MG10H642s:MC:100H642

68030/040 PECL to TTL Clock Driver

Description

The $\mathrm{MC} 10 \mathrm{H} / 100 \mathrm{H} 642$ generates the necessary clocks for the 68030, 68040 and similar microprocessors. It is guaranteed to meet the clock specifications required by the 68030 and 68040 in terms of part-to-part skew, within-part skew and also duty cycle skew.

The user has a choice of using either TTL or PECL (ECL referenced to +5.0 V) for the input clock. TTL clocks are typically used in present MPU systems. However, as clock speeds increase to 50 MHz and beyond, the inherent superiority of ECL (particularly differential ECL) as a means of clock signal distribution becomes increasingly evident. The H642 also uses differential PECL internally to achieve its superior skew characteristic.

The H642 includes divide-by-two and divide-by-four stages, both to achieve the necessary duty cycle skew and to generate MPU clocks as required. A typical 50 MHz processor application would use an input clock running at 100 MHz , thus obtaining output clocks at 50 MHz and 25 MHz (see Logic Diagram).

The 10 H version is compatible with MECL $10 \mathrm{H}^{\mathrm{TM}}$ ECL logic levels, while the 100 H version is compatible with 100 K levels (referenced to +5.0 V).

Features

- Generates Clocks for 68030/040
- Meets 030/040 Skew Requirements
- TTL or PECL Input Clock
- Extra TTL and PECL Power/Ground Pins
- Asynchronous Reset
- Single +5.0 V Supply
- $\mathrm{Pb}-$ Free Packages are Available*

Function

$\operatorname{Reset}(R)$: LOW on RESET forces all Q outputs LOW.
Select(SEL): LOW selects the ECL input source (DE/DE). HIGH selects the TTL input source (DT).

The H642 also contains circuitry to force a stable input state of the ECL differential input pair, should both sides be left open. In this Case, the DE side of the input is pulled LOW, and $\overline{\mathrm{DE}}$ goes HIGH.

Power Up: The device is designed to have positive edges of the $\div 2$ and $\div 4$ outputs synchronized at Power Up.
*For additional marking information, refer to Application Note AND8002/D.

[^0][^1]

Figure 1. Pinout: PLCC-28
(Top View)

TTL Outputs

Figure 2. Logic Diagram

Table 1. PIN DESCRIPTION

Pin	Symbol	Description	Pin	Symbol	Description
1	Q3	Signal Output (TTL)**	15	VE	ECL $\mathrm{V}_{\text {cC }}(+5.0 \mathrm{~V}$)
2	VT	TTL $\mathrm{V}_{\text {CC }}(+5.0 \mathrm{~V})$	16	DE	ECL Signal Input (Non-Inverting)
3	VT	TTL V ${ }_{\text {CC }}(+5.0 \mathrm{~V}$)	17	DE	ECL Signal Input (lnverting)
4	Q4	Signal Output (TTL)**	18	V_{BB}	$\mathrm{V}_{\text {BB }}$ Reference Output
5	Q5	Signal Output (TTL)**	19	VT	TTL $\mathrm{V}_{\text {CC }}(+5.0 \mathrm{~V})$
6	GT	TTL Ground (0 V)	20	Q0	Signal Output (TTL)*
7	GT	TTL Ground (0 V)	21	GT	TTL Ground (0 V)
8	Q6	Signal Output (TTL)**	22	GT	TTL Ground (0 V)
9	Q7	Signal Output (TTL)**	23	Q1	Signal Output (TTL)*
10	VT	TTL $\mathrm{V}_{\mathrm{CC}}(+5.0 \mathrm{~V})$	24	VT	TTL $\mathrm{V}_{\mathrm{cc}}(+5.0 \mathrm{~V})$
11	SEL	Input Select (TTL)	25	VT	TTL $\mathrm{V}_{\text {cc }}(+5.0 \mathrm{~V})$
12	DT	TTL Signal Input	26	Q2	Signal Output (TTL)**
13	GE	ECL Ground (0 V)	27	GT	TTL Ground (0 V)
14	R	Reset (TTL)	28	GT	TTL Ground (0 V)

[^2]

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{I}_{\mathrm{INH}} \\ & \mathrm{I}_{\mathrm{NL}} \end{aligned}$	Input HIGH Current Input LOW Current		0.5	255	0.5	175	0.5	175	$\mu \mathrm{A}$
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input HIGH Voltage (Note 1) Input LOW Voltage (Note 1)	$\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}$	$\begin{aligned} & \hline 3.83 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 4.16 \\ & 3.52 \end{aligned}$	$\begin{aligned} & 3.87 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 4.19 \\ & 3.52 \end{aligned}$	$\begin{aligned} & 3.94 \\ & 3.05 \end{aligned}$	$\begin{gathered} 4.28 \\ 3.555 \end{gathered}$	V
$\mathrm{V}_{\text {BB }}$	Output Reference Voltage (Note 1)		3.62	3.73	3.65	3.75	3.69	3.81	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. PECL LEVELS are referenced to V_{CC} and will vary $1: 1$ with the power supply. The VALUES shown are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Table 3. 100H PECL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{E}}=5.0 \mathrm{~V} \pm \sqrt{\square} \%\right)$

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Max	Min	Max	
IINH $\mathrm{I}_{\mathrm{INL}}$	Input HIGH Current Input LOW Current		0.5	255	0.5	175	0.5	175	$\mu \mathrm{A}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input HIGH Voltage (Note 2) Input LOW Voltage (Note 2)	$\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}$	$\begin{aligned} & 3.835 \\ & 3.190 \end{aligned}$	$\begin{aligned} & 4.120 \\ & 3.525 \end{aligned}$	$\begin{aligned} & 3.835 \\ & 3.190 \end{aligned}$	$\begin{aligned} & 4.120 \\ & 3.525 \end{aligned}$	$\begin{aligned} & 3.835 \\ & 3.190 \end{aligned}$	$\begin{aligned} & 4.120 \\ & 3.525 \end{aligned}$	V
$\mathrm{V}_{\text {BB }}$	Output Reference Voltage (Note 2)		3.620	3.740	3.620	3.740	3.620	3.740	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
2. PECL LEVELS are referenced to V_{CC} and will vary $1: 1$ with the power supply. The VALUES shown are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Table 4. 10H/100H DC CHARACTERISTICS $\left(\mathrm{V}_{T}=\mathrm{V}_{\mathrm{E}}=5.0 \mathrm{~V} \pm \sqrt{5} \%\right)$

Symbol	Characteristic		Condition	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		Unit	
			Min	Max	Min	Max	Min	Max			
$\mathrm{I}_{\text {EE }}$	Power Supply Current	PECL		VE Pin		57		57		57	mA
$\mathrm{I}_{\mathrm{CCH}}$		TTL	Total All VT Pins		30		30		30	mA	
$\mathrm{I}_{\mathrm{CCL}}$					30		30		30	mA	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=\mathrm{O}^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input HIGH Voltage Input LOW Voltage		2.0	0.8	2.0	0.8	2.0	0.8	V
I_{IH}	Input HIGH Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 20 \\ 100 \end{gathered}$		$\begin{gathered} \hline 20 \\ 100 \end{gathered}$		$\begin{gathered} 20 \\ 100 \end{gathered}$	$\mu \mathrm{A}$
IIL	Input LOW Current	$\mathrm{V}_{1 \mathrm{IN}}=0.5 \mathrm{~V}$		-0.6		-0.6		-0.6	mA
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.5		0.5		0.5	V
V_{IK}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		-1.2		-1.2		-1.2	V
los	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-100	-225	-100	-225	-100	-225	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 6. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{E}}=5.0 \mathrm{~V} \pm \boxed{\mathrm{F}} \%\right)$

Symbol	Characteristic		Condition	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		Unit	
			Min	Max	Min	Max	Min	Max			
$\mathrm{t}_{\text {PLH }}$	Propagation Delay D to Output	$\begin{aligned} & \text { Q2-Q7 } \\ & \text { C ECL } \\ & \text { C TTL } \end{aligned}$		$\mathrm{CL}=25 \mathrm{pF}$	$\begin{aligned} & 4.70 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 5.70 \\ & 5.70 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 5.75 \\ & 5.75 \end{aligned}$	$\begin{aligned} & 4.60 \\ & 4.50 \end{aligned}$	$\begin{aligned} & 5.60 \\ & 5.50 \end{aligned}$	ns
tskpp	Part-to-Part Skew				1.0		1.0		1.0	ns	
tskwd*	Within-Device Skew				0.5		0.5		0.5	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay D to Output	$\begin{aligned} & \text { Q0, Q1 } \\ & \text { C ECL } \\ & \text { C TTL } \end{aligned}$	$\mathrm{CL}=25 \mathrm{pF}$	$\begin{aligned} & 4.30 \\ & 4.30 \end{aligned}$	$\begin{aligned} & 5.30 \\ & 5.30 \end{aligned}$	$\begin{aligned} & 4.50 \\ & 4.50 \end{aligned}$	$\begin{aligned} & 5.50 \\ & 5.50 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 4.25 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	ns	
tskpp	Part-to-Part Skew	All Outputs	$\mathrm{CL}=25 \mathrm{pF}$		2.0		2.0		2.0	ns	
tskwd	Within-Device Skew		$\mathrm{CL}=25 \mathrm{pF}$		1.0		1.0		1.0	ns	
$\mathrm{t}_{\text {PD }}$	Propagation Delay R to Output	All Outputs	$\mathrm{CL}=25 \mathrm{pF}$	4.3	6.3	4.0	6.0	4.5	6.5	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{R}} \\ & \mathrm{t}_{\mathrm{F}} \end{aligned}$	Output Rise/Fall Time 0.8 V to 2.0 V	All Outputs	$\mathrm{CL}=25 \mathrm{pF}$		$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	ns	
$\mathrm{f}_{\text {MAX }}{ }^{\text {** }}$	Maximum Input Frequency		$\mathrm{CL}=25 \mathrm{pF}$	100		100		100		MHz	
RPW	Reset Pulse Width			1.5		1.5		1.5		ns	
RRT	Reset Recovery Time			1.25		1.25		1.25		ns	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

* Within-Device Skew defined as identical transactions on similar paths through a device.
**MAX Frequency is 135 MHz .

To maintain a duty cycle of $\pm 5 \%$ at 50 MHz ，limit the load capacitance and／or power supply variation as shown in Figures 1 and 2．For a $\pm 2.5 \%$ duty cycle limit，see Figures 3 and 4．Figures 5 and 6 show duty cycle variation with temperature． Figure 7 shows typical TPD versus load．Figure 8 shows reset recovery time．Figure 9 shows output states after power up． Best duty cycle control is obtained with a single $\mu \mathrm{P}$ load and minimum line length．

Figure 3．MC10H642 Positive PW versus Load $@ \pm 5 \% \mathrm{~V}_{\mathrm{Cc}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 5．MC10H642 Positive PW versus Load ＠ $\pm 2.5 \% \mathrm{~V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 7．MC10H642 Positive PW versus Temperature，
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 4．MC10H642 Negative PW versus Load $@ \pm 5 \% \mathrm{~V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 6．MC10H642 Negative PW versus Load $@ \pm 2.5 \% \mathrm{~V}_{\mathrm{Cc}}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Figure 8．MC10H642 Negative PW versus Temperature， $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

MC10H642, MC100H642

Figure 9. MC10H642 + Tpd versus Load, $\mathrm{V}_{\mathrm{CC}} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Overshoot at 50 MHz with no load makes graph non linear)

Figure 10. Clock Phase and Reset Recovery Time After Reset Pulse

Figure 11. $\mathbf{Q} 2 \rightarrow \mathbf{Q} 7$ will Synchronize with Pos Edges of $D_{\text {in }} \& \mathbf{Q} 0 \rightarrow \mathbf{Q} 1$ Outputs

Figure 12. Switching Circuit and Waveforms

PECL/TTL

Figure 14. Waveforms: Rise and Fall Times

PECL/TTL

Figure 13. Propagation Delay - Single-Ended

Device	Package	Shipping †
MC10H642FN	PLCC-28	37 Units / Rail
MC10H642FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10H642FNR2	PLCC-28	$500 /$ Tape \& Reel
MC10H642FNR2G	PLCC-28 (Pb-Free)	$500 /$ Tape \& Reel
MC100H642FN	PLCC-28	37 Units / Rail
MC100H642FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC100H642FNR2	PLCC-28	$500 /$ Tape \& Reel
MC100H642FNR2G	PLCC-28 (Pb-Free)	$500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{\text {m }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

MC10H642，MC100H642

查询＂MC 100 H 642FNG＂供应商

PACKAGE DIMENSIONS

PLCC－28

FN SUFFIX
PLASTIC PLCC PACKAGE
CASE 776－02
ISSUE E

NOTES
1．DATUMS－L－，－M－，AND－N－DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE．
2．DIMENSION G1，TRUE POSITION TO BE MEASURED AT DATUM－T－，SEATING PLANE
3．DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH．ALLOWABLE MOLD FLASH IS 0.010 （0．250）PER SIDE

4．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982 ．
ANSI Y14．5M，1982．
6．THE PACKAGE TOP MAY BE SMALLER THAN
THE PACKAGE BOTTOM BY UP TO 0.012 （0．300）．DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH，TIE BAR BURRS，GATE BURRS AND INTERLEAD FLASH，BUT INCLUDING ANY MISMATCH between the top and bottom Of The PLASTIC BODY
7．DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION．THE DAMBAR PROTRUSION OR INTRUSION．THE DAMBAR NOT CAUSE THE H PROTRUSION（S）SHALL NOT CAUSE THE
DIMENSION TO BE GREATER THAN 0.037 DIMENSION TO BE GREATER THAN 0.037
(0.940) ．THE DAMBAR INTRUSION（S）SHALL （0．940）．THE DAMBAR INTRUSION（S）SH
NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 （ 0.635 ）

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.485	0.495	12.32	12.57
B	0.485	0.495	12.32	12.57
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27 BSC	
H	0.026	0.032	0.66	0.81
J	0.020	---	0.51	--
K	0.025	---	0.64	---
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
\mathbf{V}	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
\mathbf{X}	0.042	0.056	1.07	1.42
Y	---	0.020	---	0.50
Z	2°	10°	20°	100°
G1	0.410	0.430	10.42	10.92
K1	0.040	---	1.02	---

MC10H642，MC100H642

查询＂MC100H 642FNG＂供应商

ECLinPS is a trademark of Semiconductor Components Industries，LLC（SCILLC）．
MECL 10 H is a trademark of Motorola，Inc．
ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries，LLC（SCILLC）．SCILLC reserves the right to make changes without further notice to any products herein．SCILLC makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does SCILLC assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages． ＂Typical＂parameters which may be provided in SCILLC data sheets and／or specifications can and do vary in different applications and actual performance may vary over time．All operating parameters，including＂Typicals＂must be validated for each customer application by customer＇s technical experts．SCILLC does not convey any license under its patent rights nor the rights of others．SCILLC products are not designed，intended，or authorized for use as components in systems intended for surgical implant into the body，or other applications intended to support or sustain life，or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur．Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application，Buyer shall indemnify and hold SCILLC and its officers，employees，subsidiaries，aftiliates， associated with such unintended or unauthorized use，even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part．SCILLC is an Equal Opportunity／Affirmative Action Employer．This literature is subject to all applicable copyright laws and is not for resale in any manner．

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P．O．Box 5163，Denver，Colorado 80217 USA
Phone：303－675－2175 or 800－344－3860 Toll Free USA／Canada
Fax：303－675－2176 or 800－344－3867 Toll Free USA／Canada
Email：orderli＠＠onsemi．com

N．American Technical Support：800－282－9855 Toll Free USA／Canada
Europe，Middle East and Africa Technical Support：
Phone： 421337902910
Japan Customer Focus Center
Phone：81－3－5773－3850

ON Semiconductor Website：www．onsemi．com
Order Literature：http：／／www．onsemi．com／orderlit
For additional information，please contact your local Sales Representative

[^0]: ORDERING INFORMATION
 See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

[^1]: *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^2]: * Divide by 2
 **Divide by 4

