

DESCRIPTION HP3 SERIES RECEIVER MODULE DATA GUIDE

also available which add serial selection of 100 receiver is pin- and footprint-compatible with all controlled an advanced dual-conversion microprocessorreceiver employs FM / FSK demodulation and channels. To ensure reliable performance, the digital information in the popular 902-928MHz performance wireless transfer of analog or over previous generations. The HP3 is compatibility and numerous enhancements parallel selectable channels, but versions are band. All HP3 Series modules feature eight The HP3 RF receiver module offers complete ġ. synthesized architecture. The the cost-effective, high-

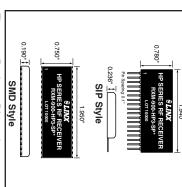


Figure 1: Package Dimensions

engineers without prior RF experience. RF components (except an antenna), making integration straightforward even for optimal conditions). As with all Linx modules, the HP3 requires no tuning or additional is created for transferring analog and digital information up to 1,000 feet. (under pinned packages are available. When paired with an HP3 transmitter, a reliable link previous generations, but its overall physical size has been reduced. Both SMD and

FEATURES

- 8 parallel / 100 serial (PS Versions) user-selectable channels
- FM / FSK demodulation for outstanding performance and noise immunity
- Excentional sensitivity (-100dBm typical)
- Wide Tange analog capability including authors (50Hz to 28kHz)
- RSSHand Power-down lines
- Preatsion frequency syrthesized architecture
- corporate required
- Compatible with previous
- HPSeries modules
- High Rata rate

- Wide temperature range

- No external RF

- (uprto 56kbps)
- Widesupply range (2.810 13.0VDC)
- Pinned and SMD packages Dire<mark>tus</mark>erial interface
- (-30°C to +85°C)

APPLICATIONS INCLUDE

- Wireless Networks / Data Transfer Wireless Analog / Audio
- Home / Industrial Automation
- Remote Access / Control
- Remote Monitoring / Telemetry Long-Range RFID MIDI Links
- Voice / Music / Intercom Links

ORDERING	ORDERING INFORMATION
PART #	DESCRIPTION
RXM-900-HP3-PPO	HP3 Receiver (SIP 8 CH only)
RXM-900-HP3-PPS	HP3 Receiver (SIP 8p / 100s CH)
RXM-900-HP3-SPO	HP3 Receiver (SMD 8 CH only)
RXM-900-HP3-SPS	HP3 Receiver (SMD 8p / 100s CH)
MDEV-900-HP3-PPS-USB	HP3 Development Kit (Pinned Pkg.)
MDEV-900-HP3-PPS-RS232	HP3 Development Kit (Pinned Pkg.)
MDEV-900-HP3-SPS-USB	HP3 Development Kit (SMD Pkg.)
MDEV-900-HP3-SPS-RS232	HP3 Development Kit (SMD Pkg.)
Receivers are supplied in tubes of 10 pcs.	s of 10 pcs.

Revised 1/28/08

ELECTRICAL SPECIFICATIONS

Parameter	Designation	Min.	Typical	Max.	Units	Notes
POWER SUPPLY						
Operating Voltage	V _{oc}	2.8	3.0	13.0	VDC	ı
Supply Current	l _{cc}	16.0	19.0	21.0	mA	_
Power-Down Current	I _{PDN}	I	5.6	10.0	μA	N
RECEIVE SECTION						
Receive Frequency Range	F _C	902.62	ı	927.62	MHz	ω
Center Frequency Accuracy		-50		+50	КНz	
Channel Spacing	ı	ı	250	ı	kНz	ω
First IF Frequency		ı	34.7	ı	MHz	4
Second IF Frequency		ı	10.7	ı	MHz	4
Noise Bandwidth	N_{3DB}	ı	280	ı	kНz	ı
Data Rate	I	100	ı	56,000	bps	ı
Analog / Audio Bandwidth	I	50	I	28,000	Hz	4
Analog / Audio Output Level		0.8	1.1	2.0	VAC	σı
Data Output:						
Logic Low	ı	0.0	ı	0.5	VDC	6
Logic High	ı	$V_{\rm CC}$ -0.3	ı	V _{cc}	VDC	6
Output Impedance		ı	17	ı	kohms	ı
Data Output Source Current		ı	230	I	Αu	7
Receiver Sensitivity		-94	-100	-107	dBm	8,9
RSSI:						
Dynamic Range		60	70	80	dВ	4
Gain		ı	24	ı	mV/dB	4
Voltage With No Carrier		ı	ı	1.6	<	4
Spurious Emissions		ı	-57	I	dBm	4
Interference Rejection:						
F _{C±1MHz}		ı	54	ı	dВ	4
F _{C±5MHz}		1	57	ı	dB	4
ANTENNA PORT						
RF Input Impedance	R_{OUT}	ı	50	ı	Ω	4
TIMING						
Receiver Turn-On Time:						
via Vo <mark>简</mark>	Т4	ı	ı	7.0	mSec	4
via PDY	Т3	ı	ı	3.0	mSec	4
Channel Change Time	Т2	ı	I	1.5	mSec	4
Max time between transitions	Т1	ı	ı	20	mSec	4
ENVIRONMENTAL						
Operatin <mark>d-</mark> Temperature Range	_	-30	ı	+85	°C	4
I-11-1-0	:					

Table 1: 48 Series Receiver Specifications

Notes **∑**

- 1. Over the entire operating voltage range.
 2. With the PDN pin low.
 3. Serial hold.
 4. Characterized, but not tested.
 5. With the sine wave @ 115kHz transmitter deviation
- 2 4 7 9 7 No load.
- With 1V output drop. For 10-5 @ 9,600bps.
- At specified center frequency.

9.

Page 2

ABSOLUTE MAXIMUM RATINGS

NOTE Exceeding any of the limits of this section may lead to permanent damage to the device. Furthermore, extended operation at these maximum ratings may reduce the life of this device.

PERFORMANCE DATA

ground pins be connected to the ground plane. The pins marked NC operation. It is recommended all necessary 25°C from a 3.0VDC supply unless otherwise noted. Figure 2 are based on module operation at have no electrical connection. illustrates These performance parameters φ the testing connections and

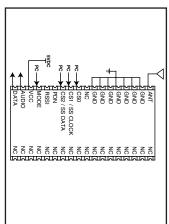


Figure 2: Test / Basic Application Circuit

TYPICAL PERFORMANCE GRAPHS

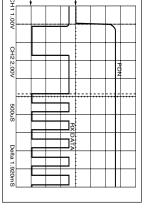


Figure 3: RX Enabled to Valid Data

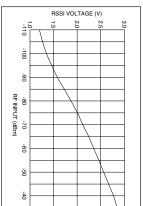


Figure 4: Receiver RSSI

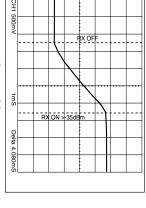


Figure 5: Worst Case RSSI Response Time

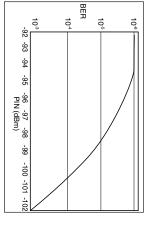


Figure 6: BER vs. Input Power (typical)

PIN ASSIGNMENTS

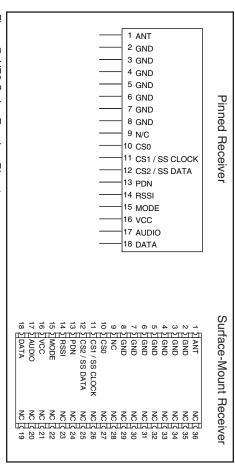


Figure 7: HP3 Series Receiver Pinout

	Г	\neg											
)	18 杏 饰	17 "R	16 X	15 900-HI	14 23"供应	13	12	±	10	9	2-8	1	Pin #
	DATA	AUDIO	V _{CC}	MODE	RSSI	PDN	CS2 / SS DATA	CS1 / SS CLOCK	CS0	NC	GND	ANT	Name
No Copposion (CMD only)	Digital Data Output. This line will output the demodulated digital data.	Recovered Analog Output	Supply Voltage	Mode Select. GND for parallel channel selection, V_{CC} for serial channel selection	Received Signal Strength Indicator. This line will supply an analog voltage that is proportional to the strength of the received signal.	Power Down. Pulling this line low will place the receiver into a low-current state. The module will not be able to receive a signal in this state.	Channel Select 1 / Serial Select Data. Channel Select 2 when in parallel channel selection mode, data input for serial channel selection mode.	Channel Select 1 / Serial Select Clock. Channel Select 1 when in parallel channel selection mode, clock input for serial channel selection mode.	Channel Select 0	No Connection	Analog Ground	50-ohm RF Input	Description

Page 4

PIN DESCRIPTIONS

19-36	18	17	16	15	14	13	12	1	10	9	2-8	_	Pin #
NC	ALVO	AUDIO	V _{CC}	MODE	RSSI	PDN	CS2 / SS DATA	CS1 / SS CLOCK	CS0	NC	GND	ANT	Name
SMD Only	4.7x	← N T N T N T N T N T N T N T N T N T N	V N	¥ 25k	RSSI W	V _{CC} → 470k → ₩	⊕	⊕ \$ 25k CS1 > √4 — μ	CS0 > √2		↓	RF In >———————————————————————————————————	Equivalent Circuit
No Connection	Digital Data Output	1V _{P-P} Analog Output	Voltage Input 2.8-13V	Mode Select	Received Signal Strength Indicator	Power Down (Active Low)	Channel Select 2 / Serial Select Data	Channel Select 1 / Serial Select Clock	Channel Select 0	No Connection	Analog Ground	50-ohm RF Input	Description

Figure 8: Pin Functions and Equivalent Circuits

THEORY OF OPERATION

advantages over AM or OOK modulation methods, including increased noise This is especially helpful in crowded bands, like that in which the HP3 operates immunity and the receiver's ability to capture in the presence of multiple signals from a matching HP Series transmitter. FM / FSK modulation offers significant receiver capable of recovering both analog (FM) and digital (FSK) information The HP3 is a high-performance multi-channel, dual-conversion superhet

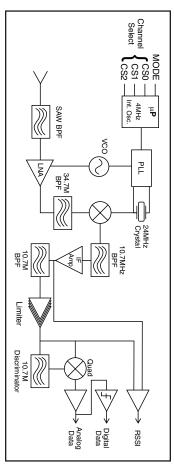


Figure 9: HP3 Series Receiver Block Diagram

antennas, such as those manufactured by Linx. The RF signal coming in from than other filter types, such as an LC bandpass filter. unwanted RF energy. A SAW filter provides significantly higher performance the antenna is filtered by a Surface Acoustic Wave (SAW) filter to attenuate The single-ended RF port is matched to 50-ohms to support commonly available

Frequency (IF). below the incoming transmission frequency to produce the first Intermediate LNA, the signal is mixed with a synthesized local oscillator operating 34.7MHz the receiver sensitivity and lower the overall noise figure of the receiver. After the Once filtered, the signal is amplified by a Low Noise Amplifier (LNA) to increase

is then highly amplified in preparation for demodulation. 24.0MHz from a precision crystal oscillator. The resulting second IF of 10.7MHz performance IF strip that mixes the 34.7MHz first conversion frequency with The second conversion and FM demodulation is achieved by a high-

slices stage, which provides squared digital output via the data output pin. A key carrel. The demodulated waveform is filtered, after which it closely resembles A diadrature demodulator is used to recover the baseband signal from the balancing or duty-cycle requirements within a range of 100bps to 56kbps. feature of the HP3 is the transparency of its digital output, which does not impose the ginal signal. The signal is routed to the analog output pin and the data

da luput when the signal is not strong enough for accurate data detection. programming requirements and allows for manual or software channel selection. programs the on-board synthesizer. This frees the designer from complex uses interface. The microcontroller reads the channel selection lines and An on-board microcontroller manages receiver functions and greatly simplifies

POWER-UP SEQUENCE

is applied, the microprocessor executes the receiver is ready to receive valid data. receiver start-up sequence, after which the by an on-board microprocessor. When power As previously mentioned, the HP3 is controlled

PDN line is taken high. sequence. This sequence is executed when power is applied to the V_{CC} line or when the The adjacent figure shows the start-up

stabilized, the receiver is ready to accept data channel. Once the frequency synthesizer has frequency synthesizer to the appropriate external channel selection lines and sets the On power-up, the microprocessor reads the

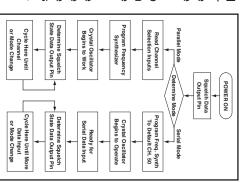


Figure 10: Start-Up Sequence

POWER SUPPLY

affect the receiver sensitivity; therefore, providing a clean power supply for the module should be a high priority during design. is free of noise. Power supply noise can significantly regulator, it is still important to provide a supply that input voltage range of 2.8 to 13 volts DC. Despite this regulator on-board, which allows operation over an The HP3 incorporates a precision, low-dropout

Vcc IN -

MODULE Vcc TO

Figure 11: Supply Filter

of supply power is poor. This filter should be placed close to the module's supply lines. These values may need to be adjusted depending on the noise present on

A 10Ω resistor in series with the supply followed by a 10 μF tantalum capacitor from V_{CC} to ground will help in cases where the quality

USING THE PDN PIN

high or simply left floating, the module will be active. need for an external switch. This line has an internal pull-up, so when it is held The Power Down (PDN) line can be used to power down the receiver without the

of power-down will be slightly less than when applying $V_{\text{CC}}. \label{eq:cc}$ perform any function. It may be useful to note that the startup time coming out (<10µA) power-down mode. During this time the receiver is off and cannot When the PDN line is pulled to ground, the receiver will enter into a low-current

applications. consumption can be greatly reduced, saving power in battery-operated checking for data, then powering down, the receiver's average current components, like a microcontroller. By periodically activating the receiver The PDN line allows easy control of the receiver state from externa

Page 6

THE DATA OUTPUT

The DATA line outputs recovered digital data. It is an open collector output with an internal $4.7k\Omega$ pull-up. When an RF transmission is not present, or when the received signal strength is too low to ensure proper demodulation, the data output is squelched continuous high. This feature supports direct operation with UARTs, which require their input to be continuously high. An HP3 transmitter and receiver can be directly connected between two UARTs without the need for buffering or logical inversion. It should be noted that the squelch level is set just over the receiver's internal noise threshold. Any external RF activity above that threshold will "break squelch" and produce hashing on the line. While the DATA line will be reliably squelched in low-noise environments, the designer should always plan for the potential of hashing.

AUDIO OUTPUT

The HP3 Series is optimized for the transmission of serial data; however, it can also be used very effectively to send a variety of analog signals, including audio. The ability of the HP3 to send combinations of audio and data opens new areas of opportunity for creative design.

The analog output of the AUDIO line is valid from 50 Hz to 28 kHz, providing an AC signal of about 1V peak-to-peak. This is a high impedance output and not suitable for directly driving low-impedance loads, such as a speaker. In applications where a low impedance load is to be driven, a buffer circuit should always be used. For example, in the case of a speaker, a simple op-amp circuit such as the one shown below can be used to act as an impedance converter.

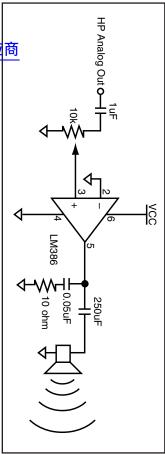


Figure 12 Audio Buffer Amplifier

The transmitter's modulation voltage is critical, since it determines the carrier deviation and distortion. The transmitter input level should be adjusted to achieve the optimum results for your application in your circuit. Please refer to the dansmitter data guide for full details.

When used for audio, the analog output of the receiver should be filtered and butered to obtain maximum sound quality. For voice, a 3-4kHz low-pass filter is often employed. For broader-range sources, such as music, a 12-17kHz cutoff may be more appropriate. In applications that require high-quality audio, a compandor may be used to further improve SNR. The HP3 is capable of produting audio quality comparable to a radio or intercom. For applications where true high fidelity audio is required, the HP3 will probably not be the best choice, and a device optimized for audio should be utilized.

TIMING CONSIDERATIONS

There are four major timing considerations to be aware of when designing with the HP3 Series receiver. These are shown in the table below.

7.0mS	Receiver turn-on time via $V_{\mathbb{CC}}$	T4
3.0mS	Receiver turn-on time via PDN	Т3
1.5mS	Channel change time (time to valid data)	T2
20.0mS	Time between DATA output transitions	Т1
Max.	Description	Parameter

T1 is the maximum amount of time that can elapse without a data transition. Data must always be considered in both the analog and the digital domain. Because the data stream is asynchronous and no particular format is imposed, it is possible for the data to meet the receiver's data rate requirement yet violate the analog frequency requirements. For example, if a 255 (0FF hex) were sent continuously, the receiver would view the data as a DC level. It would hold that level until a transition was required to meet the minimum frequency specification. If no transition occurred, data integrity could not be guaranteed. While no particular structure or balancing requirement is imposed, the designer must ensure that both analog and digital signals meet the transition specification.

T2 is the worst-case time needed for a powered-up module to switch between channels after a valid channel selection. This time does not include external overhead for loading a desired channel in the serial channel-selection mode.

T3 is the time to receiver readiness from the PDN line going high. Receiver readiness is determined by valid data on the DATA line. This assumes an incoming data stream and the presence of stable supply on $V_{\rm CC}$.

T4 is the time to receiver readiness from the application of $V_{\rm CC}$. Receiver readiness is determined by valid data on the DATA line. This assumes an incoming data stream and the PDN line is high or open.

RECEIVING DATA

Once an RF link has been established, the challenge becomes how to effectively transfer data across it. While a properly designed RF link provides reliable data transfer under most conditions, there are still distinct differences from a wired link that must be addressed. Since the modules do not incorporate internal encoding or decoding, the user has tremendous flexibility in how data is handled.

It is important to separate the types of transmissions that are technically possible from those that are legally allowed in the country of operation. Application Notes AN-00126, AN-00140 and Part 15, Section 249 of the FCC rules should be reviewed for details on acceptable transmission content in the U.S.

If you want to transfer simple control or status signals (such as button presses) and your product does not have a microprocessor or you wish to avoid protocol development, consider using an encoder / decoder IC set. These chips are available from several manufacturers, including Linx. They take care of all encoding and decoding functions and provide a number of data lines to which switches can be directly connected. Address bits are usually provided for security and to allow the addressing of multiple receivers independently. These ICs are an excellent way to bring basic remote control products to market quickly and inexpensively. It is also a simple task to interface with inexpensive microprocessors or one of many IR, remote control, DTMF, or modem ICs.

CHANNEL SELECTION

Parallel Selection

All HP3 receiver models feature eight parallel selectable channels. Parallel Mode is selected by grounding the MODE line. In this mode, channel selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, CS1, and CS2, as a selection is determined by the logic states of pins CS0, and continued by the

_				0	0	0	0	CS2
_	_	0	0	1	1	0	0	CS1
_	0	-	0	1	0	1	0	CS0
7	6	51	4	3	2	_	0	Channel
921.37	919.87	915.37	912.37	909.37	907.87	906.37	903.37	Frequency

shown in the adjacent table. A '0' Table 2: Parallel Channel Selection Table

represents ground and a '1' the positive supply. The on-board microprocessor performs all PLL loading functions, eliminating external programming and allowing channel selection via DIP switches or a product's processor.

Serial Selection

In addition to the Parallel Mode, PS versions of the HP3 also feature 100 serially selectable channels. The Serial Mode is entered when the MODE line is left open or held high. In this condition, CS1 and CS2 become a synchronous serial port, with CS1 serving as the clock line and CS2 as the data line. The module is easily programmed by sending and latching the binary number (0 to 100) of the desired channel (see the adjacent Serial Channel Selection Table). With no additional effort, the module's microprocessor handles the complex PLL loading functions.

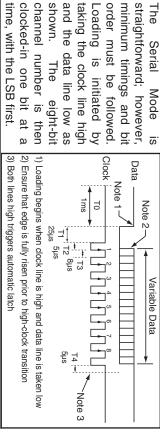


Figure 10: PLL Serial Data Timing

These is no maximum time for this process, only the minimum times that must be observed. After the eighth bit, both the clock and data lines should be taken high to the complete the loaking sequence in under 200uS. Sample code is available on the Linx website.

NOTE: When the module is powered up in the Serial Mode, it will default to channel 50 until changed by the software. This allows testing apart from external programming and prevents out-of-band operation. When programmed properly, the dwell time on this default channel can be less than 200uS. Channel 50 is not counted as a usable channel since data errors may occur as transmitters also default to channel 50 on startup. If a loading error occurs, such as a channel number > 100 or a timing problem, the receiver will default to serial channel 0. This is useful for debugging as it verifies serial port activity.

*See NOTE on previous page.

Page 11

PROTOCOL GUIDELINES

While many RF solutions impose data formatting and balancing requirements, Linx RF modules do not encode or packetize the signal content in any manner. The received signal will be affected by such factors as noise, edge jitter, and interference, but it is not purposefully manipulated or altered by the modules. This gives the designer tremendous flexibility for protocol design and interface.

Despite this transparency and ease of use, it must be recognized that there are distinct differences between a wired and a wireless environment. Issues such as interference and contention must be understood and allowed for in the design process. To learn more about protocol considerations, we suggest you read Linx Application Note AN-00160.

Errors from interference or changing signal conditions can cause corruption of the data packet, so it is generally wise to structure the data being sent into small packets. This allows errors to be managed without affecting large amounts of data. A simple checksum or CRC could be used for basic error detection. Once an error is detected, the protocol designer may wish to simply discard the corrupt data or implement a more sophisticated scheme to correct it.

INTERFERENCE CONSIDERATIONS

The RF spectrum is crowded and the potential for conflict with other unwanted sources of RF is very real. While all RF products are at risk from interference, its effects can be minimized by better understanding its characteristics.

Interference may come from internal or external sources. The first step is to eliminate interference from noise sources on the board. This means paying careful attention to layout, grounding, filtering, and bypassing in order to eliminate all radiated and conducted interference paths. For many products, this is straightforward; however, products containing components such as switching power supplies, motors, crystals, and other potential sources of noise must be approached with care. Comparing your own design with a Linx evaluation board can help to determine if and at what level design-specific interference is present.

External interference can manifest itself in a variety of ways. Low-level interference will produce noise and hashing on the output and reduce the link's overall range.

Higher level interference is caused by nearby products sharing the same frequency or from near-band high-power devices. It can even come from your own products if more than one transmitter is active in the same area. It is important to remember that only one transmitter at a time can occupy a frequency, regardless of the coding of the transmitted signal. This type of interference is less common than those mentioned previously, but in severe cases it can prevent all useful function of the affected device.

Although technically it is not interference, multipath is also a factor to be understood. Multipath is a term used to refer to the signal cancellation effects that occur when RF waves arrive at the receiver in different phase relationships. This effect is a particularly significant factor in interior environments where objects provide many different signal reflection paths. Multipath cancellation results in lowered signal levels at the receiver and, thus, shorter useful distances for the link.

TYPICAL APPLICATIONS

The figure below shows a typical RS-232 circuit using the HP3 Series receiver and a Maxim MAX232. The receiver outputs a serial data stream and the MAX232 converts that to RS-232 compliant signals. The MODE line is grounded so the channels are selected by the DIP switches.

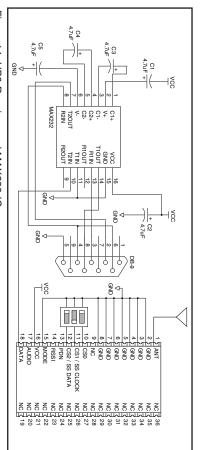


Figure 14: HP3 Receiver and MAX232 IC

The figure below shows a circuit using the QS Series USB module. The QS converts the data from the receiver into USB compliant signals to be sent to a PC. The MODE line is high, so the module is in Serial Channel Select mode. The RTS and DTR lines are used to load the channels. Application Note AN-00155 shows sample source code that can be adapted to use on a PC. The QS Series Data Guide and Application Note AN-00200 discuss the hardware and software set-up required for QS Series modules.

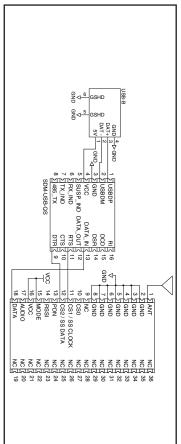


Figure 15: HP3 Receiver and Linx QS Series USB Module

The receiver can also be connected to a microcontroller, which will interpret the data and take specific actions. A UART may be employed or an I / O line may be used to continuously monitor the DATA line for a valid packet. The receiver may be connected directly to the microcontroller without the need for buffering or amplification.

BOARD LAYOUT GUIDELINES

If you are at all familiar with RF devices, you may be concerned about specialized board layout requirements. Fortunately, because of the care taken by Linx in designing the modules, integrating them is very straightforward. Despite this ease of application, it is still necessary to maintain respect for the RF stage and exercise appropriate care in layout and application in order to maximize performance and ensure reliable operation. The antenna can also be influenced by layout choices. Please review this data guide in its entirety prior to beginning your design. By adhering to good layout principles and observing some basic design rules, you will be on the path to RF success.

The adjacent figure shows the suggested PCB footprint for the module. The actual pad dimensions are shown in the Pad Layout section of this manual. A ground plane (as large as possible) should be placed on a lower layer of your PC board opposite the module. This ground plane can also be critical to the performance of your antenna, which will be discussed later. There should not be any ground or traces under the module on the same layer as the module, just bare PCB.

Figure 16: Suggested PCB Layout

During prototyping, the module should be soldered to a properly laid-out circuit board. The use of prototyping or "perf" boards will result in horrible performance and is strongly discouraged.

No conductive items should be placed within 0.15in of the module's top or sides.

Do not route PCB traces directly under the module. The underside of the module has numerous signal-bearing traces and vias that could short or couple to traces on the product's circuit board.

The module's ground lines should each have their own via to the ground plane and be as short as possible.

AM / OOK receivers are particularly subject to noise. The module should, as much as reasonably possible, be isolated from other components on your PCB, especially high-frequency circuitry such as crystal oscillators, switching power subtailes, and high-speed bus lines. Make sure internal wiring is routed away frotethe module and antenna, and is secured to prevent displacement.

The power supply filter should be placed close to the module's V_{CC} line.

In serie instances, a designer may wish to encapsulate or "pot" the product. Marty Linx customers have done this successfully; however, there are a wide variety of potting compounds with varying dielectric properties. Since such compounds can considerably impact RF performance, it is the responsibility of the signer to carefully evaluate and qualify the impact and suitability of such magorials.

The trace from the module to the antenna should be kept as short as possible. A simple trace is suitable for runs up to 1/8-inch for antennas with wide bardwidth characteristics. For longer runs or to avoid detuning narrow bandwidth antennas, such as a helical, use a 50-ohm coax or 50-ohm microstrip transmission line as described in the following section.

MICROSTRIP DETAILS

4 board material, the trace width would be 111 mils. The correct trace width can and the dielectric constant of the board material. For standard 0.062in thick FR on the desired characteristic impedance of the line, the thickness of the PCB as a transmission line between the module and the antenna. The width is based common form of transmission line is a coax cable, another is the microstrip. This unless the antenna can be placed very close (<1/8in.) to the module. One software for calculating microstrip lines is also available on the Linx website be calculated for other widths and materials using the information below. Handy term refers to a PCB trace running over a ground plane that is designed to serve form of transmission line between the antenna and the module should be used changing its resonant bandwidth. In order to minimize loss and detuning, some module's antenna can effectively contribute to the length of the antenna frequency products like Linx RF modules, because the trace leading to the place to another with minimal loss. This is a critical factor, especially in high-A transmission line is a medium whereby RF energy is transferred from one www.linxtechnologies.com.

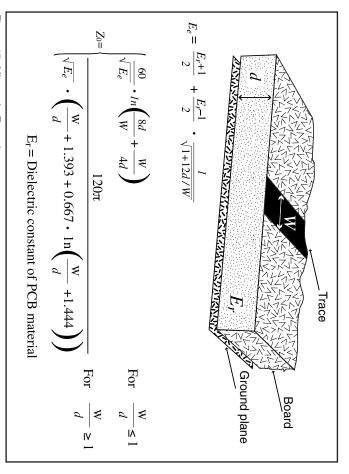


Figure 17: Microstrip Formulas

3.0 2.12
2
3.07
3.59
Constant
Dialectric Constant Width/Height (W/d) Effective Dielectric

PAD LAYOUT

The following pad layout diagram is designed to facilitate both hand and automated assembly.

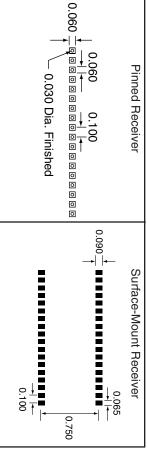


Figure 18: Recommended PCB Layout

PRODUCTION GUIDELINES

components internally, the assembly procedures are critical to ensuring the automated assembly techniques. Since the modules contain discrete with and practiced by all assembly personnel reliable function of the modules. The following procedures should be reviewed The modules are housed in a hybrid SMD package that supports hand

HAND ASSEMBLY

very quick hand soldering for module's underside. This allows for inaccessible during mounting, castellations that run up the side of prototyping and small volume the module have been provided to surface. Since these pads are module are the primary mounting production. facilitate solder wicking to the Pads located on the bottom of the

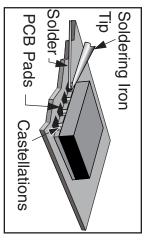


Figure 19: Soldering Technique

exceed the times listed below onermodule corner first and then work around the device, taking care not to page had the castellation, then introduce solder to the pad at the module's edge. slightly past the edge of the module. Use a fine soldering tip to heat the board The splder will wick underneath the module, providing reliable attachment. Tack If the recommended pad guidelines have been followed, the pads will protrude

Absolute Maximum Solder Times

Reflow Oven: +220°C Max. (See adjoining diagram) <mark>歯</mark>nd-Solder Temp. RX +225°C for 10 Seconds Hand-Solder Temp. TX +225°C for 10 Seconds Recommended Solder Melting Point +180°C

AUTOMATED ASSEMBLY

modules have been designed to maintain compatibility with reflow processing assembly process are far more critical than for other component types. For high-volume assembly, most users will want to auto-place the modules. The techniques; however, due to the their hybrid nature, certain aspects of the

Following are brief discussions of the three primary areas where caution must be

Reflow Temperature Profile

stage. The reflow profile below should not be exceeded, since excessive profile to ensure that it meets the requirements necessary to successfully reflow modules. Assembly personnel will need to pay careful attention to the oven's all components while still remaining within the limits mandated by the modules temperatures or transport times during reflow will irreparably damage the The single most critical stage in the automated assembly process is the reflow The figure below shows the recommended reflow oven profile for the modules.

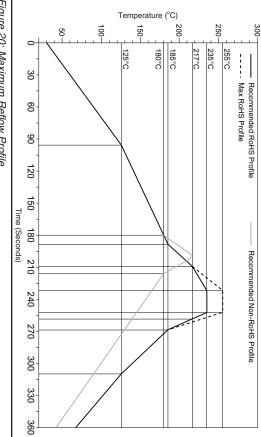


Figure 20: Maximum Reflow Profile

Shock During Reflow Transport

subjected to shock or vibration during the time solder is liquid. Should a shock be applied, some internal components could be lifted from their pads, causing Since some internal module components may reflow along with the components the module to not function properly. placed on the board being assembled, it is imperative that the modules not be

Washability

recommends wash-free manufacturing; however, the modules can be subjected contaminants, the performance may be adversely affected, even after drying. potential for shorting damage during power-up or testing. If the wash contains that may have migrated into the module to evaporate, thus eliminating the power to the modules. The drying time should be sufficient to allow any moisture to a wash cycle provided that a drying time is allowed prior to applying electrical The modules are wash resistant, but are not hermetically sealed. Linx

ANTENNA CONSIDERATIONS

The choice of antennas is a critical and often overlooked design consideration. The range, performance, and legality of an RF link are critically dependent upon the antenna. While adequate antenna performance can often be obtained by trial and error methods, antenna design and matching is a complex task. A professionally designed antenna, such as those from Linx, will

Figure 21: Linx Antennas

help ensure maximum performance and FCC compliance

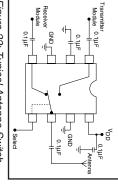
Linx transmitter modules typically have an output power that is slightly higher than the legal limits. This allows the designer to use an inefficient antenna, such as a loop trace or helical, to meet size, cost, or cosmetic requirements and still achieve full legal output power for maximum range. If an efficient antenna is used, then some attenuation of the output power will likely be needed. This can easily be accomplished by using the LADJ line or a T-pad attenuator. For more details on T-pad attenuator design, please see Application Note AN-00150.

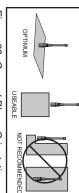
A receiver antenna should be optimized for the frequency or band in which the receiver operates and to minimize the reception of off-frequency signals. The efficiency of the receiver's antenna is critical to maximizing range performance. Unlike the transmitter antenna, where legal operation may mandate attenuation or a reduction in antenna efficiency, the receiver's antenna should be optimized as much as is practical.

It is usually best to utilize a basic quarter-wave whip until your prototype product is operating satisfactorily. Other antennas can then be evaluated based on the cost, size, and cosmetic requirements of the product. You may wish to review Application Note AN-00500 "Antennas: Design, Application, Performance"

ANTENNA SHARING

In cases where a transmitter and receiver module are combined to form a transceiver, it is the free advantageous to share a single antena. To accomplish this, an antenna switch must be used to provide isolation between the modules so that the full transmitter output power is not put on the sensitive front end of the receiver. There are wide variety of antenna switches that are cost-effective and easy to use. Among




Figure 22: Typical Antenna Switch

the anost popular are switches from Macom and NEC. Look for an antenna switch that has high isolation and low loss at the desired frequency of operation. Generally, the Tx or Rx status of a switch will be controlled by a product's mideoprocessor, but the user may also make the selection manually. In some cases, where the characteristics of the Tx and Rx antennas need to be different or antenna switch losses are unacceptable, it may be more appropriate to utilize two discrete antennas.

GENERAL ANTENNA RULES

The following general rules should help in maximizing antenna performance

- Proximity to objects such as a user's hand, body, or metal objects will cause an antenna to detune. For this reason, the antenna shaft and tip should be positioned as far away from such objects as possible.
- 2. Optimum performance will be obtained from a 1/4- or 1/2-wave straight whip mounted at a right angle to the ground plane. In many cases, this isn't desirable for practical or ergonomic reasons, thus, an alternative antenna style such as a helical, loop, or patch may be utilized

helical, loop, or patch may be utilized *Figure 23: Ground Plane Orientation* and the corresponding sacrifice in performance accepted.

- 3. If an internal antenna is to be used, keep it away from other metal components, particularly large items like transformers, batteries, PCB tracks, and ground planes. In many cases, the space around the antenna is as important as the antenna itself. Objects in close proximity to the antenna can cause direct detuning, while those farther away will alter the antenna's symmetry.
- 4. In many antenna designs, particularly 1/4-wave whips, the ground plane acts as a counterpoise, forming, in essence, a 1/2-wave dipole. For this reason, adequate ground plane area is essential. The ground plane can be a metal case or ground-fill areas on a circuit board. Ideally, it should have a surface area ≥ the overall length of the 1/4-wave radiating element. This is often not practical due to size and configuration constraints. In these instances, a designer must make the best use of the area available to create as much ground plane as

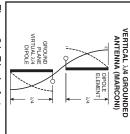


Figure 24: Dipole Antenna

possible in proximity to the base of the antenna. In cases where the antenna is remotely located or the antenna is not in close proximity to a circuit board, ground plane, or grounded metal case, a metal plate may be used to maximize the antenna's performance.

- Remove the antenna as far as possible from potential interference sources. Any frequency of sufficient amplitude to enter the receiver's front end will reduce system range and can even prevent reception entirely. Switching power supplies, oscillators, or even relays can also be significant sources of potential interference. The single best weapon against such problems is attention to placement and layout. Filter the module's power supply with a high-frequency bypass capacitor. Place adequate ground plane under potential sources of noise to shunt noise to ground and prevent it from coupling to the RF stage. Shield noisy board areas whenever practical.
- 6. In some applications, it is advantageous to place the module and antenna away from the main equipment. This can avoid interference problems and allows the antenna to be oriented for optimum performance. Always use 50Ω coax, like RG-174, for the remote feed.

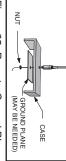


Figure 25: Remote Ground Plane

COMMON ANTENNA STYLES

There are literally hundreds of antenna styles and variations that can be employed with Linx RF modules. Following is a brief discussion of the styles connectors offer outstanding performance at a low price. Application Notes AN-00100, AN-00140, and AN-00500. Linx antennas and most commonly utilized. Additional antenna information can be found in Linx

Whip Style

connectorized mounting styles. A whip-style antenna provides outstanding overall performance and reduced-height whip-style antennas in permanent and model. To meet this need, Linx offers a wide variety of straight wire or rod, but most designers opt for the consistent and stability. A low-cost whip is can be easily fabricated from a performance and cosmetic appeal of a professionally-made

to reduce the overall height of the antenna by using a helical way to minimize the antenna's physical size for compact winding. This reduces the antenna's bandwidth, but is a great applications. This also means that the physical appearance is antenna's overall length. Since a full wavelength is often quite not always an indicator of the antenna's frequency. easily determined using the adjacent formula. It is also possible Linx modules. The proper length for a straight 1/4-wave can be Its size and natural radiation resistance make it well matched to long, a partial 1/2- or 1/4-wave antenna is normally employed. The wavelength of the operational frequency determines an

quarter-wave length L = length in feet of

F = operating frequency

Specialty Styles Linx offers a wide variety of specialized antenna styles overall antenna size while maintaining reasonable objects, so care must be exercised in layout and placement. Many of these styles utilize helical elements to reduce the performance. A helical antenna's bandwidth is often quite narrow and the antenna can detune in proximity to other

Loop Style

A loop- or trace-style antenna is normally printed directly on a analyzer. An improperly designed loop will have a high SWR at the production. In addition, printed styles are difficult to engineer PCB dielectric, which can cause consistency issues during applications. They are also very sensitive to changes in layout and antennas are generally inefficient and useful only for short-range usually product specific. Despite the cost advantages, loop-style resonated with discrete components, but its actual layout is styles. The element can be made self-resonant or externally product's PCB. This makes it the most cost-effective of antenna requiring the use of expensive equipment, including a network desired frequency, which can cause instability in the RF stage.

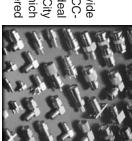
to a product's PCB. These tiny antennas do not require testing and provide excellent performance in light of their small size. They offer a preferable alternative to the often-problematic "printed" Linx offers low-cost planar and chip antennas that mount directly

ONLINE RESOURCES

www.linxtechnologies.com

- Latest News
- Data Guides
- Application Notes
- Knowledgebase
- Software Updates

application notes, a comprehensive knowledgebase, FCC information, and much products and services of Linx. It's all here: manual and software updates Linx website gives you instant access to the latest information regarding the intuitive format to immediately give you the answers you need. Day or night, the make www.linxtechnologies.com your first stop. Our website is organized in ar If you have questions regarding any Linx product and have Internet access more. Be sure to visit often!


www.antennafactor.com

a diverse array of antenna styles, many of antennas to low-cost whips, domes to which are optimized for use with our RF design one to meet your requirements. modules. From innovative embeddable likely has an antenna for you, or car Yagis, and even GPS, Antenna Factor The Antenna Factor division of Linx offers

www.connectorcity.com

at a remarkably low cost allows standard and custom RF connectors to be offered compliant types such as RP-SMAs that are an idea selection of high-quality RF connectors, including FCCfocuses on high-volume OEM requirements, which match for our modules and antennas. Connector City Through its Connector City division, Linx offers a wide

Page 20

LEGAL CONSIDERATIONS

15 compliance; however, they are not approved by the FCC or any other agency worldwide. The purchaser understands that approvals may be required prior to with all laws governing its use in the country of operation. external components to function. The modules are intended to allow for full Part NOTE: Linx RF modules are designed as component devices that require the sale or operation of the device, and agrees to utilize the component in keeping

completed product. clear idea of what is involved in obtaining the necessary approvals to legally market your desire is not only to expedite the design process, but also to assist you in achieving a uncertainty and even fear of the approval and certification process. Here at Linx, our manufacturers have avoided incorporating RF into their products as a result of possible and what is legally acceptable in the country where operation is intended. Many When working with RF, a clear distinction must be made between what is technically

clearly placed on each product manufactured. Once your completed product has passed, you will be issued an ID number that is to be certifications that the product may require at the same time, such as UL, Class A / B, etc. independent testing laboratories across the country. Many labs can also provide other screening, and final compliance testing is then performed by one of the many identification number. This is a relatively painless process. Linx offers full FCC preradiates RF energy be approved, that is, tested for compliance and issued a unique www.linxtechnologies.com. In brief, these rules require that any device that intentionally included with Linx evaluation kits or may be obtained from the Linx Technologies website, Washington or from your local government bookstore. Excerpts of applicable sections are strongly recommended that a copy be obtained from the Government Printing Office in however, all regulations applicable to this module are contained in Volume 0-19. It is 47 of the Code of Federal Regulations (CFR). Title 47 is made up of numerous volumes; the Federal Communications Commission (FCC). The regulations are contained in Title regulations governing RF devices and the enforcement of them are the responsibility of In the United States, the approval process is actually quite straightforward. The

with the technical standards of Part 15, should be addressed to: procedures used to test intentional radiators, such as Linx RF modules, for compliance Questions regarding interpretations of the Part 2 and Part 15 rules or measurement

'供应商 Office of Engineering and Technology Laboratory Division **Federal Communications Commission** Columbia, MD 21046-1609 7435 Oakland Mills Road

to allow all international standards to be met. If you are considering the export of your product approad, you should contact Linx Technologies to determine the specific suitability of the module to your application. Internaterial approvals are slightly more complex, although Linx modules are designed <mark>สฺค</mark>hone: (301) 362-3000 Fax: (301) 362-3290 E-Mail: labinfo@fcc.gov

frequency selected, and physical packaging. While some extra cost and design effort are still dependent on many factors, such as the choice of antennas, correct use of the frustration that is typically experienced with a discrete design is eliminated. Approval is required to address these issues, the additional usefulness and profitability added to a All Linx podules are designed with the approval process in mind and thus much of the product by RF makes the effort more than worthwhile.

ACHIEVING A SUCCESSFUL RF IMPLEMENTATION

particular design path, but most projects follow steps vary widely, it is difficult to recommend one of the steps necessary to ensure a successful RF is still important, however, to have an objective view design and approval process is greatly simplified. It premade RF modules, such as the LR Series, the bring the product successfully to market. By utilizing additional effort and commitment will be needed to dimension to any product. It also means that similar to those shown at the right. integration. Since the capabilities of each customer Adding an RF stage brings an exciting new

will not only survive implementing RF, you may even find the process enjoyable and taking advantage of the resources we offer, you commitment. By choosing Linx as your RF partner Simple" is more than just a motto, it's our unusual for a high-volume component manufacturer. antenna design and FCC prequalification) that are notice that Linx offers a variety of services (such as caliber of products and support. "Wireless Made technical support, are offered because we recognize In reviewing this sample design path, you may that RF is a complex science requiring the highest These services, along with an exceptional level of

CONSULT LINX REGARDING ANTENNA OPTIONS AND DESIGN OPTIMIZE USING RF SUMMARY
GENERATED BY LINX COMMENCE SELLING PRODUCT ORDER EVALUATION KIT(S) SEND PRODUCTION-READY PROTOTYPE TO LINX FOR EMC PRESCREENING CIRCUIT AND DEBUG CHOOSE LINX MODULE BASIC HOOKUP RESEARCH DECIDE TO UTILIZE RF SEND TO PART 15
TEST FACILITY RECEIVE FCC ID # LAY OUT BOARD RF OPTIONS

Implementing RF Typical Steps For

HELPFUL APPLICATION NOTES FROM LINX

contacting the Linx literature department depth key areas of RF design and application of Linx products. These wish to obtain one or more of the following application notes, which address in should be considered to ensure that the modules function correctly and deliver It is not the intention of this manual to address in depth many of the issues that applications notes are available online at www.linxtechnologies.com or by the maximum possible performance. As you proceed with your design, you may

Antennas: Design, Application, Performance	AN-00500
Considerations For Sending Data Over a Wireless Link	AN-00160
Serial Loading Techniques for the HP Series 3	AN-00155
The FCC Road: Part 15 From Concept To Approval	AN-00140
Modulation Techniques For Low-Cost RF Data Links	AN-00130
Considerations For Operation Within The 902-928MHz Band	AN-00126
RF 101: Information for the RF Challenged	AN-00100
APPLICATION NOTE TITLE	NOTE

Page 22

U.S. CORPORATE HEADQUARTERS

LINX TECHNOLOGIES, INC.
159 ORT LANE
MERLIN, OR 97532

PHONE: (541) 471-6256 FAX: (541) 471-6251 www.linxtechnologies.com

Disclaimer

Linx Technologies is continually striving to improve the quality and function of its products. For this reason, we reserve the right to make changes to our products without notice. The information contained in this Overview Guide is believed to be accurate as of the time of publication. Specifications are based on representative lot samples. Values may vary from lot-to-lot and are not guaranteed. "Typical" parameters can and do vary over lots and application. Linx Technologies makes no guarantee, warranty, or representation regarding the suitability of any product for use in any specific application. It is the customer's responsibility to verify the suitability of the part for the intended application. NO LINX PRODUCT IS INTENDED FOR USE IN ANY APPLICATION WHERE THE SAFETY OF LIFE OR PROPERTY IS AT RISK.

any user sold by Liex Technologies to Customer. Under no conditions will Linx Technologies be responsible for adjustmeets, costs, and expenses incurred by Linx Technologies as a result of or arising from any Products from third parties, arising from the use of the Products. The Customer will indemnify, defend, protect, and TECHNOLES IES. The limitations on Linx Technologies' liability are applicable to any and all claims or theories 是是covery asserted by Customer, including, without limitation, breach of contract, breach of warranty 法信贷 liability, or negligence. Customer assumes all liability (including, without limitation, liability Linx Technologies DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LINX TECHNOLOGIES BE LIABLE FOR ANY OF proprieta<mark>rs, p</mark>atented, or copyrighted techniques, components, or materials. Under no circumstances shall refund lingued to the original product purchase price. Devices described in this publication may contain CUSTOMER'S INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY FROM ANY DEFECTIVE losses ari<mark>str</mark>iç represent**er**es from and against all claims, damages, actions, suits, proceedings, demands, assessments, hold harmless Linx Technologies and its officers, employees, subsidiaries, affiliates, distributors, and for injury**a**e person or property, economic loss, or business interruption) for all claims, including claims OR NON-CONFORMING PRODUCTS OR FOR ANY OTHER BREACH OF CONTRACT BY LINX donveyed any license or right to the use or ownership of such items. from the use or failure of the device in any application, other than the repair, replacement, or

© 2008 by Linx Technologies, Inc. The stylized Linx logo, Linx, "Wireless Made Simple", CipherLinx, and the stylized CL logo are the trademarks of Linx Technologies, Inc. Printed in U.S.A.