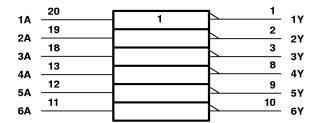
- Inputs Are TTL-Voltage Compatible
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages and Standard Plastic (N) 300-mil DIPs

DB, DW, N, OR PW PACKAGE (TOP VIEW) 1Y 🛮 20 1 1A 2Y 🛮 2 19 🛮 2A 3Y 🛮 18 🛮 3A 3 GND 1 4 17 NC GND [] 5 16 🛮 V_{CC} GND [] 6 15 V_{CC} GND 7 14 **∏** NC 4Y [8 13 **∏** 4A 5Y 🛮 9 12 🛮 5A 11 🛮 6A

NC - No internal connection

description


This device contains six independent inverters. It performs the Boolean function $Y = \overline{A}$.

The 74ACT11004 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each inverter)

INPUT A	OUTPUT Y
Н	L
L	н

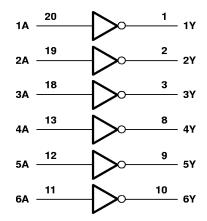
logic symbol[†]

†This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

POST OFFICE BOX 655303 ● DALLAS, TEXAS 75265

EPIC is a trademark of Texas Instruments Incorporated


TEXAS
INSTRUMENTS

Copyright © 1997, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

. . .

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 7 V
Input voltage range, V _I (see Note 1)		
Output voltage range, VO (see Note 1)		0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)		±20 mA
Output clamp current, IOK (VO < 0 or VO > VC	c)	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$		±50 mA
Continuous current through V _{CC} or GND		±150 mA
Package thermal impedance, θ _{JA} (see Note 2)): DB package	115°C/W
	DW package	97°C/W
	N package	67°C/W
	PW package	
Storage temperature range. Teta		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	٧
v_{IH}	High-level input voltage	2		٧
V_{IL}	Low-level input voltage		0.8	>
VI	Input voltage	0	VCC	٧
Vo	Output voltage	0	VCC	>
IОН	High-level output current		-24	mA
loL	Low-level output current		24	mA
Δt/Δν	Input transition rise or fall rate	0	10	ns/V
TA	Operating free-air temperature	-40	85	ô

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

查询"74ACT11004PW/LE"供应商

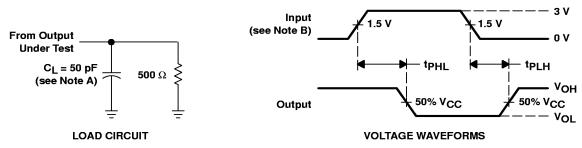
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	IDITIONS	v _{cc} -	V	T _A = 25°C		BAINI	MAY	LINUT
PARAMETER	TEST CON	NDITIONS		MIN	TYP	MAX	MIN	MAX	UNIT
		4.5 V	4.4			4.4			
	I _{OH} = -50 μA		5.5 V	5.4			5.4		
VOH		4.5 V	3.94			3.8		٧	
	$I_{OH} = -24 \text{ mA}$		5.5 V	4.94			4.8		
	I _{OH} = -75 mA [†]		5.5 V				3.85		
	L 50 · A		4.5 V			0.1		0.1	
	I _{OL} = 50 μA	5.5 V			0.1		0.1		
V _{OL}	L	4.5 V			0.36		0.44	V	
	I _{OL} = 24 mA		5.5 V			0.36		0.44	
$I_{OL} = 75 \text{ mA}^{\dagger}$			5.5 V					1.65	
ΙĮ	V _I = V _{CC} or GND		5.5 V			±0.1		±1	μΑ
lcc	$V_I = V_{CC}$ or GND, I_O	= 0	5.5 V			4		40	μΑ
Δl _{CC} ‡	One input at 3.4 V, Otl	her inputs at GND or V _{CC}	5.5 V			0.9		1	mA
Ci	V _I = V _{CC} or GND		5 V		3.5				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ns.

switching characteristics over recommended ranges of supply voltage and free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	T _A = 25°C			MIN	мах	UNIT
			MIN	TYP	MAX	IVIIIN IVIAA	UNIT	
†PLH	۸	V	1.5	5.3	9	1.5	9.7	20
t _{PHL}	A	1	1.5	6.4	8.7	1.5	9.6	ns


operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CO	TYP	UNIT	
Cpd	Power dissipation capacitance per inverter	C _L = 50 pF,	f = 1 MHz	32	pF

[‡] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

