	0	100
011	50	50	0
100	0	50	50
101	50	0	50
110	33	33	33
111	50	25	25

OVERLAPPING MODE

The brightness is controlled using PWM duty cycle based control method as the following figure shows.

Since KEY outputs are on simuneltaneously, the maximum load peak current is:

$$
I_{\text {MAX }}=I(K E Y 1)_{\text {MAX }}+I(K E Y 2)_{\text {MAX }}+I(\text { KEY } 3)_{\text {MAX }}
$$

NON-OVERLAPPING MODE

The timing diagram shows the splitted KEY1, KEY2 and KEY3 and brightness control effect to splitted parts. Full brightness is used in the diagram. If for example $1 / 2$ brightness is used, the frame is still $50 \mu \mathrm{~s}$, but all LED outputs' ON time is 50% shorter and at the last $25 \mu \mathrm{~s}$ all LED outputs are OFF.

Functionality of Keypad LED Outputs（KEY1，KEY2，KEY3）（Continued）查询＂LP3958TL＂供应商

The non－overlapping mode has 8－programmed balance ra－ tios．Since the KEY1，KEY2 and KEY3 are split in to non－ overlapping slots the output current through the keypad LED can be calculated by following equation：

$$
\mathrm{I}_{\mathrm{AVG}}=\left(\mathrm{C}_{\mathrm{KEY} 1} \mathrm{XI}_{\mathrm{KEY} 1}+\mathrm{C}_{\mathrm{KEY} 2} \mathrm{XI} \mathrm{I}_{\mathrm{KEY} 2}+\mathrm{C}_{\mathrm{KEY} 3} \mathrm{XI} \mathrm{I}_{\mathrm{KEY}}\right) \mathrm{xB}
$$ where

C＝Balance［\％］（see table of balance control earlier）
$\mathrm{B}=$ Brightness［\％］（see table of Brightness Control）

LED ON／OFF CONTROL WITH KEYPAD CONTROL REGISTER

Each LED output can be set ON by writing the corresponding bit high in the control register．K1SW controls KEY1，K2SW controls KEY2 and K3SW controls KEY3 output．Note that EN＿KEYP bit must be high and KEYP＿PWM bit low．In this mode，the KEYPAD register does not have any effect． CC＿SW bit in control register defines the LED output mode．

Switch Mode／Constant Current Mode

Each keypad LED output can be set to act as a switch or a constant current sink．Selection of mode is done with the CC＿SW bit in the Control Register．If bit is set high，then the switch mode is selected．Default is switch mode．

1．SWITCH MODE

In switch mode，the keypad LED outputs are low ohmic switches to ground．Resistance is typically 3.5Ω ．External ballast resistors must be used to limit the current through the LED．

2．CONSTANT CURRENT MODE

In constant current mode，the maximum output current is defined with a single external resistor（ $\mathrm{R}_{\text {KEY }}$ ）and the maxi－ mum current control register（address 02 H ）．

KEYPAD MAX CURRENT REGISTER（02H）		
Name	Bit	Description
IK1［1：0］	$5: 4$	KEY1 maximum current
IK2［1：0］	$3: 2$	KEY2 maximum current
IK3［1：0］	$1: 0$	KEY3 maximum current

Maximum current for each LED output is adjusted with the Keypad max current register in following way：

IK1［1：0］，IK2［1：0］，IK3［1：0］	Maximum current／output
00	$0.25 \times \mathrm{I}_{\mathrm{MAX}}$
01	$0.50 \times \mathrm{I}_{\mathrm{MAX}}$
10	$0.75 \times \mathrm{I}_{\mathrm{MAX}}$
11	$1.00 \times \mathrm{I}_{\mathrm{MAX}}$

External ballast resistors are not needed in this mode．The maximum current for all keypad LED drivers is set with $\mathrm{R}_{\text {KEY }}$ ． The equation for calculating the maximum current is：

$$
I_{\text {MAX }}=100 \times 1.23 \mathrm{~V} /\left(\mathrm{R}_{\mathrm{KEY}}+50 \Omega\right)
$$

where
$\mathrm{I}_{\text {MAX }}=$ maximum KEY current in any KEY output（during constant current mode）
1.23 V ＝reference voltage
$100=$ internal current mirror multiplier
$\mathrm{R}_{\mathrm{KEY}}=$ resistor value in Ohms
$50 \Omega=$ Internal resistor in the $I_{\text {KEY }}$ input
Table with example resistance values and corresponding output currents：

KEY resistor $\mathbf{R}_{\mathbf{K E Y}}(\mathbf{k} \Omega)$	Maximum current／output $\mathbf{I}_{\mathbf{M A X}}(\mathbf{m A})$
8.2	14.9
9.1	13.4
10	12.2
12	10.2
15	8.2
18	6.8
24	5.1

Note that the LED output requires a minimum saturation voltage in order to act as a true constant current sink．The saturation voltage minimum is typically 100 mV ．If the LED output voltage drops below 100 mV ，then the current will decrease significantly．

The GPIO[0]/PWM pin can be used to control the KEY output. PWM function for the pin is selected by writing EN_PWM_PIN high in GPIO control register (address 06H). \bar{N} Note, that EN_KEYP bit must be set high. Each LED output can be enabled with K1SW, K2SW and K3SW bits. EN_EXT_K1_PWM, EN_EXT_K2_PWM and EN_EXT_K3_PWM bits are used to select, which LED outputs are controlled with the external PWM input. Note that
polarity of external PWM control is active high i.e. when high, then LED output is enabled. If KEYP_PWM is set low, then each selected LED output is controlled directly with external PWM input. If KEYP_PWM is set high, then internal PWM control is modulated by the external PWM input. In latter case, internal PWM control is passed to LED when external PWM input is high.

Keypad LEDs Driver Performance Characteristics

Symbol	Parameter	Condition	Min	Typ	Max	Units
LEAKAGE	KEY1, KEY2, KEY3 pin leakage current				$\mathbf{1}$	$\mu \mathrm{A}$
	I				15	mA

Note: KEY current should be limited as follows:
constant current mode - limited by external $R_{K E Y}$ resistor
switch mode - limited by external ballast resistors

Backlight Drivers

 are controlled by the 8 -bit current mode DACs with 0.1 mA step. MAIN and SUB LEDs can be also controlled with one DAC (MAIN) for better matching allowing the use of larger displays having up to 8 white LEDs by setting DISPL bit to 1 .

MAIN output for 4 LEDs (DISPL = 0)

MAIN and SUB outputs for 8 LEDs (DISPL = 1)

PWM CONTROL

External PWM control is enabled by writing 1 to EN_MAIN_PWM and/or EN_SUB_PWM bits in register address 2BH. GPIO[0] pin is used as external PWM input when EN_PWM_PIN is set high. PWM input is active high, i.e. LED is activated when in high state.

Backlight Drivers (Continued)

LP3958 has an automatic fade in and out for main and sub backlight. The fade function is enabled with EN_FADE bit. The slope of the fade curve is set by the SLOPE bit. Fade control for main and sub display is set by FADE_SEL bit.
Recommended fading sequence:

1. ASSUMPTION: Current WLED value in register
2. Set SLOPE
3. Set FADE_SEL
4. Set EN_FADE = 1
5. Set target WLED value
6. Fading will be done either within 0.65 s or 1.3 s based on SLOPE selection
Fading times apply to full scale change i.e. from 0 to 100% or vice versa. If the current change does not correspond to full scale change, the time will be respectively shorter. See WLED Dimming diagrams for typical fade times.

WLED CONTROL REGISTER (03H)		
Name	Bit	Description
SLOPE	5	FADE execution time: $0=1.3$ s (full scale) $1=0.65 s$ (full scale)
FADE_SEL	4	FADE selection: $0=$ FADE controls MAIN $1=$ FADE controls SUB
EN_FADE	3	FADE enable $0=$ FADE disabled $1=$ FADE enabled
DISPL	2	Display mode: $0=$ MAIN and SUB individual control $1=$ MAIN and SUB controlled with MAIN DAC
EN_MAIN	1	MAIN enable: $0=$ disable $1=$ enable
EN_SUB	0	SUB enable: $0=$ disable $1=$ enable

Note: if DISPL=1 and FADE_SEL=0 then FADE effects MAIN and SUB

Adjustment is made with 04 H (main current) and with 05 H (sub current) registers:

MAIN CURRENT [7:0] SUB CURRENT [7:0]	Driver current, mA (typical)
00000000	0
00000001	0.1
00000010	0.2
00000011	0.3
\ldots	\ldots
\ldots	\ldots
11111101	25.3
11111110	25.4
11111111	25.5

查询＂LP3 Symbel	581 "供应商 Parameter	Conditions	Min	Typical	Max	Units
$\mathrm{I}_{\text {MAX }}$	Maximum Sink Current			25.5	30	mA
$\mathrm{I}_{\text {LEAKAGE }}$	Leakage Current	$\mathrm{V}_{\text {SUB，MAIN }}=18 \mathrm{~V}$		0.03	1	$\mu \mathrm{A}$
$I_{\text {MAIN }}$ $I_{\text {Sub }}$	MAIN Current tolerance SUB Current tolerance	$\mathrm{I}_{\text {MAIN }}$ and $\mathrm{I}_{\text {SUB }}$ set to $12.8 \mathrm{~mA}(80 \mathrm{H})$	11.1	12.8	14.1	mA
Match $_{\text {MAIN－SUB }}$	Sink Current Matching Error	$\mathrm{I}_{\text {SINK }}=12.8 \mathrm{~mA}$ ，DISPL＝1		0.2		\％
Match $_{\text {MAIN－SUB }}$	Sink Current Matching Error	$\mathrm{I}_{\text {SINK }}=12.8 \mathrm{~mA}$ ，DISPL＝0		5		\％
$\mathrm{V}_{\text {SAT }}$	95\％Saturation Voltage	$\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$		400	$\begin{aligned} & 600 \\ & 800 \end{aligned}$	mV

Note：Matching is the maximum difference from the average．

WLED Output Current vs．Voltage

20175592

General Purpose I／O Functionality

询＂LLP39588ids＂供应商eral purpose I／O pins：GPIO［0］／PWM， GPIO［1］and GPIO［2］．GPIO［0］／PWM can also be used as a PWM input for the external LED PWM controlling．GPIO bi－directional drivers are operating from the $\mathrm{V}_{\text {DDIO }}$ supply domain．Registers for GPIO are as follows：

GPIO CONTROL（06H）		
Name	Bit	Description
EN＿PWM＿PIN	4	Enable PWM pin $0=$ disable $1=$ enable
OEN［2：0］	$2: 0$	GPIO pin direction $0=$ input $1=$ output

GPIO DATA（07H）		
Name	Bit	Description
DATA［2：0］	$2: 0$	Data bits

GPIO control register is used to set the direction of each GPIO pin．For example，by setting OENO bit high the GPIO［0］／PWM pin acts as a logic output pin with data de－ fined DATA0 in GPIO data register．Note，that the EN＿PW－ M＿PIN bit overrides OENO state by forcing GPIO［0］／PWM to act as PWM input．GPIO［1］and GPIO［2］pins can be se－ lected to be inputs or outputs，defined by OEN1 and OEN2 bit status．PWM functionality is valid only for GPIO［0］／PWM pin．GPIO data register contains the data of GPIO pins． When output direction is selected to GPIO pin，then GPIO data register defines the output pin state．When GPIO data register is read，it contains the state of the pin despite of the pin direction．

Logic Interface Characteristics

$\left(\mathrm{V}_{\mathrm{DDIO}}=1.65 \mathrm{~V}\right.$ ．．． $\mathrm{V}_{\mathrm{DD} 1,2}$ unless otherwise noted $)$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
LOGIC INPUT SCL，SDA，GPIO［0：2］						
$\mathrm{V}_{\text {IL }}$	Input Low Level				0.2 xV DDIO	V
V_{IH}	Input High Level		$0.8 \times \mathrm{V}_{\text {DDIO }}$			V
I_{1}	Logic Input Current		－1．0		1.0	$\mu \mathrm{A}$
$\mathrm{f}_{\mathrm{SCL}}$	Clock Frequency				400	kHz
LOGIC INPUT NRST						
$\mathrm{V}_{\text {IL }}$	Input Low Level				0.5	V
V_{IH}	Input High Level		1.2			V
I_{1}	Input Current		－1．0		1.0	$\mu \mathrm{A}$
$\mathrm{t}_{\text {NRST }}$	Reset Pulse Width		10			$\mu \mathrm{s}$
LOGIC OUTPUT SDA						
V_{OL}	Output Low Level	$\mathrm{I}_{\text {SDA }}=3 \mathrm{~mA}$		0.3	0.5	V
V_{OH}	Output High Level	$\mathrm{I}_{\text {SDA }}=-3 \mathrm{~mA}$	$\mathrm{V}_{\text {DIIO }}-0.5$	$\mathrm{V}_{\text {DDIO }}-0.3$		
I_{L}	Output Leakage Current	$\mathrm{V}_{\text {SDA }}=2.8 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
LOGIC OUTPUT GPIO［0：2］						
$\mathrm{V}_{\text {OL }}$	Output Low Level	$\mathrm{I}_{\text {GPIO }}=3 \mathrm{~mA}$		0.3	0.5	V
V_{OH}	Output High Level	$\mathrm{I}_{\text {GPIO }}=-3 \mathrm{~mA}$	$\mathrm{V}_{\text {DDIO }}-0.5$	$\mathrm{V}_{\text {DDIO }}-0.3$		V
I_{L}	Output Leakage Current	$\mathrm{V}_{\text {GPIO }}=2.8 \mathrm{~V}$			1.0	$\mu \mathrm{A}$

I^{2} C Compatible Interface

The SCL pin is used for the $I^{2} \mathrm{C}$ clock and the SDA pin is used for bidirectional data transfer. Both these signals need a pull-up resistor according to $I^{2} \mathrm{C}$ specification.

$I^{2} \mathrm{C}$ DATA VALIDITY

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when CLK is LOW.

20175549
$I^{2} \mathrm{C}$ Signals: Data Validity

$I^{2} \mathrm{C}$ START AND STOP CONDITIONS

START and STOP bits classify the beginning and the end of the $I^{2} \mathrm{C}$ session. START condition is defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The $I^{2} \mathrm{C}$ master always generates START and STOP bits. The $I^{2} \mathrm{C}$ bus is considered to be busy after START condition and free after STOP condition. During data transmission, $I^{2} \mathrm{C}$ master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise.

TRANSFERRING DATA

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the $9^{\text {th }}$ clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been received.
After the START condition, the $I^{2} \mathrm{C}$ master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). The LP3958 address is 59 H (101 1001b). For the eighth bit, a " 0 " indicates a WRITE and a " 1 " indicates a READ. This means that the first byte is B2H for WRITE and B3H for READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

$I^{2} \mathrm{C}$ Chip Address
Register changes take an effect at the SCL rising edge during the last ACK from slave.

$I^{2} \mathrm{C}$ Compatible Interface
 （Continued）

询＂LP3958TL＂供应商

$w=$ write $(S D A=" 0 ")$
$r=\operatorname{read}(S D A=" 1 ")$
ack＝acknowledge（SDA pulled down by either master or slave）
rs＝repeated start
id $=7$－bit chip address，59H（101 1001b）for LP3958．
$I^{2} \mathrm{C}$ Write Cycle

When a READ function is to be accomplished，a WRITE function must precede the READ function，as shown in the Read Cycle waveform．

$\mathbf{I}^{2} \mathbf{C}$ Compatible Interface (Continued)

$I^{2} C$ Timing Diagram
$I^{2} \mathrm{C}$ TIMING PARAMETERS $\left(\mathrm{V}_{\mathrm{DD} 1,2}=3.0\right.$ to $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDIO}}=1.8 \mathrm{~V}$ to $\left.\mathrm{V}_{\mathrm{DD} 1,2}\right)$

Symbol	Parameter	Limit		Units
		Min	Max	
1	Hold Time (repeated) START Condition	0.6		$\mu \mathrm{s}$
2	Clock Low Time	1.3		$\mu \mathrm{S}$
3	Clock High Time	600		ns
4	Setup Time for a Repeated START Condition	600		ns
5	Data Hold Time (Output direction, delay generated by LP3958)	300	900	ns
5	Data Hold Time (Input direction, delay generated by Master)	0	900	ns
6	Data Setup Time	100		ns
7	Rise Time of SDA and SCL	$20+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
8	Fall Time of SDA and SCL	$15+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
9	Set-up Time for STOP condition	600		ns
10	Bus Free Time between a STOP and a START Condition	1.3		$\mu \mathrm{s}$
C_{b}	Capacitive Load for Each Bus Line	10	200	pF

NOTE: Data guaranteed by design

塷 Recommended External Components

The output capacitor $\mathrm{C}_{\text {OUT }}$ directly affects the magnitude of the output ripple voltage. In general, the higher the value of $\mathrm{C}_{\text {OUT }}$, the lower the output ripple magnitude. Multilayer ceramic capacitors with low ESR are the best choice. At the lighter loads, the low ESR ceramics offer a much lower $\mathrm{V}_{\text {OUT }}$ ripple that the higher ESR tantalums of the same value. At the higher loads, the ceramics offer a slightly lower $\mathrm{V}_{\text {Out }}$ ripple magnitude than the tantalums of the same value. However, the $\mathrm{dv} / \mathrm{dt}$ of the $\mathrm{V}_{\text {Out }}$ ripple with the ceramics is much lower that the tantalums under all load conditions. Capacitor voltage rating must be sufficient, 25 V or greater is recommended. Examples of suitable capacitors are: TDK C3216X5R1E475K, Panasonic ECJ3YB1E475K, ECJMFB1E475K and ECJ4YB1E475K.
Some ceramic capacitors, especially those in small packages, exhibit a strong capacitance reduction with the increased applied voltage (DC bias effect). The capacitance value can fall below half of the nominal capacitance. Too low output capacitance can make the boost converter unstable. Output capacitors DC bias effect should be better than -50% at 18 V .

INPUT CAPACITOR, $\mathrm{C}_{\text {IN }}$

The input capacitor $\mathrm{C}_{\text {IN }}$ directly affects the magnitude of the input ripple voltage and to a lesser degree the $\mathrm{V}_{\text {OUT }}$ ripple. A higher value C_{IN} will give a lower $\mathrm{V}_{\mathbb{I N}}$ ripple. Capacitor voltage rating must be sufficient, 10 V or greater is recommended.

OUTPUT DIODE, D_{1}

A schottky diode should be used for the output diode. Peak repetitive current should be greater than inductor peak cur-
rent $(800 \mathrm{~mA})$ to ensure reliable operation. Schottky diodes with a low forward drop and fast switching speeds are ideal for increasing efficiency in portable applications. Choose a reverse breakdown voltage of the schottky diode significantly larger ($\sim 30 \mathrm{~V}$) than the output voltage. Do not use ordinary rectifier diodes, since slow switching speeds and long recovery times cause the efficiency and the load regulation to suffer. Example of suitable diode is: Central Semiconductor CMMSH1-40.

EMI FILTER COMPONENTS $\mathbf{C}_{s w}, \mathbf{R}_{\mathbf{s w}}$

EMI filter (R_{SW} and C_{sw}) on the SW pin can be used to suppress EMI caused by fast switching. These components should be as near as possible to the SW pin to ensure reliable operation. 50 V or greater voltage rating is recommended for capacitor.

INDUCTOR, L_{1}

A 10uH shielded inductor is suggested for LP3958 boost converter. The inductor should have a saturation current rating higher than the rms current it will experience during circuit operation (600 mA). Less than $300 \mathrm{~m} \Omega$ ESR is suggested for high efficiency and sufficient output current. Open core inductors cause flux linkage with circuit components and interfere with the normal operation of the circuit. This should be avoided. For high efficiency, choose an inductor with a high frequency core material such as ferrite to reduce the core losses. To minimize radiated noise, use a toroid, pot core or shielded core inductor. The inductor should be connected to the SW pin as close to the IC as possible. Examples of suitable inductors are: TDK VLF4012AT100MR79, VLF4018BT-100MR90, VLF5014AT-100MR92, Coilcraft LPS4018-103ML.

LIST OF RECOMMENDED EXTERNAL COMPONENTS

Symbol	Symbol explanation	Value	Unit	Type
$\mathrm{C}_{\text {VDD }}$	C between VDD1,2 and GND	100	nF	Ceramic, X7R / X5R
$\mathrm{C}_{\text {VDDIO }}$	C between VDDIO and GND	100	nF	Ceramic, X7R / X5R
$\mathrm{C}_{\text {VDDA }}$	C between VDDA and GND	1	$\mu \mathrm{F}$	Ceramic, X7R / X5R
$\mathrm{C}_{\text {OUt }}$	C between FB and GND	2×4.7 or 1×10	$\mu \mathrm{F}$	Ceramic, X7R / X5R, tolerance +/-10\%
	Maximum DC bias effect @ 18V	-50	\%	
$\mathrm{C}_{\text {IN }}$	C between battery voltage and GND	10	$\mu \mathrm{F}$	Ceramic, X7R / X5R
L_{1}	L between SW and $\mathrm{V}_{\text {BAT }}$	10	$\mu \mathrm{H}$	Shielded inductor, low ESR
	Saturation current	600	mA	
$\mathrm{C}_{\text {VREF }}$	C between $\mathrm{V}_{\text {REF }}$ and GND	100	nF	Ceramic, X7R / X5R
$\mathrm{R}_{\text {KEY }}$	R between $I_{\text {KEY }}$ and GND	8.2	$\mathrm{k} \Omega$	$\pm 1 \%$
$\mathrm{R}_{\text {RT }}$	R between $\mathrm{I}_{\text {RT }}$ and GND	82	$\mathrm{k} \Omega$	$\pm 1 \%$
D_{1}	Rectifying diode (Vf @ maxload)	0.3-0.5	V	Schottky diode
	Reverse voltage	30	V	
	Repetitive peak current	800	mA	
$\mathrm{C}_{\text {sw }}$	C in EMI filter	100	pF	Ceramic, X7R / X5R, 50V
$\mathrm{R}_{\text {sw }}$	R in EMI filter	390	Ω	$\pm 1 \%$
LEDs		User Defined		

Note: See Application Note AN-1436 "Design and Programming Examples for Lighting Management Unit LP3958" for more information on how to design with LP3958

LP3958 Control Register Names and Default Values									
$\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$	REGISTER	D7	D6	D5	D4	D3	D2	D1	
00	Control Register	KEYP_PWM	EN_KEYP	CC_SW		K1SW	K2SW	K3SW	5
		0	0	1		0	0	0	\%
01	Keypad		BALANCE[2:0]			BRIGHT[2:0]			OVL ${ }^{\circ}$
			0	0	0	0	0	0	0 「
02	Keypad Max Current			IK1[1:0]		1K2[1:0]		IK3[1:0] 牲	
				0	0	0	0	0	0 Er
03	WLED Control			SLOPE	FADE_SEL	EN_FADE	DISPL	EN_MAIN	EN_S ${ }^{\text {a }}$
				0	0	0	0	0	0
04	MAIN Current	MAIN[7:0]							
		0	0	0	0	0	0	0	0
05	SUB Current	SUB[7:0]							
		0	0	0	0	0	0	0	0
06	GPIO Control				EN_PWM_PIN		OEN[2:0]		
					0		0	0	0
07	GPIO Data						DATA[2:0]		
							0	0	0
OB	Enables		NSTBY	EN_BOOST			EN_AUTOLOAD		
			0	0			1		
OD	Boost Output	BOOST[7:0]							
		0	0	0	0	1	0	0	0
2B	PWM Enable				EN_EXT_K1_PWM	EN_EXT_K2_PWM	EN_EXT_K3_PWM	EN_MAIN_PWM	EN_SUB_PWM
					0	0	0	0	0

LP3958 Register Bit Explanations

Register Bit Accessibility and Initial Condition

Key	Bit Accessibility
RW	Read/write
R	Read only
$-0,-1$	Condition after POR

CONTROL REGISTER (00H) - KEYPAD LEDS CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
KEYP_PWM	EN_KEYP	CC_SW		K1SW	K2SW	K3SW	
RW -0	RW -0	RW -1	R -0	RW -0	RW -0	RW -0	R-0

KEYP_PWM	Bit 7	$0-$ Internal KEYPAD PWM control disabled $1-$ Internal KEYPAD PWM control enabled
EN_KEYP	Bit 6	$0-$ KEYPAD outputs disabled $1-$ KEYPAD outputs enabled
CC_SW	Bit 5	$0-$ Constant current sink mode $1-$ Switch mode
K1SW	Bit 3	$0-$ KEYPAD1 disabled $1-$ KEYPAD1 enabled
K2SW	Bit 2	$0-$ KEYPAD2 disabled $1-$ KEYPAD2 enabled
K3SW	Bit 1	$0-$ KEYPAD3 disabled $1-$ KEYPAD3 enabled

KEYPAD (01H) - KEYPAD BALANCE AND BRIGHTNESS CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
	BALANCE[2:0]			BRIGHT[2:0]			OVL
R - 0	RW -0						

BALANCE[2:0]	Bits 6-4	PWM balance for KEYPAD outputs
BRIGHT[2:0]	Bits 3-1	PWM brightness control for KEYPAD outputs
OVL	Bit 0	0 - Overlapping mode disabled $1-$ Overlapping mode enabled

LP3958 Register Bit Explanations (Continued)

D7	D6	D5	D4	D3	D2	D1	D0
IK1[1:0]		IK2[1:0]		IK3[1:0]			
R -0	R-0	RW -0					

Maximum current for KEY1,2,3 driver	
IK1,2,3[1:0]	Maximum output current
00	$0.25 \times \mathrm{I}_{\mathrm{MAX}}$
01	$0.50 \times \mathrm{I}_{\mathrm{MAX}}$
10	$0.75 \times \mathrm{I}_{\mathrm{MAX}}$
11	$1.00 \times \mathrm{I}_{\mathrm{MAX}}$

WLED CONTROL (03H) - WLED CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
			SLOPE	FADE_SEL	EN_FADE	DISPL	EN_MAIN
R -0	R -0	RW -0	RW -0	RW -0	RW_SUB -0	RW -0	RW -0

SLOPE	Bit 5	0 - fade execution time 0.65 sec (full scale) 1 - fade execution time 1.3 sec (full scale)
FADE_SEL	Bit 4	0 - fade control for MAIN 1 - fade control for SUB
EN_FADE	Bit 3	0 - automatic fade disabled 1 - automatic fade enabled
DISPL	Bit 2	0 - MAIN and SUB individual control 1 - MAIN and SUB controlled with MAIN DAC
EN_MAIN	Bit 1	$0-$ MAIN output disabled $1-$ MAIN output enabled
EN_SUB	Bit 0	$0-$ SUB output disabled $1-$ SUB output enabled

LP3958 Register Bit Explanations (Continued)

D7	D6	D5	D4	D3	D2	D1	D0
MAIN[7:0]							
RW -0							

SUB CURRENT (05H) - SUB CURRENT CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
SUB[7:0]							
RW -0							

MAIN, SUB current adjustment	
MAIN[7:0], SUB[7:0]	Typical driver current (mA)
00000000	0
00000001	0.1
00000010	0.2
00000011	0.3
00000100	0.4
\ldots	\ldots
11111101	25.3
11111110	25.4
11111111	25.5

GPIO CONTROL (06 H) - GPIO CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
			EN_PWM_PIN			OEN[2:0]	
R-0	R-0	R-0	RW -0	$R-0$	RW -0	RW -0	RW - 0

EN_PWM_PIN	Bit 4	$0-$ External PWM pin disabled $1-$ External PWM pin enabled
OEN[2:0]	Bits 2-0	$0-$ GPIO pin set as a input $1-$ GPIO pin set as a output

GPIO DATA (07 H) - GPIO DATA REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
					DATA[2:0]		
$R-0$	$R-0$	$R-0$	$R-0$	$R-0$	$R W-0$	$R W-0$	RW -0

DATA[2:0]	Bits 2-0	GPIO data register bits

LP3958 Register Bit Explanations
 (Continued)

D7	D6	D5	D4	D3	D2	D1	D0
	NSTBY	EN_BOOST			EN_AUTOLOAD		
R -0	RW -0	RW -0	$R-0$	$R-0$	RW -1	R -0	R - 0

NSTBY	Bit 6	$0-$ LP3958 standby mode $1-$ LP3958 active mode
EN_BOOST	Bit 5	$0-$ Boost converter disabled $1-$ Boost converter enabled
EN_AUTOLOAD	Bit 2	$0-$ Boost active load disabled $1-$ Boost active load enabled

BOOST OUTPUT (0DH) - BOOST OUTPUT VOLTAGE CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
BOOST[7:0]							
RW-0	RW -0	RW -0	RW - 0	RW -1	RW -0	RW -0	RW -0

BOOST output voltage adjustment	
BOOST[7:0]	Typical boost output voltage (V)
00001000	8.00
00001001	9.00
00001010	10.00
00001011	11.00
00001100	12.00
00001101	13.00
00001110	14.00
00001111	15.00
00010000	16.00
00010001	17.00
00010010	18.00

PWM ENABLE (2BH) - EXTERNAL PWM CONTROL REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
			EN_EXT_K1_PWM	EN_EXT_K2_PWM	EN_EXT_K3_PWM	EN_MAIN_PWM	EN_SUB_PWM
R-0	R-0	R - 0	RW -0	RW -0	RW -0	RW -0	RW - 0

EN_EXT_K1_PWM	Bit 4	$0-$ External PWM control for KEY1 disabled $1-$ External PWM control for KEY1 enabled
EN_EXT_K2_PWM	Bit 3	$0-$ External PWM control for KEY2 disabled $1-$ External PWM control for KEY2 enabled
EN_EXT_K3_PWM	Bit 2	$0-$ External PWM control for KEY3 disabled $1-$ External PWM control for KEY3 enabled
EN_EXT_MAIN_PWM	Bit 1	$0-$ External PWM control for MAIN disabled $1-$ External PWM control for MAIN enabled
EN_EXT_SUB_PWM	Bit 0	$0-$ External PWM control for SUB disabled $1-$ External PWM control for SUB enabled

DIMENSIONS ARE IN MILLIMETERS
DIMENSIONS IN（）FOR REFERENCE ONLY

LAND PATTERN RECOMMENDATION

The dimension for $\mathrm{X} 1, \mathrm{X} 2$ and X 3 are as given：
－ $\mathrm{X} 1=2.543 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$
－$X 2=2.543 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$
－ $\mathrm{X} 3=0.60 \mathrm{~mm} \pm 0.075 \mathrm{~mm}$

25－bump micro SMD Package， $2.54 \times 2.54 \times 0.6 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch NS Package Number TLA25CCA

See Application note AN－1112 for PCB design and assembly instructions．

National does not assume any responsibility for use of any circuitry described，no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications．
For the most current product information visit us at www．national．com．

LIFE SUPPORT POLICY

NATIONAL＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body，or （b）support or sustain life，and whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury to the user．

2．A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification（CSP－9－111C2）and the Banned Substances and Materials of Interest Specification（CSP－9－111S2）and contain no＂Banned Substances＂as defined in CSP－9－111S2．
Leadfree products are RoHS compliant．

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Americas Customer	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax：＋49（0）180－530 8586	Support Center	Fax：81－3－5639－7507
Email：new．feedback＠nsc．com	Email：europe．support＠nsc．com	Email：ap．support＠nsc．com	Email：jpn．feedback＠nsc．com
Tel：1－800－272－9959	Deutsch Tel：＋49（0） 6995086208		Tel：81－3－5639－7560
	English Tel：+44 （0） 8702402171		
www．national．com	Français Tel：+33 （0） 141918790		

