SKiiP 2413GB123-4DL # 2-pack-integrated intelligent Power System ### Power section SKiiP 2413GB123-4DL Data #### **Power section features** - SKiiP technology inside - Trench IGBTs - CAL HD diode technology - · Integrated current sensor - Integrated temperature sensor - Integrated heat sink - IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System) - IEC 60068-1 (climate) 40/125/56 - UL recognized File no. E63532 - with assembly of suitable MKP capacitor per terminal - 8) AC connection busbars must be connected by the user; copper busbars available on request | Characteristics | | | | T _s = 25°C unless otherwise specified | | | | | | |--|--|--|-------------|--|-------------------------------------|-------------------------------------|------------------------|---------------------|--| | | Conditions | | | min. | typ. | max. | Units | | | | IGBT | | | | | | ٠, ۲ | | | | | V _{CEsat} | I _C = 1200
measured at | A, T _j = 25 (
terminal | (125) °C; | | | 1,7 (1,9) | 2,1 | V | | | V _{CEO} r _{CE} l _{CES} | T_j = 25 (125) °C; at terminal T_j = 25 (125) °C; at terminal V_{GE} = 0 V, V_{CE} = V_{CES} , T_i = 25 (125) °C | | | | 0,9 (0,8)
0,7 (0,9)
4,8 (144) | 1,1 (1)
0,9 (1,2) | V
mΩ
mA | | | | E _{on} + E _{off} | I _C = 1200 | $I_{\rm C} = 1200 \text{ A}, V_{\rm CC} = 600 \text{ V}$
$T_{\rm i} = 125 ^{\circ}\text{C}, V_{\rm CC} = 900 \text{ V}$ | | | | 442
780 | | | | | R _{CC+EE} ,
L _{CE} | terminal chip, T _j = 25 °C top, bottom | | | 0,13
3 | | | mΩ
nH
nF | | | | C _{CHC} | per phase | , AC-Side | | | | 6,8 | | IIF | | | Inverse of V _F = V _{EC} | Iiode
I _F = 1200 i
measured at | A, T _j = 25 (
terminal | (125) °C | | | 1,5 (1,5) | 1,8 | V | | | V _{TO}
r _T
E _{rr} | $T_j = 25 (12)$
$T_j = 25 (12)$
$I_C = 1200$
$T_j = 125 °C$ | 25) °C | | | | 0,9 (0,7)
0,5 (0,7)
84
112 | 1,1 (0,9)
0,6 (0,8) | V
mΩ
mJ
mJ | | | Mechani | cal data | | | | | | | | | | M _{dc}
M _{ac}
w | DC terminals, SI Units
AC terminals, SI Units
SKiiP® 3 System w/o heat sink | | | 6
13 | 3,1 | 8
15 | Nm
Nm
kg | | | | w | heat sink | | | | | 9,7 | | kg | | | Thermal characteristics (PX 16 heat sink with fan SKF 16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor | | | | | | | | | | | $R_{th(j-s)l}$ | per IGBT | | | | | | 0,015 | K/W | | | $R_{th(j-s)D}$ | per diode | | | | | | 0,029 | K/W | | | Z_{th} | R _i (mK/W) (max. values) | | | tau _i (s) | | | | | | | | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | $Z_{th(j-r)I}$
$Z_{th(j-r)D}$ | 5,6
10 | 6
8,4 | 6,4
14,8 | 0
14,8 | 363
50 | 0,18
5 | 0,04
0,25 | 1
0,04 | | | $Z_{\text{th(r-a)}}$ | 3,1 | 17,3 | 3,7 | 0,9 | 230 | 78 | 13 | 0,4 | | This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability. ## SKiiP 2413GB123-4DL | கு <mark>த்த</mark> ிte Maximum Ratings | | T _a = 25°C unless otherwise | T _a = 25°C unless otherwise specified | | | |---|--|--|--|--|--| | Symbol | Conditions | Values | Units | | | | V_{S2} | unstabilized 24 V power supply | 30 | V | | | | V_{i} | input signal voltage (high) | 15 + 0,3 | V | | | | dv/dt | secondary to primary side | 75 | kV/μs | | | | V_{isollO} | input / output (AC, rms, 2s) | 3000 | V | | | | V _{isolPD} | partial discharge extinction voltage,
rms, $Q_{PD} \le 10 \text{ pC}$; | 1170 | V | | | | V _{isol12} | output 1 / output 2 (AC, rms, 2s) | 1500 | V | | | | f _{sw} | switching frequency | 8 | kHz | | | | f _{out} | output frequency for I _{peak(1)} =I _C | 8 | kHz | | | | $T_{op} (T_{stg})$ | operating / storage temperature | - 40 + 85 | °C | | | | 2-pack-integrated intelligent Power System | |--| | 2-pack | | integrated gate driver | | SKiiP 2413GB123-4DL | Data #### **Gate driver features** - · CMOS compatible inputs - Wide range power supply - Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option) - Short circuit protection - · Over current protection - Over voltage protection (option) - Power supply protected against under voltage - Interlock of top/bottom switch - Isolation by transformers - Fibre optic interface (option for GB-types only) - IEC 60068-1 (climate) 40/85/56 - UL recognized file no. 242581 | Characteristics $(T_a = 25^{\circ}C)$ | | | | | | |---------------------------------------|--|--|------|------|-------| | | Conditions | min. | typ. | max. | Units | | V_{S2} | supply voltage non stabilized | 13 | 24 | 30 | ٧ | | I _{S2} | V _{S2} = 24 V | 324+50*f/kHz+0,00011*(I _{AC} /A) ² | | | mA | | V _{iT+} | input threshold voltage (High) | 12,0 | | 12,3 | V | | V_{iT-} | input threshold voltage (Low) | 4,6 | | | V | | R _{IN} | input resistance | | 10 | | kΩ | | C _{IN} | input capacitance | | 1 | | nF | | t _{d(on)IO} | input-output turn-on propagation time | | 1,3 | | μs | | $t_{d(off)IO}$ | input-output turn-off propagation time | 1,3 | | | μs | | t _{pERRRESET} | error memory reset time | 9 | | | μs | | t_{TD} | top / bottom switch interlock time | | 3,3 | | μs | | I _{analogOUT} | max. 5mA; 8 V corresponds to 15 V supply voltage for external components | | 2400 | | Α | | I _{s1out} | max. load current | | | 50 | mA | | I _{TRIPSC} | over current trip level | | | | _ | | | (I _{analog} OUT = 10 V) | | 3000 | | Α | | T_tp | over temperature protection | 110 | | 120 | °C | | U _{DCTRIP} | U _{DC} -protection (U _{analog OUT} = 9 V); | not
implemented | | V | | | | (option for GB types) | | | | | For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.