Low Bias Current, 1.8V to 5V Single-Supply, Rail-to-Rail Operational Amplifier

The LMV301 CMOS operational amplifier can operate over a power supply range from 1.8 V to 5 V and has a quiescent current of less than 200 μA , maximum, making it ideal for portable battery–operated applications such as notebook computers, PDA's and medical equipment. Low input bias current and high input impedance make it highly tolerant of high source–impedance signal–sources such as photodiodes and pH probes. In addition, the LMV301's excellent rail–to–rail performance will enhance the signal–to–noise performance of any application together with an output stage capable of easily driving a 600 Ω resistive load and up to 1000 pF capacitive load. The LMV301 comes in the space saving 5–pin SC–70 package with an industry–standard pinout, giving it both equivalent function and similar performance to competitive devices.

Features

- Single Supply Operation (or $\pm V_S/2$)
- V_S from 1.8 V to 5 V
- Low Quiescent Current: 185 μ A, Max with $V_S = 1.8 \text{ V}$
- Rail-to-Rail Output Swing
- Low Bias Current: 35 pA, max
- Space Saving SC70-5 Package
- No Output Phase–Reversal when the Inputs are Overdriven
- These are Pb-Free Devices

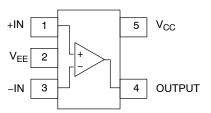
Typical Applications

- Portable Battery-Powered Instruments
- Notebook Computers and PDAs
- Cell Phones and Mobile Communication
- Digital Cameras
- Photodiode Amplifiers
- Transducer Amplifiers
- Medical Instrumentation
- Consumer Products

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM



SC70-5 SQ SUFFIX CASE 419A STYLES 2, 3

d = Date Code
G or = = Pb-Free Package

PIN CONNECTION

STYLE 3 PINOUT

ORDERING INFORMATION

See detailed ordering and shipping information in the dimensions section on page 11 of this data sheet.

1

營科州WMVPATINGS供应商

Symbol	Rating	Value	Unit
Vs	Power Supply (Operating Voltage Range V _S = 1.8 V to 5.0 V)	5.5	V
V_{IDR}	Input Differential Voltage	±Supply Voltage	V
V _{ICR}	Input Common Mode Voltage Range	-0.5 to (V+) + 0.5	V
	Maximum Input Current	10	mA
t _{So}	Output Short Circuit (Note 1)	Continuous	
TJ	Maximum Junction Temperature (Operating Range -40°C to 85°C)	150	°C
J_A	Thermal Resistance (5-Pin SC70-5)	280	°C/W
T _{stg}	Storage Temperature	-65 to 150	°C
	Mounting Temperature (Infrared or Convection (30 sec))	260	
V _{ESD}	ESD Tolerance Machine Model Human Body Model	100 1500	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Continuous short-circuit to ground operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Also, shorting output to V+ will adversely affect reliability; likewise shorting output to V- will adversely affect reliability.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		1.7	9	mV
Input Offset Voltage Average Drift	T_CV_{IO}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		5		μV/°C
Input Bias Current (Note 2)	Ι _Β			3	35	pА
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			50	
Common Mode Rejection Ratio	CMRR	$0 \text{ V} \leq \text{V}_{\text{CM}} \leq 0.9 \text{ V}$	50	63		dB
Power Supply Rejection Ratio	PSRR	$1.8 \text{ V} \le \text{V}_{CC} \le 5 \text{ V},$ $\text{V}_{O} = 1 \text{ V}, \text{V}_{CM} = 1 \text{ V}$	62	100		dB
Input Common-Mode Voltage Range	V _{CM}	For CMRR ≥ 50 dB	0 to 0.9	-0.2 to 0.9		V
Large Signal Voltage Gain (Note 2)	A _V	$R_L = 600\Omega$	83	100		dB
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	80			1
		$R_L = 2 k\Omega$	83	100		
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	80			
Output Swing	V _{OH}	$R_L = 600 \Omega \text{ to } 0.9 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.65 1.63			V
	V _{OL}	$R_L = 600 \Omega \text{ to } 0.9 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		75	100 120	mV
	V _{OH}	$R_L = 2 \text{ k}\Omega \text{ to } 0.9 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.5 1.4	1.76		V
	V _{OL}	$R_L = 2 \text{ k}\Omega \text{ to } 0.9 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		25	35 40	mV
Output Short Circuit Current (Note 2)	I _O	Sourcing = $V_O = 0 V$ Sinking = $V_O = 1.8 V$	10 20	60 160		mA
Supply Current	I _{CC}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			185	μΑ

$\textbf{1.8 V AC ELECTRICAL CHARACTERISTICS} \ (Unless otherwise specified, all limits are guaranteed for T_A = 25 ^{\circ}C, V_{CC} = 1.8 \ V, CC = 1$

$$R_L$$
 = 1 MΩ, V_{EE} = 0 V, V_O = $V_{CC}/2)$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	S _R			1		V/μs
Gain Bandwidth Product	GBWP	C _L = 200 pF		1		MHz
Phase Margin	Θ_{m}			60		0
Gain Margin	G _m			10		dB
Input-Referred Voltage Noise	e _n	f = 50 kHz		50		nV/√ Hz
Total Harmonic Distortion	THD	A _V = +1, V - 1 V _{PP} , R _L = 10 kW, f = 1 kHz		0.01		%

^{2.} Guaranteed by design and/or characterization.

$P_{L} = 1 \frac{1}{100} \frac{1}$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		1.7	9	mV
Input Offset Voltage Average Drift	T_CV_{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		5		μV/°C
Input Bias Current (Note 2)	Ι _Β			3	35	pА
		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			50	1
Common Mode Rejection Ratio	CMRR	$0 \text{ V} \leq \text{V}_{\text{CM}} \leq 1.35 \text{ V}$	50	63		dB
Power Supply Rejection Ratio	PSRR	$1.8 \text{ V} \le \text{V}_{CC} \le 5 \text{ V},$ $\text{V}_{O} = 1 \text{ V}, \text{V}_{CM} = 1 \text{ V}$	62	100		dB
Input Common-Mode Voltage Range	V _{CM}	For CMRR ≥ 50 dB	0 to 1.35	-0.2 to1.35		V
Large Signal Voltage Gain (Note 2)	A _V	$R_L = 600 \Omega$	83	100		dB
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	80			1
		$R_L = 2 k\Omega$	83	100		1
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	80			1
Output Swing	V _{OH}	R_L = 600 Ω to 1.35 V T_A = -40°C to +85°C	2.55 2.53	2.62		V
	V _{OL}	R_L = 600 Ω to 1.35 V T_A = -40°C to +85°C		78	100 280	mV
	V _{OH}	$R_L = 2 \text{ k}\Omega \text{ to } 1.35 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.65 2.64	2.675		V
	V _{OL}	$R_L = 2 \text{ k}\Omega \text{ to } 1.35 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		75	100 110	mV
Output Short Circuit Current (Note 2)	I _O	Sourcing = $V_O = 0 V$ Sinking = $V_O = 2.7 V$	10 20	60 160		mA
Supply Current	Icc	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			185	μΑ

$\textbf{2.7 V AC ELECTRICAL CHARACTERISTICS} \ (\textbf{Unless otherwise specified, all limits are guaranteed for } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits are guaranteed for } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits are guaranteed for } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits are guaranteed for } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits are guaranteed for } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits are guaranteed for } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits are } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits are } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ V_{CC} = 2.7 \ V, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ (\textbf{Unless otherwise specified, all limits } T_{A} = 25^{\circ}C, \ (\textbf{Unless ot$

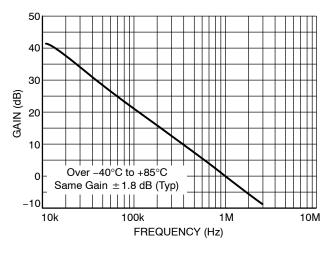
$$R_L$$
 = 1 $M\Omega$, V_{EE} = 0 V , V_O = $V_{CC}/2$)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	S _R			1		V/μs
Gain Bandwidth Product	GBWP	C _L = 200 pF		1		MHz
Phase Margin	Θ_{m}			60		0
Gain Margin	G _m			10		dB
Input-Referred Voltage Noise	e _n	f = 50 kHz		50		nV/√Hz
Total Harmonic Distortion	THD	A _V = +1, V - 1 V _{PP} , R _L = 10 kW, f = 1 kHz		0.01		%

^{2.} Guaranteed by design and/or characterization.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		1.7	9	mV
Input Offset Voltage Average Drift	T_CV_{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		5		μV/°C
Input Bias Current (Note 2)	Ι _Β			3	35	рА
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			50	1
Common Mode Rejection Ratio	CMRR	$0 \text{ V} \leq \text{V}_{\text{CM}} \leq 4 \text{ V}$	50	63		dB
Power Supply Rejection Ratio	PSRR	$1.8 \text{ V} \le \text{V}_{CC} \le 5 \text{ V},$ $\text{V}_{O} = 1 \text{ V}, \text{V}_{CM} = 1 \text{ V}$	62	100		dB
Input Common-Mode Voltage Range	V _{CM}	For CMRR ≥ 50 dB	0 to 4	-0.2 to 4.2		V
Large Signal Voltage Gain (Note 2)	A _V	$R_L = 600 \Omega$	83	100		dB
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	80			
		$R_L = 2 k\Omega$	83	100		
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	80			
Output Swing	V _{OH}	$R_L = 600 \Omega \text{ to } 2.5 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	4.850 4.840			V
	V _{OL}	$R_L = 600 \Omega \text{ to } 2.5 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			150 160	mV
	V _{OH}	$R_L = 2 \text{ k}\Omega \text{ to } 2.5 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	4.935 4.900			V
	V _{OL}	$R_L = 2 \text{ k}\Omega \text{ to } 2.5 \text{ V}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			65 75	mV
Output Short Circuit Current (Note 2)	Io	Sourcing = $V_O = 0 V$ Sinking = $V_O = 5 V$	10 10	60 160		mA
Supply Current	I _{CC}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			200	μΑ

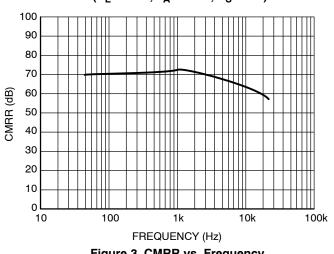
5.0 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$,


$$R_L$$
 = 1 $M\Omega$, V_{EE} = 0 V , V_O = $V_{CC}/2$)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	S _R			1		V/μs
Gain Bandwidth Product	GBWP	C _L = 200 pF		1		MHz
Phase Margin	Θ_{m}			60		0
Gain Margin	G _m			10		dB
Input-Referred Voltage Noise	e _n	f = 50 kHz		50		nV/√Hz
Total Harmonic Distortion	THD	$A_V = +1, V - 1 V_{PP},$ $R_L = 10 \text{ kW, f} = 1 \text{ kHz}$		0.01		%

^{2.} Guaranteed by design and/or characterization.

TYPICAL CHARACTERISTICS


 $(T_A = 25^{\circ}C \text{ and } V_S = 5 \text{ V unless otherwise specified})$

100 90 80 NISHW 70 80 60 40 10k 100k 1M 10M FREQUENCY (Hz)

Figure 1. Open Loop Frequency Response (R_L = 2 k Ω , T_A = 25°C, V_S = 5 V)

Figure 2. Open Loop Phase Margin ($R_L = 2 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$)

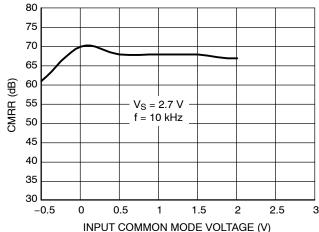
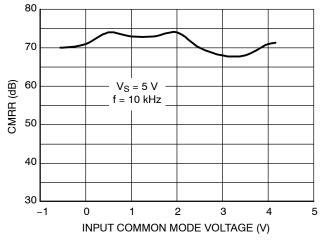



Figure 3. CMRR vs. Frequency ($R_L = 5 \text{ k}\Omega, V_S = 5 \text{ V}$)

Figure 4. CMRR vs. Input Common Mode Voltage

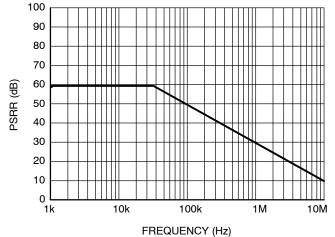



Figure 5. CMRR vs. Input Common Mode Voltage

Figure 6. PSRR vs. Frequency ($R_L = 5 \text{ k}\Omega$, $V_S = 2.7 \text{ V}$, +PSRR)

TYPICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ and } V_S = 5 \text{ V unless otherwise specified})$

SUPPLY VOLTAGE (V)

Figure 12. Supply Current vs. Supply Voltage

V_{CM} (V)

Figure 11. V_{OS} vs CMR

TYPICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ and } V_S = 5 \text{ V unless otherwise specified})$

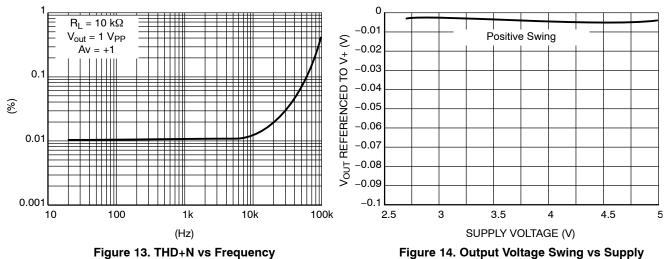


Figure 13. THD+N vs Frequency

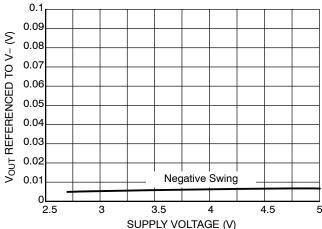


Figure 15. Output Voltage Swing vs Supply Voltage (R_L = 10k)

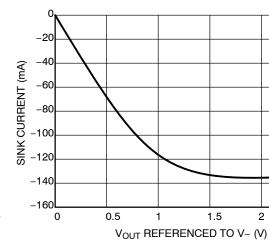


Figure 16. Sink Current vs. Output Voltage $V_S = 2.7 V$

2.5

Voltage (R_L = 10k)

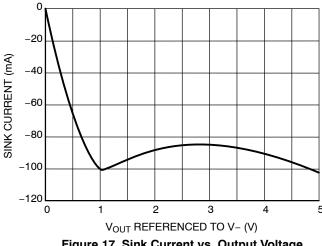


Figure 17. Sink Current vs. Output Voltage $V_S = 5.0 V$

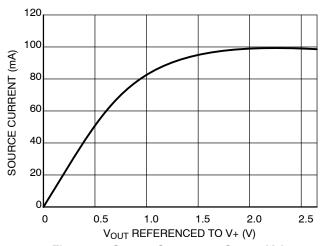


Figure 18. Source Current vs. Output Voltage $V_{S} = 2.7 V$

TYPICAL CHARACTERISTICS

($T_A = 25^{\circ}C$ and $V_S = 5 V$ unless otherwise specified)

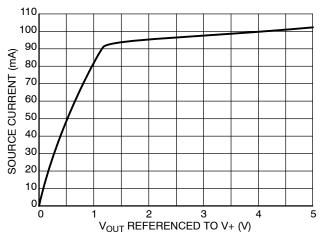


Figure 19. Source Current vs. Output Voltage $V_S = 5.0 \text{ V}$

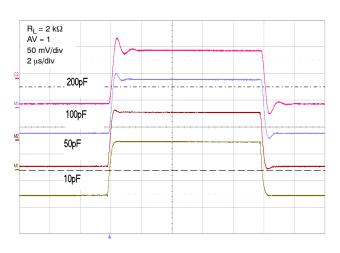


Figure 20. Settling Time vs. Capacitive Load

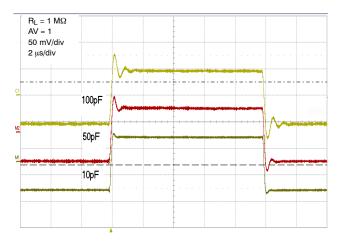


Figure 21. Settling Time vs. Capacitive Load

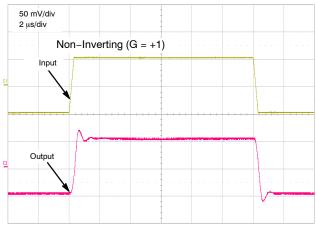


Figure 22. Step Response - Small Signal

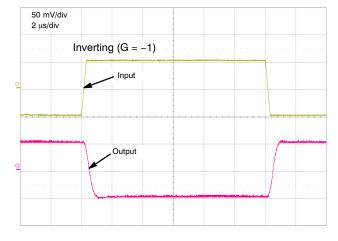


Figure 23. Step Response - Small Signal

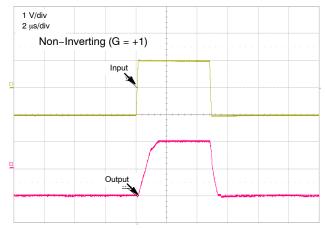


Figure 24. Step Response - Large Signal

查询"LMV301-D"供应商

TYPICAL CHARACTERISTICS

($T_A = 25^{\circ}C$ and $V_S = 5 V$ unless otherwise specified)

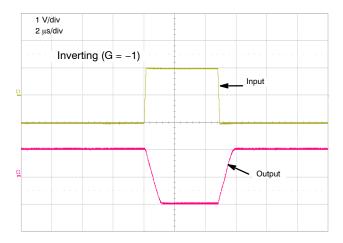


Figure 25. Step Response – Large Signal

APPLICATIONS



Figure 26. Voltage Reference

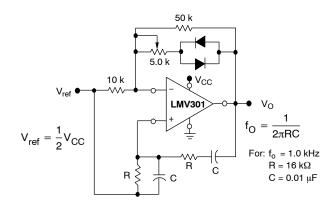


Figure 27. Wien Bridge Oscillator

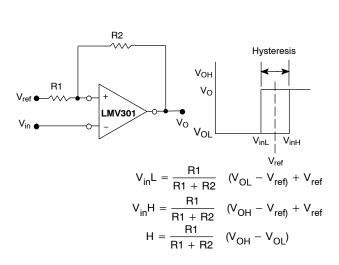
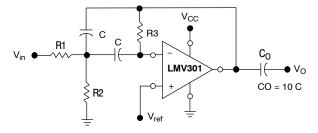



Figure 28. Comparator with Hysteresis

Given: f_0 = center frequency $A(f_0)$ = gain at center frequency

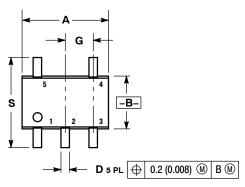
Choose value f_o, C Q Then: R3 =
$$\frac{Q}{\pi f_O C}$$
 R1 = $\frac{R3}{2 \text{ A(f}_O)}$ R2 = $\frac{R1 \text{ R3}}{4Q^2 \text{ R1} - R3}$

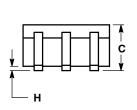
For less than 10% error from operational amplifier, $((Q_O f_O)/BW) < 0.1$ where f_O and BW are expressed in Hz.

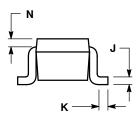
If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 29. Multiple Feedback Bandpass Filter

ORDERING INFORMATION


Device	Pinout Style	Marking	Package	Shipping [†]
LMV301SQ3T2G	Style 3	AAD	SC70-5 (Pb-Free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


查询"LMV301-D"供应商

PACKAGE DIMENSIONS

SC70-5 **SQ SUFFIX** CASE 419A-02 **ISSUE J**

NOTES:

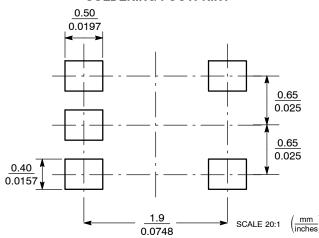
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
- 419A-01 OBSOLETE. NEW STANDARD 419A-02. 3.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	0.026 BSC		BSC
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008	REF	0.20 REF	
S	0.079	0.087	2.00	2.20

STYLE 2:

PIN 1. ANODE 2. EMITTE

PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE


STYLE 3:

EMITTER BASE

4. COLLECTOR 5. CATHODE

4. CATHODE 2 5. CATHODE 1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative