

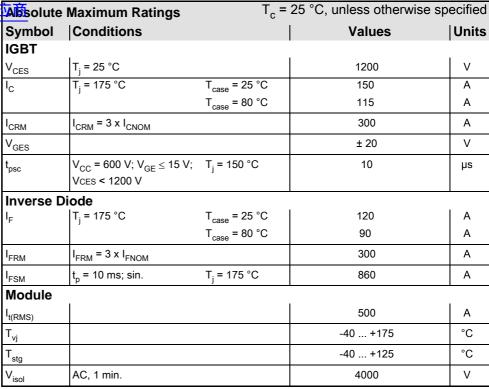
OEIIII I III III

IGBT4 Modules

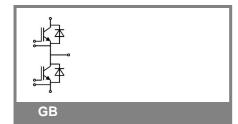
SKM 100GB12T4G

Target Data

Features


- IGBT4 = 4. Generation (Trench)
 IGBT
- V_{CEsat} with positive temperature coefficient
- High short circuit capaility, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

Typical Applications


- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Remarks

• Case temperature limited to T_c = 125°C max, recomm. T_{op} = -40 ... +150°C, product rel. results valid for $T_i \le 150^\circ$

Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 4 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C				mA
V _{CE0}		T _j = 25 °C		0,8	0,9	V
		T _j = 150 °C		0,7	0,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10,5	11,5	mΩ
		$T_j = 150$ °C		15,5	16,5	mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{\text{chiplev.}}$		1,85	2,05	V
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V
C _{ies}				6,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,41		nF
C _{res}				0,35		nF
Q_G	V _{GE} = -8V/+15V			570		nC
R_{Gint}	T _j = 25 °C			2		Ω
$t_{d(on)}$						ns
t _r `´ E _{on}	$R_{Gon} = \Omega$	V _{CC} = 600V				ns
E _{on}	D 0	I _{Cnom} = 100A		11		mJ
t _{d(off)}	$R_{Goff} = \Omega$	$T_j = 150 ^{\circ}\text{C}$				ns
t _f E _{off}		V _{GE} ≤ -8V		11		ns mJ
R _{th(j-c)}	per IGBT	I			0,29	K/W

IGBT4 Modules

SKM 100GB12T4G

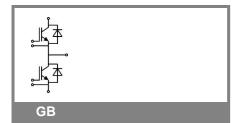
Target Data

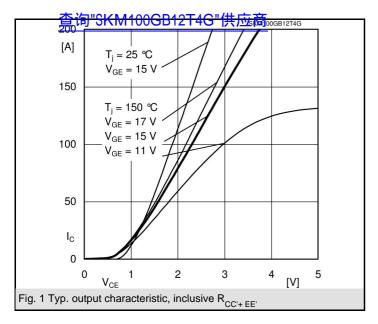
Features

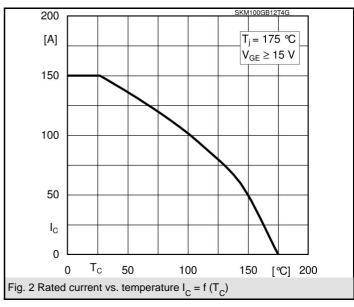
- IGBT4 = 4. Generation (Trench) IGBT
- V_{CEsat} with positive temperature coefficient
- High short circuit capaility, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

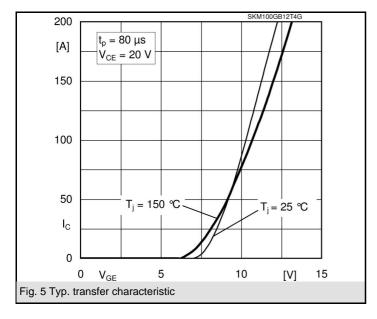
Typical Applications

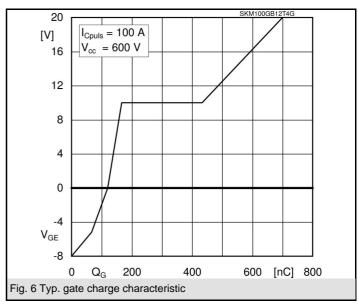
- · AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

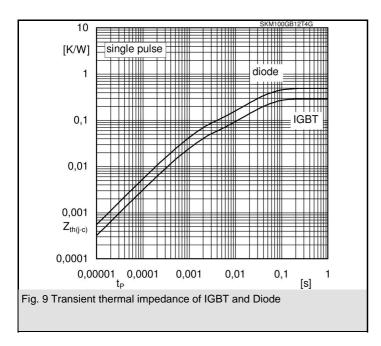

Remarks

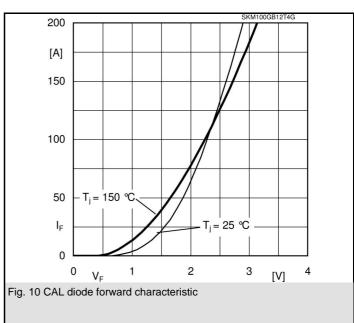

• Case temperature limited to T_c = 125°C max, recomm. T_{op} = -40 ... +150°C, product rel. results valid for $T_i \le 150^\circ$


Cha racteristics										
Symbol	Conditions		min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V			2,25	2,55	V				
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		2,2	2,5	V				
V_{F0}		T _j = 25 °C		1,3	1,5	V				
		T _j = 150 °C		0,9	1,1	V				
r _F		T _j = 25 °C		9,5	10,5	mΩ				
		T _j = 150 °C		13	14	mΩ				
I_{RRM} Q_{rr}	I _{Fnom} = 100 A	T _j = 150 °C				Α μC				
E _{rr}	$V_{GE} \le -8V$			7,5		mJ				
R _{th(j-c)}	per diode				0,49	K/W				
Freewheeling Diode										
$V_F = V_{EC}$	I _{Fnom} = A; V _{GE} = V	$T_j = {^{\circ}C_{chiplev.}}$				V				
V_{F0}		$T_j = ^{\circ}C$ $T_j = ^{\circ}C$ $T_j = ^{\circ}C$				V				
r _F		$T_j = {^{\circ}C}$				V				
I _{RRM}	I _{Fnom} = A	T _j = °C				Α				
Q_{rr}						μC				
E _{rr}						mJ				
	per diode					K/W				
Module										
L _{CE}				15	20	nΗ				
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C			0,35	mΩ				
		T _{case} = 125 °C			0,5	mΩ				
R _{th(c-s)}	per module			0,02	0,038	K/W				
M _s	to heat sink M6		3		5	Nm				
M _t	to terminals M6		2,5		5	Nm				
w					325	g				


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.





查询"SKM100GB12T4G"供应商

查询"SKM100GB12T4G"供应商

5 11-07-2007 SCH © by SEMIKRON