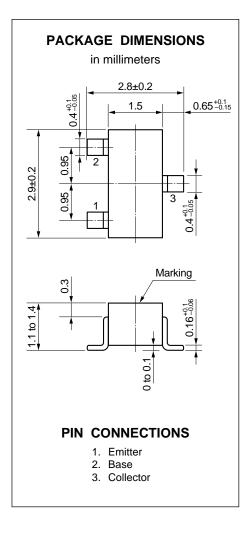


SILICON TRANSISTOR 2SC4954

HIGH FREQUENCY LOW NOISE AMPLIFIER NPN SILICON EPITAXIAL TRANSISTOR MINI MOLD

FEATURES

- · Low Noise, High Gain
- · Low Voltage Operation
- Low Feedback Capacitance
 Cre = 0.3 pF TYP.


ORDERING INFORMATION

PART NUMBER	QUANTITY	PACKING STYLE
2SC4954-T1	3 Kpcs/Reel.	Embossed tape 8 mm wide. Pin3 (Collector) face to perforation side of the tape.
2SC4954-T2	3 Kpcs/Reel.	Embossed tape 8 mm wide. Pin1 (Emitter), Pin2 (Base) face to perforation side of the tape.

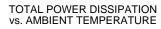
* Please contact with responsible NEC person, if you require evaluation sample. Unit sample quantity shall be 50 pcs. (Part No.: 2SC4954)

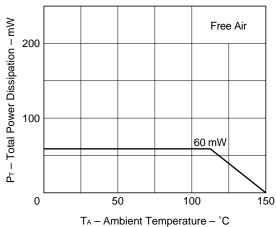
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

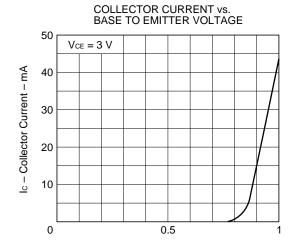
Vсво	9	V
Vceo	6	V
Vево	2	V
Ic	10	mA
Рт	60	mW
Tj	150	°C
Tstg	-65 to +150	°C
	VCEO VEBO IC PT Tj	VCEO 6 VEBO 2 Ic 10 PT 60 Tj 150

Caution; Electrostatic Sensitive Device.

ETERITARICANS 4CHARACTERISTICS (TA = 25 °C)

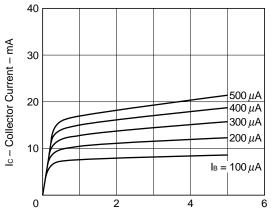

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION
Collector Cutoff Current	Ісво			0.1	μΑ	Vcb = 5 V, IE = 0
Emitter Cutoff Current	ІЕВО			0.1	μΑ	V _{EB} = 1 V, I _C = 0
DC Current Gain	hfe	75		150		Vce = 3 V, Ic = 5 mA*1
Gain Bandwidth Product	f⊤		12		GHz	Vce = 3 V, Ic = 5 mA, f = 2.0 GHz
Feed-back Capacitance	Cre		0.3	0.5	pF	Vcb = 3 V, IE = 0, f = 1 MHz*2
Insertion Power Gain	S _{21e} ²	7	8.5		dB	Vce = 3 V, Ic = 5 mA, f = 2.0 GHz
Noise Figure	NF		2.5	4.0	dB	VcE = 3 V, Ic = 3 mA, f = 2.0 GHz

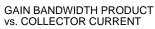

^{*1} Pulse Measurement; PW \leq 350 μ s, Duty Cycle \leq 2 % Pulsed.

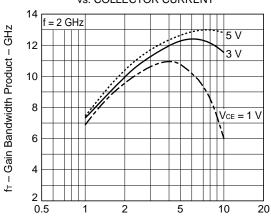

hfe Classification

Rank	T82		
Marking	T82		
hfE	75 to 150		

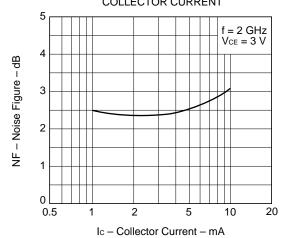
TYPICAL CHARACTERISTICS (TA = 25 °C)

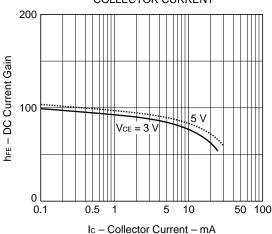



V_{BE} - Base to Emitter Voltage - V

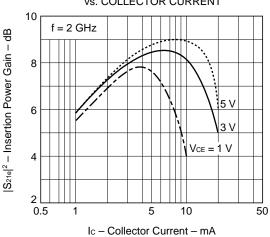

^{*2} Measured with 3 terminals bridge, Emitter and Case should be grounded.

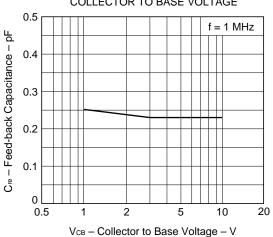
查询"2SC4954"供应商 COLLECTOR TO EMITTER VOLTAGE


Vce - Collector to Emitter Voltage - V



Ic - Collector Current - mA


NOISE FIGURE vs. COLLECTOR CURRENT


DC CURRENT GAIN vs. COLLECTOR CURRENT

INSERTION POWER GAIN vs. COLLECTOR CURRENT

FEED-BACK CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE

s争演《ASMETPER"供应商

f	S ₁₁		;	S ₂₁		S 12		S ₂₂	
(GHz) MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
0.200		-9.0	3.2340	168.1	0.0340	77.3	0.9870	-6.8	
0.400		-17.3	3.0460	154.7	0.0650	76.7	0.9640	-13.4	
0.600	0.8630	-25.8	2.9630	144.2	0.0930	71.6	0.9250	-19.5	
0.800	0.7880	-33.1	2.7870	133.1	0.1180	66.7	0.8850	-24.3	
1.000		-39.1	2.6480	123.5	0.1360	63.7	0.8330	-28.9	
1.200	0.6720	-45.2	2.5390	114.4	0.1570	57.2	0.7820	-33.2	
1.400	0.5910	-50.5	2.3460	106.8	0.1780	56.3	0.7570	-37.1	
1.600	0.5430	-55.0	2.2000	99.0	0.1870	51.7	0.7250	-40.1	
1.800		-57.4	2.0710	91.6	0.2030	51.3	0.6720	-43.2	
2.000		-60.7	1.9590	85.7	0.2090	50.4	0.6490	-46.1	
2.200		-66.9	1.8970	79.8	0.2240	50.9	0.6230	-49.1	
2.400	0.3390	-68.0	1.8100	74.8	0.2440	47.8	0.5970	-49.4	
2.600		-71.3	1.6980	70.2	0.2530	47.7	0.5740	-54.1	
2.800		-72.2	1.6530	64.7	0.2550	44.5	0.5610	-56.8	
3.000	0.1990	-68.9	1.5750	59.9	0.2830	43.0	0.5130	- 61.6	
(VCE = 3 V, Ic	c = 3 mA, Zo =	50 Ω)							
(VCE = 3 V, Id	c = 3 mA, Zo =	50 Ω) S ₁₁		S ₂₁	S	12	S	322	
,	·	,	MAG	S ₂₁	S MAG	i12 ANG	S MAG	S ₂₂ ANG	
f) MAG	S ₁₁							
f (GHz) MAG	S ₁₁ ANG	MAG	ANG	MAG	ANG	MAG	ANG	
f (GHz 0.200) MAG 0 0.8730 0 0.7600	S ₁₁ ANG -15.0	MAG 7.3980	ANG 159.5	MAG 0.0340	ANG 74.6	MAG 0.9590	ANG -11.1	
f (GHz 0.200 0.400	MAG 0 0.8730 0 0.7600 0 0.6530	S ₁₁ ANG -15.0 -26.2	MAG 7.3980 6.3600	ANG 159.5 140.6	MAG 0.0340 0.0580	ANG 74.6 71.3	MAG 0.9590 0.8830	ANG -11.1 -18.9	
f (GHz 0.200 0.400 0.600	MAG 0 0.8730 0 0.7600 0 0.6530 0 0.6530	S ₁₁ ANG -15.0 -26.2 -35.6 -35.6 -45.3	7.3980 6.3600 5.5680	ANG 159.5 140.6 127.0 127.0 105.8	MAG 0.0340 0.0580 0.0840	74.6 71.3 69.6	MAG 0.9590 0.8830 0.7970 0.7970 0.6690	ANG -11.1 -18.9 -25.7 -25.7 -32.7	
f (GHz 0.200 0.400 0.600 0.800	MAG 0 0.8730 0 0.7600 0 0.6530 0 0.6530 0 0.4750	S ₁₁ ANG -15.0 -26.2 -35.6 -35.6	7.3980 6.3600 5.5680 5.5680	ANG 159.5 140.6 127.0 127.0	MAG 0.0340 0.0580 0.0840 0.0840	74.6 71.3 69.6 69.6	MAG 0.9590 0.8830 0.7970 0.7970	ANG -11.1 -18.9 -25.7 -25.7 -32.7 -32.7	
f (GHz 0.200 0.400 0.600 0.800 1.000	MAG 0.8730 0.7600 0.6530 0.6530 0.4750 0.4110	S ₁₁ ANG -15.0 -26.2 -35.6 -35.6 -45.3	7.3980 6.3600 5.5680 5.5680 4.1940	ANG 159.5 140.6 127.0 127.0 105.8	MAG 0.0340 0.0580 0.0840 0.0840 0.1160	74.6 71.3 69.6 69.6 64.0	MAG 0.9590 0.8830 0.7970 0.7970 0.6690	ANG -11.1 -18.9 -25.7 -25.7 -32.7 -32.7 -36.3	
f (GHz 0.200 0.400 0.600 0.800 1.000 1.200	0.8730 0.7600 0.06530 0.04750 0.4110 0.3470	ANG -15.0 -26.2 -35.6 -35.6 -45.3 -48.3	7.3980 6.3600 5.5680 5.5680 4.1940 3.7680	ANG 159.5 140.6 127.0 127.0 105.8 98.0	MAG 0.0340 0.0580 0.0840 0.0840 0.1160 0.1330	74.6 71.3 69.6 69.6 64.0 64.0	MAG 0.9590 0.8830 0.7970 0.7970 0.6690 0.6690	ANG -11.1 -18.9 -25.7 -25.7 -32.7 -32.7	
f (GHz 0.200 0.400 0.600 0.800 1.000 1.200 1.400	MAG 0 0.8730 0 0.7600 0 0.6530 0 0.6530 0 0.4750 0 0.3470 0 0.3190	ANG -15.0 -26.2 -35.6 -35.6 -45.3 -48.3 -49.3	7.3980 6.3600 5.5680 5.5680 4.1940 3.7680 3.3170	ANG 159.5 140.6 127.0 127.0 105.8 98.0 91.8	MAG 0.0340 0.0580 0.0840 0.0840 0.1160 0.1330 0.1510	74.6 71.3 69.6 69.6 64.0 64.0 61.9	MAG 0.9590 0.8830 0.7970 0.7970 0.6690 0.6690 0.6060	ANG -11.1 -18.9 -25.7 -25.7 -32.7 -32.7 -36.3	
f (GHz 0.200 0.400 0.600 0.800 1.200 1.400 1.600	MAG 0 0.8730 0 0.7600 0 0.6530 0 0.6530 0 0.4750 0 0.4110 0 0.3470 0 0.3190 0 0.2830	S ₁₁ ANG -15.0 -26.2 -35.6 -35.6 -45.3 -48.3 -49.3 -50.4	7.3980 6.3600 5.5680 5.5680 4.1940 3.7680 3.3170 3.0080	ANG 159.5 140.6 127.0 127.0 105.8 98.0 91.8 85.7	MAG 0.0340 0.0580 0.0840 0.0840 0.1160 0.1330 0.1510 0.1600	74.6 71.3 69.6 69.6 64.0 64.0 61.9 62.5	MAG 0.9590 0.8830 0.7970 0.7970 0.6690 0.6690 0.6060 0.5720	ANG -11.1 -18.9 -25.7 -25.7 -32.7 -32.7 -36.3 -37.6	
f (GHz 0.200 0.400 0.600 0.800 1.000 1.400 1.600 2.000 2.200	MAG 0.8730 0.7600 0.6530 0.6530 0.4750 0.4110 0.3470 0.3190 0.2830 0.2510 0.2020	S ₁₁ ANG -15.0 -26.2 -35.6 -35.6 -45.3 -48.3 -49.3 -50.4 -46.5 -45.6 -48.2	7.3980 6.3600 5.5680 5.5680 4.1940 3.7680 3.3170 3.0080 2.7180 2.5040 2.3810	ANG 159.5 140.6 127.0 127.0 105.8 98.0 91.8 85.7 79.4	MAG 0.0340 0.0580 0.0840 0.1160 0.1330 0.1510 0.1600 0.1820 0.1980 0.2150	74.6 71.3 69.6 69.6 64.0 64.0 61.9 62.5 58.0 57.5 56.6	MAG 0.9590 0.8830 0.7970 0.7970 0.6690 0.6690 0.5720 0.5510 0.5290 0.5170	ANG -11.1 -18.9 -25.7 -25.7 -32.7 -32.7 -36.3 -37.6 -39.9 -41.8 -44.1	
f (GHz 0.200 0.400 0.600 1.000 1.200 1.400 1.800 2.000 2.200	0.8730 0.7600 0.6530 0.6530 0.4750 0.4110 0.3470 0.3190 0.2830 0.2510 0.2020 0.1940	S ₁₁ ANG -15.0 -26.2 -35.6 -35.6 -45.3 -48.3 -49.3 -50.4 -46.5 -45.6 -48.2 -47.4	7.3980 6.3600 5.5680 5.5680 4.1940 3.7680 3.3170 3.0080 2.7180 2.5040	ANG 159.5 140.6 127.0 127.0 105.8 98.0 91.8 85.7 79.4 74.9 70.4 66.0	MAG 0.0340 0.0580 0.0840 0.0840 0.1160 0.1330 0.1510 0.1600 0.1820 0.1980 0.2150 0.2290	74.6 71.3 69.6 69.6 64.0 64.0 61.9 62.5 58.0 57.5 56.6 53.2	MAG 0.9590 0.8830 0.7970 0.7970 0.6690 0.6690 0.6060 0.5720 0.5510 0.5290 0.5170 0.5070	ANG -11.1 -18.9 -25.7 -25.7 -32.7 -32.7 -36.3 -37.6 -39.9 -41.8 -44.1 -45.2	
f (GHz 0.200 0.400 0.600 0.800 1.000 1.400 1.600 2.000 2.200	0.8730 0.7600 0.6530 0.6530 0.4750 0.4110 0.3470 0.3190 0.2830 0.2830 0.2020 0.1940 0.1850	S ₁₁ ANG -15.0 -26.2 -35.6 -35.6 -45.3 -48.3 -49.3 -50.4 -46.5 -45.6 -48.2	7.3980 6.3600 5.5680 5.5680 4.1940 3.7680 3.3170 3.0080 2.7180 2.5040 2.3810	ANG 159.5 140.6 127.0 127.0 105.8 98.0 91.8 85.7 79.4 74.9 70.4	MAG 0.0340 0.0580 0.0840 0.1160 0.1330 0.1510 0.1600 0.1820 0.1980 0.2150	74.6 71.3 69.6 69.6 64.0 64.0 61.9 62.5 58.0 57.5 56.6	MAG 0.9590 0.8830 0.7970 0.7970 0.6690 0.6690 0.5720 0.5510 0.5290 0.5170	ANG -11.1 -18.9 -25.7 -25.7 -32.7 -32.7 -36.3 -37.6 -39.9 -41.8 -44.1	

3.000

0.1430

-31.7

1.8480

54.4

0.2940

53.6

0.4160

-54.9

s季源"ASMETPER"供应商

(VcE = 3 V, Ic = 5 mA, Zo = 50 Ω)

f	f S ₁₁		S 21		S 12		S 22	
(GHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
0.200	.775	-19.9	10.233	153.0	.029	78.0	.931	-14.1
0.400	.653	-32.4	8.408	133.2	.056	66.1	.815	-23.3
0.600	.527	-39.8	6.761	119.0	.073	70.0	.717	-27.3
0.800	.447	-45.7	5.598	108.5	.088	67.6	.639	-30.3
1.000	.359	-49.6	4.670	100.0	.111	66.9	.595	-31.2
1.200	.314	-50.3	4.118	92.7	.123	67.5	.565	-32.4
1.400	.279	-48.1	3.630	87.1	.140	66.8	.545	-34.4
1.600	.246	-46.9	3.246	82.1	.154	64.1	.519	-35.9
1.800	.219	-46.8	2.885	78.1	.178	62.0	.521	-37.0
2.000	.178	-43.6	2.747	73.7	.194	62.9	.500	-38.9
2.200	.165	-44.7	2.581	68.8	.201	62.0	.478	-43.1
2.400	.149	-37.6	2.382	64.8	.224	60.1	.455	-43.1
2.600	.137	-50.0	2.244	61.4	.241	60.9	.471	-43.9
2.800	.132	-47.6	2.138	59.0	.253	57.7	.449	-47.9
3.000	.103	-33.7	2.044	55.3	.265	55.3	.438	-47.0

查询"2SC4954"供应商

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.