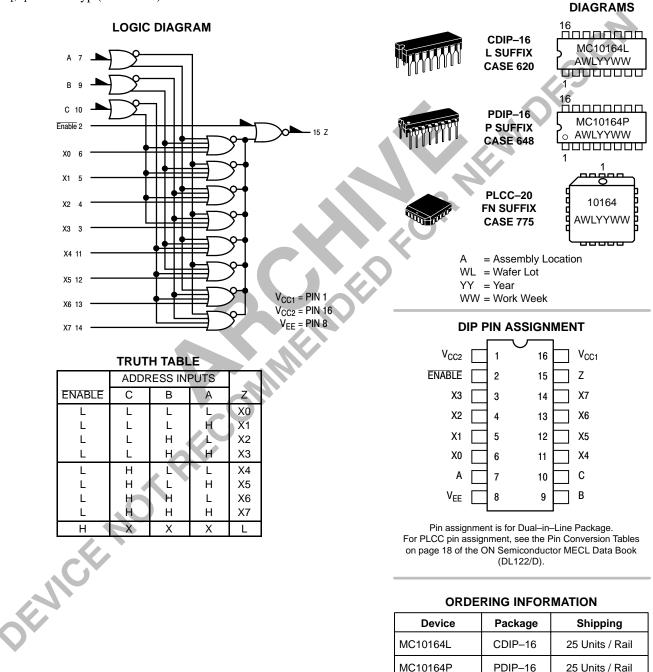
21001664"供应商

8-Line Multiplexer

The MC10164 is a high speed, low power eight-channel data selector which routes data present at one-of-eight inputs to the output. The data is routed according to the three bit code present on the address inputs. An enable input is provided for easy bit expansion.


- $P_D = 310 \text{ mW typ/pkg}$ (No Load)
- $t_{pd} = 3.0$ ns typ (Data to Output)
- $t_r, t_f = 2.0 \text{ ns typ} (20\% 80\%)$

ON Semiconductor

http://onsemi.com

MARKING

46 Units / Rail

PLCC-20

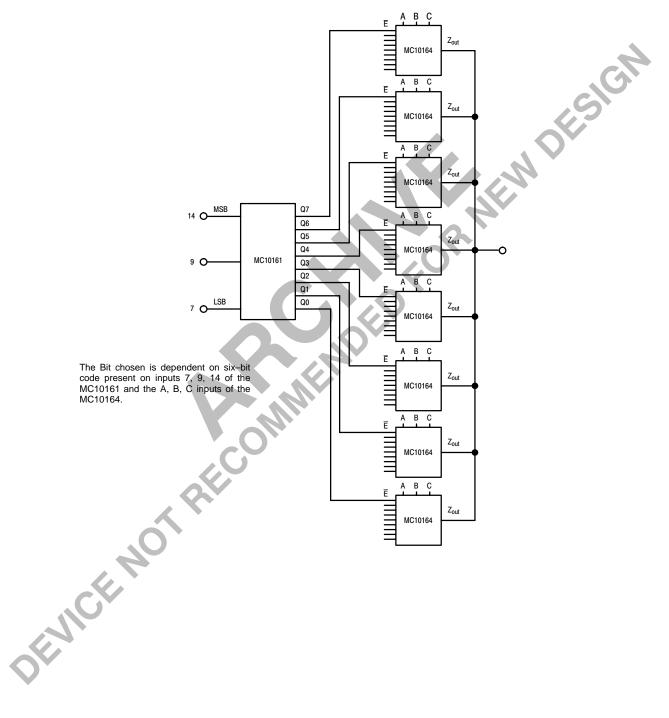
MC10164FN

暨的TRICAD CHARACERSISTICS

				Test Limits							
			Pin Under Test	–30°C		+25°C		+85°C			
Characteristic		Symbol		Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply	Drain Current	١ _E	8		83		60	75		83	mAdo
Input Current		I _{inH}	2		425			265		265	μAdc
		I _{inL}	4	0.5		0.5			0.3		μAdc
Output Voltage	e Logic 1	V _{OH}	15	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc
Output Voltage	e Logic 0	V _{OL}	15	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc
Threshold Vol	tage Logic 1	V _{OHA}	15	-1.080		-0.980			-0.910		Vdc
Threshold Vol	tage Logic 0	V _{OLA}	15		-1.655			-1.630		-1.595	Vdc
Switching Times (50Ω Load)											ns
Propagation D	Delay (20 to 80%)	$\begin{array}{c}t_{4+15+}\\t_{4-15-}\\t_{7+15+}\\t_{7-15-}\\t_{2+15-}\\t_{2-15+}\\t_{4}\\t_{7-15+}\\t_{2-15+}\\t_{10}+t_{10}\\t_{10}+t$	15 15 15 15 15 15 15	1.5 1.5 1.9 1.9 0.9 0.9 0.9	4.9 4.9 6.5 6.5 3.5 3.5 3.5 3.3	1.5 1.5 2.0 2.0 1.0 1.0 1.1	3.0 3.0 4.0 2.0 2.0 2.0	4.7 4.7 6.2 6.2 3.1 3.1 3.3	1.6 1.6 2.2 2.2 1.0 1.0 1.2	5.0 5.0 6.7 3.3 3.3 3.3 3.6	
Fall Time	(20 to 80%)	t–	15	0.9	3.3	1.1	2.0	3.3	1.2	3.6	

ELECTRICAL CHARACTERISTICS (continued)

					TEST VOL	TAGE VALU	JES (Volts)		
		@ Test Te	mperature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	
			–30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
			Pin	TEST V	OLTAGE AP	PLIED TO P	INS LISTED I	BELOW	
Characteri	stic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain C	urrent	Ш	8					8	1,16
Input Current		l _{inH}	2	4				8	1,16
		l _{inL}	4		4			8	1,16
Output Voltage	Logic 1	V _{OH}	15	4,9				8	1,16
Output Voltage	Logic 0	V _{OL}	15	9				8	1,16
Threshold Voltage	Logic 1	V _{OHA}	15	4,9			2	8	1,16
Threshold Voltage	Logic 0	V _{OLA}	15	9			2	8	1,16
Switching Times	(50Ω Load)			+1.11V		Pulse In	Pulse Out	–3.2 V	+2.0 V
Propagation Delay	NO	t4+15+ t4–15– t7+15+ t7–15– t2+15– t2–15+	15 15 15 15 15 15	9 9 5 5 7,5 7,5		4 4 7 7 2 2	15 15 15 15 15 15	8 8 8 8 8	1,16 1,16 1,16 1,16 1,16 1,16
Rise Time	(20 to 80%)	t+	15	9		4	15	8	1,16
Fall Time	(20 to 80%)	t–	15	9		4	15	8	1,16

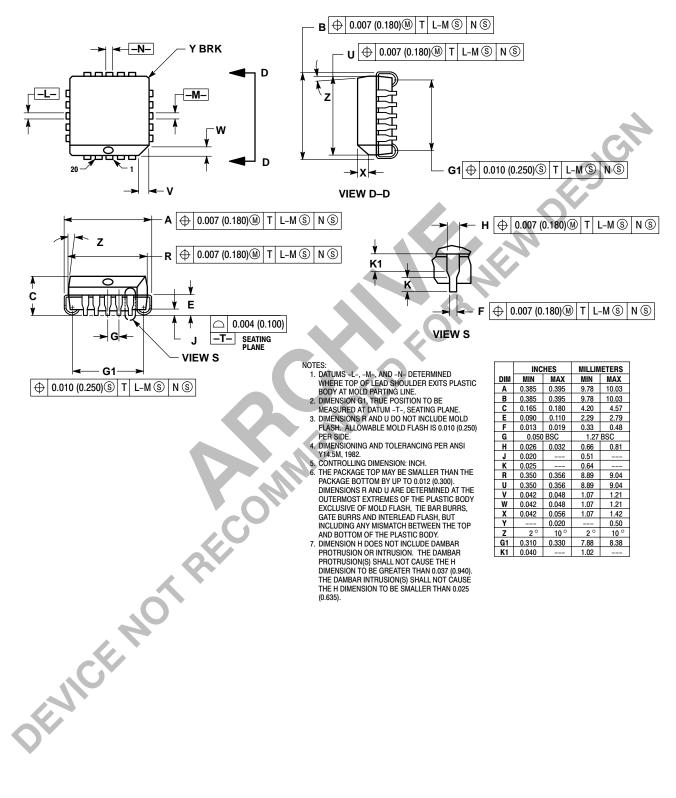

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

查询"MC10164FN"供应商

APPLICATION INFORMATION

The MC10164 can be used wherever data multiplexing or parallel to serial conversion is desirable. Full parallel gating permits equal delays through any data path. The output of the MC10164 incorporates a buffer gate with eight data inputs and an enable. A high level on the enable forces the output low. The MC10164 can be connected directly to a data bus, due to its open emitter output and output enable. Figure 1 illustrates how a 1–of–64 line multiplexer can be built with eight MC10164's wire ORed at their outputs and one MC10161 to drive the enables on each multiplexer, without speed degradation over a single MC10164 being experienced.

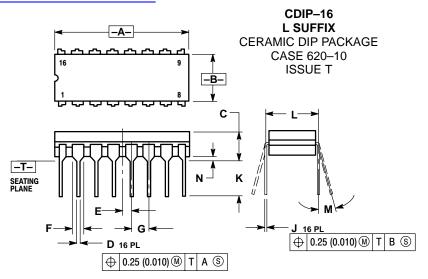
FIGURE 1 — 1–OF–64 LINE MULTIPLEXER



MC10164

查询"MC10164FN"供应商

PACKAGE DIMENSIONS


PLCC-20 FN SUFFIX PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

MC10164

查询"MC10164FN"供应商

PACKAGE DIMENSIONS

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
DIMENSION L TO CENTER OF LEAD WHEN FOOMED DRAWLES

DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL.
DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN MAX		
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050 BSC		1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100 BSC		2.54 BSC		
Н	0.008	0.015	0.21	0.38	
Κ	0.125	0.170	3.18	4.31	
L	0.300 BSC		7.62 BSC		
М	0 °	15 °	0 °	15°	
Ν	0.020	0.040	0.51	1.01	

-A-ስ ስ ስ ሶ 16 В 0 Ų $\Box \Box$ ι, հո - C S -T- SEATING PLANE H-G **D** 16 PL

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL

		INC	HES	MILLIMETERS			
D	MIM	MIN	MAX	MIN	MAX		
	Α	0.740	0.770	18.80	19.55		
	В	0.250	0.270	6.35	6.85		
1	C	0.145	0.175	3.69	4.44		
	D	0.015	0.021	0.39	0.53		
	F	0.040	0.70	1.02	1.77		
1	G	0.100	BSC	2.54 BSC			
	H	0.050	BSC	1.27 BSC			
	J	0.008	0.015	0.21	0.38		
	Κ	0.110	0.130	2.80	3.30		
	L	0.295	0.305	7.50	7.74		
	М	0°	10 °	0 °	10 °		
	S	0.020	0.040	0.51	1.01		

图 @ t@S10164FN"供应商

DEWICE NOT RECOMMENDED FOR MENDESIGN

图 @ t@S10164FN"供应商

DEWICE NOT RECOMMENDED FOR MENDESSIGN

MC10164

d are trademarked Semiconductor Components Industries, LLC (SCILLC). SCILC reserves the right to make charges

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.