RENESAS

45日日 SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

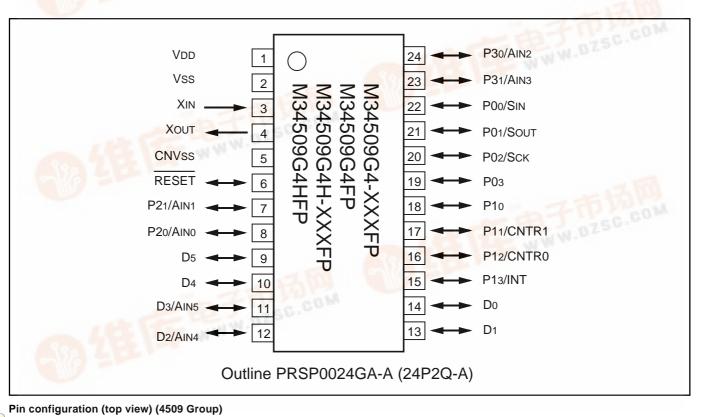
DESCRIPTION

The 4509 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has two reload registers), interrupts, 10-bit A/D converter, Serial interface and oscillation circuit switch function.

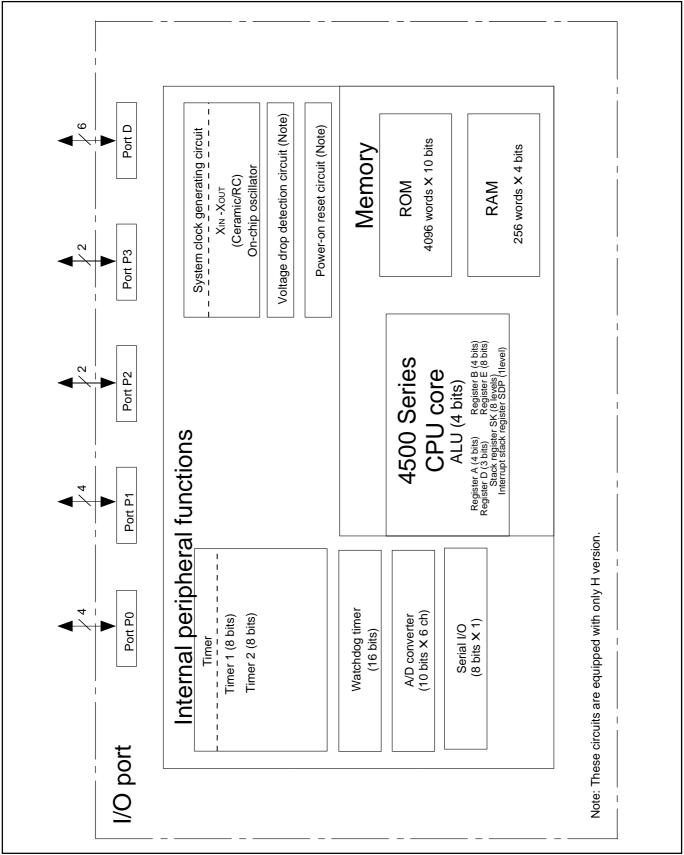
FEATURES

- Minimum instruction execution time0.5 μs (at 6 MHz oscillation frequency, in through-mode)

- A/D converter
- 10-bit successive comparison method 6 channel
- Serial intereface 8-bit X 1
- Reset releaseTyp. 2.7 V (Ta = 25 °C)
- •Power-on reset circuit (only for H version)
- Watchdog timer
- Clock generating circuit (on-chip oscillator/ceramic resonator/RC oscillation)
- LED drive directly enabled (port D)


APPLICATION

Electrical household appliance, consumer electronic products, office automation equipment, etc.


	ROM (PROM) size	RAM size	12 500 12	0750-0
Part number	(X 10 bits)	(X 4 bits)	Package	ROM type
M34509G4FP (Note)	4096 words	256 words	PRSP0024GA-A	QzROM
M34509G4-XXXFP	4096 words	256 words	PRSP0024GA-A	QzROM
M34509G4HFP (Note)	4096 words	256 words	PRSP0024GA-A	QzROM
M34509G4H-XXXFP	4096 words	256 words	PRSP0024GA-A	QzROM

Note: Shipped in blank.

PIN CONFIGURATION

REJ03B0147-0102 df.dzsc.com

Block diagram (4509 Group)

PERFORMANCE OVERVIEW

	Paramete	er	Function			
Number of		M34509G4	134			
basic instructi	ons	M34509G4H	135			
Minimum inst	ruction exe	cution time	0.5 μ s (at 6 MHz oscillation frequency, in through mode)			
Memory sizes ROM			4096 words X 10 bits			
	RAM		256 words X 4 bits			
Input/Output ports	D0–D5 I/O		Six independent I/O ports. Input is examined by skip decision. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as AIN4, and AIN5, respectively.			
	P00-P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions and output structure can be switched by software. Ports P00, P01 and P02 are also used as SIN, SOUT and SCK, respectively.			
	P10–P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions and output structure can be switched by software. Ports P11, P12 and P13 are also used as CNTR1, CNTR0 and INT, respectively.			
	P20, P21	Ι/Ο	2-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions and output structure can be switched by software. Ports P20 and P21 are also used as AIN0 and AIN1, respectively.			
	P30, P31	I/O	2-bit I/O port; The output structure can be switched by software. Ports P30 and P31 are also used as AIN2 and AIN3, respectively.			
	CNTR0, CNTR1	Timer I/O	Two independent I/O; CNTR1 and CNTR0 pins are also used as ports P11 and P12, respectively.			
	INT	Interrupt input	1-bit input; INT pin is also used as port P13.			
	SIN, SOUT	Serial interface	Three independent I/O;			
	Scк	input/output	SIN, SOUT, and SCK are also used as ports P00, P01, and P02, respectively.			
	AIN0-AIN5	Analog input	Six independent input; AIN0–AIN5 are also used as P20, P21, P30, P31, D2 and D3, respectively.			
Timers	Timer 1		8-bit programmable timer/event counter with two reload registers and PWM output function.			
	Timer 2		8-bit programmable timer/event counter with two reload registers and PWM output function.			
	Watchdog	timer function	16-bit timer (fixed dividing frequency) (for watchdog)			
A/D			10-bit wide, This is equipped with an 8-bit comparator function.			
converter	Analog in	put	6 channel (AIN0–AIN5 pins)			
Serial interfac	e		8-bit X 1			
Voltage drop	Reset occ	currence	Typ. 2.6 V (Ta = 25 °C)			
detection	Reset rele	ease	Typ. 2.7 V (Ta = 25 °C)			
circuit (Note)						
Power-on res	et circuit (N	Note)	Built-in type			
Interrupt	Sources		5 (one for external, two for timer, one for A/D, one for Serial interface)			
	Nesting		1 level			
Subroutine ne	esting		8 levels			
Device struct	ure		CMOS silicon gate			
Package			24-pin plastic molded SSOP (PRSP0024GA-A)			
Operating ten	nperature r	ange	-20 °C to 85 °C			
Supply voltag	e		1.8 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)			
Power	Active mo	ode	2.2 mA (Ta = 25°C, VDD = 5.0 V, f(XIN) = 6.0 MHz, f(STCK) = f(XIN)/1)			
dissipation (typical value)	RAM bac	k-up mode	0.1 μ A (Ta = 25°C, VDD = 5.0 V, output transistors in the cut-off state)			

Note: These circuits are equipped with only the H version.

PIN DESCRIPTION

Pin	Name	Input/Output	Function	
Vdd	Power supply	—	Connected to a plus power supply.	
Vss	Ground		Connected to a 0 V power supply.	
CNVss	CNVss	—	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.	
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the voltage drop detection circuit (only for H version) or the built-in power-on reset (only for H version) causes the system to be reset, the RESET pin outputs "L" level.	
Xin	System clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, conr between pins XIN and XOUT. A feedback resistor is built-in between them. When the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin op	
Хоит	System clock output	Output		
D0-D5	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as AIN4 and AIN5, respectively.	
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P00, P01 and P02 are also used as SIN, SOUT and SCK, respectively.	
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P11, P12 and P13 are also used as CNTR1, CNTR0 and INT, respectively.	
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P20 and P21 are also used as AIN0 and AIN1, respectively.	
P30, P31	I/O port P3	I/O	Port P3 serves as a 2-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports P30 and P31 are also used as AIN2 and AIN3, respectively.	
CNTR0	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 2 event counter, and to output the PWM signal generated by timer 1. This pin is also used as port P12.	
CNTR1	Timer input/output	I/O	CNTR1 pin has the function to input the clock for the timer 1 event counter, and to output the PWM signal generated by timer 2. This pin is also used as port P11.	
INT	Interrupt input	Input	INT pin accepts external interrupts. It has the key-on wakeup function which can be switched by software. This pin is also used as port P13.	
Aino-Ain5	Analog input	Input	A/D converter analog input pins. AIN0–AIN5 are also used as ports P20, P21, P30, P31, D2 and D3, respectively.	
Sck	Serial interface clock I/O	I/O	Serial interface data transfer synchronous clock I/O pin. SCK pin is also used as port P02.	
SOUT	Serial interface data output	Output	Serial interface data output pin. SOUT pin is also used as port P01.	
SIN	Serial interface data input	Input	Serial interface data input pin. SIN pin is also used as port P00.	

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
P00	Sin	SIN	P00	P20	AINO	AINO	P20
P01	SOUT	SOUT	P01	P21	AIN1	AIN1	P21
P02	Sck	SCK	P02	P30	Ain2	AIN2	P30
P11	CNTR1	CNTR1	P11	P31	Аілз	Аімз	P31
P12	CNTR0	CNTR0	P12	D2	Ain4	AIN4	D2
P13	INT	INT	P13	D3	Ain5	AIN5	D3

Notes 1: Pins except above have just single function.

2: The input/output of P00 can be used even when SIN is used. Be careful when using inputs of both SIN and P00 since the input threshold value of SIN pin is different from that of port P00.

3: The input of P01 can be used even when SOUT is used.

4: The input of P02 can be used even when SCK is used. Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.

5: The input of P11 can be used even when CNTR1 (output) is selected. The input/output of P11 can be used even when CNTR1 (input) is selected. Be careful when using inputs of both CNTR1 and P11 since the input threshold value of CNTR1 pin is different from that of port P11.

6: The input of P12 can be used even when CNTR0 (output) is selected.

The input/output of P12 can be used even when CNTR0 (input) is selected. Be careful when using inputs of both CNTR0 and P12 since the input threshold value of CNTR0 pin is different from that of port P12.

7: The input/output of P13 can be used even when INT is used. Be careful when using inputs of both INT and P13 since the input threshold value of INT pin is different from that of port P13.

8: The input/output of P20, P21, P30, P31, D2, D3 can be used even when AIN0-AIN5 are used.

PORT FUNCTION

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0, D1, D4, D5	I/O (6)	N-channel open-drain/ CMOS	1	SD, RD SZD, CLD	FR3, C1	Programmable output structure selection function
	D2/AIN4 D3/AIN5					FR3, PU2 K2 Q1	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P0	Р00/SIN, Р01/SOUT, Р02/SCK, Р03	I/O (4)	N-channel open-drain/ CMOS	4	OP0A IAP0	FR0, PU0 K0 J1	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P1	P10, P11/CNTR1, P12/CNT0, P13/INT	I/O (4)	N-channel open-drain/ CMOS	4	OP1A IAP1	FR1, PU1 K1, L1, I1 W1, W2 W5, W6	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P2	P20/AIN0 P21/AIN1	I/O (2)	N-channel open-drain/ CMOS	2	OP2A IAP2	FR2, PU2 Q1 K2	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P3	P30/AIN2 P31/AIN3	I/O (2)	N-channel open-drain/ CMOS	2	OP3A IAP3	C1 Q1	Programmable output structure selection functions

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator.
- System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the register MR and register RG.

Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

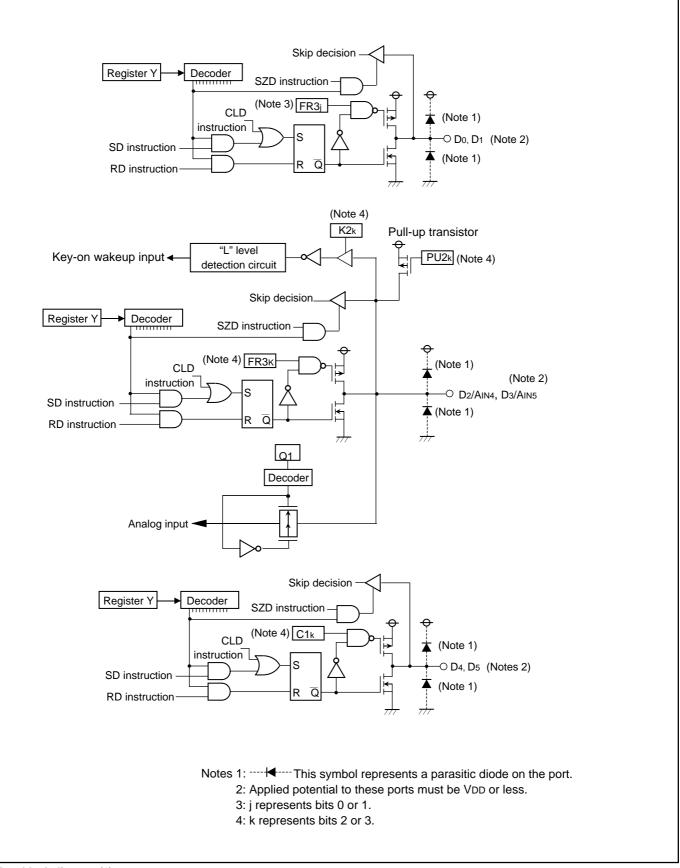
Machine cycle

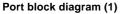
The machine cycle is the standard cycle required to execute the instruction.

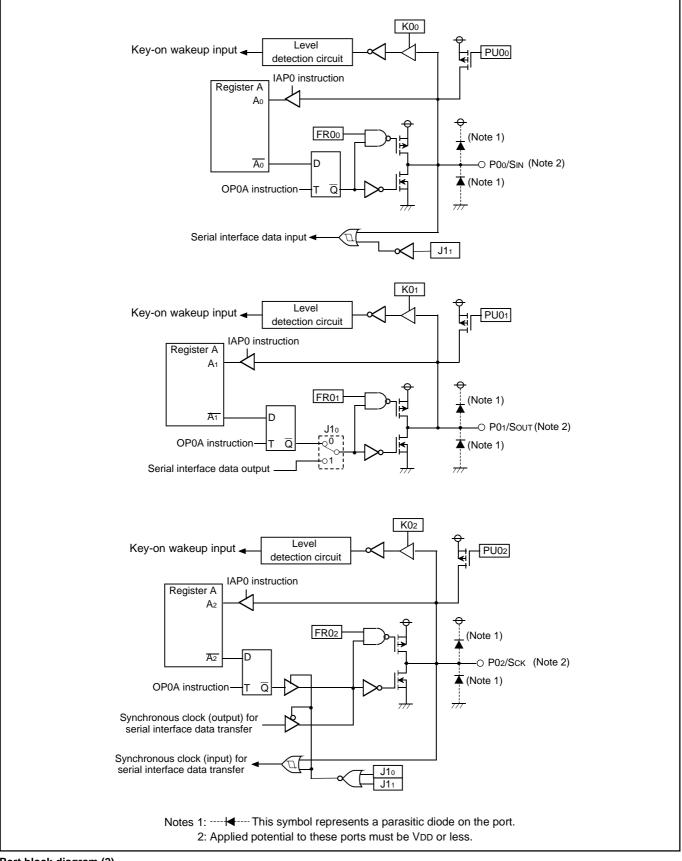
Table Selection of system clock

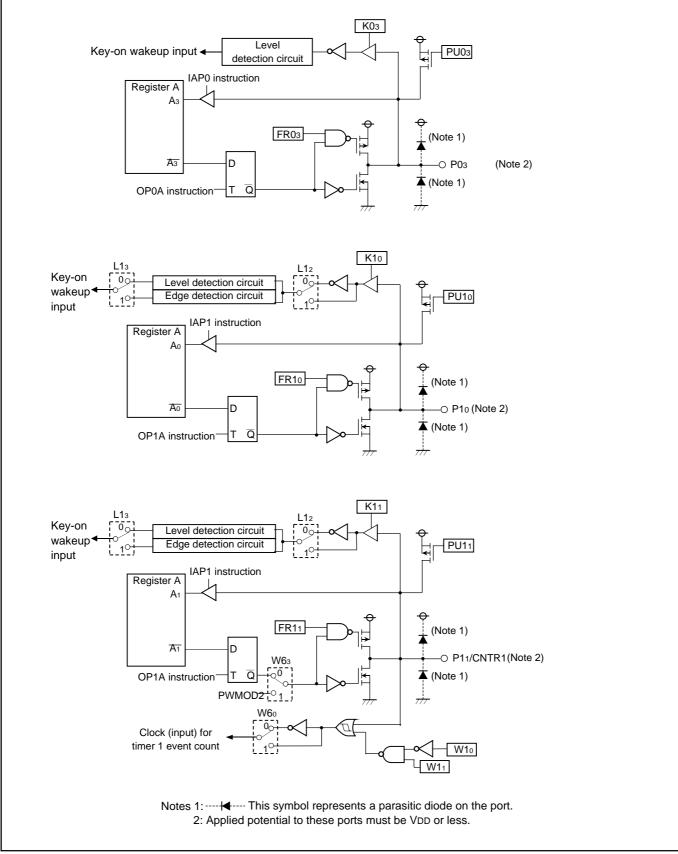
Register MR, RG			System clock	Operation mode		
MRз	MR2	MR1	MR0	RG0		
1	1	-	1	0	f(STCK) = f(RING)/8	Internal frequency divided by 8 mode
1	0	-	1	0	f(STCK) = f(RING)/4	Internal frequency divided by 4 mode
0	1	-	1	0	f(STCK) = f(RING)/2	Internal frequency divided by 2 mode
0	0	-	1	0	f(STCK) = f(RING)	Internal frequency through mode
1	1	0	0	_	f(STCK) = f(XIN)/8	High-speed frequency divided by 8 mode
1	0	0	0	_	f(STCK) = f(XIN)/4	High-speed frequency divided by 4 mode
0	1	0	0	_	f(STCK) = f(XIN)/2	High-speed frequency divided by 2 mode
0	0	0	0	_	f(STCK) = f(XIN)	High-speed through mode

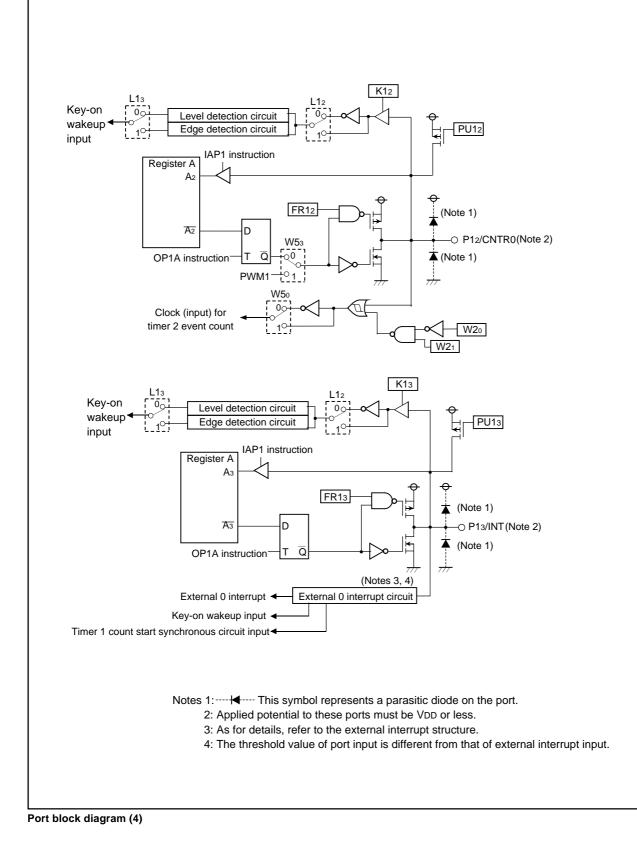
Note: The internal frequency divided by 8 is selected after system is released from reset.

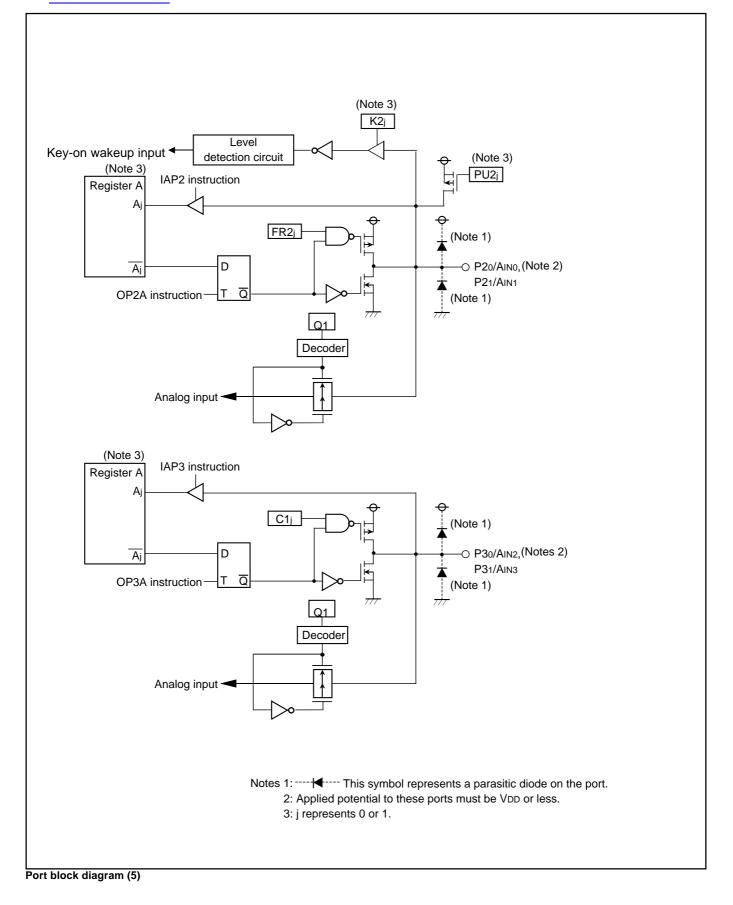

CONNECTIONS OF UNUSED PINS

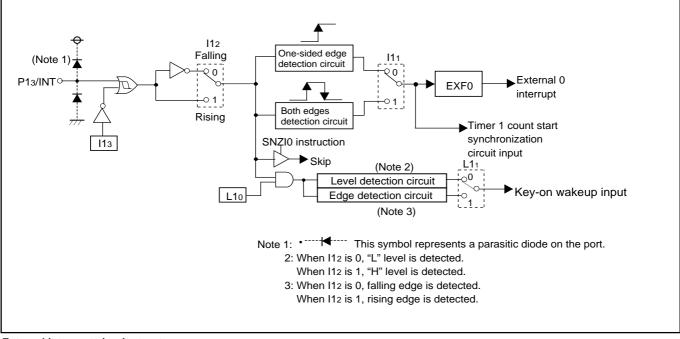

Pin	Connection	Usage condition
Xin	Connect to Vss.	RC oscillation circuit is not selected. (CRCK instruction is not executed.)
Хоит	Open.	
D0, D1, D4, D5	Open.	
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR30, FR31, C12, C13 = "0").
D2/AIN4, D3/AIN5	Open.	The key-on wakeup function is invalid (K22, K23 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR32, FR33 = "0").
		Pull-up transistor is OFF (PU22, PU23 = "0").
		The key-on wakeup function is invalid (K22, K23 = "0").
P00/SIN	Open.	SIN pin is not selected (J11 = "0").
		The key-on wakeup function is invalid (K00 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR00 = "0").
		Pull-up transistor is OFF (PU00 = "0").
		The key-on wakeup function is invalid (K00 = "0").
P01/SOUT	Open.	The key-on wakeup function is invalid (K01 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR01 = "0").
		Pull-up transistor is OFF (PU01 = "0").
		The key-on wakeup function is invalid (K01 = "0").
P02/SCK	Open.	Scк pin is not selected (J11J10 = "00").
		The key-on wakeup function is invalid (K02 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR02 = "0").
		Pull-up transistor is OFF (PU02 = "0").
		The key-on wakeup function is invalid (K02 = "0").
P03	Open.	The key-on wakeup function is invalid (K03 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR03 = "0").
		Pull-up transistor is OFF (PU03 = "0").
		The key-on wakeup function is invalid (K03 = "0").
P10	Open.	The key-on wakeup function is invalid (K10 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR10 = "0").
		Pull-up transistor is OFF (PU10 = "0").
		The key-on wakeup function is invalid (K10 = "0").
P11/CNTR1	Open.	CNTR1 input is not selected for the timer 1 count source (W11, W10 \neq "10").
		The key-on wakeup function is invalid (K11 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR11 = "0").
		Pull-up transistor is OFF (PU11 = "0").
		The key-on wakeup function is invalid (K11 = "0").
P12/CNTR0	Open.	CNTR0 input is not selected for the timer 2 count source (W21, W20 \neq "10").
		The key-on wakeup function is invalid (K12 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR12 = "0").
		Pull-up transistor is OFF (PU12 = "0").
		The key-on wakeup function is invalid (K12 = "0").
P13/INT	Open.	INT pin input is disabled ($I13 = "0"$).
		The key-on wakeup function is invalid (K13 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR13 = "0").
		Pull-up transistor is OFF (PU13 = "0").
		The key-on wakeup function is invalid (K13 = " 0 ").
P20/AIN0, P21/AIN1	Open.	The key-on wakeup function is invalid ($K20$, $K21 = "0"$).
$\sim \sim / - 1$ inv, i $\sim 1 / - 1$ int	Connect to Vss.	N-channel open-drain is selected for the output structure (FR20, FR21 = "0").
		Pull-up transistor is OFF (PU20, PU21 = "0").
		The key-on wakeup function is invalid (K20, K21 = "0").
P30/AIN2, P31/AIN3	Open.	


(Note when connecting to VSS or VDD) ● Connect the unused pins to VSS using the thickest wire at the shortest distance against noise.


PORT BLOCK DIAGRAMS






Port block diagram (2)

Port block diagram (3)

External interrupt circuit structure

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A₀ is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Also, when the TABP p instruction is executed at UPTF flag = "1", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0". When the TABP p instruction is executed at UPTF flag = "0", the contents of register D remains unchanged. The UPTF flag is set to "1" with the SUPT instruction and cleared to "0" with the RUPT instruction. The initial value of UPTF flag is "0".

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

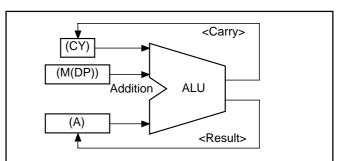


Fig. 1 AMC instruction execution example

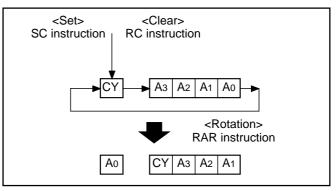


Fig. 2 RAR instruction execution example

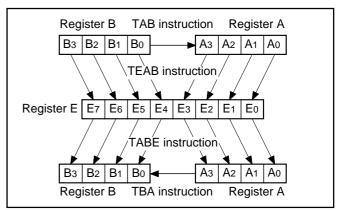
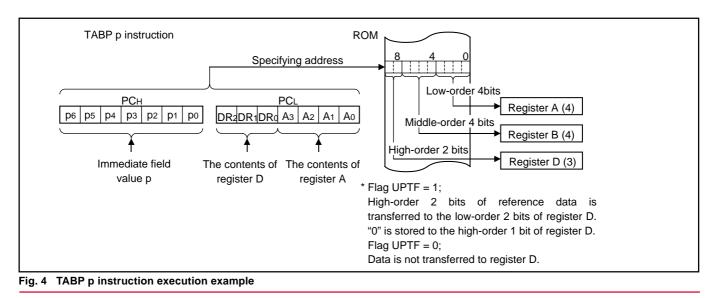



Fig. 3 Registers A, B and register E

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Program c	counter (PC)
Executing BM instruction	Executing RT instruction
S	6K0 (SP) = 0
S	6K1 (SP) = 1
S	6K2 (SP) = 2
S	6K3 (SP) = 3
S	6K4 (SP) = 4
S	K5 (SP) = 5
S	6K6 (SP) = 6
S	6K7 (SP) = 7
	SP) points "7" at reset or M back-up mode. It points "0"

returning from RAM back-up mode. It points "0" by executing the first **BM** instruction, and the contents of program counter is stored in SKo. When the **BM** instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.

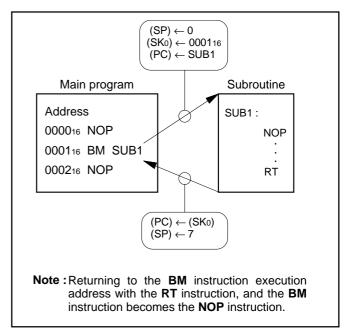


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

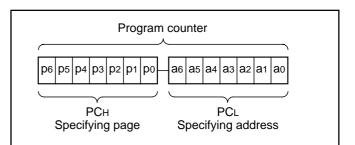


Fig. 7 Program counter (PC) structure

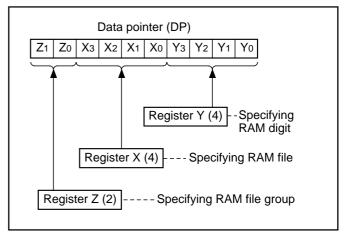


Fig. 8 Data pointer (DP) structure

Fig. 9 SD instruction execution example

PROGRAM MEMOY (ROM)

1 word of program memory is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34509G4.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34509G4	4096 words	32 (0 to 31)
M34509G4H	4096 words	32 (0 to 31)

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP $\ensuremath{\mathsf{p}}$ instruction.

ROM Code Protect Address

When selecting the protect bit write by using a serial programmer or selecting protect enabled for writing shipment by Renesas Technology corp., reading or writing from/to QzROM is disabled by a serial programmer.

As for the QzROM product in blank, the ROM code is protected by selecting the protect bit write at ROM writing with a serial programmer.

As for the QzROM product shipped after writing, whether the ROM code protect is used or not can be selected as ROM option setup ("MASK option" written in the mask file converter) when ordering.

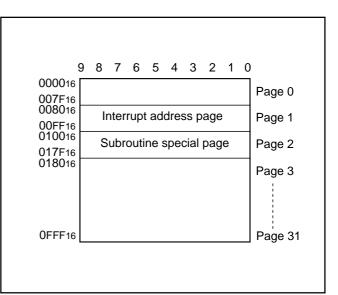


Fig. 10 ROM map of M34509G4

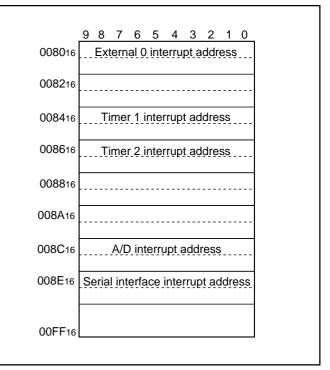


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34509G4	256 words X 4 bits (1024 bits)
M34509G4H	256 words X 4 bits (1024 bits)

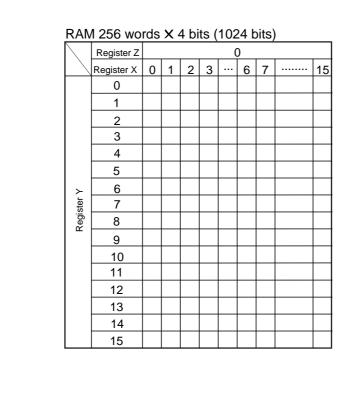


Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

• An interrupt activated condition is satisfied (request flag = "1")

- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	A/D interrupt	Completion of A/D conversion	Address C in page 1
5	Serial interface interrupt	Completion of serial interface transmit/ recieve	Address E in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
A/D interrupt	ADF	SNZAD	V22
Serial interface interrupt	SIOF	SNZSI	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

• Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)
- INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
- Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

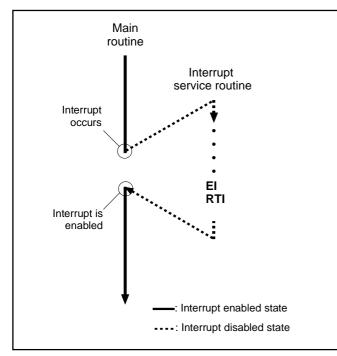
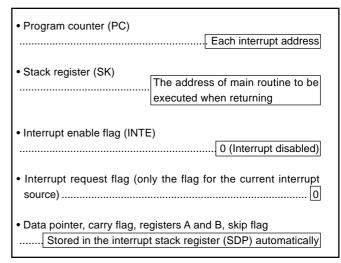
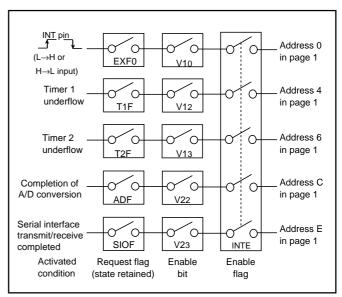
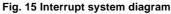





Fig. 13 Program example of interrupt processing

Fig. 14 Internal state when interrupt occurs

(6) Interrupt control registers

Interrupt control register V1

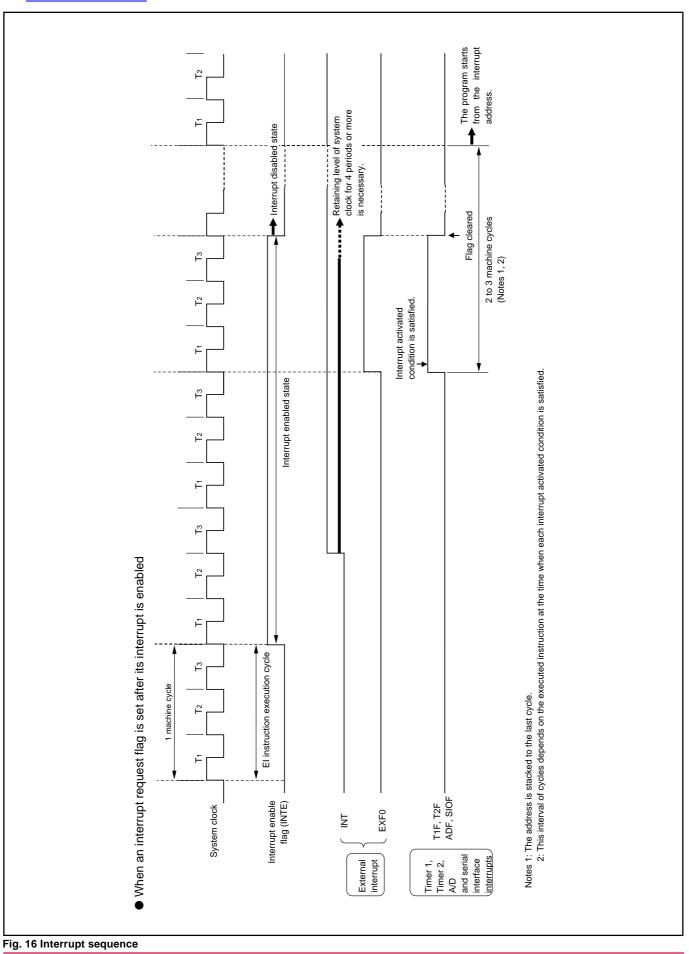
Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Table 6 Interrupt control registers

Interrupt control register V2

The A/D interrupt enable bit and serial interface interrupt enable bit are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

V13 Timer 2 interrupt enable bit 0 Interrupt disabled (SNZT2 instruction is valid) V13 Timer 1 interrupt enable bit 1 Interrupt enabled (SNZT2 instruction is invalid) V12 Timer 1 interrupt enable bit 0 Interrupt disabled (SNZT1 instruction is valid) V11 Not used 0 Interrupt enabled (SNZT1 instruction is invalid) V11 Not used 0 This bit has no function, but read/write is enabled.		Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W TAV1/TV1A
V12 Timer 1 interrupt enable bit 1 Interrupt enabled (SNZT2 instruction is invalid) 0 Interrupt disabled (SNZT1 instruction is valid) 1 Interrupt enabled (SNZT1 instruction is valid) 0 Interrupt enabled (SNZT1 instruction is invalid) 0 Interrupt enabled (SNZT1 instruction is invalid)	\/12	Timer 2 interrupt enable bit	0	Interrupt disabled ((SNZT2 instruction is valid)	
V12 Timer 1 interrupt enable bit 1 Interrupt enabled (SNZT1 instruction is invalid) 0 = + + + + + + + + + + + + + + + + + +	V15	V13 Timer 2 interrupt enable bit		Interrupt enabled (SNZT2 instruction is invalid)	
1 Interrupt enabled (SNZT1 instruction is invalid) 0	V/10	V12 Timer 1 interrupt enable bit		Interrupt disabled (SNZT1 instruction is valid)		
V11 Not used 0 This bit has no function, but read/write is enabled.	V12			Interrupt enabled (SNZT1 instruction is invalid)		
	1/14	Noturod	0	This hit has no function, but road/write is enabled		
	V I 1	V11 Not used				
V10 External 0 interrupt enable bit 0 Interrupt disabled (SNZ0 instruction is valid)	1/10			Interrupt disabled (SNZ0 instruction is valid)		
V10 External 0 interrupt enable bit 1 Interrupt enabled (SNZ0 instruction is invalid)	V 10	External o interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)	


	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W TAV2/TV2A
1/20	V23 Serial interface interrupt enable bit		Interrupt disabled	(SNZSI instruction is valid)	
VZ3			Interrupt enabled (Interrupt enabled (SNZSI instruction is invalid)	
1/00	V22 A/D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)		
VZ2			Interrupt enabled (SNZAD instruction is invalid)		
1/07	Not used	0	This bit has no function, but read/write is enabled.		
VZ1	V21 Not used				
1/00	V/20 Not used		This bit has no function, but read/write is enabled.		
V20	Not used	1			

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V22, V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

Rev.1.02 2006.12.22 page 22 of 140 REJ03B0147-0102

EXTERNAL INTERRUPTS

The 4509 Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	P13/INT	When the next waveform is input to P13/INT pin	l1 1
		 Falling waveform ("H"→"L") 	112
		 Rising waveform ("L"→"H") 	
		 Both rising and falling waveforms 	

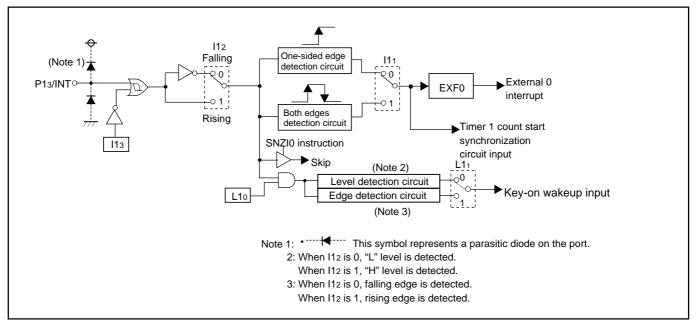


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to P13/INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to P13/INT pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- \odot Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- $\ensuremath{\textcircled{O}}$ Select the valid waveform with the bits 1 and 2 of register I1.
- $\ensuremath{\textcircled{}^{3}}$ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- ④ Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- ⑤ Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the P1 $_3$ /INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External interrupt control registers

Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

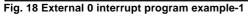
	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1A	
110	IN The instant and the hit (black of the		INT pin input disab	INT pin input disabled		
113	INT pin input control bit (Note 2)	1	INT pin input enab	led		
			Falling waveform ("L" level of INT pin is recognized wi	th the SNZI0	
110	Interrupt valid waveform for INT pin/ return level selection bit (Note 2)	0	instruction)/"L" level			
112		1	Rising waveform ("H" level of INT pin is recognized with the SNZIO			
			instruction)/"H" lev	el		
111	INT pin edge detection circuit control bit	0	One-sided edge detected			
111	INT pill edge detection circuit control bit	1	Both edges detected			
110	INT pin	0	Disabled			
110	timer 1 control enable bit	1	Enabled			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

(3) Notes on interrupts

① Note [1] on bit 3 of register I1


When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

• Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18⁽²⁾).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18³).

:								
LA	4	; (XXX02)						
TV1A		; The SNZ0 instruction is valid						
LA	8	; (1XXX2)						
TI1A		; Control of INT pin input is changed						
NOP								
SNZ0		; The SNZ0 instruction is executed						
		(EXF0 flag cleared)						
NOP								
:								
x :	X : these bits are not used here.							

2 Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

 When the INT pin input is disabled (register I13 = "0"), set the keyon wakeup of INT pin to be invalid (register L10 = "0") before system enters to the RAM back-up mode. (refer to Figure 19⁽¹⁾).

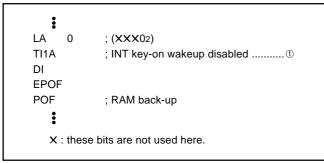


Fig. 19 External 0 interrupt program example-2

3 Note [3] on bit 2 of register I1

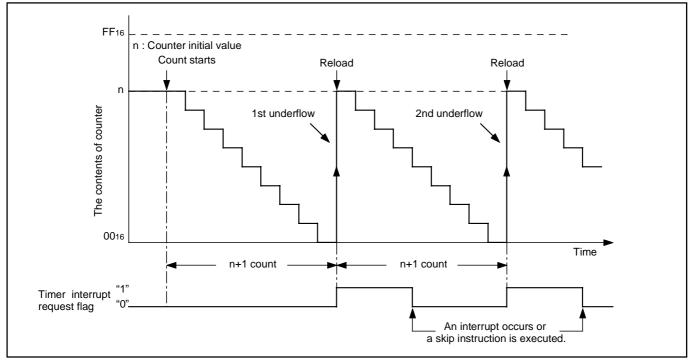
When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1 is changed.
In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20②).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20③).

:		
LA	4	; (XXX02)
TV1A		; The SNZ0 instruction is valid
LA	12	; (1 XXX 2)
TI1A		; Interrupt valid waveform is changed
NOP		
SNZ0		; The SNZ0 instruction is executed
		(EXF0 flag cleared)
NOP		3
:		
x :	these b	bits are not used here.

Fig. 20 External 0 interrupt program example-3

TIMERS


The 4509 Group has the following timers.

Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

• Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

Fig. 21 Auto-reload function

The 4509 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- (Timers 1 and 2 have the interrupt function, respectively) • 16-bit timer

Table 9 Function related timers

Prescaler and timers 1 and 2 can be controlled with the timer control registers PA, W1, W2, W5 and W6. The 16-bit timer is a free counter which is not controlled with the control register. Each function is described below.

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable	 Instruction clock (INSTCK) 	1 to 256	Timer 1 and 2 count sources	PA
	binary down counter				
Timer 1	8-bit programmable	PWM2 signal (PWMOD2)	1 to 256	Timer 2 count source	W1
	binary down counter	 Prescaler output (ORCLK) 		CNTR0 output	W5
	(link to INT input)	CNTR1 input		Timer 1 interrupt	W6
	(with PWM output function)	On-chip oscillator clock (f(RING))			
Timer 2	8-bit programmable	Timer 1 underflow (T1UDF)	1 to 256	Timer 1 count source	W2
	binary down counter	 Prescaler output (ORCLK) 		CNTR1 output	W5
	(INT input period count	CNTR0 input		Timer 2 interrupt	W6
	function)	 System clock (STCK) 			
	(with PWM output function)				
Watchdog	16-bit fixed dividing	Instruction clock (INSTCK)	65536	System reset (counting twice)	-
timer	frequency			 Decision of flag WDF1 	

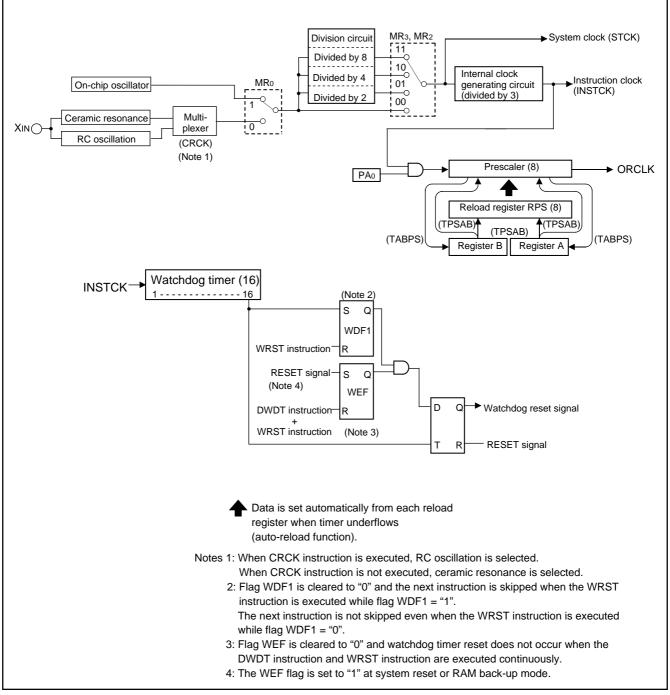


Fig. 22 Timers structure (1)

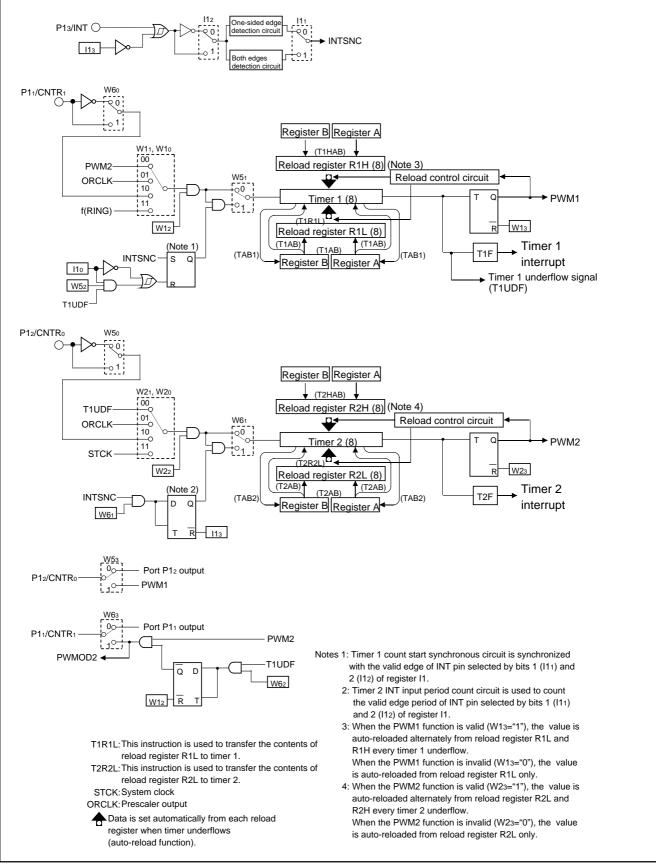


Fig. 23 Timers structure (2)

Table 10 Timer control registers

Timer control register PA		at reset : 02		at RAM back-up : 02	W TPAA
PAO	Prescaler control bit	0	Stop (state initialize	ed)	
PA0		1	Operating		

Timer control register W1		at reset : 00002		reset : 00002	at RAM back-up : 00002	R/W TAW1/TW1A
W13	PWM1 function control bit	C)	PWM1 function inv	alid	
VV15		1		PWM1 function val	id	
W12	W12 Timer 1 control bit)	Stop (state retained)		
VV 12				Operating		
		W11	W10		Count source	
W11		0	0	PWM2 signal		
· · · · · · · · · · · · · · · · ·	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)		
		1	0	CNTR1 input	CNTR1 input	
			1	On-chip oscillator of	clock (f(RING))	

Timer control register W2			at reset : 00002		at RAM back-up : 00002	R/W TAW2/TW2A
W23	PWM2 function control bit	0)	PWM2 function inv	valid	
1125		1	1	PWM2 function va	lid	
W/22	W22 Timer 2 control bit)	Stop (state retained)		
~~~~			1	Operating		
		W21	W20	Count source		
W21	Timer 2 count source selection bits	0	0	Timer 1 underflow	signal (T1UDF)	
		0	1	Prescaler output (ORCLK)		
W20		1	0	CNTR0 input		
			1	System clock (STC	:Κ)	

Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A
W53 P12/CNTR0 pin function selection bit		0	P12 (I/O) / CNTR0	(input)	
VV05	W53 P12/CNTR0 pin function selection bit		P12 (input) /CNTR0 (I/O)		
<b>W</b> 52	W52 Timer 1 count auto-stop circuit selection bit (Note 2)		Count auto-stop circuit not selected		
VVJ2			Count auto-stop ci	rcuit selected	
W51	W51 Timer 1 count start synchronous circuit selection bit (Note 3)		Count start synchr	onous circuit not selected	
0001			Count start synchr	onous circuit selected	
W50	CNTR0 pin input count edge selection bit	0	Falling edge		
		1	Rising edge		

	Timer control register W6		reset : 00002	at RAM back-up : state retained	R/W TAW6/TW6A
W63	P11/CNTR1 pin function selection bit	0	P11 (I/O) / CNTR1	(input)	*
1103		1	P11 (input) /CNTR1 (I/O)		
W62	CNTR 1 pin output auto-control circuit	0	Output auto-control circuit not selected		
102	selection bit	1	Output auto-contro	l circuit selected	
W61	Timer 2	0	INT pin input perio	d count circuit not selected	
	INT pin input period count circuit selection bit	1	INT pin input period count circuit selected		
W60	CNTR1 pin input count edge selection bit	0	Falling edge		
		1	Rising edge		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the INT pin/timer 1 control is enabled (I10="1") and the timer 1 count start synchronous circuit is selected (W51="1").

3: This function is valid only when the INT pin/timer 1 control is enabled (I10="1").



#### (1) Timer control registers

Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

Timer control register W1

Register W1 controls the count operation and count source of timer 1, and PWM1 function. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the count operation and count source of timer 2, and PWM2 function. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W5

Register W5 controls the input count edge of CNTR0 pin, timer 1 count start synchronous circuit, timer 1 auto-stop circuit and P12/CNTR0 pin function. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

• Timer control register W6

Register W6 controls the input count edge of CNTR1 pin, the INT pin input count start synchronous circuit and CNTR1 pin output auto-control circuit and the P11/CNTR1 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A.

### (2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register RPS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

 $\ensuremath{\textcircled{}}$  set data in prescaler, and

 $\ensuremath{\textcircled{}^{2}}$  set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1 and 2 count sources.

### (3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with two timer 1 reload registers (R1L, R1H). Data can be set simultaneously in timer 1 and the reload register R1L with the T1AB instruction. Data can be set in the reload register R1H with the T1HAB instruction. The contents of reload register R1L set with the T1AB instruction can be set to timer 1 again with the T1R1L instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the T1HAB instruction to set data to reload register R1H while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

① set data in timer 1

2 set count source by bits 0 and 1 of register W1, and

3 set the bit 2 of register W1 to "1."

When a value set in reload register R1L is n and a value set in reload register R1H is m, timer 1 divides the count source signal by n + 1 or m + 1 (n = 0 to 255, m = 0 to 255).

<Bit 3 of register W1 = "0" (PWM1 function invalid)>

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1L, and count continues (auto-reload function).

<Bit 3 of register W1 = "1" (PWM1 function valid)>

Timer 1 generates the PWM1 signal of the "L" interval set as reload register R1L, and the "H" interval set as reload register R1H. The PWM1 signal generated by timer 1 is output from CNTR0 pin by setting "1" to bit 3 of register W5.

After timer 1 control by INT pin is enabled by setting the bit 0 of register I1 to "1", INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 1 of register W5 to "1".

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 2 of register W5 to "1."



#### (4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with two timer 2 reload registers (R2L, R2H). Data can be set simultaneously in timer 2 and the reload register R2L with the T2AB instruction. Data can be set in the reload register R2H with the T2HAB instruction. The contents of reload register R2L set with the T2AB instruction can be set to timer 2 again with the T2R2L instruction. Data can be read from timer 2 with the TAB2 instruction.

Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

When executing the T2HAB instruction to set data to reload register R2H while timer 2 is operating, avoid a timing when timer 2 underflows.

Timer 2 starts counting after the following process;

① set data in timer 2

2 set count source by bits 0 and 1 of register W2, and

③ set the bit 2 of register W2 to "1."

When a value set in reload register R2L is n and a value set in reload register R2H is m, timer 2 divides the count source signal by n + 1 or m + 1 (n = 0 to 255, m = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

#### <Bit 3 of register W2 = "0" (PWM2 function invalid)>

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

<Bit 3 of register W2 = "1" (PWM2 function valid)>

Timer 2 generates the PWM2 signal of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H. The PWM2 signal generated by timer 2 is output from CNTR1 pin by setting "1" to bit 3 of register W6.

PWM2 output to CNTR1 pin combined with timer 1 can be controlled by setting the bit 2 of register W6 to "1."

Input period of INT pin by timer 2 can be counted by setting the bit 1 of register W6 to "1."

### (5) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function can be selected after timer 1 control by INT pin is enabled by setting the bit 0 of register I1 to "1" and its function is selected by setting the bit 1 of register W5 to "1".

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to timer by inputting valid waveform to INT pin.

The valid waveform of INT pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit 110 to "0" or system reset.

However, when the count auto-stop circuit is selected (W22 = "1"), the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

### (6) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop circuit is valid by setting the bit 2 of register W5 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

### (7) INT pin input period count circuit (timer 2)

Timer 2 has the INT pin input period count circuit to count the valid waveform input interval of the INT pin.

When bit 1 of register W6 is set to "1", the INT pin input period count circuit of timer 2 becomes valid, and the count source is input. The count source input is stopped by the next input of valid waveform to the INT pin.

Then, every a valid waveform is input to the INT pin, start/stop of the count source input is alternately repeated.

A valid waveform of the INT pin input is the same as the activated condition of an external interrupt.

The INT pin input period count circuit set once is cleared by setting the INT pin input to be disabled state. The INT pin input can be disabled by clearing bit 3 of register 11 to "0".

### (8) Timer input/output pin (P12/CNTR0 pin, P11/ CNTR1 pin)

CNTR0 pin is used to input the timer 2 count source and output the PWM1 signal generated by timer 1.

CNTR1 pin is used to input the timer 1 count source and output the PWM2 signal generated by timer 2.

The P12/CNTR0 pin function can be selected by bit 3 of register W5. The P11/CNTR1 pin function can be selected by bit 3 of register W6. When the CNTR0 input is selected for timer 2 count source, timer 2 counts the falling or rising waveform of CNTR0 input. The count edge is selected by bit 0 of register W5.

When the CNTR1 input is selected for timer 1 count source, timer 1 counts the falling or rising waveform of CNTR1 input. The count edge is selected by bit 0 of register W6.



### (9) PWM1 output function (P12/CNTR0, timer 1)

When bit 3 of register W1 is set to "1", the data is reloaded alternately from reload register R1L and R1H every timer 1 underflow. Timer 1 generates the PWM1 signal of the "L" interval set as reload register R1L, and the "H" interval set as reload register R1H.

In this time, the PWM1 signal generated by timer 1 is output from CNTR0 pin by setting "1" to bit 3 of register W5.

When the TW1A instruction is executed while the PWM1 signal is "H", the contents of register W1 is changed after the "H" interval of the PWM1 signal is ended.

# (10) PWM2 output function (P11/CNTR1, timer 1, timer 2)

When bit 3 of register W2 is set to "1", the data is reloaded alternately from reload register R2L and R2H every timer 2 underflow.

Timer 2 generates the PWM2 signal of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H.

In this time, the PWM2 signal generated by timer 2 is output from CNTR1 pin by setting "1" to bit 3 of register W6.

When bit 2 of register W6 is set to "1", the PWM2 signal output to CNTR1 pin is switched to valid/invalid alternately each timer 1 underflow. However, when timer 1 is stopped (bit 2 of register W1 is cleared to "0"), this function is canceled.

When the TW2A instruction is executed while the PWM2 signal is "H", the contents of register W2 is changed after the "H" interval of the PWM2 signal is ended.

### (11) Timer interrupt request flags (T1F, T2F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

### (12) Precautions

- Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

- Timer count source Stop timer 1 or 2 counting to change its count source.
- Reading the count value Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.
- Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB, T1R1L, T2AB or T2R2L instruction to write data to timer.

- Writing to reload register

In order to write a data to the reload register R1H while the timer 1 is operating, execute the T1HAB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R2H while the timer 2 is operating, execute the T2HAB instruction except a timing of the timer 2 underflow.

- PWM signal (PWM1, PWM2)

If the timer 1 count stop timing and the timer 1 underflow timing overlap during output of the PWM1 signal, a hazard may occur in the PWM1 output waveform.

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM2 signal, a hazard may occur in the PWM2 output waveform.

- Prescaler, timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after prescaler and timer operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer, timer operates synchronizing with the count edge (falling edge or rising edge) of CNTR input selected by software.

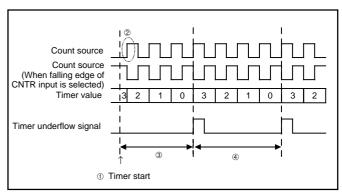



Fig. 24 Timer count start timing and count time when operation starts



• PWM1 function invalid (W13 = "0")		
Timer 1 count source		
Timer 1 count value	<u>0316</u> X0216X0116X0016X0316X0216X0116X0016X0316X0216X0116X0016X0316X0216X0116X0016X0316X0216X0116X0016	
(Reload register)	$(R1L) \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$	
Timer 1 underflow signal		
PWM1 signal		
	 ↑	-
	Timer 1 start	
• PWM1 function valid (W13 = "1")		
Timer 1 count source		
Timer 1 count value		
(Reload register)	(R1L) ↑ ↑ ↑ ↑ ↑ (R1H) (R1L) (R1H) (R1L) (R1H)	
Timer 1 underflow signal		
PWM1 signal		
	Timer 1 start	
	* : "0316" is set to reload register R1L and "0216" is set to reload register R1H.	
Fig. 25 Timer 1 operation exampl		
ng. ∠o nimer i operation exampl		



PWM2 signal	
Timer 1 underflow signal	
CNTR1 output	[↑] Timer 1 start 
* When the CNTR1 output a	uto-control circuit is selected, valid/invalid of CNTR1 output is repeated every timer 1 underflows.
<ul> <li>CNTR1 output auto-control</li> <li>PWM2 signal</li> </ul>	circuit operation example 2 (W23 = "1", W63 = "1")
J.	
Timer 1 underflow signal Register W62	
Timer 1 underflow signal	

Fig. 26 CNTR1 output auto-control function by timer 1



• Timer 2 count start timing (R2L = "0216", R2H = "0216", W23 = "1")

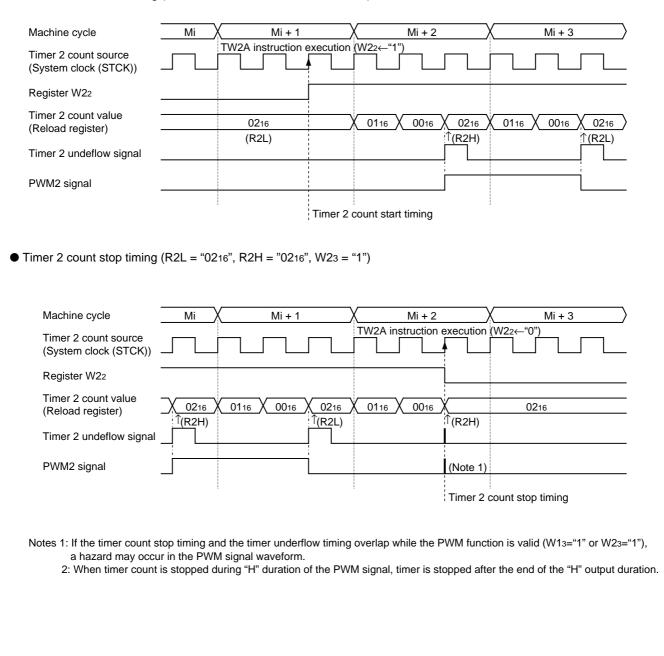



Fig. 27 Timer count start/stop timing



#### WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

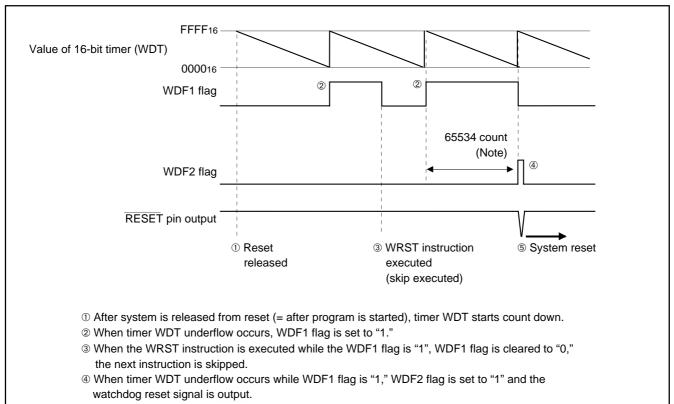
The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "FFFF16," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the  $\overrightarrow{\text{RESET}}$  pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.


When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode.

The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

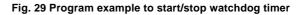


⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig. 28 Watchdog timer function




When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 29).

The watchdog timer is not stopped with only the DWDT instruction.

The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 30) Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

WRST	; WDF1 flag cleared
:	
•	
DI	
DWDT	; Watchdog timer function enabled/disabled
WRST	; WEF and WDF1 flags cleared
:	· · · · · · · · · · · · · · · · · · ·
•	



:		
WRST	; WDF1 flag cleared	
NOP		
DI	; Interrupt disabled	
EPOF	; POF instruction enabled	
POF	; RAM back-up mode	
$\downarrow$		
Oscillation	stop	
:		

Fig. 30 Program example to enter the RAM back-up mode when using the watchdog timer



## **A/D CONVERTER**

The 4509 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

#### Table 11 A/D converter characteristics

Parameter	Characteristics		
Conversion format	Successive comparison method		
Resolution	10 bits		
Relative accuracy	Linearity error: ±2LSB (VDD=2.7 to 5.5 V)		
	Differential non-linearity error: ±0.9LSB		
	(VDD=2.7 to 5.5 V)		
Conversion speed	31 µs (f(XIN)=6 MHz, f(STCK)=f(XIN))		
Analog input pin	6		

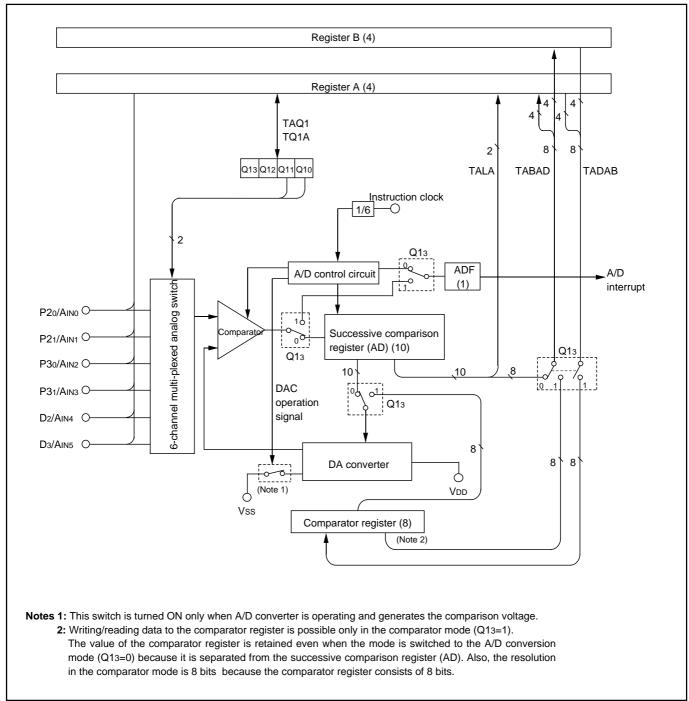



Fig. 31 A/D conversion circuit structure

RENESAS

## Table 12 A/D control registers

A/D control register Q1		at reset : 00002		: 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A	
Q13	A/D operation mode selection bit	0		A/D	A/D conversion mode		
QIS		1		Cor	nparator mode		
		Q12	Q11	Q10		Selected pins	
Q12		0	0	0	AINO		
		0	0	1	AIN1		
		0	1	0	Ain2		
Q11	Q11 Analog input pin selection bits Q10		1	1	Аімз		
			0	0	Ain4		
			0	1	Ain5		
Q10			1	0	Not available		
		1	1	1	Not available		

Note: "R" represents read enabled, and "W" represents write enabled.

## (1) A/D control register Q1

Register Q1 is used to select the operation mode and one of analog input pins. Set the contents of this register through register A with the TQ1A instruction. The TAQ1 instruction can be used to transfer the contents of register Q1 to register A.

## (2) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

## (3) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage  $V_{ref}$  generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

## n: The value of register AD (n = 0 to 1023)

## (4) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

## (5) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

## (6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

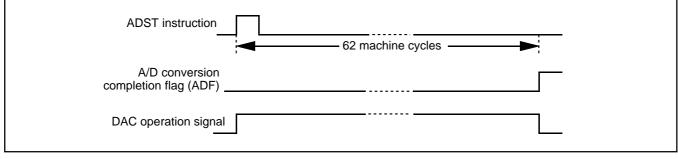
- 0 When the A/D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN.
- ③ When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

The 4509 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 62 machine cycles (31  $\mu$ s when f(XIN) = 6.0 MHz in high-speed mode) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 32).

#### Table 13 Change of successive comparison register AD during A/D conversion

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 <u>VDD</u> 2
2nd comparison	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3rd comparison	$*1$ $*2$ 1 $$ 0     0 $\frac{VDD}{2}$ $\pm$ $\frac{VDD}{4}$ $\frac{VDD}{8}$
After 10th comparison	A/D conversion result
completes	*1     *2     *3      *8     *9     *A     2     ±     ±     ±       1024
*1: 1st comparison result	*2: 2nd comparison result

*1: 1st comparison result*3: 3rd comparison result


*8: 8th comparison result

*9: 9th comparison result

*A: 10th comparison result

## (7) A/D conversion timing chart

Figure 32 shows the A/D conversion timing chart.



#### Fig. 32 A/D conversion timing chart

## (8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P20/AINO pin is A/D converted, and the high-order 4 bits of the converted data are stored in address M(Z, X, Y) =(0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/ D interrupt is not used in this example.

- ① Select the AINO pin function and A/D conversion mode with the register Q1 (refer to Figure 33).
- ⁽²⁾ Execute the ADST instruction and start A/D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- ④ Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- $\circledast$  Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- $\oslash$  Transfer the contents of register A to M (Z, X, Y) = (0, 0, 1).
- $\$  Transfer the contents of register B to register A, and then, store into M(Z, X, Y) = (0, 0, 0).

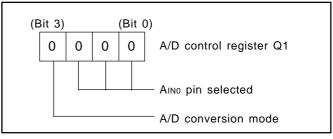



Fig. 33 Setting registers



## (9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

# (10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage  $V_{ref}$  generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n: The value of register AD (n = 0 to 255)

## (11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

# (12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (6  $\mu$ s at f(XIN) = 4.0 MHz in high-speed through mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

## (13) Notes for the use of A/D conversion 1

#### TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

• Operating mode of A/D converter

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

Clear the bit 2 of register V2 to "0" to change the operating mode from the comparator mode to A/D conversion mode.

The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.




Fig. 34 Comparator operation timing chart



## (14) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 35).

- Relative accuracy
  - ① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

2 Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

④ Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

• 1LSB at relative accuracy 
$$\rightarrow \frac{VFST-V0T}{1022}$$
 (V)

• 1LSB at absolute accuracy 
$$\rightarrow \frac{V_{DD}}{1024}$$
 (V)

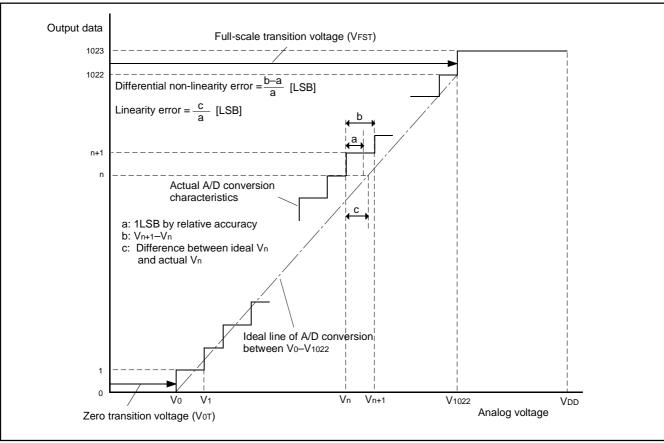


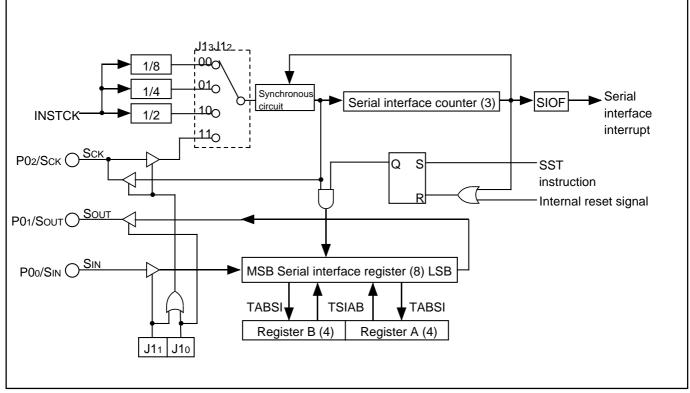

Fig. 35 Definition of A/D conversion accuracy

## SERIAL INTERFACE

The 4509 Group has a built-in clock synchronous serial interface which can serially transmit or receive 8-bit data.

Serial interface consists of;

- Serial interface register SI
- Serial interface control register J1
   Serial interface transmit/second
- Serial interface transmit/receive completion flag (SIOF)
- Serial interface counter


Registers A and B are used to perform data transfer with internal CPU.

The pin functions of the serial interface pins can be set with the register J1.

#### Table 14 Serial interface pins

Pin	Pin function when selecting serial interface	
P02/SCK	Clock I/O (Scк)	
P01/SOUT	Serial data output (SOUT)	
P03/SIN	3/SIN Serial data input (SIN)	

Note: Even when the SIN pin function is used, the I/O of port P00 is valid. Even when the SOUT pin function is used, the input of port P01 is valid. The input of P02 can be used even when SCK is used. Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.



#### Fig. 36 Serial interface structure

#### Table 15 Serial interface control register

	Serial interface control register J1		at reset : 00002		at RAM back-up : state retained	R/W TAJ1/TJ1A
			J12		Synchronous clock	
J13		0	0	Instruction clock (II	NSTCK) divided by 8	
	Serial interface synchronous clock	0	1	Instruction clock (II	Instruction clock (INSTCK) divided by 4	
J12	J12 selection bits	1	0	Instruction clock (INSTCK) divided by 2		
			1	External clock (SCK input)		
		J11	<b>J1</b> 0	0 Port function		
J11			0	P00, P01,P02 selec	ted/SIN, SOUT, SCK not selected	
	J10 Serial interface port function selection bits		1	P00, SOUT, SCK selected/SIN, P01, P02 not selected		
J10			0	SIN, P01, SCK selec	cted/P00, SOUT, P02 not selected	
		1	1	SIN, SOUT, SCK sel	ected/P00, P01,P02 not selected	

Note: "R" represents read enabled, and "W" represents write enabled.

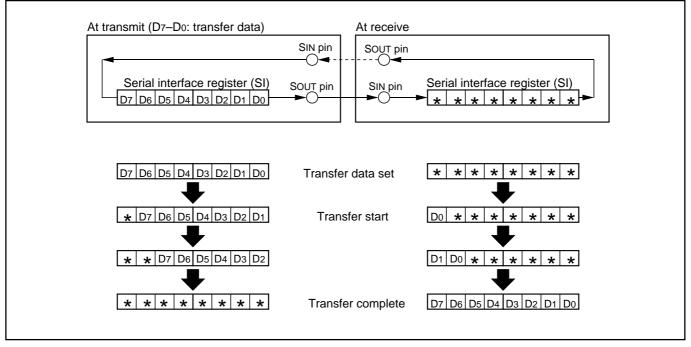



Fig. 37 Serial interface register state when transferring

## (1) Serial interface register SI

Serial interface register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register SI through registers A and B with the TSIAB instruction. The contents of register A is transmitted to the low-order 4 bits of register SI, and the contents of register B is transmitted to the high-order 4 bits of register SI.

During transmission, each bit data is transmitted LSB first from the lowermost bit (bit 0) of register SI, and during reception, each bit data is received LSB first to register SI starting from the topmost bit (bit 7).

When register SI is used as a work register without using serial interface, do not select the SCK pin.

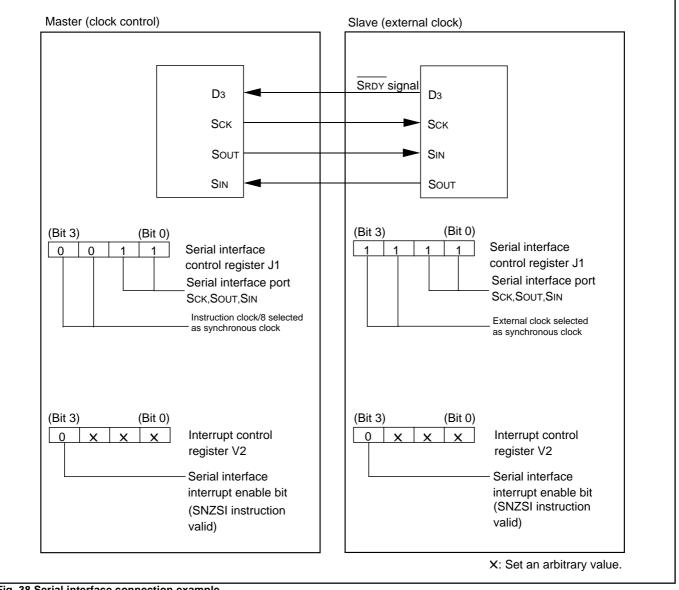
# (2) Serial interface transmit/receive completion flag (SIOF)

Serial interface transmit/receive completion flag (SIOF) is set to "1" when serial data transmission or reception completes. The state of SIOF flag can be examined with the skip instruction (SNZSI). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The SIOF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

## (3) Serial interface start instruction (SST)

When the SST instruction is executed, the SIOF flag is cleared to "0" and then serial interface transmission/reception is started.


## (4) Serial interface control register J1

Register J1 controls the synchronous clock, P02/SCK, P01/SOUT and P00/SIN pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A.



## (5) How to use serial interface

Figure 38 shows the serial interface connection example. Serial interface interrupt is not used in this example. In the actual wiring, pull up the wiring between each pin with a resistor. Figure 38 shows the data transfer timing and Table 16 shows the data transfer sequence.



## Fig. 38 Serial interface connection example

Rev.1.02 2006.12.22 page 45 of 140 REJ03B0147-0102

RENESAS

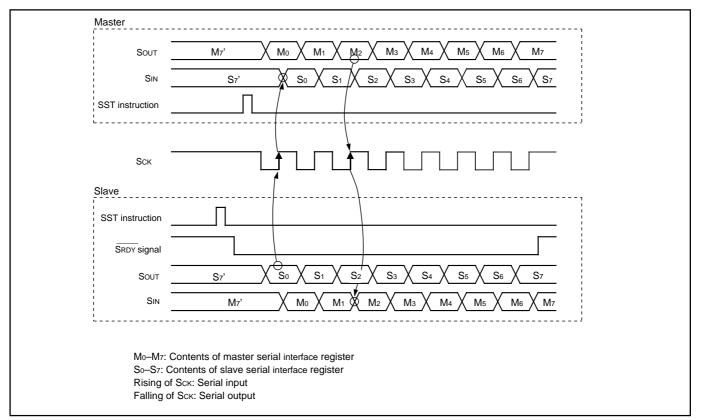



Fig. 39 Timing of serial interface data transfer

#### Table 16 Processing sequence of data transfer from master to slave

Master (transmission)	Slave (reception)		
[Initial setting]	[Initial setting]		
• Setting the serial interface control register J1 and inter- rupt control register V2 shown in Figure 38.	• Setting serial interface control register J1, and interrupt control register V2 shown in Figure 38.		
TJ1A and TV2A instructions	TJ1A and TV2A instructions		
• Setting the port received the reception enable signal (SRDY) to the input mode.	• Setting the port transmitted the reception enable signal (SRDY) and output- ting "H" level.		
(Port D3 is used in this example)	(Port D3 is used in this example)		
SD instruction	SD instruction		
* [Transmission enable state]	*[Reception enable state]		
Storing transmission data to serial interface register SI.	• The SIOF flag is cleared to "0."		
TSIAB instruction	SST instruction		
	• "L" level (reception possible) is output from port D3.		
	RD instruction		
[Transmission]	[Reception]		
<ul> <li>Check port D3 is "L" level.</li> </ul>			
SZD instruction			
•Serial transfer starts.			
•Check transmission completes.	Check reception completes.		
•Wait (timing when continuously transferring)	• "H" level is output from port D3.		
	SD instruction		
	[Data processing]		

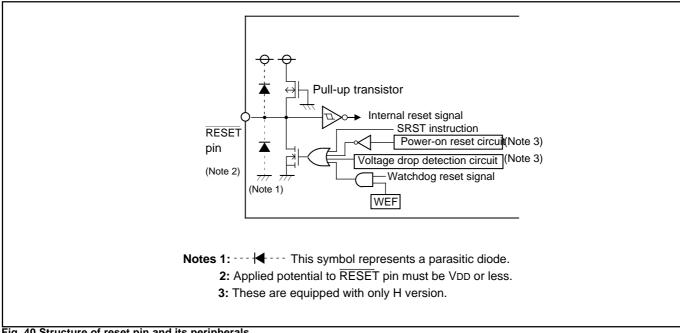
1-byte data is serially transferred on this process. Subsequently, data can be transferred continuously by repeating the process from *. When an external clock is selected as a synchronous clock, control the clock externally because serial transfer is performed as long as clock is externally input. (Unlike an internal clock, an external clock is not stopped when serial transfer is completed.) However, the

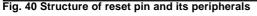
SIOF flag is set to "1" when the clock is counted 8 times after executing the SST instruction. Be sure to set the initial level of the external clock to "H."

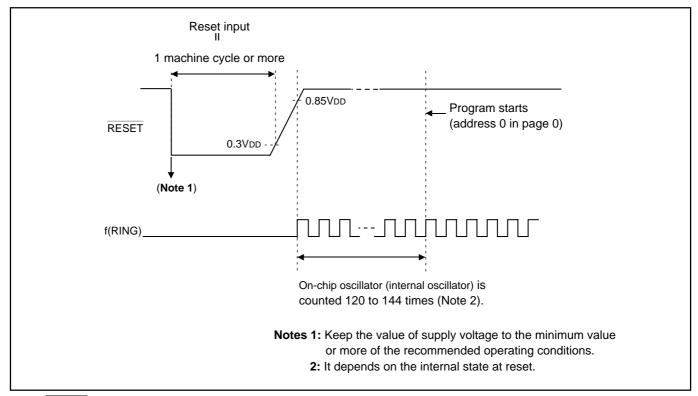


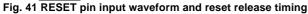
## **RESET FUNCTION**

System reset is performed by the followings:


- "L" level is applied to the RESET pin externally,
- System reset instruction (SRST) is executed,
- Reset occurs by watchdog timer,
- Reset occurs by built-in power-on reset (only for H version)


• Reset occurs by voltage drop detection circuit (only for H version) Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.


## (1) RESET pin input


System reset is performed certainly by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied;

the value of supply voltage is the minimum value or more of the recommended operating conditions.









RENESAS

## (2) Power-on reset (only for H version)

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100  $\mu$ s or less.

If the rising time exceeds 100  $\mu$ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

## (3) System reset instruction (SRST)

By executing the SRST instruction, "L" level is output to RESET pin and system reset is performed.

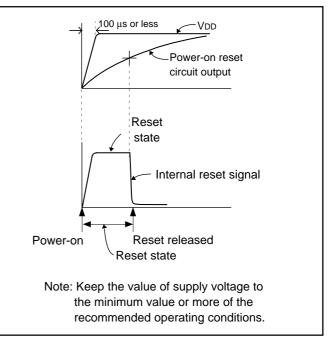



Fig. 42 Power-on reset operation

#### Table 17 Port state at reset

N		State	
Name	Function	State	
D0, D1	D0, D1	High-impedance (Notes 1, 2)	
D2/AIN4, D3/AIN5	D2, D3	High-impedance (Notes 1, 2, 3)	
D4, D5	D4, D5	High-impedance (Notes 1, 2)	
P00/SIN, P01/SOUT, P02/SCK	P00, P01, P02	High-impedance (Notes 1, 2, 3)	
Р03	P03	High-impedance (Notes 1, 2, 3)	
P10	P10	High-impedance (Notes 1, 2, 3)	
P11/CNTR1	P11	High-impedance (Notes 1, 2, 3)	
P12/CNTR0	P12	High-impedance (Notes 1, 2, 3)	
P13/INT	P13	High-impedance (Notes 1, 2, 3)	
P20/AIN0, P21/AIN1	P20, P21	High-impedance (Notes 1, 2, 3)	
P30/AIN2, P31/AIN3	P30, P31	High-impedance (Notes 1, 2)	

Notes 1: Output latch is set to "1."

2: The output structure is N-channel open-drain.

3: Pull-up transistor is turned OFF.



## (4) Internal state at reset

Figure 43 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 43 are undefined, so set the initial value to them.

Program counter (PC) Address 0 in page 0 is set to program counter.	
	(Interrupt dischlod)
Interrupt enable flag (INTE)     Power down flag (P)	
Power down flag (P)     External 0 interrupt request flag (EXE0)	
External 0 interrupt request flag (EXF0)	
Interrupt control register V1	
Interrupt control register V2	
Interrupt control register I1     Timer 1 interrupt reguest flog (T1E)	
• Timer 1 interrupt request flag (T1F)	
Timer 2 interrupt request flag (T2F)	
• Watchdog timer flags (WDF1, WDF2)	
Watchdog timer enable flag (WEF)	
Timer control register PA	
Timer control register W1     Timer control register W2	
• Timer control register W2	
Timer control register W5	
Timer control register W6	
Clock control register MR	
Clock control register RG	
Serial interface transmit/receive completion flag (SI	
Serial interface control register J1	
Serial interface register SI	
• A/D conversion completion flag (ADF)	
A/D control register Q1	
Successive comparison register AD	
Comparator register	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Key-on wakeup control register L1	
Pull-up control register PU0	
Pull-up control register PU1	
Pull-up control register PU2	
Port output structure control register FR0	
Port output structure control register FR1	
Port output structure control register FR2	
Port output structure control register FR3	
Port output structure control register C1	
Carry flag (CY)	0
Register A	
Register B	
Register D	
Register E	XXXXXXXXXX
Register X	
Register Y	
Register Z	XX
Stack pointer (SP)	
Operation source clock	
Ceramic resonator circuit	Operating
RC oscillation circuit	"V" represents undefi



# VOLTAGE DROP DETECTION CIRCUIT (only for H version)

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer by outputting "L" level to RESET pin if the supply voltage drops below a set value.

#### (1) SVDE instruction

If the SVDE instruction is not executed (initial state), the voltage drop detection circuit becomes invalid at RAM back-up mode. When the SVDE instruction is executed, the voltage drop detection circuit is valid even after system enters into the RAM back-up mode.

The SVDE instruction can be executed only once.

In order to release the execution of the SVDE instruction, the system reset is required.

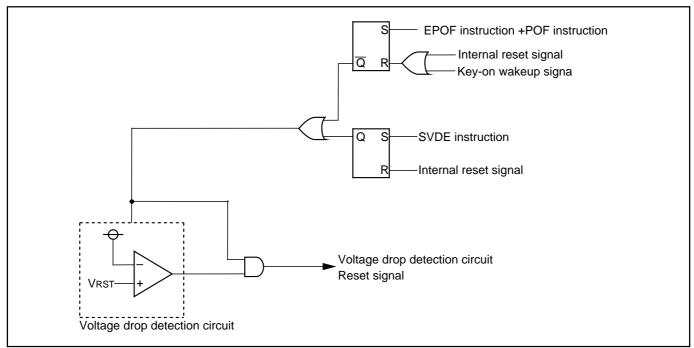



Fig. 44 Voltage drop detection reset circuit

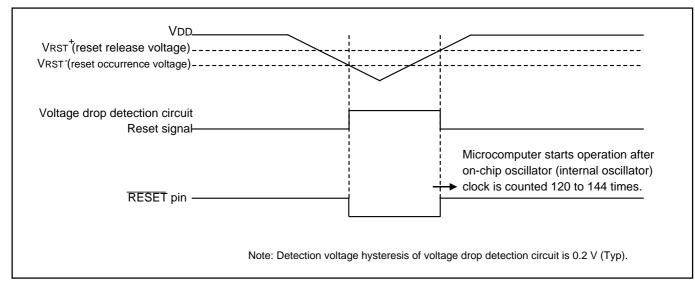



Fig. 45 Voltage drop detection circuit operation waveform

#### Table 18 Voltage drop detection circuit operation state

	At CPU operating	At RAM back-up mode
SVDE instruction not executed	Valid	Invalid
SVDE instruction executed	Valid	Valid



## **RAM BACK-UP MODE**

The 4509 Group has the RAM back-up mode.

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.

Table 19 shows the function and states retained at RAM back-up. Figure 46 shows the state transition.

## (1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

## (2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF instruction continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

## (3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- "L" level is applied to RESET pin,
- system reset (SRST) is performed,
- reset by watchdog timer is performed,
- reset by the built-in power-on reset circuit is performed (only for H version), or
- reset by the voltage drop detection circuit is performed (only for H version).

In this case, the P flag is "0."

#### Table 19 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	×
carry flag (CY), stack pointer (SP) (Note 2)	~
Contents of RAM	0
Interrupt control registers V1, V2	×
Interrupt control register I1	0
Selected oscillation circuit (execution of CRCK)	0
Clock control register MR	×
Clock control register RG	×
Timer 1, Timer 2 function	(Note 3)
Watchdog timer function	X (Note 4)
Timer control register PA	×
Timer control registers W1, W2	×
Timer control registers W5, W6	0
Serial interface function	×
Serial interface control register J1	0
A/D conversion function	×
A/D control register Q1	0
Voltage drop detection circuit	(Note 5)
Port level	0
Key-on wakeup control registers K0 to K2, L1	0
Pull-up control registers PU0 to PU2	0
Port output structure control registers FR0 to FR3, C1	0
External interrupt request flag (EXF0)	×
Timer interrupt request flags (T1F, T2F)	(Note 3)
A/D conversion completion flag (ADF)	×
Serial interface transmit/receive completion flag (SIOF)	x
Interrupt enable flag (INTE)	x
Watchdog timer flags (WDF1, WDF2)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer flag WDF1 with the WRST instruction, and then set the system to be in the RAM back-up mode.
- 5: The voltage drop detection circuit is equipped with only H version. In the RAM back-up mode, when the SVDE instruction is not executed, the voltage drop detection circuit is invalid, and when the SVDE instruction is executed, the voltage drop detection circuit is valid.



## (4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 20 shows the return condition for each return source.

# (5) Control registers

• Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

Key-on wakeup control register K1

Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K1 to register A.

• Key-on wakeup control register K2

Register K2 controls the ports P2, D2 and D3 key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

• Key-on wakeup control register L1

Register L1 controls the selection of the return condition and valid waveform/level of port P1, and the selection of the INT pin return condition and INT pin key-on wakeup function. Set the contents of this register through register A with the TL1A instruction. In addition, the TAL1 instruction can be used to transfer the contents of register L1 to register A.

• Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.

• Pull-up control register PU1

Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.

Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P2, D2 and D3 pullup transistor. Set the contents of this register through register A with the TPU2A instruction. In addition, the TAPU2 instruction can be used to transfer the contents of register PU2 to register A.

• Interrupt control register I1

Register I1 controls the valid waveform/level of the external 0 interrupt and the input control of INT pin. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 20	Return	source	and	return	condition

F	Return source	Return condition	Remarks
-	Port P00–P03 Port P20, P21 Port D2, D3	Return by an external "L" level in- put.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.
al wakeup signal	Port P10-P13	Return by an external "H" level or "L" level input, or falling edge ("H" $\rightarrow$ "L") or rising edge ("L" $\rightarrow$ "H").	The key-on wakeup function can be selected by one port unit. Select the return level ("L" level or "H" level) and return condition (level or edge) with the register L1 according to the external state before going into the RAM back-up state. Before going into the RAM backup state, set an opposite level of the selected return level (edge) to the port using the key-on wakeup function.
External	INT pin	Return by an external "H" level or "L" level input, or falling edge ("H" $\rightarrow$ "L") or rising edge ("L" $\rightarrow$ "H"). When the return level is input, the EXF0 flag is not set.	The key-on wakeup function can be selected by one port unit. Select the return level ("L" level or "H" level) with the register I1 and return condition (level or edge) with the register L1 according to the external state before going into the RAM back-up state.



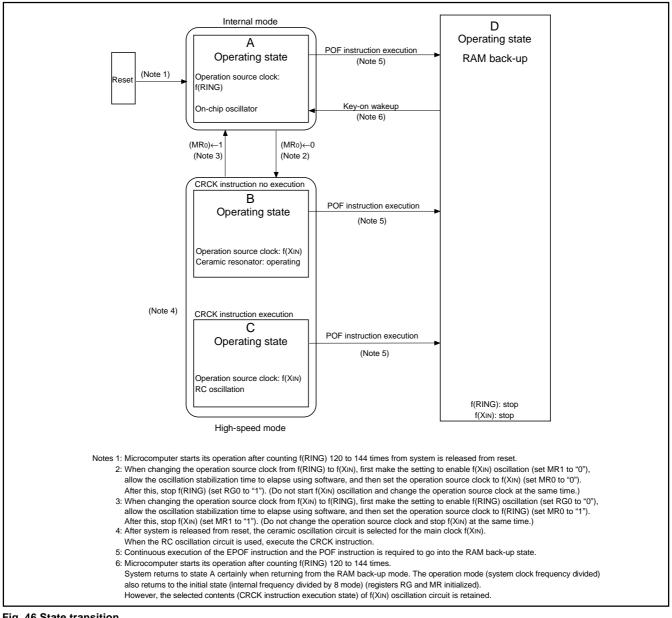
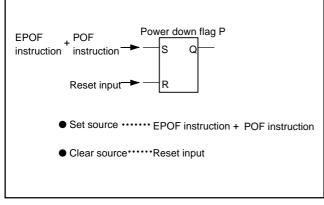
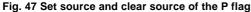





Fig. 46 State transition





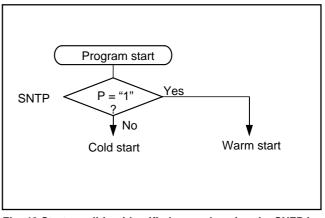



Fig. 48 Start condition identified example using the SNZP instruction



## Table 21 Key-on wakeup control register

	Key-on wakeup control register K0	at	reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A
K03	Port P03 key-on wakeup	0 Key-on wakeup no		ot used	
KU3	control bit	1	Key-on wakeup us	ed	
K02	Port P02 key-on wakeup	0	Key-on wakeup no	ot used	
K02	control bit	1	Key-on wakeup us	ed	
KO	Port P01 key-on wakeup	0	Key-on wakeup no	ot used	
K01	control bit	1	Key-on wakeup us	ed	
K00	Port P00 key-on wakeup	0	Key-on wakeup no	ot used	
K00	control bit	1	Key-on wakeup us	ed	

	Key-on wakeup control register K1	at	reset : 00002	at RAM back-up : state retained	R/W TAK1/TK1A
K13	Port P13 key-on wakeup	0	Key-on wakeup no	ot used	
K13	control bit	1	Key-on wakeup us	sed	
K12	Port P12 key-on wakeup	0	Key-on wakeup no	ot used	
K12	control bit	1	Key-on wakeup us	sed	
K11	Port P11 key-on wakeup	0	Key-on wakeup no	ot used	
<b>K</b> I1	control bit	1	Key-on wakeup us	sed	
K10	Port P10 key-on wakeup	0	Key-on wakeup no	ot used	
K 10	control bit	1	Key-on wakeup us	sed	

	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2A
1/20	Port D3 key-on wakeup	0	Key-on wakeup no	ot used	
K23	control bit	1	Key-on wakeup us	sed	
K22	Port D2 key-on wakeup	0	Key-on wakeup no	ot used	
K22	control bit	1	Key-on wakeup us	sed	
K21	Port P21 key-on wakeup	0	Key-on wakeup no	ot used	
<b>K</b> 21	control bit	1	Key-on wakeup us	sed	
K20	Port P20 key-on wakeup	0	Key-on wakeup no	ot used	
N20	control bit	1	Key-on wakeup us	sed	

	Key-on wakeup control register L1	at	reset : 00002	at RAM back-up : state retained	R/W TAL1/TL1A
1.10	Ports P10–P13 return condition selection	0	Return by level	1	
L13	bit	1	Return by edge		
1.10	Ports P10-P13 valid waveform/	0	Falling waveform/"L	_" level	
L12	level selection bit	1	Rising waveform/"H	l" level	
144	INT pin	0	Return by level		
L11	return condition selection bit	1	Return by edge		
1.10	INT pin	0	Key-on wakeup not	used	
L10	key-on wakeup control bit	1	Key-on wakeup use	ed	

Notes 1: "R" represents read enabled, and "W" represents write enabled.



#### Table 22 Pull-up control register and interrupt control register

	Pull-up control register PU0	at reset : 00002		at RAM back-up : state retained	R/W TAPU0/TPU0A
PU03	Port P03 pull-up transistor	0	Pull-up transistor (	OFF	
P003	control bit	1	Pull-up transistor (	N	
DUOs	Port P02 pull-up transistor	0	Pull-up transistor (	OFF	
PU02	control bit	1	Pull-up transistor (	N	
	Port P01 pull-up transistor	0	Pull-up transistor (	OFF	
PU01	control bit	1	Pull-up transistor (	N	
PU00	Port P00 pull-up transistor	0	Pull-up transistor (	OFF	
P000	control bit	1	Pull-up transistor (	N	

	Pull-up control register PU1	at	reset : 00002	at RAM back-up : state retained	R/W TAPU1/TPU1A
DUIda	Port P13 pull-up transistor	0	Pull-up transistor (	DFF	
PU13	control bit	1	Pull-up transistor (	N	
DUIA	Port P12 pull-up transistor	0	Pull-up transistor (	DFF	
PU12	control bit	1	Pull-up transistor (	N	
DU44	Port P11 pull-up transistor	0	Pull-up transistor (	OFF	
PU11	control bit	1	Pull-up transistor (	N	
DUIA	Port P10 pull-up transistor	0	Pull-up transistor (	OFF	
PU10	control bit	1	Pull-up transistor (	NC	

	Pull-up control register PU2	at reset : 00002		at RAM back-up : state retained	R/W TAPU2/TPU2A
DUOs	Port D3 pull-up transistor	0	Pull-up transistor	OFF	
PU23	control bit	1	Pull-up transistor	ON	
DUOs	Port D2 pull-up transistor	0	Pull-up transistor	OFF	
PU22	control bit	1	Pull-up transistor	ON	
DU0/	Port P21 pull-up transistor	0	Pull-up transistor	OFF	
PU21	control bit	1	Pull-up transistor	ON	
PU20	Port P20 pull-up transistor	0	Pull-up transistor	OFF	
P020	control bit	1	Pull-up transistor	ON	

Notes 1: "R" represents read enabled, and "W" represents write enabled.



## **CLOCK CONTROL**

- The clock control circuit consists of the following circuits.
- On-chip oscillator (internal oscillator)
- Ceramic oscillation circuit
- RC oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 49 shows the structure of the clock control circuit.

The 4509 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.

Also, the ceramic resonator or the RC oscillation can be used for the source oscillation (f(XIN)) of the 4509 Group.

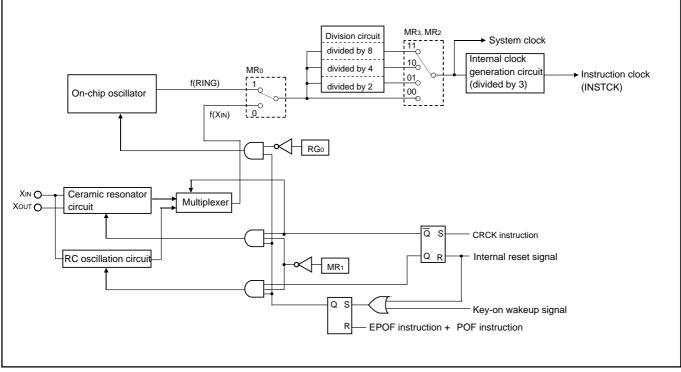



Fig. 49 Clock control circuit structure



## (1) On-chip oscillator operation

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

## (2) Main clock generating circuit (f(XIN))

The ceramic resonator or RC oscillation can be used for the main clock of this product.

After system is released from reset, the ceramic oscillation is active for main clock.

The ceramic oscillation is invalid and the RC oscillation circuit is valid with the CRCK instruction.

Execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The execution of the CRCK instruction can be valid only once.

Register MR controls the enable/disable of the oscillation and the selection of the operation source clock.

Also, when the MCU operates only by the on-chip oscillator without using main clock f(XIN), connect XIN pin to Vss and leave XOUT pin open, and do not execute the CRCK instruction (Figure 51).

## (3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT (Figure 52).

Do not execute the CRCK instruction.

Set "0" to bit 0 of register MR after the oscillation stabilizing wait time is generated by software to select the clock generated by the ceramic oscillation circuit for the source oscillation clock.

## (4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 53).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the recommended operating condition of the frequency limits.

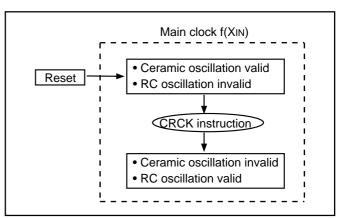



Fig. 50 Switch to ceramic oscillation/RC oscillation

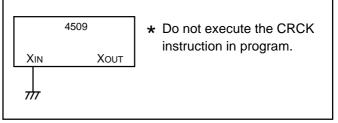
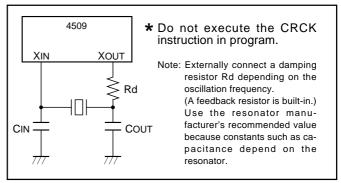




Fig. 51 Handling of XIN and XOUT when main clock is not used





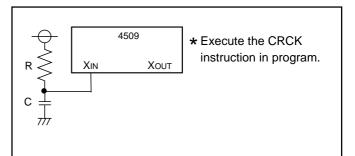



Fig. 53 External RC circuit



## (5) External clock

When the external signal clock is used for the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open (Figure 54). Do not execute the CRCK instruction in program. Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

## (6) Clock control register MR

Register MR controls the selection of operation mode and the operation source clock, and enable/stop of main clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

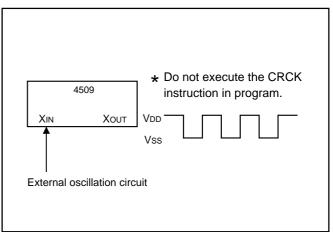



Fig. 54 External clock input circuit

## (7) Clock control register RG

Register RG controls the on-chip oscillator. Set the contents of this register through register A with the TRGA instruction.

### Table 23 Clock control register MR

	Clock control register MR	at r		reset : 11012	at RAM back-up : 11012	R/W TAMR/TMRA		
		MRз	MR2		Operation mode			
MR3		0	0	Through mode (free	quency not divided)			
	Operation mode selection bits	0	1	Frequency divided	by 2 mode			
MR2	MB2	1	0	Frequency divided by 4 mode				
		1	1	Frequency divided	by 8 mode			
MR1	Main clock f(XIN) control bit (Notes 2, 5)	0	)	Main clock (f(XIN)) oscillation enabled				
		1		1 M		Main clock (f(XIN)) oscillation stop		
MRo	MPa Operation source clock selection bit (Notes 2, 5)		0 Main clock		Main clock (f(XIN))			
	MR0 Operation source clock selection bit (Notes 3, 5)	1		On-chip oscillator c	lock (f(RING))			

	Clock control register RG		at reset : 02	at RAM back-up : 02	W TRGA
PCo	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (f(RING)) oscillation enabled		
KG0	RG0 (Note 4)		On-chip oscillator (		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: Main clock cannot be stopped when the main clock is selected for the operation source clock.

3: The stopped clock cannot be selected for the operation source clock. In order to switch the operation source clock, generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.

4: On-chip oscillator cannot be stopped when the on-chip oscillator is selected for the operation source clock.

5: When changing the setting of MR1 and MR0 from "00" to "11", make settings in the sequence "00"  $\rightarrow$  "01"  $\rightarrow$  "11".

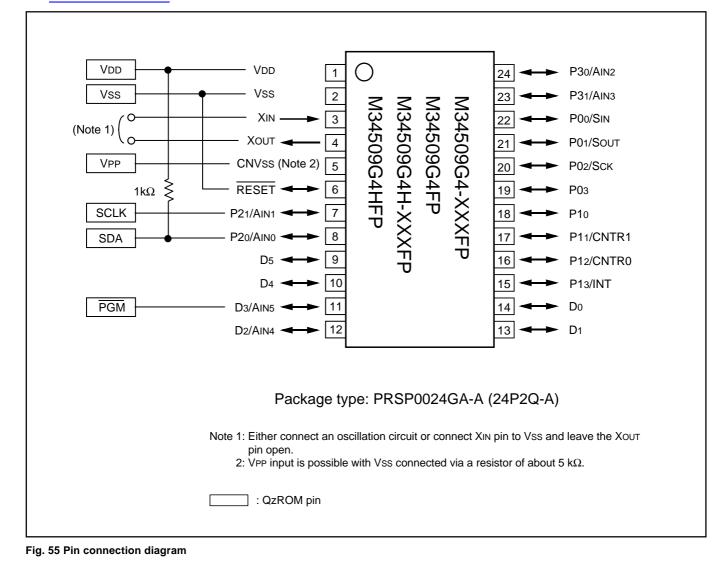
When changing the setting of MR1 and MR0 from "11" to "0", make settings in the sequence "11"  $\rightarrow$  "01"  $\rightarrow$  "00".



## **QzROM Writing Mode**

In the QzROM writing mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial programmer which is applicable for this microcomputer.

Table 24 lists the pin description (QzROM writing mode) and Figure 55 shows the pin connections.


Refer to Figure 56 for examples of a connection with a serial programmer.

Contact the manufacturer of your serial programmer for serial programmer. Refer to the user's manual of your serial programmer for details on how to use it.

### Table 24 Pin description (QzROM writing mode)

Pin	Name	I/O	Function
Vdd	Power source		Power supply voltage pin.
Vss	GND		• GND pin.
CNVss	VPP input	_	<ul> <li>QzROM programmable power source pin.</li> <li>VPP input is possible with Vss connected via a resistor of about 5 kΩ.</li> </ul>
P20/AIN0	SDA input/output	I/O	• QzROM serial data I/O pin.
P21/AIN1	SCLK input	Input	QzROM serial clock input pin.
D3/AIN5	PGM input	Input	QzROM read/program pulse input pin.
RESET	Reset input	Input	<ul> <li>Reset input pin.</li> <li>Input "L" level signal.</li> </ul>
Xin	Clock input		• Either connect an oscillation circuit or connect XIN pin to Vss and leave the
Хоит	Clock output		Xout pin open.
D0, D1, D2/AIN4, D4, D5, P00/SIN, P01/SOUT, P02/SCK, P03, P10, P11/CNTR1, P12/CNTR0, P13/INT, P30/AIN2, P31/AIN3	I/O port	I/O	<ul> <li>Input "H" or "L" level signal or leave the pin open.</li> </ul>







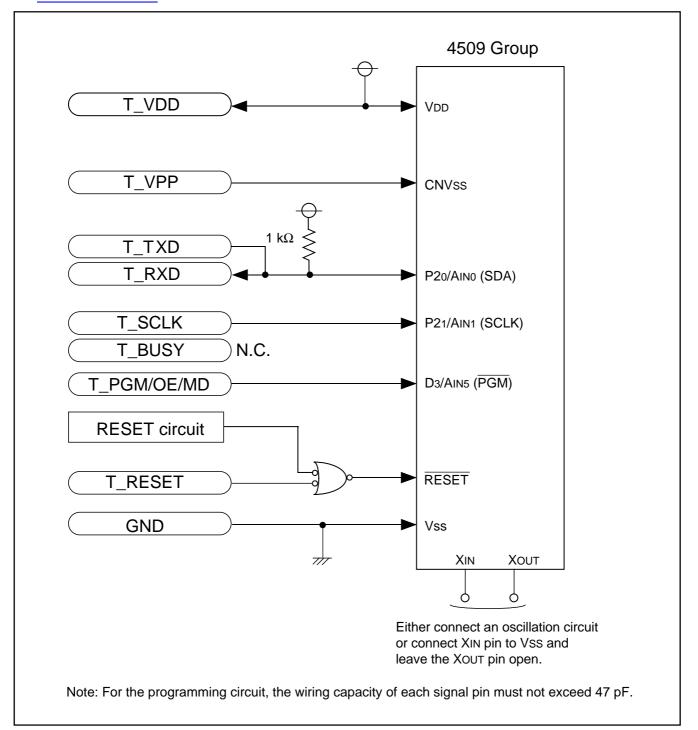



Fig. 56 When using programmer of Suisei Electronics System Co., LTD, connection example

# DATA REQUIRED FOR QZROM WRITING ORDERS

The following are necessary when ordering a QzROM product shipped after writing:

1. QzROM Writing Confirmation Form*

- 2. Mark Specification Form*
- 3. ROM data.....Mask file

* For the QzROM writing confirmation form and the mark specification form, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/homepage.jsp).

Note that we cannot deal with special font marking (customer's trademark etc.) in QzROM microcomputer.



## LIST OF PRECAUTIONS

① Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1  $\mu\text{F})$  between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k $\Omega$  (connect this resistor to CNVss/VPP pin as close as possible).

#### ②Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

#### ③ Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

### ④ Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

#### 5 Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

#### [®] Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

#### ⑦ Multifunction

- The input/output of P00 can be used even when SIN is used. Be careful when using inputs of both SIN and P00 since the input threshold value of SIN pin is different from that of port P00.
- The input of P01 can be used even when SOUT is used.
- The input of P02 can be used even when SCK is used. Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.
- The input of P11 can be used even when CNTR1 (output) is selected.

The input/output of P11 can be used even when CNTR1 (input) is selected. Be careful when using inputs of both CNTR1 and P11 since the input threshold value of CNTR1 pin is different from that of port P11.

- The input of P12 can be used even when CNTR0 (output) is selected.

The input/output of P12 can be used even when CNTR0 (input) is selected. Be careful when using inputs of both CNTR0 and P12 since the input threshold value of CNTR0 pin is different from that of port P12.

- The input/output of P13 can be used even when INT is used. Be careful when using inputs of both INT and P13 since the input threshold value of INT pin is different from that of port P13.
- The input/output of P20, P21, P30, P31, D2, D3 can be used even when AIN0-AIN5 are used.

#### Power-on reset (only for H version)

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100  $\mu$ s or less.

If the rising time exceeds 100  $\mu$ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

#### POF instruction

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF instruction continuously.



## 10 P13/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register 11 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 57⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 57@). Also, set the NOP instruction for the case when a skip is per-

formed with the SNZ0 instruction (refer to Figure 57³).

:									
LA	4 ; ( <b>XXX</b> 02)								
TV1A	; The SNZ0 instruction is valid								
LA	8 ; (1 <b>XXX</b> 2)								
TI1A	; Control of INT pin input is changed								
NOP									
SNZ0	; The SNZ0 instruction is executed								
	(EXF0 flag cleared)								
NOP	3								
:	X : these bits are not used here.								

Fig. 57 External 0 interrupt program example-1

2 Note [2] on bit 3 of register I1

- When the bit 3 of register 11 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the INT pin input is disabled (register I13 = "0"), set the keyon wakeup of INT pin to be invalid (register L10 = "0") before system enters to the RAM back-up mode. (refer to Figure 58⁽¹⁾).

:	
LA 0	; ( <b>XXX</b> 02)
TI1A	; INT key-on wakeup disabled $\oplus$
DI	
EPOF	
POF2	; RAM back-up
:	
X : the	se bits are not used here.

Fig. 58 External 0 interrupt program example-2

#### Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register 11 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 59⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 59⁽²⁾). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 59⁽³⁾).

:		
LA	4	; (XXX02)
TV1A		; The SNZ0 instruction is valid
LA	12	; (1XXX2)
TI1A		; Interrupt valid waveform is changed
NOP		
SNZ0		; The SNZ0 instruction is executed
		(EXF0 flag cleared)
NOP		3
:		
•		
<b>X</b> :	these b	its are not used here.

Fig. 59 A/D conversion interrupt program example



#### 4509 Group

## 查询"4509"供应商

#### 1 Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

#### 2 Timer count source

Stop timer 1 or 2 counting to change its count source.

#### ⁽³⁾Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

#### Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB, T1R1L, T2AB or T2R2L instruction to write data to timer.

#### Writing to reload register

In order to write a data to the reload register R1H while the timer 1 is operating, execute the T1HAB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R2H while the timer 2 is operating, execute the T2HAB instruction except a timing of the timer 2 underflow.

Image: Prescaler, timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after prescaler and timer operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer, timer operates synchronizing with the count edge (falling edge or rising edge) of CNTR input selected by software.

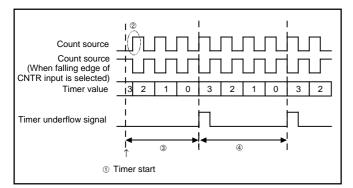



Fig. 60 Timer count start timing and count time when operation starts

#### @PWM signal (PWM1, PWM2)

If the timer 1 count stop timing and the timer 1 underflow timing overlap during output of the PWM1 signal, a hazard may occur in the PWM1 output waveform.

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM2 signal, a hazard may occur in the PWM2 output waveform.

#### [®]Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.
- When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state.

Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

#### ⁽⁹⁾Clock control

When the RC oscillation is used as the main clock f(XIN), execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CRCK instruction can be selected only once. When the CRCK instruction is not executed, the ceramic oscillation is selected for the main clock f(XIN).

Also, when the MCU operates only by the on-chip oscillator without using main clock f(XIN), connect XIN pin to Vss and leave XOUT pin open, and do not execute the CRCK instruction.

In order to switch the operation source clock (f(RING)) or f(XIN)), generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.

Registers RG and MR are initialized when system returns from RAM back-up mode.

However, the selected contents (CRCK instruction execution state) of main clock (f(XIN)) oscillation circuit is retained.

#### On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products. Also, when considering the oscillation stabilize wait time for switching clock, be careful that the variable frequency of the on-chip oscillator clock.

#### 1 External clock

When the external clock is used for the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Do not execute the CRCK instruction in program.

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition).

Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.



²² Notes for the use of A/D conversion 1

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

- Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.
- Clear the bit 2 of register V2 to "0" to change the operating mode from the comparator mode to A/D conversion mode.
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

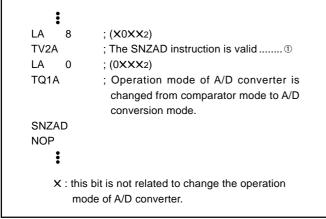
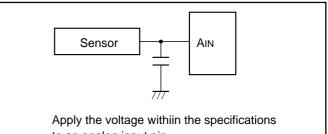




Fig. 61 External 0 interrupt program example-3

⁽²⁾Notes for the use of A/D conversion 2

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01  $\mu$ F to 1  $\mu$ F) to analog input pins (Figure 60).

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 61. In addition, test the application products sufficiently.



to an analog input pin.

Fig. 62 Analog input external circuit example-1

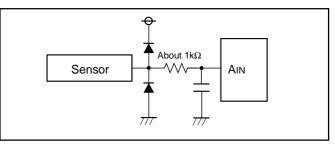



Fig. 63 Analog input external circuit example-2

### [⊗]QzROM

- Be careful not to apply overvoltage to MCU. The contents of QzROM may be overwritten because of overvoltage. Take care especially at turning on the power.
- (2) As for the product shipped in blank, Renesas does not perform the writing test to user ROM area after the assembly process though the QzROM writing test is performed enough before the assembly process. Therefore, a writing error of approx.0.1 % may occur. Moreover, please note the contact of cables and foreign bodies on a socket, etc. because a writing environment may cause some writing errors.

In the second se

(QzROM product shipped after writing)

As for the QzROM product shipped after writing, the ROM code protect is specified according to the ROM option setup data in the mask file which is submitted at ordering.

The ROM option setup data in the mask file is "0016" for protect enabled or "FF16" for protect disabled.

Note that the mask file which has nothing at the ROM option data or has the data other than "0016" and "FF16" can not be accepted.



## NOTES ON NOISE

Countermeasures against noise are described below.

The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

#### 1. Shortest wiring length

#### (1) Wiring for RESET pin

Make the length of wiring which is connected to the  $\overrightarrow{\mathsf{RESET}}$  pin as short as possible. Especially, connect a capacitor across the  $\overrightarrow{\mathsf{RESET}}$  pin and the Vss pin with the shortest possible wiring.

#### <Reason>

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the  $\overrightarrow{\mathsf{RESET}}$  pin is required.

If noise having a shorter pulse width than this is input to the  $\overline{\mathsf{RESET}}$  input pin, the reset is released before the internal state of the microcomputer is completely initialized.

This may cause a program runaway.

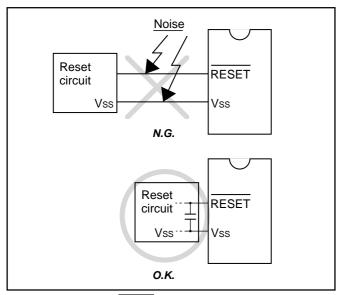



Fig. 64 Wiring for the RESET pin

(2) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

#### <Reason>

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

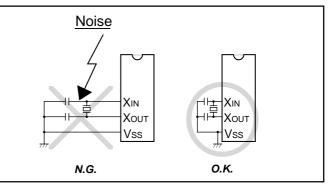



Fig. 65 Wiring for clock I/O pins

(3) Wiring to CNVss pin

Connect CNVss pin to a GND pattern at the shortest distance.

The GND pattern is required to be as close as possible to the GND supplied to Vss.

In order to improve the noise reduction, to connect a 5  $k\Omega$  resistor serially to the CNVss pin - GND line may be valid.

As well as the above-mentioned, in this case, connect to a GND pattern at the shortest distance. The GND pattern is required to be as close as possible to the GND supplied to Vss.

#### <Reason>

The CNVss pin of the QzROM is the power source input pin for the built-in QzROM. When programming in the built-in QzROM, the impedance of the CNVss pin is low to allow the electric current for writing flow into the QzROM. Because of this, noise can enter easily. If noise enters the CNVss pin, abnormal instruction codes or data are read from the built-in QzROM, which may cause a program runaway.

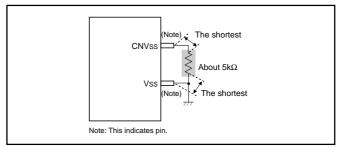



Fig. 66 Wiring for the CNVss pin of the QzPROM



2. Connection of bypass capacitor across Vss line and VDD line Connect an approximately 0.1  $\mu F$  bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the VSS pin and the VDD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

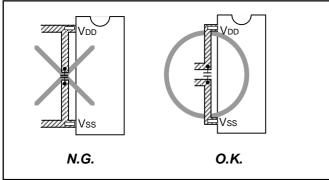



Fig. 67 Bypass capacitor across the VSS line and the VDD line

## 3. Wiring to analog input pins

- Connect an approximately 100  $\Omega$  to 1 k $\Omega$  resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

#### <Reason>

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

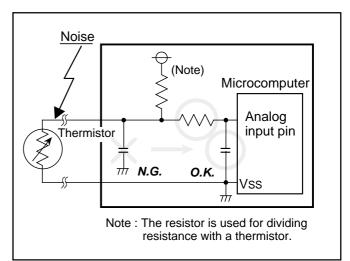



Fig. 68 Analog signal line and a resistor and a capacitor



#### 4. Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

#### (1) Keeping oscillator away from large current signal lines

Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

#### <Reason>

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

(2) Installing oscillator away from signal lines where potential levels change frequently

Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

#### <Reason>

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

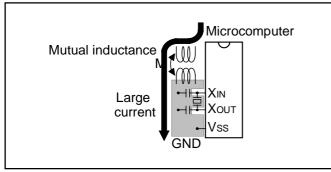
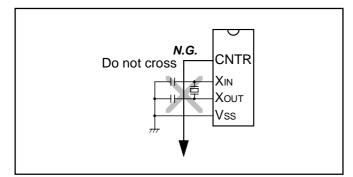
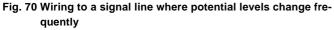





Fig. 69 Wiring for a large current signal line





#### (3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

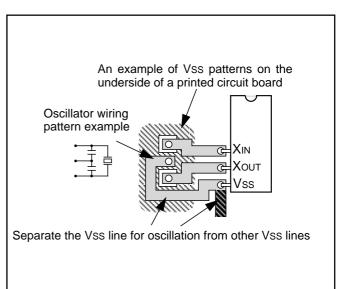



Fig. 71 Vss pattern on the underside of an oscillator

#### 5. Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100  $\Omega$  or more to an I/O port in series.

#### <Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its port latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

#### 6. Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software. In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine.

This example assumes that interrupt processing is repeated multiple times in a single main routine processing.



<The main routine>

 Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

 $\mathsf{N+1} \geq (\mathsf{Counts} \text{ of interrupt processing executed in each main routine})$ 

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

<The interrupt processing routine>

- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

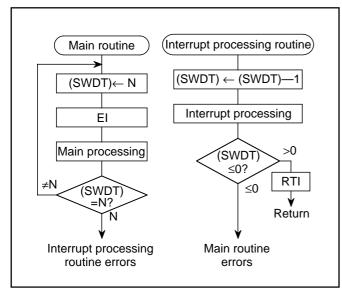



Fig. 72 Watchdog timer by software



## **CONTROL REGISTERS**

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W TAV1/TV1A
V13			Interrupt disabled	(SNZT2 instruction is valid)	
V13	Timer 2 interrupt enable bit	1	Interrupt enabled (	SNZT2 instruction is invalid)	
1/10	V12 Timer 1 interrupt enable bit	0	Interrupt disabled (	(SNZT1 instruction is valid)	
V 12		1	Interrupt enabled (	SNZT1 instruction is invalid)	
V11	Not used	0	This hit has no fun	ction, but read/write is enabled.	
VII	Not used	1		clion, but read/write is chabled.	
V10	External 0 interrupt anable bit	0	Interrupt disabled	(SNZ0 instruction is valid)	
VIO	External 0 interrupt enable bit	1	Interrupt enabled (	SNZ0 instruction is invalid)	

Interrupt control register V2		at reset : 00002		at RAM back-up : 00002	R/W TAV2/TV2A
1/20	V23 Serial interface interrupt enable bit		Interrupt disabled	(SNZSI instruction is valid)	
V23	Senar interface interrupt enable bit	1	Interrupt enabled (	SNZSI instruction is invalid)	
1/20	A/D interrupt enable bit	0	Interrupt disabled	(SNZAD instruction is valid)	
V22		1	Interrupt enabled (	SNZAD instruction is invalid)	
1/07	Not used	0	This bit has no function, but read/write is enabled.		
V21	Not used	1		clion, but read/ write is chabled.	
1/00	Not used	0	This hit has no fun	ction, but read/write is enabled	
V20	Not used	1	This bit has no function, but read/write is enabled.		

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1A	
113	INT pin input control bit (Note 2)	0	INT pin input disat	bled		
113		1	INT pin input enab	led		
	Interrupt valid waveform for INT pin/ return level selection bit (Note 2)	0	Falling waveform (	"L" level of INT pin is recognized wi	th the SNZI0	
110		0	instruction)/"L" level			
112		1	Rising waveform ("H" level of INT pin is recognized with the SNZIO			
			instruction)/"H" lev	rel		
111	INT pin edge detection circuit control bit	0	One-sided edge de	etected		
		1	Both edges detect	ed		
110	INT pin	0	Disabled			
110	timer 1 control enable bit	1	Enabled			

Clock control register MR		at reset : 11012		at RAM back-up : 11012	R/W TAMR/TMRA
	MR3	MR2		Operation mode	
	0	0	Through mode (free	quency not divided)	
Operation mode selection bits	0	1	Frequency divided I	by 2 mode	
	1	0	Frequency divided I	by 4 mode	
	1	1	Frequency divided I	by 8 mode	
Main clock f(XIN) control bit (Note 3)	(	)	Main clock (f(XIN))	oscillation enabled	
	1		Main clock (f(XIN)) oscillation stop		
MR0 Operation source clock selection bit (Note 4)		)	Main clock (f(XIN))		
		1	On-chip oscillator clock (f(RING))		
	Operation mode selection bits Main clock f(XIN) control bit (Note 3)	Operation mode selection bits $ \begin{array}{c} MR3\\ 0\\ 1\\ 1\\ 1 \end{array} $ Main clock f(XIN) control bit (Note 3) $\begin{array}{c} 0\\ 0\\ - 0\\ - 0\\ - 0\\ - 0\\ 0 \end{array} $ Operation source clock selection bit (Note 4)	Operation mode selection bits $ \begin{array}{c c} MR3 & MR2 \\ \hline 0 & 0 \\ \hline 0 & 1 \\ \hline 1 & 0 \\ \hline 1 & 1 \end{array} $ Main clock f(XIN) control bit (Note 3) $\begin{array}{c} 0 \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \hline \hline 0 \\ \hline$	Operation mode selection bits       MR3 MR2         0       0       Through mode (free         0       1       Frequency divided         1       0       Frequency divided         1       1       Main clock (f(XIN))         0       Main clock (f(XIN))       0         0       Main clock (f(XIN))       0	MR3       MR2       Operation mode         0       0       0       Through mode (frequency not divided)         0       1       Frequency divided by 2 mode         1       0       Frequency divided by 4 mode         1       1       Frequency divided by 8 mode         1       1       Frequency divided by 8 mode         Main clock f(XIN) control bit (Note 3)       0       Main clock (f(XIN)) oscillation enabled         0       1       Main clock (f(XIN)) oscillation stop         0       0       Main clock (f(XIN))

Clock control register RG		at reset : 02		at RAM back-up : 02	W TRGA
PC ₀	On-chip oscillator (f(RING)) control bit (Note 5)	0	On-chip oscillator (	f(RING)) oscillation enabled	
RG0		1	On-chip oscillator (	f(RING)) oscillation stop	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

3: Main clock cannot be stopped when the main clock is selected for the operation source clock.

4: The stopped clock cannot be selected for the operation source clock. In order to switch the operation source clock, generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.

5: On-chip oscillator cannot be stopped when the on-chip oscillator is selected for the operation source clock.



## 4509 Group

# 查询"4509"供应商

	Timer control register PA	at reset : 02		at RAM back-up : 02	W TPAA
PA0	Prescaler control bit	0	Stop (state initialized	ed)	
FA0		1	Operating		

Timer control register W1		at reset : 00002		reset : 00002	at RAM back-up : 00002	R/W TAW1/TW1A
W13	PWM1 function control bit	0	)	PWM1 function inv	alid	
VV13		1		PWM1 function val	id	
W12	W12 Timer 1 control bit		)	Stop (state retained)		
VV12		1		Operating		
	Timer 1 count source selection bits	W11	W10		Count source	
W11		0	0	PWM2 signal		
		0	1	Prescaler output (C	DRCLK)	
W10		1	0	CNTR1 input		
		1	1	On-chip oscillator of	clock (f(RING))	

Timer control register W2			at reset : 00002		at RAM back-up : 00002	R/W TAW2/TW2A
W23	W23 PWM2 function control bit		)	PWM2 function inv	valid	
1125			1	PWM2 function va	lid	
W22	W22 Timer 2 control bit		)	Stop (state retained)		
VVZ2			1	Operating		
	Timer 2 count source selection bits	W21	W20		Count source	
W21		0	0	Timer 1 underflow s	signal (T1UDF)	
		0	1	Prescaler output (C	RCLK)	
W20		1	0	CNTR0 input		
		1	1	System clock (STC	K)	

Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A
W53	W53 P12/CNTR0 pin function selection bit		P12 (I/O) / CNTR0	(input)	
<b>WU</b> UU		1	P12 (input) /CNTR	0 (I/O)	
W52	Timer 1 count auto-stop circuit		Count auto-stop ci	rcuit not selected	
VV02	selection bit (Note 2)	1	Count auto-stop ci	rcuit selected	
W51	Timer 1 count start synchronous circuit	0	Count start synchro	onous circuit not selected	
VV31	selection bit (Note 3)	1	Count start synchro	onous circuit selected	
W50	CNTR0 pin input count edge selection bit	0	Falling edge		
vv50		1	Rising edge		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W TAW6/TW6A
W63	P11/CNTR1 pin function selection bit	0	P11 (I/O) / CNTR1 (input)		
		1	P11 (input) /CNTR1 (I/O)		
W62	CNTR 1 pin output auto-control circuit	0	Output auto-control circuit not selected		
	selection bit	1	Output auto-control circuit selected		
W61	Timer 2	0	INT pin input period count circuit not selected		
	INT pin input period count circuit selection bit	1	INT pin input period count circuit selected		
W60	CNTR1 pin input count edge selection bit	0	Falling edge		
		1	Rising edge		

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: This function is valid only when the INT pin/timer 1 control is enabled (I10="1") and the timer 1 count start synchronous circuit is selected (W51="1"). 3: This function is valid only when the INT pin/timer 1 control is enabled (I10="1").



#### 4509 Group

# 查询"4509"供应商

	A/D control register Q1		at reset : 00002		: 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A
Q13	Q13 A/D operation mode selection bit	(	)	A/C	conversion m	ode	
Q13	AD operation mode selection bit		1	Co	mparator mode		
		Q12	Q11	Q10		Selected pins	
Q12		0	0	0	AIN0		
		0	0	1	AIN1		
		0	1	0	AIN2		
Q11	Analog input pin selection bits	0	1	1	Аімз		
		1	0	0	AIN4		
		1	0	1	AIN5		
Q10		1	1	0	Not available		
		1	1	1	Not available		

	Serial interface control register J1		at reset : 00002		at RAM back-up : state retained	R/W TAJ1/TJ1A	
		J13	J12		Synchronous clock		
J13	Serial interface synchronous clock	0	0	Instruction clock (II	NSTCK) divided by 8		
		0	1	Instruction clock (II	NSTCK) divided by 4		
J12		1	0	Instruction clock (INSTCK) divided by 2			
		1	1	External clock (SCI	External clock (Scк input)		
		J11	J10		Port function		
J11		0	0	P00, P01, P02 sele	P00, P01, P02 selected/SIN, SOUT, SCK not selected		
	Serial interface port function selection bits	0	1	P00, SOUT, SCK se	ected/SIN, P01, P02 not selected		
J10		1	0	SIN, P01, SCK selected/P00, SOUT, P02 not selected			
		1	1	SIN, SOUT, SCK sel	ected/P00, P01, P02 not selected		



	Key-on wakeup control register K0		reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A		
K03	Port P03 key-on wakeup	0	Key-on wakeup no	bt used			
K03	control bit	1	Key-on wakeup us	sed			
K02	Port P02 key-on wakeup	0	Key-on wakeup not used				
K02	control bit	1	Key-on wakeup used				
K01	Port P01 key-on wakeup	0	Key-on wakeup no	ot used			
<b>K</b> 01	control bit	1	Key-on wakeup used				
K00	Port P00 key-on wakeup	0	0 Key-on wakeup not used				
K00	control bit	1	Key-on wakeup used				

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W TAK1/TK1A	
K13	Port P13 key-on wakeup	0	Key-on wakeup no	ot used		
K13	control bit	1	Key-on wakeup used			
K12	Port P12 key-on wakeup	0	Key-on wakeup not used			
K12	control bit	1	Key-on wakeup used			
K11	Port P11 key-on wakeup	0	Key-on wakeup no	ot used		
KI1	control bit	1	Key-on wakeup used			
K10	Port P10 key-on wakeup	0	Key-on wakeup not used			
	control bit	1	Key-on wakeup us	sed		

	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2A	
K23	Port D3 key-on wakeup	0	Key-on wakeup no	ot used		
N23	control bit	1	1 Key-on wakeup used			
K22	Port D2 key-on wakeup	0	Key-on wakeup not used			
K22	control bit	1	Key-on wakeup used			
K21	Port P21 key-on wakeup	0	Key-on wakeup no	ot used		
N21	control bit	1	Key-on wakeup used			
K20	Port P20 key-on wakeup	0 Key-on wakeup not used				
N20	control bit	1	Key-on wakeup us	sed		

	Key-on wakeup control register L1		reset : 00002	at RAM back-up : state retained	R/W	
			10301 . 00002	at that back up : state retained	TAL1/TL1A	
L13	Ports P10–P13 return condition selection	0	Return by level			
L13	bit	1	Return by edge			
L12	Ports P10-P13 valid waveform/	0	Falling waveform/"L" level			
LIZ	level selection bit	1	1 Rising waveform/"H" level			
14.	INT pin	0	Return by level			
L11	return condition selection bit	1	Return by edge			
L10	INT pin	0	Key-on wakeup not	used		
L10	key-on wakeup control bit	1	Key-on wakeup use	ed		



	Pull-up control register PU0	at	reset : 00002	at RAM back-up : state retained	R/W TAPU0/TPU0A	
PU03	Port P03 pull-up transistor	0	Pull-up transistor	OFF		
PU03	control bit	1	Pull-up transistor	ON		
DU IO-	Port P02 pull-up transistor	0	Pull-up transistor	OFF		
PU02	control bit	1	Pull-up transistor	ON		
PU01	Port P01 pull-up transistor	0	Pull-up transistor	OFF		
P001	control bit	1	Pull-up transistor	ON		
DU O.	Port P00 pull-up transistor	0	Pull-up transistor	OFF		
PU00	control bit	1	Pull-up transistor	ON		
	Pull-up control register PU1	at	reset : 00002	at RAM back-up : state retained	R/W TAPU1/TPU1/	
5114	Port P13 pull-up transistor	0	Pull-up transistor	OFF		
PU13	control bit	1	Pull-up transistor	ON		
PU12	Port P12 pull-up transistor	0	Pull-up transistor	OFF		
PUI2	control bit	1	Pull-up transistor	ON		
PU11	Port P11 pull-up transistor	0	Pull-up transistor	OFF		
PUI	control bit	1	Pull-up transistor	ON		
	Port P10 pull-up transistor	0	Pull-up transistor	OFF		
PU10	control bit	1	Pull-up transistor	ON		
	Pull-up control register PU2	at	reset : 00002	at RAM back-up : state retained	R/W	
	Port Do pull up transistor		Dull un transistar		TAPU2/TPU2/	
PU23	Port D ₃ pull-up transistor control bit	0	Pull-up transistor			
			Pull-up transistor			

PU23	· ···· ··· ··· ·······················	, v	
P023	control bit	1	Pull-up transistor ON
DUDa	Port D2 pull-up transistor	0	Pull-up transistor OFF
PU22	control bit	1	Pull-up transistor ON
PU21	Port P21 pull-up transistor	0	Pull-up transistor OFF
P021	control bit	1	Pull-up transistor ON
DUDa	Port P20 pull-up transistor	0	Pull-up transistor OFF
PU20	control bit	1	Pull-up transistor ON



Por	Port output structure control register FR0		reset : 00002	at RAM back-up : state retained	W TFR0A	
ED 00		0	N-channel open-d	rain output		
FR03	Port P03 output structure selection bit	1	CMOS output			
ED 0a	FR02 Port P02 output structure selection bit	0 N-channel open-drain o		rain output	ain output	
FR02		1	CMOS output			
FR01	Dart DO, autout atmosture calentian bit	0	N-channel open-d	rain output		
FR01	Port P01 output structure selection bit	1	CMOS output			
ED 0a	Dant DOs autout atmosture calentian bit	0	N-channel open-drain output			
FR00	Port P00 output structure selection bit	1	CMOS output			

Port output structure control register FR1		at reset : 00002		at RAM back-up : state retained	W TFR1A
FR13			N-channel open-d	rain output	
FR13	FR13 Port P13 output structure selection bit	1	CMOS output		
	FR12 Port P12 output structure selection bit	0	N-channel open-drain output		
FR12		1	CMOS output		
FR11	Part D14 autout atrusture colection bit	0	N-channel open-drain output		
	Port P11 output structure selection bit	1	CMOS output		
	Dent D4a extend atmost up cale ation bit	0	N-channel open-drain output		
FR10	Port P10 output structure selection bit	1	CMOS output		

Port output structure control register FR2		at reset : 00002		at RAM back-up : state retained	W TFR2A	
FR23	Not used	0	This bit has no fun	ction, but read/write is enabled.		
		1				
FR22	Not used	0	This bit has no function, but read/write is enabled.			
11122		1				
FR21	Dort D24 output atructure coloction hit	0	N-channel open-dr	N-channel open-drain output		
	Port P21 output structure selection bit	1	CMOS output			
ED 20	Part D22 output atructure collection hit	0	N-channel open-drain output			
FR20	Port P20 output structure selection bit	1	CMOS output			

Port output structure control register FR3		at reset : 00002		at RAM back-up : state retained	W TFR3A	
FR33		0	N-channel open-di	rain output		
FK33	Port D3 output structure selection bit	1	CMOS output			
FR32	Part Do output atructure colection, bit	0 N-channel open-drain output				
FR32	Port D2 output structure selection bit	1	CMOS output	CMOS output		
500/	Dent De autout atmusture calentian hit	0	N-channel open-d	rain output		
FR31	Port D1 output structure selection bit	1	CMOS output			
ED 20		0	N-channel open-drain output			
FR30	Port Do output structure selection bit	1	CMOS output			

Pc	rt output structure control register C1	at reset : 00002		at power down : state retained	W TC1A			
C10	Dort Dr. output of upture colorition hit	0	0 N-channel open-drain output					
C13	Port D5 output structure selection bit	1	CMOS output					
C10	Dort Di autout atructura calcation hit	0	N-channel open-drain output					
C12	Port D4 output structure selection bit	1	CMOS output					
<u> </u>	Dent D2/ evidencia educations in the	0	N-channel open-d	rain output				
C11	Port P31 output structure selection bit	1	CMOS output					
C10	Dort D2a output attracture colocition hit	0	0 N-channel open-drain output					
C10	Port P30 output structure selection bit	1	CMOS output					



#### INSTRUCTIONS

Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)

(4) Instruction code table

#### SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	RPS	Prescaler reload register (8 bits)
в	Register B (4 bits)	R1L	Timer 1 reload register (8 bits)
DR	Register D (3 bits)	R1H	Timer 1 reload register (8 bits)
E	Register E (8 bits)	R2L	Timer 2 reload register (8 bits)
Q1	A/D control register Q1 (4 bits)	R2H	Timer 2 reload register (8 bits)
V1	Interrupt control register V1 (4 bits)	PS	Prescaler
V2	Interrupt control register V2 (4 bits)	T1	Timer 1
11	Interrupt control register I1 (4 bits)	T2	Timer 2
W1	Timer control register W1 (4 bits)	T1F	Timer 1 interrupt request flag
W2	Timer control register W2 (4 bits)	T2F	Timer 2 interrupt request flag
W5	Timer control register W5 (4 bits)	WDF1	Watchdog timer flag
W6	Timer control register W6 (4 bits)	WEF	Watchdog timer enable flag
FR0	Port output structure control register FR0 (4 bits)	INTE	Interrupt enable flag
FR1	Port output structure control register FR1 (4 bits)	EXF0	External 0 interrupt request flag
FR2	Port output structure control register FR2 (4 bits)	Р	Power down flag
FR3	Port output structure control register FR3 (4 bits)	ADF	A/D conversion completion flag
C1	Port output structure control register C1 (4 bits)	SIOF	Serial interface transmit/receive completion flag
J1	Serial interface control register J1 (4 bits)		
MR	Clock control register MR (4 bits)	D	Port D (6 bits)
К0	Key-on wakeup control register K0 (4 bits)	P0	Port P0 (4 bits)
K1	Key-on wakeup control register K1 (4 bits)	P1	Port P1 (4 bits)
K2	Key-on wakeup control register K2 (4 bits)	P2	Port P2 (2 bits)
L1	Key-on wakeup control register L1 (4 bits)	P3	Port P3 (2 bits)
PU0	Pull-up control register PU0 (4 bits)		
PU1	Pull-up control register PU1 (4 bits)	x	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	У	Hexadecimal variable
X	Register X (4 bits)	z	Hexadecimal variable
Y	Register Y (4 bits)	р	Hexadecimal variable
Z	Register Z (2 bits)	n	Hexadecimal constant
DP	Data pointer (10 bits)		Hexadecimal constant
	(It consists of registers X, Y, and Z)	li 	Hexadecimal constant
PC	Program counter (14 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
РСн	High-order 7 bits of program counter		(same for others)
PCL	Low-order 7 bits of program counter		Direction of data movement
SK	Stack register (14 bits $\times$ 8)	$\leftarrow$	Direction of data movement
SP CY	Stack pointer (3 bits)	$\stackrel{\leftrightarrow}{?}$	Data exchange between a register and memory
	Carry flag		Decision of state shown before "?"
		()	Contents of registers and memories Negate, Flag unchanged after executing instruction
		M(DP)	
		, ,	RAM address pointed by the data pointer Label indicating address a6 a5 a4 a3 a2 a1 a0
		a	Label indicating address a6 a5 a4 a3 a2 a1 a0
		р, а	in page p6 p5 p4 p3 p2 p1 p0
		с	Hex. C + Hex. number x (also same for others)
		+	
		x	

Note : The 4509 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.



#### INDEX LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
ing	ТАВ	$(A) \leftarrow (B)$		XAMI j	$(A) \leftarrow \rightarrow (M(DP))$
			sfer		$(X) \leftarrow \rightarrow (M(D^{*}))$ $(X) \leftarrow (X) EXOR(j)$
	тва	$(B) \leftarrow (A)$	rans		j = 0 to 15
			ter t		$(Y) \leftarrow (Y) + 1$
	TAY	$(A) \leftarrow (Y)$	egist		
			to re	ТМА ј	$(M(DP)) \leftarrow (A)$
	TYA	$(Y) \leftarrow (A)$	RAM to register transfer		$(X) \leftarrow (X) EXOR(j)$
	ТЕАВ	(E7−E4) ← (B)	L L		j = 0 to 15
л.		$(E3-E0) \leftarrow (A)$		LA n	$(A) \leftarrow n$
unsfo				2,	n = 0 to 15
r tra	TABE	(B) ← (E7–E4)			
jiste		$(A) \leftarrow (E_3 - E_0)$		TABP p	$(SP) \leftarrow (SP) + 1$
rec					$(SK(SP)) \leftarrow (PC)$
er to	TDA	$(DR2-DR0) \leftarrow (A2-A0)$			$(PCH) \leftarrow p (Note)$
Register to register transfer	TAD	$(A_2 - A_0) \leftarrow (DR_2 - DR_0)$			$(PCL) \leftarrow (DR2-DR0, A3-A0)$
Re		$(A3) \leftarrow 0$			(UPTF) = 1, (DR1, DR0) ← (ROM(PC))9, 8
					$(DR_2) \leftarrow 0$
	TAZ	(A1, A0) ← (Z1, Z0)			$(B) \leftarrow (ROM(PC))7-4$
		(A3, A2) ← 0			$(A) \leftarrow (ROM(PC))_{3-0}$
					$(PC) \leftarrow (SK(SP))$
	TAX	$(A) \leftarrow (X)$			$(SP) \leftarrow (SP) - 1$
	TASP	$(A_2 - A_0) \leftarrow (SP_2 - SP_0)$		АМ	$(A) \leftarrow (A) + (M(DP))$
		(A3) ← 0	_		
			Arithmetic operation	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$
	LXY x, y	$(X) \leftarrow x x = 0 \text{ to } 15$	pera		$(CY) \leftarrow Carry$
s		$(Y) \leftarrow y \ y = 0 \text{ to } 15$	ic o		
esse	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	met	An	$(A) \leftarrow (A) + n$ n = 0 to 15
Iddre			Arith		11 = 0 10 15
RAM addresses	INY	$(Y) \leftarrow (Y) + 1$		AND	$(A) \leftarrow (A) AND (M(DP))$
RA					
	DEY	$(Y) \leftarrow (Y) - 1$		OR	$(A) \leftarrow (A) \text{ OR } (M(DP))$
	TAM j	$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \end{array}$		SC	(CY) ← 1
		i = 0 to 15		RC	$(CY) \leftarrow 0$
Isfer		,			
RAM to register transfer	ХАМ ј	$(A) \leftarrow \rightarrow (M(DP))$		SZC	(CY) = 0 ?
ster		$(X) \leftarrow (X) EXOR(j)$			
regis		j = 0 to 15		СМА	$(\overline{A}) \to (A)$
to	YAND :				
3AM	XAMD j	$\begin{array}{l} (A) \leftarrow \to (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \end{array}$		RAR	$\rightarrow$ CY $\rightarrow$ A3A2A1A0
		j = 0  to  15			
		$(Y) \leftarrow (Y) - 1$			
	0.40.21				

Note: p is 0 to 31.



#### INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Group ing	Mnemonic	Function
	SB j	$(Mj(DP)) \leftarrow 1$ j = 0  to  3		DI	$(INTE) \leftarrow 0$
Bit operation	RB j	$(Mj(DP)) \leftarrow 0$ j = 0  to  3		EI SNZ0	(INTE) ← 1 V10 = 0: (EXF0) = 1 ? (EXF0) ← 0
	SZB j	(Mj(DP)) = 0 ? j = 0 to 3		SNZI0	V10 = 1: SNZ0 = NOP I12 = 0 : (INT) = "L" ?
ison ion	SEAM	(A) = (M(DP)) ?	peration		l12 = 1 : (INT) = "H" ?
Comparison operation	SEA n	(A) = n ? n = 0 to 15	Interrupt operation		$(A) \leftarrow (V1)$
	B a (PCL) ← a6–a0	TV1A TAV2	$(V1) \leftarrow (A)$ $(A) \leftarrow (V2)$		
Branch operation		TV2A	$(X) \leftarrow (V2)$ $(V2) \leftarrow (A)$		
ranch o	BLA p	$(PCH) \leftarrow p (Note)$		TAI1	(A) ← (I1)
Ω		$(PCL) \leftarrow (DR2-DR0, A3-A0)$		TI1A	(I1) ← (A)
	BM a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$		ТРАА	$(PA) \leftarrow (A)$
c		(PCH) ← 2 (PCL) ← a6–a0		TAW1	$(A) \leftarrow (W1)$
peratio	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$			(W1) ← (A)
Subroutine operation		$(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow a6-a0$		TAW2 TW2A	$(A) \leftarrow (W2)$ $(W2) \leftarrow (A)$
Subr	BMLA p	$(SP) \leftarrow (SP) + 1$			$(W2) \leftarrow (X)$ (A) $\leftarrow (W5)$
		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$	ation		(W5) ← (A)
	RTI	$(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(PC) \leftarrow (SK(SP))$	Timer operation	TAW6	(A) ← (W6)
		$(SP) \leftarrow (SP) - 1$	Lig	TW6A	(W6) ← (A)
	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		TABPS	(B) ← (TPS7–TPS4) (A) ← (TPS3–TPS0)
Return operation	RTS	(PC) ← (SK(SP)) (SP) ← (SP) − 1		TPSAB	$(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$
				TAB1	(B) ← (T17–T14) (A) ← (T13–T10)

Note: p is 0 to 31.



## INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	C	Group- ing	Mnemonic	Function
	T1AB	$(R1L7-R1L4) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R1L3-R1L0) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$		<b>V</b>	CLD RD	$(D) \leftarrow 1$ $(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 5$
	T1HAB	(R1H7–R1H4) ← (B) (R1H3–R1H0) ← (A)			SD	$(D(Y)) \leftarrow 1$ (Y) = 0  to  5
	TAB2	(B) ← (T27–T24) (A) ← (T23–T20)			SZD	(D(Y)) = 0 ? (Y) = 0 to 5
_	T2AB	(R2L7–R2L4) ← (B) (T27–T24) ← (B)			TFR0A	$(FR0) \leftarrow (A)$
peration		$(R2L_3-R2L_0) \leftarrow (A)$ $(T2_3-T2_0) \leftarrow (A)$			TFR1A	(FR1) ← (A)
Timer operation	T2HAB	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)			TFR2A TFR3A	(FR2) ← (A) (FR3) ← (A)
	T1R1L	(T17–T10) ← (R1L7–R1L0)			TC1A	(C1) ← (A)
	T2R2L	(T27–T20) ← (R2L7–R2L0)			ТКОА	(K0) ← (A)
	SNZT1	V12 = 0: (T1F) = 1 ? (T1F) ← 0		Input/Output operation	ТАКО	(A) ← (K0)
		V12 = 1: SNZT1 = NOP		Dutput c	TK1A	(K1) ← (A)
	SNZT2	V13 = 0: (T2F) = 1 ? (T2F) ← 0 V13 = 1: SNZT2 = NOP		Input/(	TAK1 TK2A	$(A) \leftarrow (K1)$ $(K2) \leftarrow (A)$
	IAP0	$(A) \leftarrow (P0)$			TAK2	$(A) \leftarrow (K2)$
	OP0A	(P0) ← (A) (A) ← (P1)			TPU0A TAPU0	$(PU0) \leftarrow (A)$ $(A) \leftarrow (PU0)$
Ę	OP1A	(P1) ← (A)			TPU1A	(PU1) ← (A)
Input/Output operation	IAP2	$(A1, A0) \leftarrow (P21, P20)$ $(A3, A2) \leftarrow 0$			TAPU1	(A) ← (PU1)
Output	OP2A	$(A3, A2) \leftarrow 0$ $(P21, P20) \leftarrow (A1, A0)$			TPU2A	(PU2) ← (A)
Input	IAP3	(A1, A0) ← (P31, P30)			TAPU2	$(A) \leftarrow (PU2)$
	ОРЗА	(A3, A2) ← 0 (P31, P30) ← (A1, A0)			TL1A TAL1	$(L1) \leftarrow (A)$ $(A) \leftarrow (L1)$
		· · · · · · · · · · · · · · · · · · ·				



#### INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
	TABSI	$(B) \leftarrow (SI7\text{-}SI4) \ (A) \leftarrow (SI3\text{-}SI0)$			(PC) ← (PC) + 1
	TSIAB	(SI7−SI4) ← (B) (SI3−SI0) ← (A)		POF	RAM back-up
Serial interface operation	SST	$(SIOF) \leftarrow 0$ Serial interface transmit/receive starting		EPOF	POF instruction valid
	SNZSI	V23=0: (SIOF)=1?		SNZP	(P) = 1 ?
		(SIOF) ← 0 V23 = 1: SNZSI = NOP		DWDT	Stop of watchdog timer function enabled
Se	TAJ1	(A) ← (J1)	Other operation		(WDF1) = 1 ?, (WDF1) ← 0
	TJ1A	(J1) ← (A)	Ott		
	CRCK	RC oscillator selected		SRST	System reset
Clock operation	TRGA	(RG0) ← (A0)		RUPT	$(UPTF) \leftarrow 0$
ock o	TAMR	$(A) \gets (MR)$		SUPT	$(UPTF) \leftarrow 1$
ö	TMRA	(MR) ← (A)		SVDE**	Voltage drop detection circuit valid at RAM back- up
	TABAD	$\begin{array}{l} Q13 = 0, \\ (B) \leftarrow (AD9\text{-}AD6) \\ (A) \leftarrow (AD5\text{-}AD2) \\ Q13 = 1, \\ (B) \leftarrow (AD7\text{-}AD4) \\ (A) \leftarrow (AD3\text{-}AD0) \end{array}$			
	TALA	(A3, A2) ← (AD1, AD0) (A1, A0) ← 0			
ion operation	TADAB	Q13 = 1 : (AD7–AD4) $\leftarrow$ (B) (AD3–AD0) $\leftarrow$ (A) Q13 = 0 : TABAD = NOP			
A/D conversion	TAQ1	$(A) \leftarrow (Q1)$			
A/D 6	TQ1A	(Q1) ← (A)			
	ADST	$(ADF) \leftarrow 0$ Q13 = 0 : A/D conversion starting Q13 = 1 : Comparator operation starting			
	SNZAD	V22 = 0: (ADF) = 1 ? (ADF) ← 0 V22 = 1: SNZAD = NOP			
Natas The		tion can be used only in the H version.			

Note: The SVDE instruction can be used only in the H version.



## MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

An (Add n	and accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 1 1 0 n n n n ₂ 0 6 n ₁₆	words	cycles 1	_	Overflow = 0	
			•			
Operation:	$(A) \leftarrow (A) + n$	Grouping:	Arithmetic	•		
	n = 0 to 15	Description			the immediate field to	
			-		s a result in register A.	
					g CY remains unchanged.	
					ction when there is no to operation.	
					struction when there is	
					t of operation.	
· · · ·	conversion STart)	Number	Number of		Olvin eenditien	
Instruction code		Number of words	cycles	Flag CY	Skip condition	
coue	1 0 1 0 0 1 1 1 1 1 2 2 9 F ₁₆	1	1	-	_	
Operation:	$(ADF) \leftarrow 0$	Grouping:	A/D conve	rsion oper:	ation	
Operation.	Q13 = 0: A/D conversion starting				onversion completion	
	$Q_{13} = 1$ : Comparator operation starting				conversion at the A/D	
	(Q13 : bit 3 of A/D control register Q1)		conversion	mode (Q ²	3 = 0) or the compara-	
			tor operation	on at the c	comparator mode (Q13	
			= 1) is started.			
AM (Add ad	ccumulator and Memory)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ \end{bmatrix}_{2} \begin{bmatrix} 0 & 0 & A \end{bmatrix}_{16}$	words	cycles			
		1	1	-	-	
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic	operation		
		Description	: Adds the o	contents o	f M(DP) to register A.	
		Stores the result in register A. The contents				
			of carry fla	g CY rema	ins unchanged.	
AMC (Add	accumulator, Memory and Carry) D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	Flag C f	Skip condition	
COUE	0 0 0 0 0 0 1 0 1 1 ₂ 0 0 B ₁₆	1	1	0/1	_	
		Crouning	Arithmatia	anaration		
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping:	Arithmetic	-	f M(DP) and carry flag	
	$(CY) \leftarrow Carry$	Description			res the result in regis-	
			ter A and c		-	
				,		
		1				



AND (logica	al AND between accumulator and memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
	16	1	1	-	_
Operation:	$(A) \leftarrow (A) AND (M(DP))$	Grouping:	Arithmetic	operation	
		Description		•	ation between the con-
				-	and the contents of e result in register A.
<b>B</b> a (Branch	n to address a)				
Instruction		Number of words	Number of	Flag CY	Skip condition
code	$\begin{bmatrix} 0 & 1 & 1 & a6 & a5 & a4 & a3 & a2 & a1 & a0 \end{bmatrix}_2 \begin{bmatrix} 1 & 8 & a \\ +a & a & 16 \end{bmatrix}_{16}$	1	cycles 1	_	_
Operation:	(PCL) ← a6 to a0	Grouping:	Branch ope	eration	
operation.	$(1 \text{ CL}) \leftarrow a_0 \text{ to } a_0$	Description			: Branches to address
			a in the ide		
		Note:	Specify the	e branch a	ddress within the page
			including th	nis instruct	ion.
BL p, a (Bra	anch Long to address a in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 1 p4 p3 p2 p1 p0 2 0 <del>E</del> p 16	words 2	cycles 2	_	
	1 0 0 a6 a5 a4 a3 a2 a1 a0 2 2 a a ₁₆				
		Grouping:	Branch ope		· Dranahaa ta addraaa
Operation:	(PCH) ← p	Description	a in page p		: Branches to address
	(PCL) ← a6 to a0	Note:	p is 0 to 31		
BLA p (Bra	nch Long to address (D) + (A) in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 16	words 2	cycles 2	_	
	1 0 0 p4 0 0 p3 p2 p1 p0 2 p p ₁₆	Grouping:	Branch ope	aration	
		Description			: Branches to address
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$				2 A1 A0)2 specified by
	$(PGL) \leftarrow (DR2 - DR0, A3 - A0)$		registers D		
		Note:	p is 0 to 31	•	



BM a (Brar	ich and Mark to address a in page 2)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 1 a a	words	cycles			
		1	1	-	-	
Operation:	$(SP) \leftarrow (SP) + 1$	Grouping:	Subroutine	call opera	ation	
•	$(SK(SP)) \leftarrow (PC)$	Description	: Call the s	ubroutine	in page 2 : Calls the	
	$(PCH) \leftarrow 2$		subroutine	at addres	s a in page 2.	
	(PCL) ← a6–a0	Note:	Subroutine	e extendir	ng from page 2 to an-	
					be called with the BM	
					arts on page 2.	
					the stack because the	
			maximum i	evel of sub	routine nesting is 8.	
BML p, a (	Branch and Mark Long to address a in page p)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 ^C +p p 16	words	cycles			
		2	2	-	-	
	1 0 0 a6 a5 a4 a3 a2 a1 a0 2 2 a a ₁₆	Grouping:	Subroutine	call opera	ation	
Operation	(SD) / (SD) + 1	Description			Calls the subroutine at	
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$		address a			
	$(OR(OF)) \leftarrow P$	Note:	p is 0 to 31.			
	$(PCL) \leftarrow a6-a0$		Be careful not to over the stack because the			
			maximum l	evel of sub	routine nesting is 8.	
BMLA p (B	ranch and Mark Long to address (D) + (A) in page p	)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 1 1 0 0 0 0 2 0 3 0 16	words 2	cycles 2			
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p ₁₆					
		Grouping:	Subroutine			
Operation:	$(SP) \leftarrow (SP) + 1$	Description			Calls the subroutine at	
	$(SK(SP)) \leftarrow (PC)$				Ro A3 A2 A1 A0)2 speci- nd A in page p.	
	$(PCH) \leftarrow p$	Note:	p is 0 to 31		iu A în page p.	
	(PCL) ← (DR2–DR0, A3–A0)		•		the stack because the	
			maximum l	evel of sub	routine nesting is 8.	
CLD (CLea	r port D)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles			
	0 0 0 0 0 1 0 0 1 2 0 1 1 16	1	1	-	-	
Operation:	(D) ← 1	Grouping:	Input/Outp	ut operatio	n	
•		Description	: Sets (1) to	port D.		



CMA (CoM	plement of Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 2 0 1 C 16	words	cycles		
		1	1	-	-
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
		Description			mplement for register
			A's conten	ts in regist	er A.
CRCK (Clo	ck select: Rc oscillation ClocK)			1	
Instruction		Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 1 1 <u>2</u> 2 9 B ₁₆	words 1	cycles 1	_	
Oneretien	DC assillation size vit calcuted	Grouping:	Other oper	ation	
Operation:	RC oscillation circuit selected	Description			llation circuit for main
			clock f(XIN	).	
DEY (DEcr	ement register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 1 2 0 1 7	words	cycles		
		1	1	-	(Y) = 15
Operation:	$(Y) \leftarrow (Y) - 1$	Grouping:	RAM addre	esses	
		Description: Subtracts 1 from the contents of register Y. As a result of subtraction, when the con- tents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.			
DI (Disable	Interrupt)	·			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 0 2 0 4 16	words	cycles		
		1	1	_	_
Operation:	$(INTE) \leftarrow 0$	Grouping:	Interrupt co	-	
		Description	. ,	•	t enable flag INTE, and
		Note:	disables th	•	by executing the DI in-
		Note:	•		ting 1 machine cycle.



DWDT (Dis	able WatchDog Timer)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 1 1 0 0 ₂ 2 9 C ₁₆	1	1	-	_
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper		
		Description		struction	timer function by the after executing the
EI (Enable	Interrupt)	<u> </u>			
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 0 1 0 1 2 0 0 3 16	1	1	-	-
Operation:	$(INTE) \leftarrow 1$	Grouping:	Interrupt co	ontrol oper	ation
		Description			enable flag INTE, and
		Note:		enabled	by executing the EI in- ing 1 machine cycle.
EPOF (Ena	able POF instruction)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 1 0 1 1 ₂ 0 5 B ₁₆	words 1	cycles 1	-	-
Operation:	POF instruction valid	Grouping:	Other oper	ration	
		Description			e after POF instruction e EPOF instruction.
IAP0 (Inpu	t Accumulator from port P0)	<u> </u>			
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 0 1 1 0 0 0 0 0 0 0 ₂ 2 6 0 ₁₆	1	1	-	_
Operation:	$(A) \leftarrow (P0)$	Grouping: Description	Input/Outp		n f port P0 to register A.



IAP1 (Inpu	t Accumulator from port P1)					
Instruction code	D9 D0 1 0 0 1 1 0 0 0 1 2 6 1 46	Number of words	Number of cycles	Flag CY	Skip condition	
	<u> </u>	1	1	-	-	
Operation:	$(A) \leftarrow (P1)$	Grouping:	Input/Outp			
		Description	: Transfers t	he input o	f port P1 to register A.	
IAP2 (Input	t Accumulator from port P2)					
Instruction code	D9 D0 1 0 0 1 1 0 0 0 1 0 2 6 2 16	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	_	
Operation:	(A1, A0) ← (P21, P20)	Grouping:	Input/Outp			
	$(A_3, A_2) \leftarrow 0$	Description			f port P2 to the low-or-	
				register A. on is executed, "0" is		
		Note: After this instruction is executed, "0" is stored to the high-order 2 bits (A3, A2) of register A.				
	t Accumulator from port P3)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles	-		
Onenetiens						
Operation:	$(A_1, A_0) \leftarrow (P3_1, P3_0)$ $(A_3, A_2) \leftarrow 0$	Grouping: Description	Input/Outp		f port P3 to the low-or-	
		Decemption	der 2 bits (			
		Note:	After this	After this instruction is executed, "0" is		
			stored to t register A.	the high-o	rder 2 bits (A3, A2) of	
INY (INcrei	ment register Y)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 0 1 0 0 1 1 2 0 1 3 16	1	1	-	(Y) = 0	
Operation:	$(Y) \leftarrow (Y) + 1$	Grouping:	RAM addre	esses		
		Description: Adds 1 to the contents of register Y. As a re- sult of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.				



LAn (Load	In in Accumulator)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆	words 1	cycles 1	-	Continuous		
		Grouping:	Arithmotic	oporation	description		
Operation:	(A) ← n	Description	Arithmetic	-	the immediate field to		
	n = 0 to 15	Description	register A.	value II III			
			-	I A instruc	tions are continuously		
					d, only the first LA in-		
					uted and other LA		
			instructio	ns code	d continuously are		
			skipped.		·		
	oad register X and Y with x and y)	1	1	1			
Instruction		Number of	Number of	Flag CY	Skip condition		
code	1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16	words	cycles		-		
		1	1	-	Continuous description		
Operation:	$(X) \leftarrow x x = 0 \text{ to } 15$	Grouping:	RAM addre	esses	description		
	$(Y) \leftarrow y y = 0 \text{ to } 15$	Description	: Loads the	value x in	the immediate field to		
			register X,	and the va	alue y in the immediate		
			field to reg	gister Y. V	When the LXY instruc-		
					y coded and executed,		
		only the first LXY instruction is executed and other LXY instructions coded continu-					
					ctions coded continu-		
			ously are s	kipped.			
LZ z (Load	register Z with z)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 1 0 0 1 0 z1 z0 2 0 4 ⁸ / _{+Z} 16	words	cycles				
		1	1	-	-		
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping:	RAM addre	esses			
•		<b>Description:</b> Loads the value z in the immediate field to					
			register Z.				
NOP (No C	Peration)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 0 0 0 0 0 0 0 0 0 16	words	cycles				
		1	1	-	-		
Operation:	(PC) ← (PC) + 1	Grouping:	Other oper	ation			
operation.	$(10) \leftarrow (10) + 1$	Description			1 to program counter		
					nain unchanged.		
					-		



OP0A (Out	put port P0 from Accumulator)						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 0 0 1 0 0 0 0 <u>0</u> 2 2 0 ₁₆	1	1	_	_		
Operation:	(P0) ← (A)	Grouping:	Input/Outp	ut operatio	n .		
operation.	$(\mathbf{i}, \mathbf{o}) \leftarrow (\mathbf{n})$	Description			s of register A to port		
			P0.				
OP1A (Out Instruction	put port P1 from Accumulator)	Number of	Number of	Flog CV	Skip condition		
code	D9 D0 1 0 0 0 1 0 0 0 1 2 2 2 1 16	words	Number of cycles	Flag CY	Skip condition		
		1	1	-	-		
Operation:	$(P1) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n		
		Description		ne content	s of register A to port		
			P1.				
	nut nort D2 from Accumulator)						
Instruction	put port P2 from Accumulator) D9 D0	Number of	Number of	Flag CY	Skip condition		
code		words	cycles	r lag o r			
	· · · · · · · · · · · · · · · · · · ·	1	1	-	_		
Operation:	(P21, P20) ← (A1, A0)	Grouping:	Input/Outp				
		Description: Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P2.					
			(A1, A0) 01	register A			
OP3A (Out	put port P3 from Accumulator)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 0 0 1 0 0 0 1 1 ₂ 2 2 3 ₁₆	words	cycles				
		1	1	-	_		
Operation:	(P31, P30) ← (A1, A0)	Grouping:	Input/Outp	•	on of the low-order 2 bits		
		Description	(A1, A0) of				
			, -	2			



<b>OR</b> (logical	OR between accumulator and memory)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 1 1 0 0 1 2 0 1 9 16	words 1	cycles 1				
			1	_	_		
Operation:	$(A) \leftarrow (A) \text{ OR } (M(DP))$	Grouping:	Arithmetic	operation			
		Description: Takes the OR operation between the con-					
				-	and the contents of		
			M(DP), and	a stores th	e result in register A.		
POF (Powe	er OFF)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 0 0 0 1 0 2 0 0 2 16	words	cycles				
		1	1	-	-		
Operation:	RAM back-up	Grouping:	Other oper	ation			
		Description			M back-up state by ex-		
			-		ruction after executing		
		Noto	the EPOF i		an is not avaguted just		
		Note: If the EPOF instruction is not executed just before this instruction, this instruction i					
					P instruction.		
RAR (Rotat	te Accumulator Right)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 1 1 1 0 1 0 1 D 1	words	cycles				
		1	1	0/1	-		
Operation:	$\rightarrow$ [CY] $\rightarrow$ [A3A2A1A0]	Grouping:	Arithmetic	operation			
		<b>Description:</b> Rotates 1 bit of the contents of register A in-					
		cluding the contents of carry flag CY to the					
			right.				
RB j (Rese	t Bit)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	words	cycles				
		1	1	-	-		
Operation:	(Mj(DP)) ← 0	Grouping:	Bit operation	on			
	j = 0 to 3	Description	. ,		ts of bit j (bit specified		
			-	lue j in th	e immediate field) of		
			M(DP).				



RC (Reset	Carry flag)				
Instruction code	D9 D0 0 0 0 0 0 0 0 1 1 0 0 0 6 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 0 1 1 0 2 0 0 0 16	1	1	0	-
Operation:	$(CY) \leftarrow 0$	Grouping:	Arithmetic	operation	
		Description	: Clears (0)	to carry fla	g CY.
RD (Reset	port D specified by register Y)				
Instruction code	D9 D0 0 0 0 0 1 0 1 0 0 2 0 1 4 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(D(Y)) \leftarrow 0$ However, (Y) = 0  to  5	Grouping: Description Note:	(Y) = 0 to s Do not exe	a bit of por 5. ecute this i	on t D specified by register Y. Instruction if values ex- register Y.
RT (ReTurn	n from subroutine)	•			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 0 1 0 0 2 0 4 4 16	1	2	-	_
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description	Return ope Returns f called the	rom subro	outine to the routine
RTI (ReTur	n from Interrupt)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
couc	0 0 0 1 0 0 1 1 0 2 0 4 6	1	1	-	-
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description	main routir Returns ea carry flag, the continu	rom interru ne. ach value o skip status ious descri register A	upt service routine to of data pointer (X, Y, Z), s, NOP mode status by ption of the LA/LXY in- and register B to the errupt.



RTS (ReTu	rn from subroutine and Skip)				
Instruction code	D9 D0 0 0 0 1 0 0 1 0 1 0 1 0 4 5 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	2	_	Skip at uncondition
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description		rom subro subroutine	outine to the routine , and skips the next in- on.
	et UPT flag)				
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(UPTF) \leftarrow 0$	Grouping:	Other oper		
		Description	: Clears (0) enable flag		gh-order bit reference
SB j (Set B	it)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(Mj(DP)) ← 0 j = 0 to 3	Grouping: Description		e contents	of bit j (bit specified by nediate field) of M(DP).
SC (Set Ca	rry flag)				
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
coue	0 0 0 0 0 0 0 1 1 1 2 0 0 7 16	1	1	1	-
Operation:	(CY) ← 1	Grouping: Description	Arithmetic : Sets (1) to	•	CY.



SD (Set po	rt D specified by register Y)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	0 0 0 0 0 1 0 1 0 1 2 0 1 5	words	cycles					
		1	1	-	-			
Operation:	$(D(Y)) \leftarrow 1$	Grouping:	Input/Outp	ut operatio	n			
	(Y) = 0  to  5	<b>Description:</b> Sets (1) to a bit of port D specified by register Y.						
		Note:	(Y) = 0 to 5					
					nstruction if values ex-			
			cept above	e are set to	register Y.			
· · · ·	p Equal, Accumulator with immediate data n)	1	1	1				
Instruction		Number of	Number of	Flag CY	Skip condition			
code	0 0 0 0 1 0 1 0 1 2 0 2 5	words	cycles		(4)			
		2	2	-	(A) = n			
	0 0 0 1 1 1 n n n ₂ 0 7 n ₁₆	Grouping:	Compariso	n operatio	n			
Operation:	(A) = n ?	Description	: Skips the	next instr	uction when the con-			
	n = 0 to 15		tents of reg	gister A is	equal to the value n in			
			the immed	iate field.				
					struction when the con-			
			-	-	not equal to the value n			
			in the imm	ediate field	1.			
SEAM (Ski	p Equal, Accumulator with Memory)		1					
Instruction		Number of	Number of Number of Flag CY Skip c words cycles					
code	0 0 0 0 1 0 0 1 0 2 0 2 6		-					
		1	1	-	(A) = (M(DP))			
Operation:	(A) = (M(DP))?	Grouping:	Compariso					
		Description			uction when the con-			
			M(DP).	JISLEI A IS E	equal to the contents of			
			( )	he next ins	struction when the con-			
					is not equal to the			
			contents of					
SNZ0 (Skip	if Non Zero condition of external 0 interrupt reques	t flag)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code		words	cycles					
	2 0 0 0 1 1 1 1 0 0 0 2 0 0 1 16	1	1	-	V10 = 0: (EXF0) = 1			
Operation:	V10 = 0: (EXF0) = 1 ?	Grouping:	Interrupt o	peration				
	$(EXF0) \leftarrow 0$	Description	: When V10	= 0 : Clea	rs (0) to the EXF0 flag			
	V10 = 1: SNZ0 = NOP				struction when external			
	(V10 : bit 0 of the interrupt control register V1)	0 interrupt request flag EXF0 is "1." When the EXF0 flag is "0," executes the next in-						
		struction. When V10 = 1 : This instruction			ta ata ata a ta a anti			
			lent to the	INOP Instru	Jouon.			



SNZAD (SI	kip if Non Zero condition of A/D conversion completi	on flag)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1     0     1     0     0     0     1     1     1     2     2     8     7     16	words 1	cycles 1	_	V22 = 0: (ADF) = 1		
Operation:		Grouping:	A/D conver	sion oper:	ation		
Operation:	V22 = 0: (ADF) = 1 ? (ADF) $\leftarrow 0$	Grouping:         A/D conversion operation           Description:         When V22 = 0 : Clears (0) to the ADF flag					
	V22 = 1: SNZAD = NOP	· ·			instruction when A/D		
	(V22 : bit 2 of the interrupt control register V2)		•		on flag ADF is "1." After		
					e ADF flag is "0," ex-		
			ecutes the	next instru	uction.		
			When V22	= 1 : This	s instruction is equiva-		
			lent to the	NOP instru	uction.		
SNZIO (Ski	p if Non Zero condition of external 0 Interrupt input r	pin)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 1 1 1 0 1 0 2 0 3 A 16	words	cycles				
		1	1	-	l12 = 0 : (INT) = "L" l12 = 1 : (INT) = "H"		
Operation:	l12 = 0 : (INT) = "L" ?	Grouping:	Interrupt or	peration			
-	112 = 1 : (INT) = "H" ?	Description	: When I12	= 0 : Skip	s the next instruction		
	(I12 : bit 2 of the interrupt control register I1)				T pin is "L." Executes		
				struction	when the level of INT		
			pin is "H."		a the next instruction		
					s the next instruction T pin is "H." Executes		
					when the level of INT		
			pin is "L."				
SNZP (Skip	o if Non Zero condition of Power down flag)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 0 0 0 1 1 2 0 0 3	words	cycles				
		1	1	-	(P) = 1		
Operation:	(P) = 1 ?	Grouping:	Other oper				
		Description	<ul> <li>Skips the r "1".</li> </ul>	ext instrue	ction when the P flag is		
				ping, the	P flag remains un-		
			changed.	pg,e	. hag tomanio an		
			0	the next in	nstruction when the P		
			flag is "0."				
SNZSI (Ski	p if Non Zero condition of Serial Interface interrupt r	equest flag		1			
Instruction		Number of words	Number of cycles	Flag CY	Skip condition		
code	1       0       1       0       0       1       0       0       0       2       2       8       8       16	1	1	_	V23 = 0: (SIOF) =1		
Operation:	V23=0: (SIOF)=1?	Grouping:	Serial inter	•			
	$(SIOF) \leftarrow 0$	Description			lag and skips the next		
	$V_{23} = 1$ : SNZSI = NOP	instruction when the contents of bit 3 (V23) of interrupt control register V2 is " $0$ " and					
		of interrupt control register V2 is "0" and					
		contents of SIOF flag is "1." When V23 = 1: This instruction is equivalent					
			to the NOF				



SNZT1 (Ski	ip if Non Zero condition of Timer 1 interrupt request	flag)						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	1 0 1 0 0 0 0 0 0 0 0 0 ₂ 2 8 0 ₁₆	1	1	-	V12 = 0: (T1F) = 1			
Operation:	V12 = 0: (T1F) = 1 ?	Grouping:	Timer oper	ation				
Operation.	(12 = 0. (11F) = 1.? $(T1F) \leftarrow 0$	<b>Description:</b> When V12 = 0 : Clears (0) to the T1F flag						
	V12 = 1: SNZT1 = NOP		and skips t	the next in	struction when timer 1			
	(V12 = bit 2 of interrupt control register V1)				g T1F is "1." When the			
			-	s "0," exec	utes the next instruc-			
			tion.					
					instruction is equiva-			
			lent to the	NOP Instru	lction.			
SNZT2 (Ski	ip if Non Zero condition of Timer 2 interrupt request	flag)		-				
Instruction		Number of	Number of	Flag CY	Skip condition			
code	1     0     1     0     0     0     0     0     1     2     2     8     1       16	words	cycles					
		1	1	-	V13 = 0: (T2F) = 1			
Operation:	V13 = 0: (T2F) = 1 ?	Grouping:	Timer oper	ation				
	(T2F) ← 0	Description			ars (0) to the T2F flag			
	V13 = 1: SNZT2 = NOP		•		struction when timer 2			
	(V13 = bit 3 of interrupt control register V1)	interrupt request flag T2F is "1." When the T2F flag is "0," executes the next instruc- tion.						
				= 1 : This	instruction is equiva-			
			lent to the		•			
SRST (Syst		Number of	Number of	Flag CY	Clvin condition			
Instruction code		words	cycles	Flag C f	Skip condition			
coue	0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 16	1	1	-	_			
Operation:	System reset	Grouping:	Other oper	ation				
		Description: System reset occurs.						
· · · ·	I interface transmission/reception STart)		Ni wali a naɗ					
Instruction		Number of words	Number of cycles	Flag CY	Skip condition			
code	1 0 1 0 0 1 1 1 1 0 2 2 9 E 16	1	1	-				
Operation:	$(SIOF) \leftarrow 0$	Grouping:	Serial inter	face opera	ation			
Operation.	Serial interface transmit/receive starting	Description			ag and starts serial in-			
			terface.		0			



SUPT (Set	UPT	Γ fla	g)																
Instruction	D9							Do						Number of	Number of	Flag CY	Skip condition		
code	0	0	0	1 0	1	1 (	0 0	1	] [	0	5	9 14	L	words	cycles		-		
	Ľ	U	Ŭ		<u> </u>	·   `		ļ.	12 L	•	•	16	6	1	1	-	-		
Operation:	(UF	PTF)	← 1											Grouping:	Other oper	ation			
opolution	(0)	,	、 I											<b>Description:</b> Sets (1) to the high-order bit reference en-					
												•		-	en the table reference				
											-		is executed, the high-						
										order 2 b	its of RO	M reference data is							
															transferred	d to the lov	v-order 2 bits of regis-		
															ter D.				
SVDE (Set	Volt	age	Det	tector	Ena	able fla	ag)												
Instruction	D9							D0						Number of	Number of	Flag CY	Skip condition		
code	1	0	1	0 0	1	0 0	D 1	1		2	9	3 16		words	cycles				
			II			1 1		1	12 L			116	0	1	1	-	-		
Operation:	Vol	tage	drop	detecti	on ci	rcuit va	alid at	RAM	bac	:k-u	р		(	Grouping:	Other oper	ation			
													1	Description		-	e drop detection circuit		
															at RAM ba				
													1	Note:	the H versi		be executed only for		
																1011.			
07D : (01.5	:4 7		D:4	<u> </u>															
SZB j (Skip		.ero,	, Bit	)									_	Nilson I. a. a. f	Ni wali a maɗ				
Instruction code	D9	1						Do	ור					Number of words	Number of cycles	Flag CY	Skip condition		
coue	0	0	0	0 1	0	0 0	) j	j	2	0	2	j16	6	1	1	_	(Mj(DP)) = 0		
																	j = 0 to 3		
Operation:			) = 0	?									- H	Grouping:	Bit operation				
	j = (	0 to 3	3										ľ	Description			uction when the con-		
														tents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."					
																	struction when the con-		
															tents of bit				
																,			
SZC (Skip i	f Ze	ro. (	Carr	v flag	)														
Instruction	D9	-,		,				Do						Number of	Number of	Flag CY	Skip condition		
code	0	0	0	0 1	0	1	1 1	1	] [	0	2	F 14		words	cycles	5	•		
	<u> </u>	-		•	<b>_</b>		.   .		]2 L	-	_	16	6	1	1	-	(CY) = 0		
Operation:	(CY	′) = 0	12										(	Grouping:	Arithmetic	operation			
operation	(01	) – 0											<b>Description:</b> Skips the next instruction when the con-						
															tents of ca				
													After skipping, the CY flag remains un-						
												changed. Executes the next instruction when the con-							
															Executes t tents of the				
																or nay is			



SZD (Skip i	f Ze	ero, j	port	D sp	beci	ified	d by	rec	giste	er Y	)								
Instruction	D9		-						-	Do					Number of	Number of	Flag CY	Skip condition	
code	0	0	0	0	1	0	0	1	0	0	0	2	4		words	cycles			
				-		-			-	2	2			16	2	2	-	(D(Y)) = 0	
	0	0	0	0	1	0	1	0	1	1	0	2	в	16			1	(Y) = 0 to 5	
										2					Grouping:	Input/Outp			
Operation:	(D(1)) = 0:											Description			ction when a bit of port				
	(Y) = 0  to  5								Description			er Y is "0." Executes the							
	N												next instruction when the bit is "1."						
												Note:	(Y) = 0 to 5	5.					
															nstruction if values ex-				
																cept above	e are set to	o register Y.	
T1AB (Trar	nsfe	r da	ta to	tim	er 1	an	id re	gis	ter	R1L	fron	n Ac	cum	nula	ator and re		1		
Instruction	D9									D0					Number of	Number of	Flag CY	Skip condition	
code	1	0	0	0	1	1	0	0	0	0	, 2	3	0	16	words	cycles			
									I	2				10	1	1	-	-	
Omenations	(D				 יר										Grouping:	Timer oper	ation	L	
Operation:	•		R1L4)	•	3)										Description			nts of register B to the	
			∣4) ← R1L0)		^ )										Decemption			-	
			<1⊑0)  0) ←		1)										high-order 4 bits of timer 1 and timer 1 re- load register R1L. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1L.				
	(11	5 11	10) <	(7)															
T1HAB (Tra	anel	or d	lata	to re		tor		- fra	<u></u>	Acci	Imu	lato		d ra	aistor B)				
Instruction			ala		gisi	lei	<u> </u>	<u> </u>	JIII		uniu	alu	and			Number of		Olvin condition	
	D9	1								D0					Number of words	cycles	Flag CY	Skip condition	
code	1	0	1	0	0	1	0	0	1	0	2	9	2	16	1	1	_	_	
Operation:	(R1	H7–I	R1H4	) ← (	B)										Grouping: Timer operation				
	(R1	IH3–I	R1H0	) ← (	A)										Description			nts of register B to the	
															high-order 4 bits of timer 1 reload register				
																		ontents of register A to	
																	der 4 bits o	of timer 1 reload regis-	
																ter R1H.			
T1R1L (Tra	insfe	er da	ata t	o tin	ner	1 fr	om	reg	iste	er R1	L)								
Instruction	D9									D0	,				Number of	Number of	Flag CY	Skip condition	
code	1	0	1	0	1	0	0	1	1	1	2	A	7		words	cycles			
	Ŀ	Ŭ		Ŭ	<u> </u>	•		<u> </u>	•	. 2		1	'	16	1	1	-	-	
Operation:	(T1	7–T1	) ←	(R1L	_7–R	1L0]	)								Grouping:	Timer oper			
															Description			ents of timer 1 reload	
																register R1	L to timer	1.	



T2AB (Tra	nsfer data to timer 2 and register R2L from Accumul	ator and re	gister B)				
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition		
	<u> </u>	1	1	-	-		
Operation:	$(R2L7-R2L4) \leftarrow (B)$ (T27-T24) $\leftarrow (B)$ (R2L3-R2L0) $\leftarrow (A)$ (T23-T20) $\leftarrow (A)$	Grouping:Timer operationDescription:Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 re- load register R2L. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2L.					
T2HAB (Tr	ansfer data to register R2H from Accumulator and re	egister B)					
Instruction code	D9 D0 1 0 1 0 0 1 0 1 0 0 2 9 4 10	Number of words	Number of cycles	Flag CY	Skip condition		
	1 0 1 0 0 1 0 1 0 2 2 0 4 16	1	1	-	-		
Operation:	(R2H7–R2H4) ← (B)	Grouping: Description	Timer oper		nts of register B to the		
	(R2H3–R2H0) ← (A)		high-order 4 bits of timer 2 reload re R2H. Transfers the contents of registe the low-order 4 bits of timer 2 reload ter R2H.				
T2R2L (Tra	ansfer data to timer 2 from register R2L)						
Instruction code	D9 D0 1 0 1 0 0 1 0 1 0 1 2 2 9 5 16	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	-	_		
Operation:	(T27–T20) ← (R2L7–R2L0)	Grouping: Description	Timer operation : Transfers the contents of timer 2 reload				
			register R2				
	sfer data to Accumulator from register B)	T					
Instruction code	D9 D0 0 0 0 1 1 1 0 0 0 1 E 16	Number of words	Number of cycles	Flag CY	Skip condition		
	0 0 0 0 0 1 1 1 1 0 2 0 1 L 16	1	1	-	-		
Operation:	(A) ← (B)	Grouping: Description	Register to Transfers t ister A.		ansfer ts of register B to reg-		



TAB1 (Trar	nsfer data to Accumulator and register B from timer	1)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 0 1 1 1 0 0 0 0 ₂ 2 7 0 ₁₆	words	cycles				
		1	1	-	-		
Operation:	(B) ← (T17–T14)	Grouping:	Timer oper	ration			
	(A) ← (T13–T10)	Description	: Transfers t	the high-or	der 4 bits (T17-T14) of		
			timer 1 to r	-			
					der 4 bits (T13–T10) of		
			timer 1 to r	register A.			
	nsfer data to Accumulator and register B from timer	1					
Instruction		Number of words	Number of cycles	Flag CY	Skip condition		
code	1     0     0     1     1     1     0     0     0     1     2     2     7     1     16	1	1	_			
		I	1	_	-		
Operation:	(B) ← (T27–T24)	Grouping:	Timer oper	ration			
	$(A) \leftarrow (T23\text{-}T20)$	Description		-	der 4 bits (T27–T24) of		
			timer 2 to r	-			
		Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.					
			timer 2 to r	register A.			
	ansfer data to Accumulator and register B from regi	· · · ·	1				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition		
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	_			
			1	_	-		
Operation:	In A/D conversion mode (Q13 = 0),	Grouping: A/D conversion operation					
	$(B) \leftarrow (AD_9 - AD_6)$	<b>Description:</b> In the A/D conversion mode $(Q13 = 0)$ , trans-					
	$(A) \leftarrow (AD5 - AD2)$	fers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits					
	In comparator mode (Q13 = 1), (D) $(AD=AD)$		-		AD to register A. In the		
	$(B) \leftarrow (AD7 - AD4)$ $(A) \leftarrow (AD3 - AD0)$			-	3 = 1), transfers the high-		
	$(A) \leftarrow (AD_3 - AD_0)$ (Q13 : bit 3 of A/D control register Q1)				) of comparator register		
			to register	B, and the	low-order 4 bits (AD3-		
			AD ₀ ) of con	nparator re	gister to register A.		
· · · · · · · · · · · · · · · · · · ·	nsfer data to Accumulator and register B from regist	, ,		1			
Instruction		Number of words	Number of	Flag CY	Skip condition		
code	0 0 0 0 1 0 1 0 <u>1</u> 0 <u>2</u> 0 <u>2</u> A 16		cycles				
		1	1	_	-		
Operation:	(B) ← (E7–E4)	Grouping:	Register to	register ti	ransfer		
•	$(A) \leftarrow (E_3 - E_0)$	Description			order 4 bits (E7-E4) of		
			-	-	B, and low-order 4 bits		
		of register E to register A.					



TABP p (Tr	ansf	er c	lata	to Aco	cumu	lator a	nd re	egist	er B	from	Prog	gram memo	ory in page	e p)		
Instruction	D9							Do				Number of	Number of	Flag CY	Skip condition	
code	0	0	1	0 0	p4	p3 p2	p1	p0 2	0	8 +p F	) 16	words	cycles			
											10	1	3	-	-	
Operation:	(SD		(SP) +	∟ 1			Gro	upin	a.	Arithr	notic					
Operation.			(3F) ¬ ) ← (I					script	-			operation	aiotor P and h	ito 2 to 0 t	ragistar A Thasa hita 7	
	(PC	H) ←	p	,			Des	script	ion:						o register A. These bits 7 to A3 A2 A1 A0)2 specified	
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$ (B) $\leftarrow (ROM(PC))7-4$										Transfers bits 9, 8 to the					
				PC))3–0										er D, and "	0" is stored to the least	
		TF)		, (D(								oit (DR2) of re		and of sta	ck register (SK) is used.	
		)R ₂ )		← (R0		0))9, 8	Not	e:			to 31			age of sta		
	$(\dot{PC}) \leftarrow (SK(SP))$			When this in								ot to over the stack be-				
TADDO (T.			(SP) -									ige of stack re	egister is used	d		
TABPS (Tra		er a	ata t	o Acc	umu	lator al		-	er B	from	Pre-					
Instruction	D9							Do				Number of words	Number of cycles	Flag CY	Skip condition	
code	1	0	0	1 1	1	0 1	0	1 2	2	7 5	5		-			
												1	1	_	-	
Operation:	(B) ·	← (T	PS7-	TPS4)								Grouping:	Timer oper	ration		
				TPS0)								Description	: Transfers	the high-o	rder 4 bits of prescaler	
	. ,			,									to register	В.		
												Transfers the low-order 4 bits of prescaler to				
													register A.			
TABSI (Tra	nsfe	r da	ita to	οΑςςι	umula	ator an	d reg	giste	rВf	rom r	regist	ter SI)				
Instruction	D9							D0				Number of	Number of	Flag CY	Skip condition	
code	1	0	0	1 1	1	1 0	0	0	2	7 8	3	words	cycles			
								2			16	1	1	-	-	
												Crowning Conicl interface connection				
Operation:	(B) ·	← (S	517–SI	4) (A)	← (S	l3–SI0)						Grouping: Serial interface operation Description: Transfers the high-order 4 bits of serial inter-				
												face register SI to register B, and transfers the low-order 4 bits of serial interface regis-				
													ter SI to re			
														0		
TAD (Trans	for c	lata	to A	cour	ulato	or from	rogi	etor	וח							
Instruction	D9	ιαια		Courr	uiat		-		0)			Number of	Number of	Flag CY	Skip condition	
code		0		4							_	words	cycles	Flag CT	Skip condition	
coue	0	0	0	1 0	1	0 0	0	1 2	0	5 1	16	1	1	_		
												•	·			
Operation:	(A2-	-A0)	← (D	R2–DF	lo)							Grouping:	Register to	register ti	ransfer	
	(A3)	$\leftarrow 0$	)									Description			nts of register D to the	
															Ao) of register A.	
												Note:			on is executed, "0" is	
													stored to th	ne bit 3 (Aa	3) of register A.	



TADAB (Tr	ansfer data to register AD from Accumulator from re	egister B)					
Instruction code	D9 D0 1 0 0 0 1 1 1 0 0 1 2 3 9 16	Number of words	Number of cycles	Flag CY	Skip condition		
	1 0 0 0 1 1 1 0 0 1 2 2 0 0 16	1	1	-	_		
Operation: $Q13 = 1: (AD7-AD4) \leftarrow (B)$ $(AD3-AD0) \leftarrow (A)$ $Q13 = 0: TADAB = NOP$ TAI1 (Transfer data to Accumulator from register I1)			Grouping:       A/D conversion operation         Description:       In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. In the A/D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction. (Q13 = bit 3 of A/D control register Q1)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	-	_		
Operation:	(A) ← (I1)	Grouping:         Interrupt operation           Description:         Transfers the contents of interrupt corregister I1 to register A.					
TAJ1 (Tran	sfer data to Accumulator from register J1)						
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition		
Operation:	(A) ← (J1)	Grouping: Description	Serial inter	the conte	nts of serial interface		
TAK0 (Trar	nsfer data to Accumulator from register K0)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1     0     1     0     1     0     1     1     0       2     2     5     6	words 1	cycles 1	_			
Operation:	(A) ← (K0)	Grouping: Description	Input/Outp Transfers control reg	the conte	nts of key-on wakeup		



TAK1 (Trar	nsfer data to Accumulator from register K1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 0 1 ₂ 2 5 9 ₁₆	1	1	-	_
Operation:	(A) ← (K1)	Grouping:	Input/Outp	ut operatio	n
•		Description			nts of key-on wakeup
			control reg	ister K1 to	register A.
TAK2 (Trar	nsfer data to Accumulator from register K2)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 1 0 1 1 0 1 0 2 2 5 A ₁₆	1	1	-	_
Operation:	(A) ← (K2)	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers control reg		nts of key-on wakeup
					J
TAL1 (Tran	sfer data to Accumulator from register L1)				
Instruction code	D9 D0 1 0 1 0 0 1 0 1 0 2 4 A	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 0 0 0 1 0 1 0 2 2 4 A 16	1	1	-	-
Operation:	$(A) \leftarrow (L1)$	Grouping:	Input/Outp		
		Description	: Transfers control reg		nts of key-on wakeup register A.
TALA (Trar	nsfer data to Accumulator from register LA)				
Instruction code	D9 D0 1 0 0 1 0 0 1 0 0 1 2 4 9 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 1 0 0 1 0 0 1 2 2 4 5 16	1	1	-	-
Operation:	$(A3, A2) \leftarrow (AD1, AD0)$	Grouping:	A/D conve		
-	(A1, A0) ← 0	<b>Description:</b> Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (A3, A2) of register A. "0" is stored to the low-order 2 bits (A1, A0) of register A.			



TAM j (Tra	nsfer data to Accumulator from Memory)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 1 1 0 0 j j j j ₂ 2 C j ₁₆	words	cycles			
		1	1	-	-	
Operation:	$(A) \leftarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer	
	$(X) \leftarrow (X) \in EXOR(j)$	Description	: After trans	ferring the	e contents of M(DP) to	
	j = 0 to 15		-		sive OR operation is	
					egister X and the value	
			-		eld, and stores the re-	
			sult in regi	ster X.		
	nsfer data to Accumulator from register MR)	1	1			
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 1 0 1 0 0 1 0 ₂ 2 5 2 ₁₆		-			
		1	1	-	_	
Operation:	$(A) \leftarrow (MR)$	Grouping:	Clock oper	ation		
•		Description	: Transfers t	he conten	ts of clock control reg-	
			ister MR to	register A		
· · · · · · · · · · · · · · · · · · ·	ansfer data to Accumulator from register PU0)					
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	<u>1 0 0 1 0 1 0 1 1 1 2</u> <u>2 5 7</u> ₁₆	1	1			
			I		_	
Operation:	$(A) \leftarrow (PU0)$	Grouping:	Input/Outp			
		<b>Description:</b> Transfers the contents of pull-up control				
		register PU0 to register A.				
	ansfer data to Accumulator from register PU1)					
Instruction		Number of	Number of	Flag CY	Skip condition	
code		words	cycles	T lag CT	Skip contaition	
ooue	1 0 0 1 0 1 1 1 1 0 2 2 5 E ₁₆	1	1	_	_	
Operation:	$(A) \leftarrow (PU1)$	Grouping:	Input/Outp			
		<b>Description:</b> Transfers the contents of pull-up control register PU1 to register A.				
			icgister FC	si to regisi		
		1				



TAPU2 (Tra	ansfer data to Accumulator from register PU2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 1 1 1 2 2 5 F ₁₆	words 1	cycles 1	_	_
Operation:	$(A) \leftarrow (PU2)$	Grouping:	Input/Outp	ut operatic	'n
operation.	$(n) \leftarrow (1, 02)$				nts of pull-up control
			register PL	J2 to regist	er A.
TAQ1 (Trar	nsfer data to Accumulator from register Q1)				
Instruction code	D9 D0 1 0 0 1 0 0 2 4 4	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	-
Operation:	$(A) \leftarrow (Q1)$	Grouping:	A/D conve		
		Description	: Transfers t ter Q1 to re		ts of A/D control regis-
Instruction	nsfer data to Accumulator from Stack Pointer)	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 0 0 0 0 0 16	words 1	cycles 1	_	_
Operation:	$(A_2-A_0) \leftarrow (SP_2-SP_0)$	Grouping:	Register to	register tr	ansfer
Operation.	$(A_2 - A_0) \leftarrow (S_1 - S_1 - S_1)$ $(A_3) \leftarrow 0$	Description			s of stack pointer (SP)
					s (A2–A0) of register A. t 3 (A3) of register A.
TAV1 (Tran	sfer data to Accumulator from register V1)				
Instruction code	D9 D0 0 0 0 1 0 1 0 1 0 0 0 5 4 4	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 0 0 2 0 0 4 16	1	1	-	-
Operation:	$(A) \leftarrow (V1)$	Grouping:	Interrupt of		
		Description	: Transfers register V1		nts of interrupt control r A.



TAV2 (Tran	sfer data to Accumulator from register V2)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 1 0 1 0 1 0 1 2 0 5 5 16	words	cycles			
		1	1	-	-	
Operation:	$(A) \leftarrow (V2)$	Grouping:	Interrupt of	peration		
		Description			nts of interrupt control	
			register V2	to registe	r A.	
TAVA/A (Troy	action data to Accumulator from register (M/4)					
	nsfer data to Accumulator from register W1)	Number of	Number		Olvin, east dition	
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition	
COUE	1 0 0 1 0 0 1 0 1 0 1 1 ₂ 2 4 B ₁₆	1	1	_	_	
Operation:	$(A) \leftarrow (W1)$	Grouping:	Timer oper			
		Description			ts of timer control reg-	
			ister W1 to register A.			
TAW2 (Trai	nsfer data to Accumulator from register W2)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles			
		1	1	-	-	
Oneretien		Grouping:	Timer oper	ration		
Operation:	$(A) \leftarrow (W2)$	<b>Description:</b> Transfers the contents of timer control reg-				
		ister W2 to register A.				
	nsfer data to Accumulator from register W5)	1		1		
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 1 0 0 1 1 1 1 <u>1</u> <u>2</u> 2 4 F <u>16</u>		-			
		1	1	-	-	
Operation:	$(A) \leftarrow (W5)$	Grouping:	Timer oper			
•		Description			ts of timer control reg-	
			ister W5 to	register A		



TAW6 (Trai	nsfer data to Accumulator from register W6)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 0 0 ₂ 2 5 0 ₁₆	words	cycles		
		1	1	-	-
Operation:	$(A) \leftarrow (W6)$	Grouping:	Timer oper	ation	
•		Description	: Transfers t	the conten	ts of timer control reg-
			ister W6 to	register A	
TAY (Trans	fer data to Accumulator from register X)				
Instruction		Number of	Number of	Flag CY	Skip condition
code		words	cycles	r lag O i	Skip condition
ooue	0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1	1	_	_
Operation:	$(A) \gets (X)$	Grouping:	Register to		
		Description	ister A.	the conten	ts of register X to reg-
			ISLEI A.		
TAY (Trans	fer data to Accumulator from register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 1 0 0 1 F	words	cycles	Ŭ	•
		1	1	-	-
Operation:	$(A) \leftarrow (Y)$	Grouping:	Register to	register tr	ansfer
•••••		Description			s of register Y to regis-
			ter A.		
	fer data to Accumulator from register Z)	1		· '	
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 1 1 2 0 5 3 16				
		1	1	-	-
Operation:	(A1, A0) ← (Z1, Z0)	Grouping:	Register to		
	(A3, A2) ← 0	Description			ts of register Z to the
					Ao) of register A. "0" is
			register A.	me nign-o	rder 2 bits (A3, A2) of
			register A.		



TBA (Trans	sfer data to register B from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 0 0 0 1 1 1 0 2 0 0 E 16	words	cycles			
		1	1	-	-	
Operation:	$(B) \leftarrow (A)$	Grouping:	Register to	register ti	ransfer	
•		Description		he content	ts of register A to regis-	
			ter B.			
TC1A (Tran	nsfer data to register C1 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	i lag e i	• · · · · · · · · · · · · · · · · · · ·	
		1	1	-	-	
Oneretien		Grouping:	Input/Outp	ut operatio		
Operation:	$(C1) \leftarrow (A)$				its of register A to port	
			output stru	cture cont	rol register C1.	
TDA (Tranc	of an electric to register D from Assumulator)					
Instruction	sfer data to register D from Accumulator)	Number of	Number of	Flag CY	Skip condition	
code	D9 D0 0 0 0 0 1 0 1 0 0 1 0 2 9 10	words	cycles	Flag CT	Skip condition	
oouc		1	1	-	_	
		C	Desistents			
Operation:	$(DR2-DR0) \leftarrow (A2-A0)$	Grouping: Register to register transfer Description: Transfers the contents of the low-order 3				
		bits (A2–A0) of register A to register D.				
	of an data to register E from Assumulator and regist	or D)				
IEAB (Irai	nsfer data to register E from Accumulator and regist	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	r lag O l		
		1	1	-	_	
		Grouping:	Register to	register ti	ansfer	
Operation:	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$	Description	-	-	nts of register B to the	
					–E0) of register E, and	
				-	ter A to the low-order 4	
			bits (E3–E0	o) of regist	er E.	



TFR0A (Tra	ansfer data to register FR0 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 1 0 1 0 0 0 2 2 8 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(FR0) \leftarrow (A)$	Grouping:	Input/Outp		
		Description			its of register A to port rol register FR0.
TFR1A (Tra	ansfer data to register FR1 from Accumulator)	1			
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(FR1) \leftarrow (A)$	Grouping:	Input/Outp		
		<b>Description:</b> Transfers the contents of register A to port output structure control register FR1.			
	ansfer data to register FR2 from Accumulator)	1	1	1	
Instruction code	D9 D0 1 0 0 0 1 0 1 0 2 2 2 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(FR2) \leftarrow (A)$	Grouping:	Input/Outp		n its of register A to port
		Description			rol register FR2.
TFR3A (Tra	ansfer data to register FR3 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 <u>1</u> 2 2 B ₁₆	1	1	-	_
Operation:	$(FR3) \leftarrow (A)$	Grouping:	Input/Outp	•	
		Description			its of register A to port rol register FR3.



TI1A (Trans	sfer data to register I1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 1 0 1 1 1 2 2 1 7 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(I1) \leftarrow (A)$	Grouping:	Interrupt of		
		Description	: Transfers t rupt contro		ts of register A to inter- 1.
TJ1A (Tran	sfer data to register J1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 0 0 0 0 1 0 2 2 0 2 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(J1) \leftarrow (A)$	Grouping:	Serial inter	face opera	ation
		Description	: Transfers t interface c		ts of register A to serial ster J1.
	nsfer data to register K0 from Accumulator)	1		1	
Instruction code	D9 D0 1 0 0 0 0 1 1 0 1 1 2 2 1 B 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(K0) \leftarrow (A)$	Grouping:	Input/Outp		
		Description	: Transfers f		its of register A to key- gister K0.
TK1A (Trar	nsfer data to register K1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1     0     0     0     1     0     1     0     0       2     2     1     4	1	1	-	
Operation:	(K1) ← (A)	Grouping: Description	Input/Outp : Transfers to on wakeup	the conten	ts of register A to key-



nsfer data to register K2 from Accumulator)					
	Number of words	Number of cycles	Flag CY	Skip condition	
1 0 0 0 0 1 0 1 0 1 ₂ 2 1 5 ₁₆	1	1	-	_	
$(K2) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	'n	
	Description				
nsfer data to register L1 from Accumulator)					
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
	1	1	-	-	
$(L1) \leftarrow (A)$	Grouping:	<u> </u>			
	1				
	words	Number of cycles	Flag CY	Skip condition	
	1	1	-	_	
(M(DP)) ← (A) (X) ← (X)EXOR(j) j = 0 to 15	Grouping:         RAM to register transfer           Description:         After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.				
nsfer data to register MR from Accumulator)	1				
D9 D0 1 0 0 0 1 0 1 0 2 1 6	Number of words	Number of cycles	Flag CY	Skip condition	
	1	1	-	_	
$(MR) \leftarrow (A)$	Grouping:				
	Description			ts of register A to clock	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c } \hline D_{9} & D_{0} & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline (K2) \leftarrow (A) & & & & & & & & & \\ \hline (K2) \leftarrow (A) & & & & & & & & \\ \hline \\ \hline (K2) \leftarrow (A) & & & & & & & & \\ \hline \\ \hline (K2) \leftarrow (A) & & & & & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	$\begin{array}{c c c c c c c c } \hline D_0 & \hline D_0 & \hline D_0 & \hline Number of vords} & Number of vords} & \hline Numbe$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	



TPAA (Trar	nsfer data to register PA from Accumulator)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	1 0 1 0 1 0 1 0 1 0 <u>1</u> 0 <u>0</u> 0 0 0 0	words	cycles					
		1	1	-	_			
Operation:	$(PA_0) \leftarrow (A_0)$	Grouping:	Timer oper					
		Description			gnificant bit of register			
			A to timer of	control reg	ister PA.			
TPSAB (Tra	ansfer data to Pre-Scaler and register RPS from Ac	cumulator a	and registe	r B)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	1     0     0     1     1     0     1     0     1     2     2     3     5     16	words 1	cycles					
		1	1	-	-			
Operation:	$(RPS7-RPS4) \leftarrow (B)$	Grouping:	Timer oper					
	$(TPS7-TPS4) \leftarrow (B)$	Description			nts of register B to the			
	$(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$		-		rescaler and prescaler			
	$(1F33-1F30) \leftarrow (A)$		reload register RPS. Transfers the conten of register A to the low-order 4 bits					
		prescaler and prescaler reload regis						
			RPS.					
TPU0A (Tra	ansfer data to register PU0 from Accumulator)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	1 0 0 0 1 0 1 1 0 1 ₂ 2 2 D ₁₆	words	cycles					
		1	1	-	-			
Operation:	$(PU0) \leftarrow (A)$	Grouping:	Input/Outp					
		Description			ts of register A to pull-			
			up control	register Pt	50.			
	ansfer data to register PU1 from Accumulator)	1						
Instruction		Number of words	Number of cycles	Flag CY	Skip condition			
code	1 0 0 0 1 0 1 1 1 <u>1</u> 2 2 <u>2</u> <u>1</u>	1	1	_	_			
Operation:	$(PU1) \leftarrow (A)$	Grouping:	Input/Outp					
		Description	up control		ts of register A to pull-			



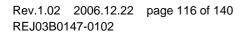
TPU2A (Tra	ansfer data to register PU2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 1 2 2 2 F ₁₆	words 1	cycles 1	_	
Operation:	$(PU2) \leftarrow (A)$	Grouping: Description	Input/Outp		n ts of register A to pull-
		Description	up control		• ·
TQ1A (Trai	nsfer data to register Q1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 0 0 1 0 0 2 0 4 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(Q1) \leftarrow (A)$	Grouping:	A/D conve		
		Description	: Transfers control reg		its of register A to A/D
	nsfer data to register RG from Accumulator)		1	1	
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(RG_0) \leftarrow (A_0)$	Grouping:	Clock oper		- ' 'f' (
		Description			significant bit (A0) of ntrol regiser RG.
	ansfer data to register SI from Accumulator)	1			
Instruction code	D9 D0 1 0 0 0 1 1 1 0 0 0 2 2 3 8 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(SI7–SI4) ← (B) (SI3–SI0) ← (A)	Grouping: Description	high-order SI, and tra	the conter 4 bits of s ansfers the -order 4 b	ation hts of register B to the serial interface register contents of register A bits of serial interface



TV1A (Trar	sfer data to register V1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 1 ₂ 0 3 F ₁₆		cycles 1	_	
			I		
Operation:	$(V1) \leftarrow (A)$	Grouping:	Interrupt o		
		Description	rupt contro		ts of register A to inter-
				register t	
TV2A (Tran	nsfer data to register V2 from Accumulator)				
Instruction		Number of	Number of	Flag CY	Skip condition
code		words	cycles	- 3 -	
		1	1	-	-
Operation:	(V2) ← (A)	Grouping:	Interrupt o	peration	
		Description			ts of register A to inter-
			rupt contro	l register \	/2.
	nsfer data to register W1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 0 1 1 1 0 2 0 E	Number of words	Number of cycles	Flag CY	Skip condition
Couc	1 0 0 0 0 0 1 1 1 0 2 2 0 E 16	1	1	-	_
Oneretien		Grouping:	Timer oper	ation	
Operation:	$(W1) \leftarrow (A)$	Description	: Transfers t	he conten	ts of register A to timer
			control reg	ister W1.	
	nsfer data to register W2 from Accumulator)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 1 1 ₂ 2 0 F ₁₆	1	1	_	_
Operation:	$(W2) \leftarrow (A)$	Grouping: Description	Timer oper		ts of register A to timer
			control reg		



TW5A (Trai	nsfer data to register W5 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
	1 0 0 0 1 0 0 1 0 2 2 1 2 16	1	1	-	-
Operation:	(W5) ← (A)	Grouping:	Timer oper	ation	
		Description	: Transfers t	he conten	ts of register A to timer
			control reg	ister W5.	
TW6A (Trai	nsfer data to register W6 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	- 5 -	
		1	1	-	-
Operation:	(W6) ← (A)	Grouping:	Timer oper	ation	
		Description			ts of register A to timer
			control reg	ister W6.	
TYA (Trans	fer data to register Y from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		•
		1	1	-	-
Operation:	$(Y) \leftarrow (A)$	Grouping:	Register to	register ti	ansfer
••••••		Description		he content	s of register A to regis-
			ter Y.		
WRST (Wa	tchdog timer ReSeT)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	words	cycles		-
		1	1	-	(WDF1) = 1
Operation:	(WDF1) = 1 ?	Grouping:	Other ope	ration	
•	$(WDF1) \leftarrow 0$	Description	n: Clears (0)	to the W	DF1 flag and skips the
					en watchdog timer flag
					he WDF1 flag is "0," ex-
					ruction. Also, stops the
			-		ion when executing the immediately after the
			DWDT ins		and a constant of the




## MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

XAM j (eX	change Accumulator and Memory data)						
Instruction code	D9 D0 1 0 1 1 0 1 j j j j 2 2 D j 16	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	-	-		
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer		
	$(X) \leftarrow (X)EXOR(j)$	Description			e contents of M(DP)		
	j = 0 to 15				egister A, an exclusive		
				•	ormed between regis-		
				-	in the immediate field, in register X.		
			and stores	the result			
XAMD j (e	Xchange Accumulator and Memory data and Decrer	ment regist					
Instruction code	D9 D0 1 0 1 1 1 j j j j 2 F j 16	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	-	(Y) = 15		
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to reg				
•	$(X) \leftarrow (X) EXOR(j)$	Description		er exchanging the contents of M(DP) the contents of register A, an exclusive			
	j = 0 to 15	OR operation is performed between regis-					
	$(Y) \leftarrow (Y) - 1$	ter X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the con- tents of register Y is 15, the next instruction					
		is skipped. When the contents of register Y is not 15, the next instruction is executed.					
XAMI j (eX	change Accumulator and Memory data and Increme	ent register					
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition		
COUE	1 0 1 1 1 0 j j j j ₂ 2 E j ₁₆	1	1	-	(Y) = 0		
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to rec				
-	$(X) \leftarrow (X) EXOR(j)$	Description			e contents of M(DP)		
	j = 0 to 15	with the contents of register A, an exclusive OR operation is performed between regis-					
	$(Y) \leftarrow (Y) + 1$	ter X and the value j in the immediate field,					
		and stores the result in register X. Adds 1 to the contents of register Y. As a re-					
					hen the contents of		
			register Y is 0, the next instruction is				
					ontents of register Y is ction is executed.		

#### Instruction code ę đ Paramete Number o words Number ( cycles Function Mnemonic Hexadecima Type of D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 instructior notation TAB 0 1 E $(A) \leftarrow (B)$ TBA 0 0 E $(B) \leftarrow (A)$ TAY 0 1 F $(A) \leftarrow (Y)$ $(\mathsf{Y}) \leftarrow (\mathsf{A})$ TYA 0 0 C Register to register transfer TEAB $(E7-E4) \leftarrow (B)$ 1 A $(E_3-E_0) \leftarrow (A)$ TABE 0 2 A $(B) \leftarrow (E7-E4)$ $(A) \leftarrow (E_3 - E_0)$ TDA 0 2 9 $(DR_2-DR_0) \leftarrow (A_2-A_0)$ TAD 0 5 1 $(A_2-A_0) \leftarrow (DR_2-DR_0)$ (A3) ← 0 TAZ 0 5 3 $(A1, A0) \leftarrow (Z1, Z0)$ $(A3, A2) \leftarrow 0$ TAX 0 5 2 $(A) \leftarrow (X)$ TASP 0 5 0 $(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$ $(X) \leftarrow x x = 0 \text{ to } 15$ LXY x, y Х3 X2 **X**1 **X**0 уз y2 **y**1 <u>у</u>0 Зху $(Y) \leftarrow y y = 0 \text{ to } 15$ **RAM addresses** LZ z 0 4 8 $(Z) \leftarrow z z = 0 \text{ to } 3$ Z1 Z0 +z INY 0 1 3 $(Y) \leftarrow (Y) + 1$ DEY 0 1 7 $(Y) \leftarrow (Y) - 1$ $(\mathsf{A}) \leftarrow (\mathsf{M}(\overline{\mathsf{DP})})$ TAM j j 2 C j j j j $(X) \leftarrow (X) EXOR(j)$ j = 0 to 15 $\begin{array}{l} (\mathsf{A}) \leftarrow \rightarrow (\mathsf{M}(\mathsf{DP})) \\ (\mathsf{X}) \leftarrow (\mathsf{X})\mathsf{EXOR}(j) \end{array}$ XAM j 2 D j RAM to register transfer j i i i i = 0 to 15 $(A) \leftarrow \rightarrow (M(DP))$ XAMD j j j j 2 F j j $(X) \leftarrow (X) E X O R(j)$ j = 0 to 15 $(Y) \leftarrow (Y) - 1$ XAMI j 2 E j $(A) \leftarrow \rightarrow (M(DP))$ j j j j $(X) \leftarrow (X) EXOR(j)$ j = 0 to 15 $(Y) \leftarrow (Y) + 1$

## MACHINE INSTRUCTIONS (INDEX BY TYPES)



ТМА ј

RENESAS

2 B j

0 1 0 1 1 j j j

 $(M(DP)) \leftarrow (A)$ 

 $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to register A.
-	-	Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.
-	-	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A. "0" is stored to the bit 3 (A3) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A. "0" is stored to the high-order 2 bits (A3, A2) of register A.
_	-	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A. "0" is stored to the bit 3 (A3) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.
_	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped. when the contents of register Y is not 0, the next instruction is executed.
-	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
TABP p       0       0       1       0       0       8 p +p       1       3 $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2 - DR0,$ $(B) \leftarrow (ROM(PC))3 -$ (UPTF) = 1	Function	
+p $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0,$ $(B) \leftarrow (ROM(PC))7-$ $(A) \leftarrow (ROM(PC))3-$ $(UPTF) = 1$		
$(DR), DR0) \leftarrow (RON) \\ (DR2) \leftarrow 0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1$	4 0	
$\begin{bmatrix} 5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	+(CY)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
AND 0 0 0 0 1 1 0 0 0 0 1 8 1 1 (A)	)P))	
OR     0     0     0     1     1     0     1     9     1     1     (A) $\leftarrow$ (A) OR (M(DF))	2))	
SC     0     0     0     0     0     1     1     0     0     7     1     1     (CY) ← 1		
RC     0     0     0     0     0     1     1     (CY) $\leftarrow$ 0		
SZC         0         0         0         1         0         1         1         0         2         F         1         1         (CY) = 0 ?		
CMA     0     0     0     1     1     1     0     1     1 $(A) \leftarrow (\overline{A})$		
RAR    0    0    0    0    1    1    0    1    1 $\rightarrow$ CY $\rightarrow$ A3A2A1A0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{bmatrix} \begin{matrix} c_{j} \\ c_{k} \\ c_{j} \\ c_{k} \\ c_{j} \\ c_{k} \\ $		
$\begin{bmatrix} \circ \\ \overleftarrow{\mathbf{m}} \end{bmatrix} SZB j = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & j & j \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & j & j \end{bmatrix} \begin{bmatrix} 0 & 2 & j \\ 0 & 2 & j \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ j = 0 \text{ to } 3 \end{bmatrix} \begin{bmatrix} (Mj(DP)) = 0? \\ j = 0 \text{ to } 3 \end{bmatrix}$		
SEAM         0         0         0         1         0         0         2         6         1         1         (A) = (M(DP)) ?           5/5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5		
SEA n       0       0       0       1       0       1       0       2       5       2       2       (A) = n ?         No       0       0       0       1       1       1       0       7       n       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		

### MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note : p is 0 to 31.



Skip condition	Carry flag CY	Datailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in ad- dress (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When UPTF is 1, Transfers bits 9, 8 to the low-order 2 bits (DR1, DR0) of register D, and "0" is stored to the least significant bit (DR2) of reg- ister D. When this instruction is executed, 1 stage of stack register (SK) is used.
_	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY re- mains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the re- sult in register A.
-	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) or M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n n = 0 to 15	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field. field.

Parameter						In	stru	ction	l cod	е					er of Is	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0			ecimal tion	Number ( words	Number of cycles	Function
	Ва	0	1	1	<b>a</b> 6	<b>a</b> 5	<b>a</b> 4	<b>a</b> 3	a2	<b>a</b> 1	<b>a</b> 0	1	8 +	a a	1	1	(PCL) ← a6–a0
ation	BL p, a	0	0	1	1	1	p4	рз	p2	p1	p0	0	E +	р р	2	2	(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	0	0	a6	<b>a</b> 5	<b>a</b> 4	<b>a</b> 3	a2	<b>a</b> 1	<b>a</b> 0	2	а	а			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PCн) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	0	0	p4	0	0	рз	p2	p1	p0	2	р	р			
	BM a	0	1	0	<b>a</b> 6	<b>a</b> 5	a4	<b>a</b> 3	<b>a</b> 2	a1	a0	1	а	а	1	1	$\begin{array}{l} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow 2 \\ (\text{PCL}) \leftarrow a6{-}a0 \end{array}$
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	p1	p0	0	C +	р р	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine		1	0	0	<b>a</b> 6	<b>a</b> 5	<b>a</b> 4	аз	a2	a1	<b>a</b> 0	2	а	а			$(PCL) \leftarrow a6-a0$
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0			0	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$
		1	0	0	p4	0	0	рз	p2	p1	p0	2	р	р			$(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR_2-DR_0,A_3-A_0)$
	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	$\begin{array}{l} (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \end{array}$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1
Retur	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1

## MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note : p is 0 to 31.

Skip condition	Carry flag CY	Datailed description
-	-	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
_	_	Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	_	Call the subroutine : Calls the subroutine at address a in page p.
_	_	Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
	-	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de- scription of the LA/LXY instruction, register A and register B to the states just before interrupt.
-	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.



Paramete

查询"4509"供应商

#### Number o words Number ( cycles Function Mnemonic Hexadecima Type of D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 instructior notation DI 0 0 4 $(INTE) \leftarrow 0$ ΕI 0 0 5 $(INTE) \leftarrow 1$ SNZ0 0 3 8 V10 = 0: (EXF0) = 1 ? $(EXF0) \leftarrow 0$ V10 = 1: SNZ0 = NOP SNZI0 0 3 A I12 = 0 : (INT) = "L" ? Interrupt operation I12 = 1 : (INT) = "H" ? TAV1 0 5 4 $(A) \leftarrow (V1)$ TV1A 3 F $(V1) \leftarrow (A)$ TAV2 0 5 5 $(A) \leftarrow (V2)$ $(V2) \leftarrow (A)$ TV2A 0 3 E TAI1 2 5 3 $(A) \leftarrow (I1)$ TI1A 2 1 7 $(I1) \leftarrow (A)$ TPAA A A $(\mathsf{PA0}) \leftarrow (\mathsf{A0})$ TAW1 4 B $(A) \leftarrow (W1)$ TW1A 2 0 E $(W1) \leftarrow (A)$ TAW2 4 C $(A) \leftarrow (W2)$ TW2A 2 0 F $(W2) \leftarrow (A)$ TAW5 24 F $(A) \leftarrow (W5)$ TW5A 1 2 $(W5) \leftarrow (A)$ TAW6 2 5 0 $(A) \leftarrow (W6)$ Timer operation TW6A $(W6) \leftarrow (A)$ TABPS 2 7 5 $(B) \leftarrow (TPS7-TPS4)$ $(A) \leftarrow (TPS_3 - TPS_0)$ TPSAB 2 3 5 $(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$ $(RPS_3 - RPS_0) \leftarrow (A)$ $(TPS_3-TPS_0) \leftarrow (A)$ TAB1 2 7 0 $(B) \leftarrow (T17 - T14)$ $(A) \leftarrow (T13-T10)$ T1AB 2 3 0 $(R1L7-R1L4) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R1L3-R1L0) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$

#### **MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)**

Instruction code

ď

đ

1 0 1 0 0 1 0 0 1 0

T1HAB



2 9 2

 $(R1H7-R1H4) \leftarrow (B)$ 

 $(R1H_3-R1H_0) \leftarrow (A)$ 

Skip condition         Clears (0) to interrupt enable flag INTE, and disables the interrupt.           -         -         Clears (0) to interrupt enable flag INTE, and disables the interrupt.           -         -         Sets (1) to interrupt enable flag INTE, and enables the interrupt.           -         -         Sets (1) to interrupt enable flag INTE, and enables the interrupt.           V10 = 0: (EXF0) = 1         -         When V10 = 0: Clears (0) to the EXF0 flag is "0," executes the next instruction when external 0 interrupt requiring EXF0 is "1." When the EXF0 flag is "0," executes the next instruction. (V10: bit 0 of interrupt control regire V1)           (INT) = "L"         -         When V12 = 1 : This instruction when the level of INT pin is "L." Executes the next instruction with level of INT pin is "L." Executes the next instruction with level of INT pin is "L." Executes the next instruction with level of INT pin is "L." (V10: bit 2 of interrupt control register V1)           (INT) = "H"         When I12 = 1 : Skips the next instruction when the level of INT pin is "H." Executes the next instruction with level of INT pin is "L." (V10: bit 2 of interrupt control register V1)           -         -         Transfers the contents of interrupt control register V1 to register A.           -         -         Transfers the contents of register A to interrupt control register V2.           -         -         Transfers the contents of register A to interrupt control register V2.           -         -         Transfers the contents of register A to
-       Sets (1) to interrupt enable flag INTE, and enables the interrupt.         V10 = 0: (EXF0) = 1       -       When V10 = 0 : Clears (0) to the EXF0 flag and skips the next instruction when external 0 interrupt required flag EXF0 is "1." When the EXF0 flag is "0," executes the next instruction. When V10: bit 0 of interrupt control regired is "1." When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control regired is "1." When V10 = 0 : Skips the next instruction when the level of INT pin is "L." Executes the next instruction with elevel of INT pin is "L." Executes the next instruction with elevel of INT pin is "L." Executes the next instruction with elevel of INT pin is "H."         (INT) = "H"       When I12 = 1 : Skips the next instruction when the level of INT pin is "H." Executes the next instruction with elevel of INT pin is "L." (112: bit 2 of interrupt control register I1)         -       -       Transfers the contents of interrupt control register V1 to register A.         -       -       Transfers the contents of interrupt control register V2 to register A.         -       -       Transfers the contents of interrupt control register V2.         -       -       Transfers the contents of interrupt control register I1.         -       -       Transfers the contents of register A to interrupt control register A.         -       -       Transfers the contents of register A to interrupt control register V2.         -       -       Transfers the contents of register A to interrupt control register I1.         -
V10 = 0: (EXF0) = 1       -       When V10 = 0 : Clears (0) to the EXF0 flag and skips the next instruction when external 0 interrupt requires the flag EXF0 is "1." When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control regivent)         (INT) = "L"       -       When I12 = 0 : Skips the next instruction when the level of INT pin is "L." Executes the next instruction when ever, 112 = 0         (INT) = "H"       When I12 = 1 : Skips the next instruction when the level of INT pin is "H."       When I12 = 1 : Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "L." (112: bit 2 of interrupt control register I1)         -       -       Transfers the contents of register A to interrupt control register A.         -       -       Transfers the contents of register A to interrupt control register V2.         -       -       Transfers the contents of register A to interrupt control register I1.         -       -       -       Transfers the contents of register A to int
flag EXF0 is "1." When the EXF0 flag is "0," executes the next instruction.         (INT) = "L"         However, 112 = 0         (INT) = "H"         However, 112 = 1         When 112 = 1 : Skips the next instruction when the level of INT pin is "L." Executes the next instruction w the level of INT pin is "H."         (INT) = "H"         However, 112 = 1         When 112 = 1 : Skips the next instruction when the level of INT pin is "H." Executes the next instruction w the level of INT pin is "L." (112: bit 2 of interrupt control register 11)         -       -         Transfers the contents of interrupt control register V1 to register A.         -       -         -       Transfers the contents of interrupt control register V2 to register A.         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -
However, 112 = 0       the level of INT pin is "H."         (INT) = "H"       When 112 = 1 : Skips the next instruction when the level of INT pin is "H." Executes the next instruction we the level of INT pin is "L." (112: bit 2 of interrupt control register 11)         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -
However, I12 = 1       the level of INT pin is "L." (I12: bit 2 of interrupt control register I1)         -       -         -       Transfers the contents of interrupt control register V1 to register A.         -       -         -       Transfers the contents of register A to interrupt control register V1.         -       -         -       Transfers the contents of interrupt control register V2 to register A.         -       -         -       Transfers the contents of register A to interrupt control register V2.         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -
-       -       Transfers the contents of register A to interrupt control register V1.         -       -       Transfers the contents of interrupt control register V2 to register A.         -       -       Transfers the contents of register A to interrupt control register V2.         -       -       Transfers the contents of interrupt control register I1 to register A.         -       -       Transfers the contents of register A to interrupt control register A.         -       -       Transfers the contents of register A to interrupt control register I1.         -       -       Transfers the contents of register A to timer control register I1.         -       -       Transfers the contents of register A to timer control register PA.
-       -       Transfers the contents of interrupt control register V2 to register A.         -       -       Transfers the contents of register A to interrupt control register V2.         -       -       Transfers the contents of interrupt control register I1 to register A.         -       -       Transfers the contents of register A to interrupt control register I1.         -       -       Transfers the contents of register A to interrupt control register I1.         -       -       Transfers the contents of register A to timer control register PA.
-       -       Transfers the contents of register A to interrupt control register V2.         -       -       Transfers the contents of interrupt control register I1 to register A.         -       -       Transfers the contents of register A to interrupt control register I1.         -       -       Transfers the contents of register A to interrupt control register I1.         -       -       Transfers the contents of register A to timer control register PA.
-       -       Transfers the contents of interrupt control register I1 to register A.         -       -       Transfers the contents of register A to interrupt control register I1.         -       -       Transfers the contents of register A to timer control register PA.
-     -     Transfers the contents of register A to interrupt control register I1.       -     -     Transfers the contents of register A to timer control register PA.
<ul> <li>Transfers the contents of register A to timer control register PA.</li> </ul>
<ul> <li>Transfers the contents of timer control register W1 to register A.</li> </ul>
<ul> <li>Transfers the contents of register A to timer control register W1.</li> </ul>
<ul> <li>Transfers the contents of timer control register W2 to register A.</li> </ul>
<ul> <li>Transfers the contents of register A to timer control register W2.</li> </ul>
<ul> <li>Transfers the contents of timer control register W5 to register A.</li> </ul>
<ul> <li>Transfers the contents of register A to timer control register W5.</li> </ul>
<ul> <li>Transfers the contents of timer control register W6 to register A.</li> </ul>
<ul> <li>Transfers the contents of register A to timer control register W6.</li> </ul>
<ul> <li>Transfers the high-order 4 bits of prescaler to register B.</li> <li>Transfers the low-order 4 bits of prescaler to register A.</li> </ul>
<ul> <li>Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register R</li> <li>Transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RP</li> </ul>
<ul> <li>Transfers the high-order 4 bits (T17–T14) of timer 1 to register B.</li> <li>Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.</li> </ul>
<ul> <li>Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R</li> <li>Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1L.</li> </ul>
<ul> <li>Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1H. Transfers contents of register A to the low-order 4 bits of timer 1 reload register R1H.</li> </ul>

Paramete	r					In	nstru	ction		le					er of ds	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		ade otat	ecima ion	Number of words	Number o cycles	Function
	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$\begin{array}{l} (\text{R2L7-R2L4}) \leftarrow (\text{B}) \\ (\text{T27-T24}) \leftarrow (\text{B}) \\ (\text{R2L3-R2L0}) \leftarrow (\text{A}) \\ (\text{T23-T20}) \leftarrow (\text{A}) \end{array}$
ration	T2HAB	1	0	1	0	0	1	0	1	0	0	2	9	4	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)
Timer operation	T1R1L	1	0	1	0	1	0	0	1	1	1	2	A	7	1	1	(T1) ← (R1L)
ц	T2R2L	1	0	1	0	0	1	0	1	0	1	2	9	5	1	1	$(T2) \leftarrow (R2L)$
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? (T1F) ← 0 V12 = 1: SNZT1 = NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? (T2F) ← 0 V13 = 1: SNZT2 = NOP
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	$(A) \leftarrow (P0)$
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	$(P0) \leftarrow (A)$
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$(A1, A0) \leftarrow (P21, P20)$ $(A3, A2) \leftarrow 0$
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P21, P20) ← (A1, A0)
tion	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	(A1, A0) ← (P31, P30) (A3, A2) ← 0
operation	ОРЗА	1	0	0	0	1	0	0	0	1	1	2	2	3	1	1	(P31, P30) ← (A1, A0)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
Input/Output	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$\begin{array}{l} (D(Y)) \leftarrow 0\\ (Y) = 0 \text{ to } 5 \end{array}$
<u> </u>	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	(D(Y)) ← 1 (Y) = 0 to 5
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0 ?
		0	0	0	0	1	0	1	0	1	1	0	2	В			(Y) = 0  to  5



Skip condition	Carry flag CY	Datailed description
-	-	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
_		Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2L. Trans- fers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2L.
_		Transfers the contents of register B to the high-order 4 bits of timer 2 reload register R2H. Transfers the con- tents of register A to the low-order 4 bits of timer 2 reload register R2H.
-	_	Transfers the contents of timer 1 reload register R1L to timer 1.
-	-	Transfers the contents of timer 2 reload register R2L to timer 2.
V12 = 0: (T1F) = 1	_	When V12 = 0 : Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is "1." . When the T1F flag is "0," executes the next instruction. When V12 = 1 : This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0: (T2F) =1	-	When V13 = 0 : Clears (0) to the T2F flag and skips the next instruction when timer 2 interrupt request flag T2F is "1." When the T2F flag is "0," executes the next instruction. When V13 = 1 : This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)
_	_	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A.
_	-	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to the low-order 2 bits (A1, A0) of register A. "0" is stored to the bit 3 (A3) of register A.
-	-	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P2.
-	-	Transfers the input of port P3 to the low-order 2 bits (A1, A0) of register A. "0" is stored to the bit 3 (A3) of register A.
-	_	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P3.
-	_	Sets (1) to port D.
-	-	Clears (0) to a bit of port D specified by register Y.
-	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 ?	-	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."

Parameter						In	stru	ction	cod	le				er of s	er of is	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexad nota		Number ( words	Number of cycles	Function
	TFR0A	1	0	0	0	1	0	1	0	0	0	2 2	8	1	1	(FR0) ← (A)
	TFR1A	1	0	0	0	1	0	1	0	0	1	2 2	9	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	2 2	2 A	1	1	$(FR2) \leftarrow (A)$
	ТFR3A	1	0	0	0	1	0	1	0	1	1	2 2	2 В	1	1	(FR3) ← (A)
	TC1A	1	0	1	0	1	0	1	0	0	0	2 A	8	1	1	(C1) ← (A)
	ткоа	1	0	0	0	0	1	1	0	1	1	2 1	В	1	1	(K0) ← (A)
	ТАКО	1	0	0	1	0	1	0	1	1	0	2 5	6	1	1	(A) ← (K0)
ion	TK1A	1	0	0	0	0	1	0	1	0	0	2 1	4	1	1	(K1) ← (A)
Input/Output operation	TAK1	1	0	0	1	0	1	1	0	0	1	25	5 9	1	1	(A) ← (K1)
put o	TK2A	1	0	0	0	0	1	0	1	0	1	2 1	5	1	1	(K2) ← (A)
t/Out	TAK2	1	0	0	1	0	1	1	0	1	0	25	A	1	1	$(A) \leftarrow (K2)$
Indu	TPU0A	1	0	0	0	1	0	1	1	0	1	2 2	2 D	1	1	$(PU0) \leftarrow (A)$
	TAPU0	1	0	0	1	0	1	0	1	1	1	25	5 7	1	1	(A) ← (PU0)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2 2	2 E	1	1	$(PU1) \leftarrow (A)$
	TAPU1	1	0	0	1	0	1	1	1	1	0	25	E	1	1	(A) ← (PU1)
	TPU2A	1	0	0	0	1	0	1	1	1	1	2 2	F	1	1	$(PU2) \leftarrow (A)$
	TAPU2	1	0	0	1	0	1	1	1	1	1	25	F	1	1	(A) ← (PU2)
	TL1A	1	0	0	0	0	0	1	0	1	0	2 0	A	1	1	(L1) ← (A)
	TAL1	1	0	0	1	0	0	1	0	1	0	24	A	1	1	(A) ← (L1)
	TABSI	1	0	0	1	1	1	1	0	0	0	2 7	8	1	1	$(B) \leftarrow (SI7\text{-}SI4) \ \ (A) \leftarrow (SI3\text{-}SI0)$
ation	TSIAB	1	0	0	0	1	1	1	0	0	0	23	8 8	1	1	(SI7–SI4) ← (B) (SI3–SI0) ← (A)
ce opera	SST	1	0	1	0	0	1	1	1	1	0	29	) E	1	1	$(SIOF) \leftarrow 0$ Serial interface transmit/receive starting
Serial interface operation	SNZSI	1	0	1	0	0	0	1	0	0	0	28	8 8	1	1	V23=0: (SIOF)=1? (SIOF) ← 0 V23 = 1: SNZSI = NOP
Seri	TAJ1	1	0	0	1	0	0	0	0	1	0	24	2	1	1	(A) ← (J1)
	TJ1A	1	0	0	0	0	0	0	0	1	0	2 0	2	1	1	(J1) ← (A)
	CRCK	1	0	1	0	0	1	1	0	1	1	2 9	) В	1	1	RC oscillator selected
tion	TRGA	1	0	0	0	0	0	1	0	0	1	2 0	9	1	1	(RG₀) ← (A₀)
Clock operation	TAMR	1	0	0	1	0	1	0	0	1	0	2 5	5 2	1	1	$(A) \leftarrow (MR)$
	TMRA	1	0	0	0	0	1	0	1	1	0	2 1	6	1	1	$(MR) \leftarrow (A)$



Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of register A to port output structure control register FR0.
-	-	Transfers the contents of register A to port output structure control register FR1.
-	-	Transfers the contents of register A to port output structure control register FR2.
-	-	Transfers the contents of register A to port output structure control register FR3.
-	-	Transfers the contents of register A to port output structure control register C1.
-	-	Transfers the contents of register A to key-on wakeup control register K0.
-	-	Transfers the contents of key-on wakeup control register K0 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K1.
-	-	Transfers the contents of key-on wakeup control register K1 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K2.
-	-	Transfers the contents of key-on wakeup control register K2 to register A.
-	-	Transfers the contents of register A to pull-up control register PU0.
-	-	Transfers the contents of pull-up control register PU0 to register A.
-	-	Transfers the contents of register A to pull-up control register PU1.
-	-	Transfers the contents of pull-up control register PU1 to register A.
-	-	Transfers the contents of register A to pull-up control register PU2.
-	-	Transfers the contents of pull-up control register PU2 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register L1.
-	-	Transfers the contents of key-on wakeup control register L1 to register A.
-	-	Transfers the high-order 4 bits of serial interface register SI to register B, and transfers the low-order 4 bits of serial interface register SI to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of serial interface register SI, and transfers the contents of register A to the low-order 4 bits of serial interface register SI.
-	-	Clears (0) to SIOF flag and starts serial interface transmit/receive.
V23 = 0: (SIOF) =1	-	Clears (0) to SIOF flag and skips the next instruction when the contents of bit 3 (V23) of interrupt control reg- ister V2 is "0" and contents of SIOF flag is "1." When V23 = 1: This instruction is equivalent to the NOP instruction.
-	-	Transfers the contents of serial interface control register J1 to register A.
-	-	Transfers the contents of register A to serial interface control register J1.
-	-	Selects the RC oscillation circuit for main clock f(XIN).
-	-	Transfers the least significant bit (Ao) of register A to clock control regiser RG.
-	-	Transfers the contents of clock control regiser MR to register A.
_		Transfers the contents of register A to clock control register MR.

					Ir	nstru	ction	cod	le					er of ds	er of es	<b>-</b>		
Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do				Numbe word	Numbe cycle	Function		
TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1		Q13 = 0: (B) $\leftarrow$ (AD9-AD6) (A) $\leftarrow$ (AD5-AD2) Q13 = 1: (B) $\leftarrow$ (AD7-AD4) (A) $\leftarrow$ (AD3-AD0)		
TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	(A3, A2) ← (AD1, AD0) (A1, A0) ← 0		
TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	Q13 = 0: (AD7–AD4) ← (B) (AD3–AD0) ← (A) Q13 = 1: TADAB = NOP		
TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	(A) ← (Q1)		
TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	$(Q1) \leftarrow (A)$		
ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1		$(ADF) \leftarrow 0$ Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting		
SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? (ADF) ← 0 V22 = 1: SNZAD = NOP		
NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	$(PC) \leftarrow (PC) + 1$		
POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	RAM back-up		
EPOF	0	0	0	1	0	1	1	0	1	1	0	5	в	1	1	POF instruction valid		
SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?		
DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled		
WRST	1	0	1	0	1	0	0	0	0	0	2	A	0	1	1	(WDF1) = 1 ?, (WDF1) ← 0		
SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset		
RUPT	0	0	0	1	0	1	1	0	0	0	0	5	8	1	1	$(UPTF) \leftarrow 0$		
SUPT	0	0	0	1	0	1	1	0	0	1	0	5	9	1	1	$(UPTF) \leftarrow 1$		
SVDE**	1	0	1	0	0	1	0	0	1	1	2	9	3	1	1	Voltage drop detection circuit valid at RAN back-up		
	Mnemonic TABAD TALA TADAB TAQ1 TQ1A ADST SNZAD NOP POF EPOF SNZP DWDT WRST SRST RUPT SUPT	Mnemonic	Mnemonic         Dis           TABAD         1         0           TALA         1         0           TADAB         1         0           TAQ1         1         0           TQ1A         1         0           TQ1A         1         0           TQ1A         1         0           TQ1A         1         0           SNZAD         1         0           POF         0         0           POF         0         0           SNZP         0         0           DWDT         1         0           SRST         0         0           RUPT         0         0           SUPT         0         0	Mnemonic         Dis         Dis           TABAD         1         0         0           TALA         1         0         0           TADAB         1         0         0           TAQ1         1         0         0           TQ1A         1         0         0           TQ1A         1         0         0           TQ1A         1         0         1           SNZAD         1         0         1           NOP         0         0         0           POF         0         0         0           SNZP         0         0         0           DWDT         1         0         1           WRST         1         0         1           SRST         0         0         0           RUPT         0         0         0           SUPT         0         0         0	Mnemonic         D9         D8         D7         D6           TABAD         1         0         0         1           TALA         1         0         0         1           TADAB         1         0         0         1           TAQ1         1         0         0         1           TQ1A         1         0         0         1           TQ1A         1         0         1         0           SNZAD         1         0         1         0           NOP         0         0         0         0           POF         0         0         0         1           SNZAD         1         0         0         0           POF         0         0         0         0         0           POF         1         0         1         0         1         0           DWDT         1         0         1         0         1         0           SRST         0         0         0         1         0         1         0           SUPT         0         0         0         0         1	Mnemonic         Da         <	Mnemonic         D9         D8         D7         D6         D5         D4           TABAD         1         0         0         1         1         1           TALA         1         0         0         1         1         1           TADAB         1         0         0         1         0         0           TAQ1         1         0         0         1         0         0           TQ1A         1         0         0         1         0         0           ADST         1         0         0         0         0         0           NOP         0         0         0         0         0         0         0           SNZAD         1         0         0         0         0         0         0         0           POF         0         0         0         0         0         0         0         0         0           POF         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Mnemonic         D9         D8         D7         D6         D5         D4         D3           TABAD         1         0         0         1         1         1         1           TALA         1         0         0         1         0         0         1         1         1           TADAB         1         0         0         1         0         0         1         1         1           TAQ1         1         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2           TABAD         1         0         0         1         1         1         1         0           TALA         1         0         0         1         1         1         1         0           TADAB         1         0         0         1         0         0         1         1         0           TAQ1         1         0         0         1         0         0         1         1         0           TQ1A         1         0         0         1         0         0         0         1         1         0           ADST         1         0         0         0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td> <td>Mnemonic         Dis         Di</td> <td>Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2         D1         D0           TABAD         1         1         0         0         1         1         1         1         0         0         1           TALA         1         0         0         1         1         0         0         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         0         0         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<td>Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2         D1         D0         Hex manual           TABAD         1         0         0         1         1         1         1         0         0         1         1         1         0         0         1         2           TALA         1         0         0         1         0         0         1         0         0         1         2           TALA         1         0         0         1         0         0         1         0         0         1         2           TADAB         1         0         0         1         0         0         1         0         0         2           TQ1A         1         0         0         0         0         0         0         1         0         2           SNZAD         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td><td>Mnemonic         Image: construct of the series of the</td><td>Mnemonic         Image: construct of the series of the</td><td>Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2         D1         D0         Hexadecimal notation           TABAD         1         0         0         1         1         1         1         0         0         1         2         7         9         1           TALA         1         0         0         1         1         1         0         0         1         2         4         9         1           TALA         1         0         0         1         1         0         0         1         2         4         9         1           TADAB         1         0         0         1         1         0         0         1         2         4         4         1           TAQ1         1         0         0         0         0         0         1         1         0         2         4         4         1           TQ1A         1         0         0         0         0         0         0         0         0         2         4         1           TQ1A         1         0</td><td>Mnemonic         Image: constrained by the state sta</td></td>	Mnemonic         D9         D8         D7         D6         D5         D4         D3           TABAD         1         0         0         1         1         1         1           TALA         1         0         0         1         0         0         1         1         1           TADAB         1         0         0         1         0         0         1         1         1           TAQ1         1         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2           TABAD         1         0         0         1         1         1         1         0           TALA         1         0         0         1         1         1         1         0           TADAB         1         0         0         1         0         0         1         1         0           TAQ1         1         0         0         1         0         0         1         1         0           TQ1A         1         0         0         1         0         0         0         1         1         0           ADST         1         0         0         0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Mnemonic         Dis         Di	Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2         D1         D0           TABAD         1         1         0         0         1         1         1         1         0         0         1           TALA         1         0         0         1         1         0         0         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         0         0         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2         D1         D0         Hex manual           TABAD         1         0         0         1         1         1         1         0         0         1         1         1         0         0         1         2           TALA         1         0         0         1         0         0         1         0         0         1         2           TALA         1         0         0         1         0         0         1         0         0         1         2           TADAB         1         0         0         1         0         0         1         0         0         2           TQ1A         1         0         0         0         0         0         0         1         0         2           SNZAD         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>Mnemonic         Image: construct of the series of the</td> <td>Mnemonic         Image: construct of the series of the</td> <td>Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2         D1         D0         Hexadecimal notation           TABAD         1         0         0         1         1         1         1         0         0         1         2         7         9         1           TALA         1         0         0         1         1         1         0         0         1         2         4         9         1           TALA         1         0         0         1         1         0         0         1         2         4         9         1           TADAB         1         0         0         1         1         0         0         1         2         4         4         1           TAQ1         1         0         0         0         0         0         1         1         0         2         4         4         1           TQ1A         1         0         0         0         0         0         0         0         0         2         4         1           TQ1A         1         0</td> <td>Mnemonic         Image: constrained by the state sta</td>	Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2         D1         D0         Hex manual           TABAD         1         0         0         1         1         1         1         0         0         1         1         1         0         0         1         2           TALA         1         0         0         1         0         0         1         0         0         1         2           TALA         1         0         0         1         0         0         1         0         0         1         2           TADAB         1         0         0         1         0         0         1         0         0         2           TQ1A         1         0         0         0         0         0         0         1         0         2           SNZAD         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	Mnemonic         Image: construct of the series of the	Mnemonic         Image: construct of the series of the	Mnemonic         D9         D8         D7         D6         D5         D4         D3         D2         D1         D0         Hexadecimal notation           TABAD         1         0         0         1         1         1         1         0         0         1         2         7         9         1           TALA         1         0         0         1         1         1         0         0         1         2         4         9         1           TALA         1         0         0         1         1         0         0         1         2         4         9         1           TADAB         1         0         0         1         1         0         0         1         2         4         4         1           TAQ1         1         0         0         0         0         0         1         1         0         2         4         4         1           TQ1A         1         0         0         0         0         0         0         0         0         2         4         1           TQ1A         1         0	Mnemonic         Image: constrained by the state sta		

### MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note: The SVDE instruction can be used only in the H version.



	_ ≻_	
Skip condition	Carry flag CY	Datailed description
_		In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the high-order 4 bits (AD7–AD4) of comparator register to register B, and the low-order 4 bits (AD3–AD0) of comparator register to register A. (Q13: bit 3 of A/D control register Q1)
_	-	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (A3, A2) of register A. "0" is stored to the least significant bit (A0) of register A.
_		In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. In the A/D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction. (Q13 = bit 3 of A/D control register Q1)
-	-	Transfers the contents of A/D control register Q1 to register A.
-	-	Transfers the contents of register A to A/D control register Q1.
_	-	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1		When $V22 = 0$ : Clears (0) to the ADF flag and skips the next instruction when A/D conversion completion flag ADF is "1." When the ADF flag is "0," executes the next instruction. When $V22 = 1$ : This instruction is equivalent to the NOP instruction. (V22: bit 2 of interrupt control register V2)
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	-	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction. Operations of all functions are stopped.
-	-	Makes the immediate after POF instruction valid by executing the EPOF instruction.
(P) = 1		Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0."
-	-	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
(WDF1) = 1	-	Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is "1." When the WDF1 flag is "0," executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	-	System reset occurs.
-	-	Clears (0) to the high-order bit reference enable flag UPTF.
-	-	Sets (1) to the high-order bit reference enable flag UPTF.
_	-	Validates the voltage drop detection circuit at RAM back-up (only for the H version).

#### INSTRUCTION CODE TABLE

			001		VDLL														
۲ ا	09–D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111		011000 011111
D3-D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BMLA	-	TASP	A 0	LA 0	TABP 0	TABP 16	_	_	BML	BML	BL	BL	ВМ	В
0001	1	SRST	CLD	SZB 1	-	-	TAD	A 1	LA 1	TABP 1	TABP 17	_	_	BML	BML	BL	BL	вм	В
0010	2	POF	_	SZB 2	_	_	ТАХ	A 2	LA 2	TABP 2	TABP 18	_	_	BML	BML	BL	BL	вм	В
0011	3	SNZP	INY	SZB 3	-	_	TAZ	A 3	LA 3	TABP 3	TABP 19	-	-	BML	BML	BL	BL	вм	В
0100	4	DI	RD	SZD	-	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	_	_	BML	BML	BL	BL	вм	в
0101	5	EI	SD	SEAn	-	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	_	_	BML	BML	BL	BL	вм	в
0110	6	RC	_	SEAM	-	RTI	_	A 6	LA 6	TABP 6	TABP 22	-	-	BML	BML	BL	BL	вм	В
0111	7	SC	DEY	-	-	_	_	A 7	LA 7	TABP 7	TABP 23	_	_	BML	BML	BL	BL	вм	в
1000	8	_	AND	-	SNZ0	LZ 0	RUPT	A 8	LA 8	TABP 8	TABP 24	_	_	BML	BML	BL	BL	вм	в
1001	9	-	OR	TDA	_	LZ 1	SUPT	A 9	LA 9	TABP 9	TABP 25	-	-	BML	BML	BL	BL	вм	В
1010	А	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26	-	-	BML	BML	BL	BL	BM	В
1011	в	AMC	_	-	-	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	_	_	BML	BML	BL	BL	вм	в
1100	С	TYA	СМА	-	-	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	-	-	BML	BML	BL	BL	BM	в
1101	D	_	RAR	-	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	-	-	BML	BML	BL	BL	вм	В
1110	Е	тва	ТАВ	-	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	_	_	BML	BML	BL	BL	вм	в
1111	F	-	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	_	_	BML	BML	BL	BL	вм	В

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the low-order 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	-										
	The second word										
BL	10	0aaa	aaaa								
BML	10	0aaa	aaaa								
BLA	10	0p00	рррр								
BMLA	10	0p00	рррр								
SEA	00	0111	nnnn								
SZD	00	0010	1011								



#### **INSTRUCTION CODE TABLE (continued)**

						(000)		<u> </u>										
Ĺ	09–D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	-	-	OP0A	T1AB	-	TAW6	IAP0	TAB1	SNZT1	-	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	-	-	OP1A	T2AB	-	-	IAP1	TAB2	SNZT2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	TJ1A	TW5A	OP2A	_	TAJ1	TAMR	IAP2	-	-	Т1НАВ	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	-	TW6A	ОРЗА	-	-	TAI1	IAP3	-	-	SVDE*	-	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	-	-	TAQ1	-	-	-	-	T2HAB	-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	-	TK2A	-	TPSAB	-	-	-	TABPS	_	T2R2L	-	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	-	TMRA	-	-	Ι	TAK0	-	-	-	-	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	-	TI1A	-	-	-	TAPU0	-	-	SNZAD	_	T1R1L	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	-	-	TFR0A	TSIAB	-	-	-	TABSI	SNZSI	-	TC1A	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	TRGA	Ι	TFR1A	TADAB	TALA	TAK1	-	TABAD	-	-	-	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	А	TL1A	-	TFR2A	-	TAL1	TAK2	-	-	-	-	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	_	TK0A	TFR3A	-	TAW1	-	-	-	-	CRCK	-	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	-	-	-	-	TAW2	-	-	-	-	DWDT	-	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	_	-	TPU0A	_	_	_	-	_	_	-	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	Ι	TPU1A	_		TAPU1	-	-	-	SST	Ι	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	Ι	TPU2A	-	TAW5	TAPU2	_	_	-	ADST	-	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the loworder 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	рррр
BMLA	10	0p00	рррр
SEA	00	0111	nnnn
SZD	00	0010	1011

• * can be used only in the H version.

# **Electrical characteristics**

### Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage	-	-0.3 to 6.5	V
VI	Input voltage P0, P1, P2, P3, D0-D5,	-	-0.3 to VDD+0.3	V
	RESET, XIN			
VI	Input voltage INT, CNTR0, CNTR1, SIN, SCK	_	-0.3 to VDD+0.3	V
VI	Input voltage AIN0–AIN5	-	-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, P3, D0-D5,	Output transistors in cut-off state	-0.3 to VDD+0.3	V
	RESET			
Vo	Output voltage CNTR0, CNTR1, SOUT, SCK	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage Xout	-	-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range	_	-20 to 85	°C
Tstg	Storage temperature range	-	-40 to 125	°C

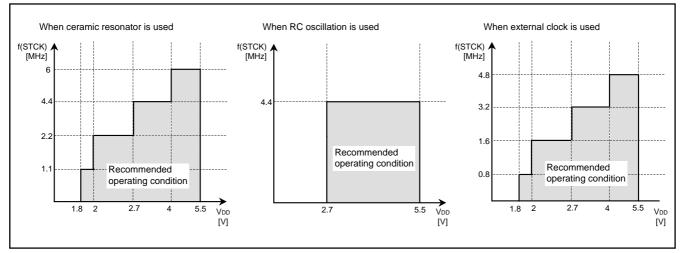


### Recommended operating conditions 1

(Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Baramotor	Conditions		Limits				
-	Parameter			Min.	Тур.	Max.	Unit	
Vdd	Supply voltage	$f(STCK) \le 6 MHz$		4		5.5	V	
	(with a ceramic resonator)	f(STCK) ≤ 4.4 MHz		2.7		5.5		
		$f(STCK) \le 2.2 \text{ MHz}$		2.0		5.5		
		f(STCK) ≤ 1.1 MHz		1.8		5.5		
Vdd	Supply voltage (with RC oscillation)	f(STCK) ≤ 4.4 MHz		2.7		5.5	V	
VDD	Supply voltage (with an on-chip oscillator)			1.8		5.5	V	
Vram	RAM back-up voltage	(at RAM back-up)		1.6		5.5	V	
Vss	Supply voltage				0		V	
Viн	"H" level input voltage	P0, P1, P2, P3, D0–D5		0.8VDD		Vdd	V	
		XIN		0.7VDD		Vdd	1	
		RESET		0.85VDD		Vdd	1	
		INT, CNTRO, CNTR1, SIN, SCH	ζ	0.85Vdd		Vdd	1	
VIL	"L" level input voltage	P0, P1, P2, P3, D0–D5		0		0.2Vdd	V	
		Xin		0		0.3Vdd		
		RESET		0		0.3VDD		
		INT, CNTR0, CNTR1, SIN, SCK		0		0.15VDD	1	
Юн(peak)	"H" level peak output current	P0, P1, P2, P3, D0–D5	VDD = 5.0 V			-20	mA	
		CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			-10	1	
Iон(avg)	"H" level average output current	P0, P1, P2, P3, D0–D5	VDD = 5.0 V			-10	mA	
	(Note)	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			-5	1	
loL(peak)	"L" level peak output current	P0, P1	VDD = 5.0 V			24	mA	
		CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			12	1	
		P2, P3, RESET	VDD = 5.0 V			10	1	
			VDD = 3.0 V			4.0	1	
		D0, D1, D4, D5	VDD = 5.0 V			40	1	
			VDD = 3.0 V			30	1	
		D2, D3	VDD = 5.0 V			24	1	
		,	VDD = 3.0 V			12	1	
OL(avg)	"L" level average output current	P0, P1	VDD = 5.0 V			12	mA	
	_ ·····	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			6.0	1	
		P2, P3, RESET	VDD = 5.0 V			5.0	1	
			VDD = 3.0 V			2.0	1	
		D0, D1, D4, D5	VDD = 5.0 V			30	1	
			VDD = 3.0 V			15	1	
		D2, D3	VDD = 5.0 V			15	1	
		,	VDD = 3.0 V			7.0	1	
ΣIOн(avg)	"H" level total average current	P0, P1, P3, CNTR0, CNTR1, 5	1			-40	mA	
		P2, D0–D5				-40	1	
ΣIOL(avg)	"L" level total average current	P0, P1, P3, CNTR0, CNTR1, S	SOUT. SCK			60	mA	
(g)	P2, D0–D5, RESET					60	1	

Notes 1: The average output current (IOH, IOL) is the average value during 100 ms.


#### **Recommended operating conditions 2**

(Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditions		Limits			Unit
Cynibol		Conduce				Max.	
f(XIN)	Oscillation frequency	Through mode	VDD = 4.0 V to 5.5 V			6	MHz
	(with a ceramic resonator)		VDD = 2.7 V to 5.5 V			4.4	
			VDD = 2.0 V to 5.5 V			2.2	
			VDD = 1.8 V to 5.5 V			1.1	
		Internal frequency divided	VDD = 2.7 V to 5.5 V			6	
		by 2	VDD = 2.0 V to 5.5 V			4.4	
			VDD = 1.8 V to 5.5 V			2.2	
		Internal frequency divided	VDD = 2.0 V to 5.5 V			6	
		by 4, 8	VDD = 1.8 V to 5.5 V			4.4	
f(XIN)	Oscillation frequency	VDD = 2.7 V to 5.5 V				4.4	MHz
()()())	(with RC oscillation) (Note 1)	<b>-</b>				1.0	
f(XIN)	Oscillation frequency	Through mode	VDD = 4.0 V to 5.5 V			4.8	MHz
	(with a ceramic oscillation selected,		VDD = 2.7 V to 5.5 V			3.2	
	external clock input)		VDD = 2.0 V to 5.5 V			1.6	
			VDD = 1.8 V to 5.5 V			0.8	
		Internal frequency divided	VDD = 2.7 V to 5.5 V			4.8	
		by 2	VDD = 2.0 V to 5.5 V			3.2	
			VDD = 1.8 V to 5.5 V			1.6	
		Internal frequency divided	VDD = 2.0 V to 5.5 V			4.8	
		by 4, 8	VDD = 1.8 V to 5.5 V			3.2	
f(CNTR)	Timer external input frequency	CNTR0, CNTR1				f(STCK)/6	Hz
tw(CNTR)	Timer external input period	CNTR0, CNTR1		3/f(STCK)			S
	("H" and "L" pulse width)						
f(Scк)	Serial interface external input period	Sck				f(STCK)/6	Hz
tw(SCK)	Serial interface external input period	SCK		3/f(STCK)			S
	("H" and "L" pulse width)						
TPON	Power-on reset circuit	$VDD = 0 \rightarrow 1.8 V$				100	μs
	valid supply voltage rising time (Note 2)						

Notes 1: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits. 2: If the rising time exceeds the maximum rating value, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level

to RESET pin until the value of supply voltage reaches the minimum operating voltage.





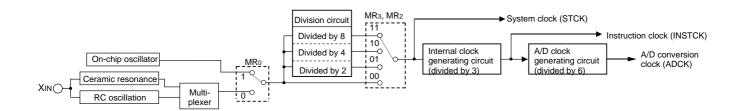
### Electrical characteristics 1 (Ta = -20 °C to 85 °C, V_{DD} = 1.8 to 5.5 V, unless otherwise noted)

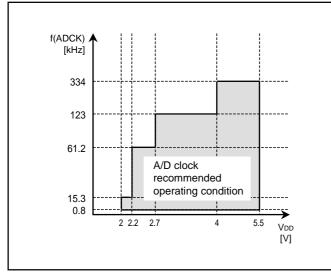
Symbol	Parameter	Test conditions			Limits			
Symbol		165	Min.	Тур.	Max.	- Unit		
Vон	"H" level output voltage	VDD = 5.0 V	Iон = -10 mA	3.0			V	
	P0, P1, P2, P3, D0–D5		Iон = -3.0 mA	4.1				
	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V	IOH = -5.0 mA	2.1				
			Iон = -1.0 mA	2.4				
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 12 mA			2.0	V	
	P0, P1		IOL = 4.0 mA			0.9		
	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V	IOL = 6.0 mA			0.9	1	
			IOL = 2.0 mA			0.6		
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 5.0 mA			2.0	V	
	P2, P3, RESET		IOL = 1.0 mA			0.6	1	
		VDD = 3.0 V	IOL = 2.0 mA			0.9	-	
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 30 mA			2.0	V	
	D0, D1, D4, D5		IOL = 10 mA			0.9	-	
		VDD = 3.0 V	IOL = 15 mA			2.0	-	
			IOL = 5.0 mA			0.9	1	
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 15 mA			2.0	V	
	D2, D3		IOL = 5.0 mA			0.9	-	
		VDD = 3.0 V	IOL = 9.0 mA			1.4	-	
			IOL = 3.0 mA			0.9	-	
Іін	"H" level input current	VI = VDD				2.0	μA	
	P0, P1, P2, P3, D0–D5							
	RESET, INT							
	CNTR0, CNTR1, SIN, SCK							
lil	"L" level input current	VI = 0 V P0, P1, P2,			-2.0	μA		
	P0, P1, P2, P3, D0–D5					2.0	, <i>p</i>	
	RESET, INT							
	CNTR0, CNTR1, SIN, SCK							
Rpu	Pull-up resistor value	VI = 0 V	VDD = 5.0 V	30	60	125	kΩ	
	P0, P1, P2, D2, D3, RESET		VDD = 3.0 V	50	120	250	-	
VT+ – VT–		VDD = 5.0 V			1.0	200	V	
••••		VDD = 3.0 V			0.4		-	
VT+ - VT_	Hysteresis INT, CNTR0, CNTR1	VDD = 5.0 V		0.2		V		
VI+ VI-	SIN, SCK	VDD = 3.0 V			0.2		- ×	
(RING)	On-chip oscillator clock frequency	VDD = 5.0 V		200	500	700	kH	
(((((((((((((((((((((((((((((((((((((((		VDD = 3.0 V		100	250	400	-	
		VDD = 3.0 V VDD = 1.8 V	30	120	200	1		
Δ f(Xin)	Oscillation frequency error (Note 1)	VDD = 1.0 V VDD = 5.0 V ± 10 %	Ta – center 25 °C		120	±17	%	
	(at RC oscillation, error value of external R, C not included)	$VDD = 3.0 V \pm 10 \%$				±17 ±17	/0	

Notes 1: When the RC oscillation is used, use a 33 pF capacitor externally.

Symbol	Parameter		Testes	a aliti a a a	Limits			
Symbol		Falallelel	Test conditions		Min.	Тур.	Max.	Unit
IDD	Supply current	at active mode	VDD = 5.0 V	f(STCK) = f(XIN)/8		1.2	2.4	mA
		(with a ceramic resonator)	f(XIN) = 6.0 MHz	f(STCK) = f(XIN)/4		1.3	2.6	
		(Notes 1, 2)	f(RING) = stop	f(STCK) = f(XIN)/2		1.6	3.2	1
				f(STCK) = f(XIN)		2.2	4.4	
			VDD = 5.0 V	f(STCK) = f(XIN)/8		0.9	1.8	mA
			f(XIN) = 4.0 MHz	f(STCK) = f(XIN)/4		1	2	
			f(RING) = stop	f(STCK) = f(XIN)/2		1.2	2.4	
				f(STCK) = f(XIN)		1.6	3.2	
			VDD = 3.0 V	f(STCK) = f(XIN)/8		0.2	0.4	mA
			f(XIN) = 2.0 MHz	f(STCK) = f(XIN)/4		0.25	0.5	
			f(RING) = stop	f(STCK) = f(XIN)/2		0.3	0.6	
				f(STCK) = f(XIN)		0.4	0.8	
		at active mode	VDD = 5.0 V	f(STCK) = f(RING)/8		50	100	μA
		(with an on-chip oscillator)	f(XIN) = stop	f(STCK) = f(RING)/4		60	120	
		(Notes 1, 2)	f(RING) = operating	f(STCK) = f(RING)/2		80	160	
				f(STCK) = f(RING)		120	240	
			VDD = 3.0 V	f(STCK) = f(RING)/8		10	20	μA
			f(XIN) = stop	f(STCK) = f(RING)/4		13	26	
			f(RING) = opertaing	f(STCK) = f(RING)/2		19	38	
				f(STCK) = f(RING)		31	62	
		at RAM back-up mode	Ta = 25 °C			0.1	3	μA
		(POF instruction execution)	VDD = 5.0 V				10	]
		(Note 3)	VDD = 3.0 V				6	1

Notes 1: When the A/D converter is used, the A/D operation current (IADD) is included. 2: In the M34509G4H, the voltage drop detection circuit operation current (IRST) is added. 3: In the M34509G4H, when the SVDE instruction is executed, the voltage drop detection circuit operation current (IRST) is added.





#### A/D converter recommended operating conditions

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Conditions		Unit		
Symbol	i arameter	Conditions	Min.	Тур.	Max.	Onit
Vdd	Supply voltage	Ta = 0 °C to 50 °C	2.0		5.5	V
		Ta = -20 °C to 85 °C	2.7		5.5	]
VIA	Analog input voltage		0		Vdd	V
f(ADCK)	A/D clock frequency (Note)	VDD = 4.0 V to 5.5 V	0.8		334	kHz
		VDD = 2.7 V to 5.5 V	0.8		123	
		VDD = 2.2 V to 5.5 V	0.8		61.2	
		VDD = 2.0 V to 5.5 V	0.8		15.3	

Note: Definition of A/D conversion clock (ADCK)





A/D clock (ADCK) operating condition map



#### A/D converter characteristcs

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
Symbol	Falameter		Min.	Тур.	Max.	- Unit	
-	Resolution				10	bits	
-	Linearity error	Ta = 0 °C to 50 °C, 2.2 V ≤ VDD 0 °C 2.7 V			±4.0	LSB	
		Ta = $-20 \text{ °C to } 85 \text{ °C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$			±2.0		
-	Differential non-linearity error	Ta = 0 °C to 50 °C, 2.2 V ≤ VDD < 2.7 V			±0.9	LSB	
		Ta = $-20 \text{ °C to } 85 \text{ °C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			±0.9	_	
Vот	Zero transition voltage	VDD = 2.56 V	0	7.5	15	mV	
		VDD = 3.075 V	0	7.5	15		
		VDD = 5.12 V	0	10	20		
VFST	Full-scale transition voltage	VDD = 2.56 V	2552.5	2560	2567.5	mV	
		VDD = 3.075 V	3064.5	3072	3079.5		
		VDD = 5.12 V	5100	5110	5120	-	
-	Absolute accuracy	Ta = 0 °C to 50 °C, 2.0 V $\leq$ VDD < 2.2 V			±8.0	LSB	
	(Quantization error excluded)						
IAdd	A/D operating current (Note 1)	VDD = 5.0 V		300	900	μA	
		VDD = 3.0 V		100	300		
TCONV	A/D conversion time	f(ADCK) = 334 kHz			31	μs	
		f(ADCK) = 123 kHz			85	1	
		f(ADCK) = 61.2 kHz			169		
		f(ADCK) = 15.3 kHz			676		
-	Comparator resolution				8	bits	
-	Comparator error (Note 2)	VDD = 2.56 V			± 15	mV	
		VDD = 3.072 V			± 15		
		VDD = 5.12 V			± 20		
-	Comparator comparison time	f(ADCK) = 334 kHz			4	μs	
		f(ADCK) = 123 kHz			11		
		f(ADCK) = 61.2 kHz			22		
		f(ADCK) = 15.3 kHz			88		

Notes 1: When the A/D converter is used, the IADD is included to IDD.

2: As for the error from the logic value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage Vref which is generated by the built-in DA converter can be obtained by the following formula.

-Logic value of comparison voltage Vref-

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)



### **VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS**

(Ta = -20 °C to 85 °C, unless otherwise noted)

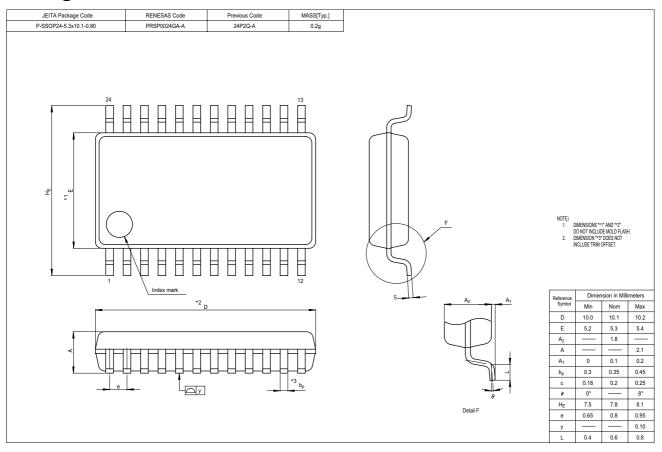
Symbol	Parameter	Test conditions		Limits			
Symbol		Test conditions	Min.	Тур.	Max.	– Unit	
Vrst-	Detection voltage	Ta = 25 °C		2.6		V	
	(reset occurs) (Note 2)	-20 °C ≤ Ta < 0 °C	2.5		3.1		
		0 °C ≤ Ta < 50 °C	2.2		3	-	
		50 °C ≤ Ta ≤ 85 °C	2		2.7		
Vrst ⁺	Detection voltage	Ta = 25 °C		2.7		V	
	(reset release) (Note 3)	-20 °C ≤ Ta < 0 °C	2.6		3.2	_	
		$0 \ ^{\circ}C \le Ta < 50 \ ^{\circ}C$	2.3		3.1		
		50 °C ≤ Ta ≤ 85 °C	2.1		2.8		
Vrst ⁺ –	Detection voltage hysteresis			0.1		V	
Vrst ⁻							
IRST	Operation current (Note 4)	VDD = 5 V		50	100	μA	
		VDD = 3 V		30	60		
TRST	Detection time (Note 5)	$VDD \rightarrow (VRST^ 0.1 V)$		0.2	1.2	ms	

Notes 1: The voltage drop detection circuit is equipped with only the M34509G4H.

2: The detection voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

3: The detection voltage (VRST⁺) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.

4: In the M34509G4H, IRST is added to IDD (supply current).


5: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST⁻ - 0.1 V].

#### Basic timing diagram

Parameter	Machine cycle Pin name	Mi		Mi+1	
System clock	STCK				
Port output	D0–D5 P00–P03 P10–P13 P20, P21 P30, P31	X			×
Port input	Do–D5 P0o–P03 P1o–P13 P2o, P21 P3o, P31		X		×
Interrupt input	INT		X		



# Package outline





# **REVISION HISTORY**

# 4509 Group Data Sheet

Rev.	Date		Description
		Page	Summary
1.00	Mar. 18, 2005	_	First edition issued
1.01	Aug. 12, 2005	17	ROM Code Protect Address added.
		52	Table 20: Some description about Port P1 added.
		57	Fig.52 revised.
		58	Fig.54 revised.
			"DATA REQUIRED FOR QZROM WRITING ORDERS" added.
		62	Notes On ROM Code Protect added.
		130	A/D converter characteristics:
			Linearity error, Differential non-linearity error and Absolute accuracy
			$\rightarrow$ Parameters and Test conditions revised.
		131	Voltage drop detection circuit characteristics: VRST ⁻ , VRST ⁺ $\rightarrow$ Test conditions revised.
1.02	Dec. 22, 2006	5	MULFUNCTION: Note 4 revised.
		26	TIMER: Description revised and Structure of Timer 2 in Table 9 revised.
		28	Fig.23: INSTCK (wrong) $\rightarrow$ INTSNC (correct)
		30	(2) Prescaler: $\underline{PRS} \rightarrow \underline{RPS}$
			(3) Timer $\underline{3} \rightarrow \text{Timer } \underline{1}$
		43	SERIAL I/O: Table 14: Note revised.
		53	Fig. 46: Notes revised.
		58	Table 23: Changes referring ahead and note 5 added.
		59 to 61	QzROM Writing Mode added.
		63	LIST OF PRECAUTIONS: Mulfunction revised.
		67 to 70	NOTES ON NOISE added.
		76	Description of Port output structure control register FR2 and FR3 revised.
		102 117	Instruction code of TAL1 revised. Description of TALA revised.
		134	Detailed description of TEAB revised.
		134	f(SCK): Serial interface external input <u>frequency</u> $\rightarrow$ Serial interface external input <u>period</u>
		135	$\Delta$ f(XIN): Ta = <u>around</u> 25 °C $\rightarrow$ <u>center</u> 25 °C
		133	Figure title revised, "When ceramic resonator is used" deleted.
		139	Note 4: ( <u>power</u> current) $\rightarrow$ ( <u>supply</u> current)
		$\rightarrow$	Pages 79–81, 93–95, 114, 122–129:
		,	Description of SNZ0, SNZT1, SNZT2, SNZAD, SNZSI and WRST instructions revised.
Í			

### RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
  Pines
  This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
  But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
  All information in the purpose of any other military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
  All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application oracit useraphes, is current as of the date this document, but has product data, diagrams, charts, programs, algorithms, and application is activated in this document, but has product data, diagrams, charts, programs, algorithms, and application is additional and different information in the date this document, but Renesas assumes no liability whattosever for any damages incurred as a constraint of the data different information in this document, but Renesas assumes no liability whattosever for any damages incurred as a different information in this document, but Renesas as products are the technology described in this document.
  When using or otherwise religition of the total system before deciding about the applicability of other sets of any different information in this document.
  When using or otherwise religition in different information in the date this document.
  When using or otherwise in systems the failuto or mation included in this document.
  When using or ot



#### **RENESAS SALES OFFICES**

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

#### Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com