HEX B產作74NEO660PR.TS 供应商NVERTING

FEATURES

- Inverting outputs
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT366 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT366 are hex inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable inputs ($\overline{\text{OE}}_1$, $\overline{\text{OE}}_2$).

A HIGH on \overline{OE}_n causes the outputs to assume a high impedance OFF-state. The "366" is identical to the "365" but has inverting outputs.

SYMBOL			TYF		
	PARAMETER	CONDITIONS	нс	нст	UNIT
tPHL/ tPLH	propagation delay nA to nY	C _L = 15 pF V _{CC} = 5 V	10	11	ns
CI	input capacitance		3.5	3.5	рF
CPD	power dissipation capacitance per buffer	notes 1 and 2	30	30	pF

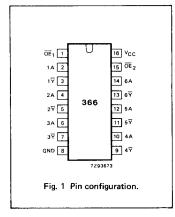
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns

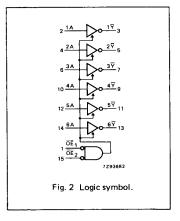
Notes

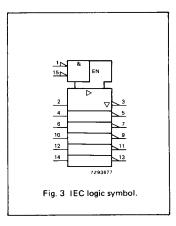
1. CPD is used to determine the dynamic power dissipation (PD in μ W):

$$P_D = C_{PD} \times V_{CC^2} \times f_i + \Sigma (C_L \times V_{CC^2} \times f_0)$$
 where:

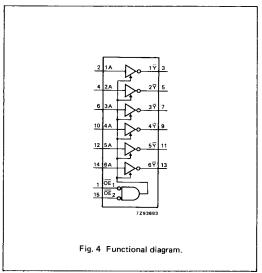
- f; = input frequency in MHz
- CL = output load capacitance in pF VCC = supply voltage in V
- fo = output frequency in MHz
- $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$
- 2. For HC the condition is V_I = GND to VCC For HCT the condition is V_I = GND to VCC 1.5 V


PACKAGE OUTLINES

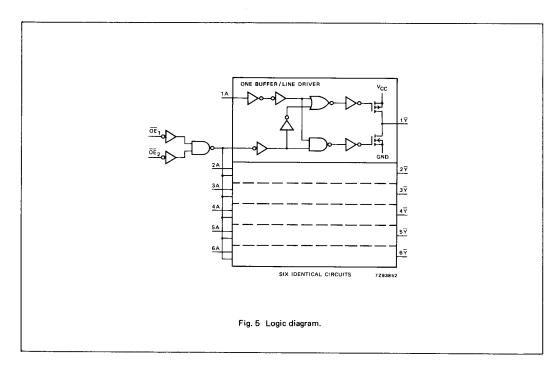

16-lead DIL; plastic (SOT38Z).


16-lead mini-pack; plastic (SQ16; SQT109A).

PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
1, 15	ŌĒ₁, ŌĒ2	output enable inputs (active LOW)
2, 4, 6, 10, 12, 14	1A to 6A	data inputs
3, 5, 7, 9, 11, 13	1 ▽ to 6 ▽	data outputs
8	GND	ground (0 V)
16	Vcc	positive supply voltage

查询"74HC366D-T"供应商



FUNCTION TABLE

	INPUT	OUTPUT	
ŌE ₁	ŌE ₂	nΑ	nΫ
L X H	L H X	L H X	H L Z Z

H = HIGH voltage level

L = LOW voltage level
X = don't care
Z = high impedance OFF-state

查询"74HC366D-T"供应商

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver

ICC category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_f = t_f = 6 ns; C_L = 50 pF$

SYMBOL PA		T _{amb} (°C) 74HC								TEST CONDITIONS	
											WANTEODIAG
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay nA to nY		33 12 10	100 20 17		125 25 21		150 30 26	ns	2.0 4.5 6.0	Fig. 6
tPZH/ tPZL	3-state output enable time OEn to nY		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 7
tPHZ/ tPLZ	3-state output disable time \overline{OE}_n to $n\overline{Y}$		55 20 16	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 7
tTHL/ tTLH	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig. 6

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

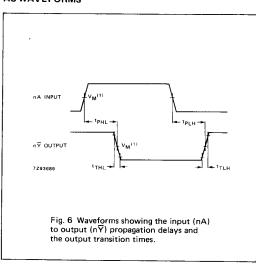
Output capability: bus driver

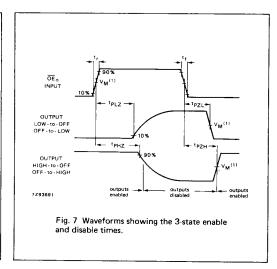
ICC category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
OE1	1.00
OE2	0.90
nA	1.00


查询"74HC366D-T"供应商


AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_1 = 50 \text{ pF}$

SYMBOL PARAMETER	DAGAMETED	T _{amb} (°C)								TEST CONDITIONS	
	ranaweten	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
	<u> </u>	min.	typ.	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay nA to nY		13	24		30		36	ns	4.5	Fig. 6
^t PZH/ ^t PZL	3-state output enable time OEn to nY		16	35		44		53	ns	4.5	Fig. 7
^t PHZ/ tPLZ	3-state output disable time OEn to nY		20	35		44		53	ns	4.5	Fig. 7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig. 6

AC WAVEFORMS

Note to AC waveforms

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3 \text{ V}$; $V_I = GND$ to 3 V.