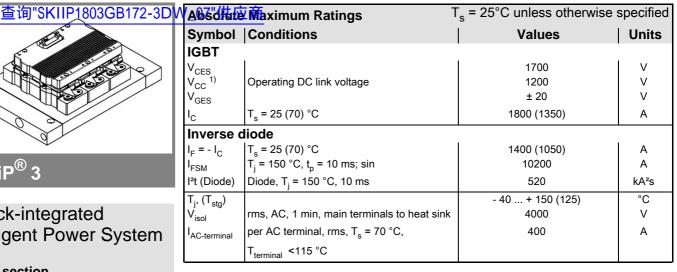
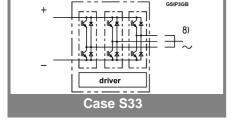

SKiiP 1803GB172-3DW

SKiiP[®] 3

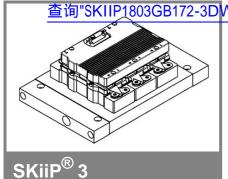

2-pack-integrated intelligent Power System

Power section SKiiP 1803GB172-3DW


Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request



Characteristics				T _s = 25°C unless otherwise specified				
Symbol Conditions			min.	typ.	max.	Units		
IGBT								'
V _{CEsat}	I _C = 900 A, 7 measured at terr	Γ _j = 25 (1 minal	125) °C;			1,9 (2,2)	2,4	V
V_{CEO}	$T_j = 25 (125)$					1 (0,9)	1,2 (1,1)	V
r _{CE}	$T_j = 25 (125)$					1 (1,4)	1,3 (1,7)	mΩ
I _{CES}	$V_{GE} = 0 \text{ V, V}$ $T_i = 25 (125)$		ES [,]			3,6 (216)		mA
$E_{on} + E_{off}$	$I_{\rm C} = 900 \text{A}, \text{A}$	√ _{CC} = 90	0 V			585		mJ
	T _j = 125 °C, V _{CC} = 1200 V				mJ			
R _{CC+EE}	terminal chip	o, T _i = 25	5 °C			0,17		mΩ
L _{CE}	top, bottom					4		nH
C _{CHC}	per phase, A	AC-side			3			nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 900 A, 7 measured at terr		25) °C			2 (1,8)	2,15	V
V _{TO}	T _i = 25 (125)) °C				1,1 (0,8)	1,2 (0,9)	V
r _T	$T_{j} = 25 (125)$					1 (1,1)	1,1 (1,2)	mΩ
E _{rr}	I _C = 900 A, \	$V_{\rm CC} = 90$	0 V			108		mJ
	$T_j = 125 ^{\circ}C,$	V _{CC} = 1	200 V			128		mJ
Mechani	cal data	l data						
M _{dc}	DC terminals, SI Units			6		8	Nm	
M _{ac}	AC terminals	-			13		15	Nm
W	SKiiP® 3 Sys	stem w/c	heat sink			2,4		kg
w	heat sink					5,2		kg
						/c); "s" ref		
	•	to bui	lt-in tem	perature	senso	r (acc.IEC		i I
$R_{th(j-s)I}$	per IGBT						0,017	K/W
R _{th(j-s)D}	per diode						0,033	K/W
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)			
7	1	2	3	4	1	2	3	4
Z _{th(j-r)I}	1,4	6,8 4	7,8 17,7	0 17 7	69 50	0,35 5	0,02	1
Z _{th(j-r)D}	2,6		,	17,7			0,25	0,04
$Z_{th(r-a)}$	4,6	4,7	1,1	0,6	48	15	2,8	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1803GB172-3DW

٨	ABS OHE	Maximum Ratings	T _a = 25°C unless otherwise specified		
	Symbol	Conditions	Values	Units	
	V_{S2}	unstabilized 24 V power supply	30	V	
	V_{i}	input signal voltage (high)	15 + 0,3	V	
	dv/dt	secondary to primary side	75	kV/μs	
	V_{isollO}	input / output (AC, rms, 2s)	4000	V	
	V_{isolPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1500	V	
	V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
	f_{sw}	switching frequency	9	kHz	
	f_{out}	output frequency for I _{peak(1)} =I _C	9	kHz	
	$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

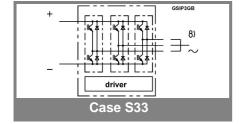
2-pack-integrated
intelligent Power System

2-pack integrated gate driver SKiiP 1803GB172-3DW

Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and


DC-bus voltage (option)

- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Characteristics (T _a				= 25°C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	380+34*f/kHz+0,00015*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1500		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)		1875		А
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not implemente	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

