

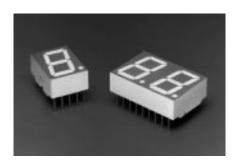
# 14.2 mm (0.56 inch) Seven Segment Displays

## Technical Data

HDSP-530X Series HDSP-532X Series HDSP-550X Series HDSP-560X Series HDSP-562X Series HDSP-570X Series HDSP-572X Series HDSP-H15X Series

#### **Features**

- Industry Standard Size
- Industry Standard Pinout 15.24 mm (0.6 in.) DIP Leads on 2.54 mm (0.1 in.) Centers
- Choice of Colors Red, AlGaAs Red, High Efficiency Red, Yellow, Green
- Excellent Appearance
  Evenly Lighted Segments
  Mitered Corners on Segments
  Gray Package Gives Optimum
  Contrast
  ± 50° Viewing Angle
- Design Flexibility
  Common Anode or Common
  Cathode
  Single and Dual Digits
  Right Hand Decimal Point
  ± 1. Overflow Character


# • Categorized for Luminous Intensity

Yellow and Green Categorized for Color Use of Like Categories Yields a Uniform Display

- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color Selection Option
   See Intensity and Color Selected Displays Data Sheet
- Sunlight Viewable AlGaAs

## **Description**

The 14.2 mm (0.56 inch) LED seven segment displays are designed for viewing distances up

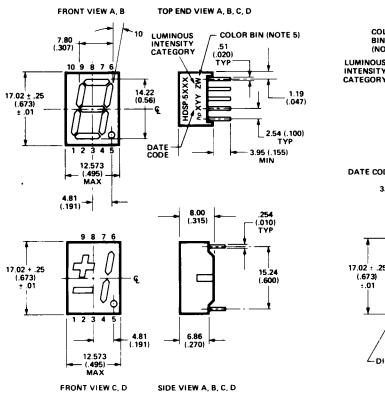


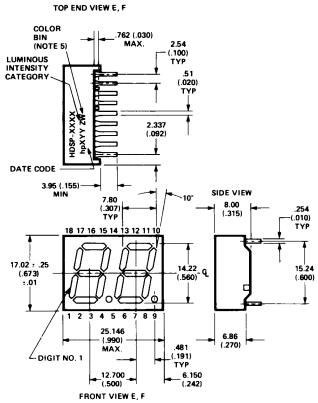
to 7 metres (23 feet). These devices use an industry standard size package and pinout. Both the numeric and  $\pm$  1 overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

## Devices

| Red<br>HDSP- | AlGaAs Red<br>HDSP-[1] | HER<br>HDSP-[1] | Yellow<br>HDSP- | Green<br>HDSP- | Description                                    | Package<br>Drawing |
|--------------|------------------------|-----------------|-----------------|----------------|------------------------------------------------|--------------------|
| 5301         | H151                   | 5501            | 5701            | 5601           | Common Anode Right Hand Decimal                | A                  |
| 5303         | H153                   | 5503            | 5703            | 5603           | Common Cathode Right Hand Decimal              | В                  |
| 5307         | H157                   | 5507            | 5707            | 5607           | Common Anode ± 1. Overflow                     | С                  |
| 5308         | H158                   | 5508            | 5708            | 5608           | Common Cathode $\pm$ 1. Overflow               | D                  |
| 5321         |                        | 5521            | 5721            | 5621           | Two Digit Common Anode Right Hand<br>Decimal   | Е                  |
| 5323         |                        | 5523            | 5723            | 5623           | Two Digit Common Cathode Right Hand<br>Decimal | F                  |

#### Note


3-84 5963-7388E

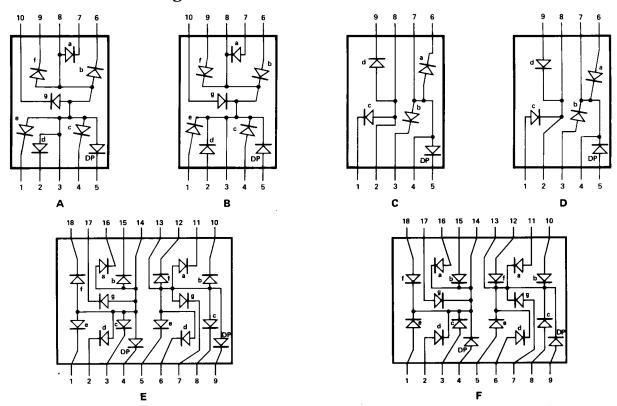

 $<sup>1. \</sup> These \ displays \ are \ recommended \ for \ high \ ambient \ light \ operation. \ Please \ refer \ to \ the \ HDSP-H10X/K12X \ AlGaAs \ and \ HDSP-555X \ HER \ data \ sheet \ for \ low \ current \ operation.$ 

## 查询"HDSP-5303"供应商

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays are ideal for portable applications. For additional information see the Low Current Seven Segment Displays data sheet.

## **Package Dimensions**






|     | FUNCTION             |                        |                |                  |                   |                     |  |  |  |  |
|-----|----------------------|------------------------|----------------|------------------|-------------------|---------------------|--|--|--|--|
| PIN | Α                    | В                      | С              | D                | E                 | F                   |  |  |  |  |
| 1   | CATHODE e            | ANODE e                | CATHODE c      | ANODE c          | E CATHODE NO. 1   | E ANODE NO. 1       |  |  |  |  |
| 2   | CATHODE d            | ANODE d                | ANODE c, d     | CATHODE c, d     | D CATHODE NO. 1   | D ANODE NO. 1       |  |  |  |  |
| 3   | ANODE <sup>[3]</sup> | CATHODE <sup>[4]</sup> | CATHODE b      | ANODE b          | C CATHODE NO. 1   | C ANODE NO. 1       |  |  |  |  |
| 4   | CATHODE c            | ANODE c                | ANODE a, b, DP | CATHODE a, b, DP | DP CATHODE NO. 1  | DP ANODE NO. 1      |  |  |  |  |
| 5   | CATHODE DP           | ANODE DP               | CATHOPDE DP    | ANODE DE         | E CATHODE NO. 1   | E ANODE NO. 2       |  |  |  |  |
| 6   | CATHODE b            | ANODE b                | CATHODE a      | ANODE a          | D CATHODE NO. 2   | D ANODE NO. 2       |  |  |  |  |
| 7   | CATHODE a            | ANODE a                | ANODE a, b, DP | CATHODE a, b, DP | G CATHODE NO. 2   | G ANODE NO. 2       |  |  |  |  |
| 8   | ANODE <sup>[3]</sup> | CATHODE <sup>[4]</sup> | ANODE c, d     | CATHODE c, d     | C CATHODE NO. 2   | C ANODE NO. 2       |  |  |  |  |
| 9   | CATHODE f            | ANODE f                | CATHODE d      | ANODE d          | DP CATHODE NO. 2  | DP ANODE NO. 2      |  |  |  |  |
| 10  | CATHODE g            | ANODE g                | NO PIN         | NO PIN           | B CATHODE NO. 2   | B ANODE NO. 2       |  |  |  |  |
| 11  |                      |                        |                |                  | A CATHODE NO. 2   | A ANODE NO. 2       |  |  |  |  |
| 12  |                      |                        |                |                  | F CATHODE NO. 2   | F ANODE NO. 2       |  |  |  |  |
| 13  |                      |                        |                |                  | DIGIT NO. 2 ANODE | DIGIT NO. 2 CATHODE |  |  |  |  |
| 14  |                      |                        |                |                  | DIGIT NO. 1 ANODE | DIGIT NO. 1 CATHODE |  |  |  |  |
| 15  |                      |                        |                |                  | B CATHODE NO. 1   | B ANODE NO. 1       |  |  |  |  |
| 16  |                      |                        |                |                  | A CATHODE NO. 1   | A ANODE NO. 1       |  |  |  |  |
| 17  |                      |                        |                |                  | G CATHODE NO. 1   | G ANODE NO. 1       |  |  |  |  |
| 18  |                      |                        |                |                  | F CATHODE NO. 1   | F ANODE NO. 1       |  |  |  |  |

#### NOTES:

- 1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
- 2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
- 3. REDUNDANT ANODES.
- 4. REDUNDANT CATHODES.
- 5. FOR HDSP-5600/-5700 SERIES PRODUCT ONLY.

## **Internal Circuit Diagram**



## **Absolute Maximum Ratings**

| Description                                                                     | Red<br>HDSP-5300<br>Series | AlGaAs Red<br>HDSP-H150<br>Series | HER<br>HDSP-5500<br>Series | HDSP-5500 HDSP-5700 |       | Units |  |  |
|---------------------------------------------------------------------------------|----------------------------|-----------------------------------|----------------------------|---------------------|-------|-------|--|--|
| Average Power per Segment or DP                                                 | 82                         | 96                                | 105                        | 80                  | 105   | mW    |  |  |
| Peak Forward Current per<br>Segment or DP                                       | 150 <sup>[1]</sup>         | 160 <sup>[3]</sup>                | 90[5] 60[7]                |                     | 90[9] | mA    |  |  |
| DC Forward Current per<br>Segment or DP                                         | 25[2]                      | 40[4]                             | 30[6]                      | 20[8]               | 3010] | mA    |  |  |
| Operating Temperature Range                                                     | -40 to +100                | -20 to +100 <sup>[11]</sup>       |                            |                     | °C    |       |  |  |
| Storage Temperature Range                                                       | -55 to +100                |                                   |                            |                     |       |       |  |  |
| Reverse Voltage per<br>Segment or DP                                            | 3.0                        |                                   |                            |                     |       |       |  |  |
| Lead Solder Temperature for 3 Seconds (1.60 mm [0.063 in.] below seating plane) | 260                        |                                   |                            |                     |       |       |  |  |

#### **Notes:**

- 1. See Figure 1 to establish pulsed conditions.
- 2. Derate above 80°C at 0.63 mA/°C.
- 3. See Figure 2 to establish pulsed conditions.
- 4. Derate above  $46^{\circ}$ C at 0.54 mA/°C.
- 5. See Figure 7 to establish pulsed conditions.
- 6. Derate above 53°C at 0.45 mA/°C.

- 7. See Figure 8 to establish pulsed conditions.
- 8. Derate above 81°C at 0.52 mA/°C.
- 9. See Figure 9 to establish pulsed conditions.
- 10. Derate above 39°C at 0.37 mA/°C.
- 11. For operation below -20  $^{\circ}$ C, contact your local HP components sales office or an authorized distributor.

# 查询"HDSP-5303"供应商

# Electrical/Optical Characteristics at $T_{\rm A}$ = 25 $^{\circ}{\rm C}$

## Red

| Device<br>Series<br>HDSP- | Parameter                                       | Symbol                    | Min. | Тур. | Max.    | Units                                 | Test Conditions                   |
|---------------------------|-------------------------------------------------|---------------------------|------|------|---------|---------------------------------------|-----------------------------------|
| 11251                     | T WI WING SET                                   | 53111501                  |      |      | 1114211 | CHIUS                                 |                                   |
|                           | Luminous Intensity/Segment <sup>[1,2]</sup>     | ${ m I}_{ m V}$           | 600  | 1300 |         | μcd                                   | $I_F = 20 \text{ mA}$             |
|                           | (Digit Average)                                 | •                         |      | 1400 |         | , , , , , , , , , , , , , , , , , , , | $I_F = 100$ mA Peak:<br>1 of 5 df |
| 53XX                      | Forward Voltage/Segment or DP                   | $V_{\mathrm{F}}$          |      | 1.6  | 2.0     | V                                     | $I_{\rm F}$ = 20 mA               |
|                           | Peak Wavelength                                 | $\lambda_{	ext{PEAK}}$    |      | 655  |         | nm                                    |                                   |
|                           | Dominant Wavelength <sup>[3]</sup>              | $\lambda_{ m d}$          |      | 640  |         | nm                                    |                                   |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>    | $V_{\mathrm{R}}$          | 3.0  | 12   |         | V                                     | $I_R = 100 \mu\text{A}$           |
|                           | Temperature Coefficient of $V_F$ /Segment or DP | $\Delta V_F$ /°C          |      | -2   |         | mV/°C                                 |                                   |
|                           | Thermal Resistance LED Junction-to-Pin          | $ m R	heta_{J	ext{-Pin}}$ |      | 345  |         | °C/W/<br>Seg                          |                                   |

## AlGaAs Red

| Device<br>Series<br>HDSP- | Parameter                                                     | Symbol                  | Min. | Тур. | Max. | Units        | Test Conditions           |
|---------------------------|---------------------------------------------------------------|-------------------------|------|------|------|--------------|---------------------------|
|                           | Luminous Intensity/Segment <sup>[1,2,5]</sup> (Digit Average) | $I_{V}$                 | 9.1  | 16.0 |      | mcd          | $I_{\rm F} = 20~{\rm mA}$ |
|                           | Forward Valtage/Cogmont on DD                                 | 77                      |      | 1.8  |      | V            | $I_{\rm F}$ = 20 mA       |
| H15X                      | Forward Voltage/Segment or DP                                 | $ m V_F$                |      | 2.0  | 3.0  | ·            | $I_{\rm F}$ = 100 mA      |
| 111011                    | Peak Wavelength                                               | $\lambda_{	ext{PEAK}}$  |      | 645  |      | nm           |                           |
|                           | Dominant Wavelength <sup>[3]</sup>                            | $\lambda_{ m d}$        |      | 637  |      | nm           |                           |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>                  | $V_{\mathrm{R}}$        | 3.0  | 15   |      | V            | $I_R = 100 \mu A$         |
|                           | Temperature Coefficient of $V_F/Segment$ or $DP$              | $\Delta V_F$ /°C        |      | -2   |      | mV/°C        |                           |
|                           | Thermal Resistance LED Junction-to-Pin                        | $R\theta_{	ext{J-Pin}}$ |      | 400  |      | °C/W/<br>Seg |                           |

# 查询"HDSP-5303"供应商

# **High Efficiency Red**

| Device<br>Series |                                                 |                         |      |      |      |              |                                       |
|------------------|-------------------------------------------------|-------------------------|------|------|------|--------------|---------------------------------------|
| HDSP-            | Parameter                                       | Symbol                  | Min. | Тур. | Max. | Units        | Test Conditions                       |
|                  | Luminous Intensity/Segment <sup>[1,2,6]</sup>   | $I_{ m V}$              | 900  | 2800 |      | μcd          | $I_{\rm F} = 10 \text{ mA}$           |
|                  | (Digit Average)                                 | IV                      |      | 3700 |      | μοα          | $I_F = 60 \text{ mA Peak:}$ 1 of 6 df |
| 55XX             | Forward Voltage/Segment or DP                   | $V_{\mathrm{F}}$        |      | 2.1  | 2.5  | V            | $I_{\mathrm{F}} = 20 \; \mathrm{mA}$  |
| JJAA             | Peak Wavelength                                 | $\lambda_{	ext{PEAK}}$  |      | 635  |      | nm           |                                       |
|                  | Dominant Wavelength <sup>[3]</sup>              | $\lambda_{ m d}$        |      | 626  |      | nm           |                                       |
|                  | Reverse Voltage/Segment or DP <sup>[4]</sup>    | $V_{\mathrm{R}}$        | 3.0  | 30   |      | V            | $I_R = 100  \mu A$                    |
|                  | Temperature Coefficient of $V_F$ /Segment or DP | $\Delta V_F$ /°C        |      | -2   |      | mV/°C        |                                       |
|                  | Thermal Resistance LED Junction-to-Pin          | $R\theta_{J	ext{-Pin}}$ |      | 345  |      | °C/W/<br>Seg |                                       |

## Yellow

| Device<br>Series<br>HDSP- | Parameter                                       | Symbol                    | Min.  | Тур. | Max.  | Units        | Test Conditions                           |
|---------------------------|-------------------------------------------------|---------------------------|-------|------|-------|--------------|-------------------------------------------|
|                           | Luminous Intensity/Segment <sup>[1,2]</sup>     | т                         | 600   | 1800 |       | uad          | $I_{\rm F} = 10 \text{ mA}$               |
|                           | (Digit Average)                                 | $I_{ m V}$                |       | 2750 |       | μcd          | I <sub>F</sub> = 60 mA Peak:<br>1 of 6 df |
| 57XX                      | Forward Voltage/Segment or DP                   | $ m V_{ m F}$             |       | 2.1  | 2.5   | V            | $I_{\rm F}$ = 20 mA                       |
| SIAA                      | Peak Wavelength                                 | $\lambda_{	ext{PEAK}}$    |       | 583  |       | nm           |                                           |
|                           | Dominant Wavelength <sup>[3,7]</sup>            | $\lambda_{ m d}$          | 581.5 | 586  | 592.5 | nm           |                                           |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>    | $V_{\mathrm{R}}$          | 3.0   | 40   |       | V            | $I_R = 100 \mu\text{A}$                   |
|                           | Temperature Coefficient of $V_F$ /Segment or DP | $\Delta V_F / ^{\circ}C$  |       | -2   |       | mV/°C        |                                           |
|                           | Thermal Resistance LED Junction-to-Pin          | $ m R	heta_{J	ext{-Pin}}$ |       | 345  |       | °C/W/<br>Seg |                                           |

## **High Performance Green**

| Device<br>Series<br>HDSP- | Parameter                                                | Symbol                   | Min. | Тур. | Max. | Units        | Test Conditions                           |
|---------------------------|----------------------------------------------------------|--------------------------|------|------|------|--------------|-------------------------------------------|
|                           | Luminous Intensity/Segment <sup>[1,2]</sup>              | T.                       | 900  | 2500 |      | μcd          | $I_{\rm F} = 10 \text{ mA}$               |
|                           | (Digit Average)`                                         | $I_{ m V}$               |      | 3100 |      | μεα          | I <sub>F</sub> = 60 mA Peak:<br>1 of 6 df |
| FCVV                      | Forward Voltage/Segment or DP                            | $ m V_{F}$               |      | 2.1  | 2.5  | V            | $I_{\rm F} = 10 \text{ mA}$               |
| 56XX                      | Peak Wavelength                                          | $\lambda_{	ext{PEAK}}$   |      | 566  |      | nm           |                                           |
|                           | Dominant Wavelength <sup>[3,7]</sup>                     | $\lambda_{ m d}$         |      | 571  | 577  | nm           |                                           |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>             | $V_{\mathrm{R}}$         | 3.0  | 50   |      | V            | $I_R = 100 \mu\text{A}$                   |
|                           | Temperature Coefficient of V <sub>F</sub> /Segment or DP | $\Delta V_{F}/^{\circ}C$ |      | -2   |      | mV/°C        |                                           |
|                           | Thermal Resistance LED Junction-<br>to-Pin               | $R\theta_{	ext{J-Pin}}$  |      | 345  |      | °C/W/<br>Seg |                                           |

#### **Notes:**

- 1. Device case temperature is 25°C prior to the intensity measurement.
- 2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
- 3. The dominant wavelength,  $\lambda_d$ , is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.
- 5. For low current operation, the AlGaAs HDSP-H10X series displays are recommended. They are tested at 1 mA dc/segment and are pin for pin compatible with the HDSP-H15X series.
- 6. For low current operation, the HER HDSP-555X series displays are recommended. They are tested at 2 mA dc/segment and are pin for pin compatible with the HDSP-550X series.
- 7. The Yellow (HDSP-5700) and Green (HDSP-5600) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

### Red, AlGaAs Red

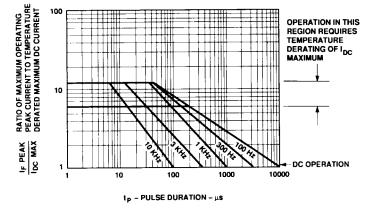



Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

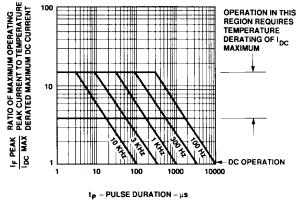



Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration – AlGaAs Red.

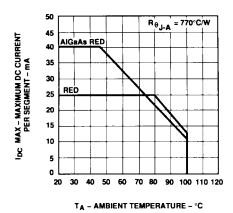



Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

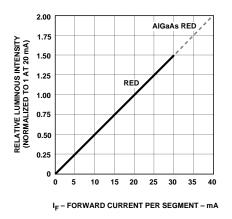



Figure 5. Relative Luminous Intensity vs. DC Forward Current.

HER, Yellow, Green

# DEC OPERATION IN THIS REGION REQUIRES TEMPERATURE DECAMINATION MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM MAXIMUM DECAMINATION TO THE PEAK CURRENT TO TEMPERATURE DECAMINATION TO THE PEAK CURRENT TO THE PEAK CURREN

 $t_{\mbox{\scriptsize P}}$  -- PULSE DURATION --  $\mu \mbox{\scriptsize S}$ 

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration – HER.

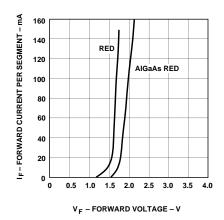



Figure 4. Forward Current vs. Forward Voltage.

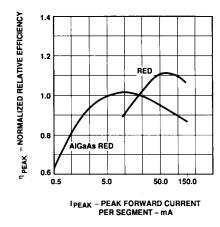



Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

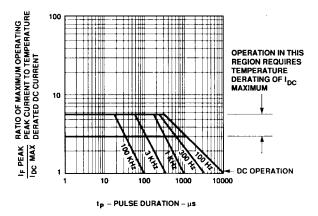



Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration - Yellow.

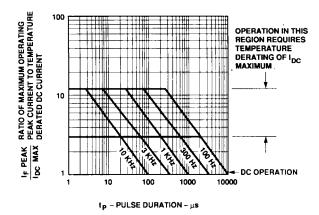
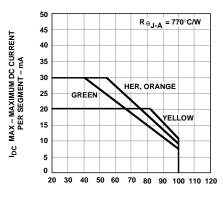




Figure 9. Maximum Tolerable Peak Current vs. Pulse Duration - Green.



TA - AMBIENT TEMPERATURE - °C

Figure 10. Maximum Allowable DC Current vs. Ambient Temperature.

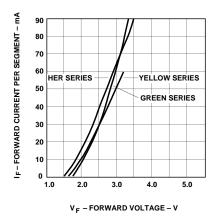



Figure 11. Forward Current vs. Forward Voltage.

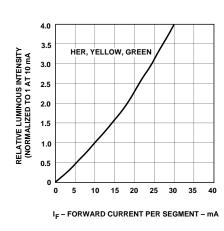



Figure 12. Relative Luminous Intensity vs. DC Forward Current.




Figure 13. Relative Efficiency (Luminous Intensity per Unit Current)

vs. Peak Current.

## Electrical/Optical

For more information on electrical/optical characteristics, please see Application Note 1005.

#### **Contrast Enhancement**

For information on contrast enhancement please see Application Note 1015.

## Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For information on soldering LEDs please refer to Application Note 1027.