

MIC2564A

Dual Serial PCMCIA/CardBus Power Controller

Preliminary Information

General Description

The MIC2564A is dual-slot PC Card (PCMCIA) and CardBus power controller. It is a sophisticated power switching matrix that controls V_{CC} and V_{PP} voltages to two PC Card slots. The MIC2564A is used in conjunction with a serial-data output logic controller using the standard three-wire serial control data format.

When connected to 3.3V, 5V, and 12V system power supplies, the MIC2564A can switch its V_{CC} outputs between 0V, 3.3V, 5.0V, and high-impedance states and V_{PP} outputs between 0V, 3.3V, 5V, 12V, and high-impedance states. The V_{CC} outputs will supply a minimum of 1A current to the socket and the V_{PP} outputs will supply a minimum of 120mA to the socket. Voltage rise and fall times are well controlled. The MIC2564A also features an efficient standby (sleep) mode at 0.3 μ A typical quiescent current.

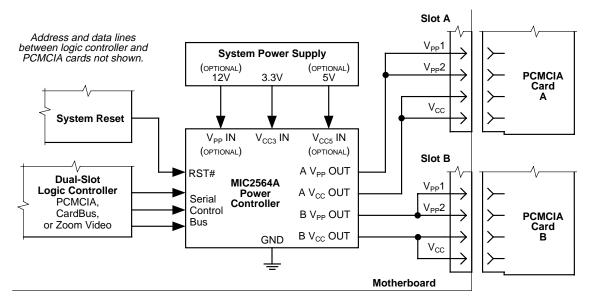
12V and 5V supplies are not required for MIC2564A operation making it possible to omit one or both supplies when they are not needed by the system. An internal charge pump supplies the internal bias voltages required for high-performance switching.

The MIC2564A is protected by overtemperature shutdown, and protects itself and the system with current limiting and cross-conduction lockout.

The MIC2564A is available in 24-pin SSOP and 24-pin TSSOP.

Features

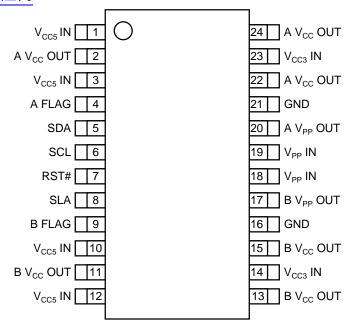
- · Standard 3-wire serial control data input
- Controls two card slots from one surface mount device
- High-efficiency, low-resistance switches
- 12V supply optional (not required by MIC2564A)
- Current limit and overtemperature shutdown
- Ultralow 1µA-typical standby power consumption
- Cross-conduction lockout (no switching transients)
- Break-before-make switching
- 1A minimum V_{CC} output per slot
- Independent V_{CC} and V_{PP} voltage output (MIC2564A-1)
- 120mA minimum V_{PP} output current per slot
- 24-pin surface-mount SSOP and TSSOP packages


Applications

- · PC Card and CardBus power control
- Zoom Video port power control
- · Wireless communications
- Bar code data collection systems
- Docking stations (portable and desktop)
- · Power supply management

Ordering Information

Part Number	Temperature Range	Package
MIC2564A-0BSM	–40°C to +85°C	24-pin SSOP
MIC2564A-1BSM	–40°C to +85°C	24-pin SSOP
MIC2564A-0BTS	–40°C to +85°C	24-pin TSSOP
MIC2564A-1BTS	–40°C to +85°C	24-pin TSSOP


Typical Application

PCMCIA Card Power Management Application

Pin Configuration

查询"MIC2564A"供应商

24-lead SSOP (SM) 24-lead TSSOP (TS)

Pin Description

Pin Number	Pin Name	Pin Function
1,3,10,12	V _{CC5} IN	5V Supply Input: Optional system power supply connection. Required only for 5V $V_{\rm CC}$ and $V_{\rm PP}$ output voltage.
2,22,24	A V _{CC} OUT	Slot A V _{CC} Output: Pins 2, 22, and 24 must be externally connected together.
4	A FLAG	Channel A V _{CC} and V _{PP} Output Monitor (Output): Low on error condition.
5	SDA	Serial Data (Input)
6	SCL	Serial Clock (Input)
7	RST#	System Reset (Input): Active low signal deactivates the MIC2564A, clearing the serial registers and forcing the four power outputs to 0V (GND).
8	SLA	Serial Data Latch (Input)
9	B FLAG	Channel B V _{CC} and V _{PP} Output Monitor (Output): Low on error condition.
11,13,15	B V _{CC} OUT	Slot B V _{CC} Output: Pins 11, 13, and 15 must be externally connected together.
14,23	V _{CC3} IN	3.3V Supply Input: Required system power supply connection. Powers 3.3V $V_{\rm CC}$ and $V_{\rm PP}$ outputs and all internal circuitry.
16,21	GND	Ground
17	B V _{PP} OUT	Slot B V _{PP} Output
18,19	V _{PP} IN	12V Supply Input: Optional system power supply connection. Required only for 12V $V_{\rm PP}$ output voltage.
20	A V _{PP} OUT	Slot A V _{PP} Output

Absolute Maximum Ratings (Note 1)

V _P 型旬"MIC2564A"供应商 V _{CC3} IN	+13.6V
V _{CC3} IN	+6.0V
V _{CC5} IN	+6.0V
V_{SCL} , V_{SDA} , V_{SLA} , $V_{RST\#}$	0.3V to +6.0V
V _{A FLAG} , V _{B FLAG}	+6.0V
A or B V _{PP} OUT	>120mA, Internally Limited
A or B V _{CC} OUT	>1A, Internally Limited
Power Dissipation at T _A ≤ 25°C	(P _D) Internally Limited
Storage Temperature	65°C to +150°C
Lead Temperature (5 sec.)	+260°C
ESD Rating, Note 3	

Operating Ratings (Note 2)

V _{PP} IN	0V to +13.2V
V _{CC3} IN	+3.0V to +5.5V
V _{CC5} IN	0V to +5.5V
V _{SCL} , V _{SDA} , V _{SLA} , V _{RST#}	
A or B V _{PP} OUT	0 to 120mA
A or B V _{CC} OUT	0 to 1A
Clock Frequency	0 to 2MHz
Ambient Temperature (T _A)	–40°C to +85°C
Junction Temperature (T _J)	+125°C
Package Thermal Resistance (θ _{JA})	
SSOP	90°C/W
TSSOP	83°C/W

Electrical Characteristics

 $\underline{V_{CC3} \, \text{IN} = 3.3 \text{V}, \, V_{CC5} \, \text{IN} = 5.0 \text{V}, \, V_{PP} \, \text{IN} = 12 \text{V}; \, T_{A} = 25^{\circ}\text{C}, \, \text{bold} \, \text{indicates} \, -40^{\circ}\text{C} \leq T_{A} \leq +85^{\circ}\text{C}; \, \text{unless noted}.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{PP} Output	t	•				
I _{PP} OUT Hi-Z	High Impedance Output Leakage Current	shutdown mode V _{PP} OUT = 0V		1	10	μА
I _{PPSC}	Short Circuit Current Limit	V _{PP} OUT = 0V, normal mode, Note 4	120	260	400	mA
R _O	Switch Resistance	V _{PP} OUT = 5V selected, I _{PP} OUT = -100mA (sourcing)		1.6	5	Ω
		V _{PP} OUT = 3.3V selected, I _{PP} OUT = -100mA (sourcing)		1.3	5	Ω
		V_{PP} OUT = 12V selected, V_{PP} IN = 12V, I_{PP} OUT = -100 mA (sourcing)		1.3	2.3	Ω
		V _{PP} OUT = 0V [ground] selected, I _{PP} OUT = 50μA (sinking)		2000	5000	Ω
V _{PP} Switch	ing Time (See Figure 2)					
t ₁	Output Turn-On Delay, Note 5	V_{PP} OUT = Hi-Z to 10% of 3.3V, $R_L = 100\Omega$		1	100	μs
t_2		V_{PP} OUT = Hi-Z to 10% of 5V, R_L = 100 Ω		1	100	μs
t ₃		V_{PP} OUT = Hi-Z to 10% of 12, RL = 100 Ω		50	250	μs
t ₄	Output Rise Time	$V_{PP} OUT = 10\% \text{ to } 90\% \text{ of } 3.3, R_L = 100\Omega$	10	100	500	μs
t ₅		V_{PP} OUT = 10% to 90% of 5, R_L = 100 Ω	10	250	1000	μs
t ₆		$V_{PP} OUT = 10\% \text{ to } 90\% \text{ of } 12, R_{L} = 100\Omega$	10	100	500	μs
t ₇	Output Transition Time, Note 5	V_{PP} OUT = 3.3V to 90% of 12V, $R_L = 100\Omega$	10	100	500	μs
t ₈		V_{PP} OUT = 5V to 90% of 12, $R_L = 100\Omega$	10	100	500	μs
t_9		V_{PP} OUT = 12V to 90% of 3.3, R_L = 100 Ω	10	100	500	μs
t ₁₀		V_{PP} OUT = 12V to 90% of 5, R_L = 100 Ω	10	250	1000	μs
t ₁₁	Output Turnoff Fall Time	$V_{PP} OUT = 90\% \text{ to } 10\% \text{ of } 3.3, R_L = 100\Omega$		1	500	μs
t ₁₂		$V_{PP} OUT = 90\% \text{ to } 10\% \text{ of } 5, R_L = 100\Omega$		1	500	μs
<u>t</u> ₁₃		$V_{PP} OUT = 90\% \text{ to } 10\% \text{ of } 12, R_{L} = 100\Omega$		1	500	μs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t ₁₄ 查试	TON INCOME TO THE PROPERTY OF	V_{PP} OUT = 3.3V to Hi-Z, R_L = 100 Ω		1	50	μs
t ₁₅	Notes 5, 7	V_{PP} OUT = 5V to Hi-Z, R_L = 100 Ω		1	50	μs
t ₁₆		V_{PP} OUT = 12V to Hi-Z, R_L = 100 Ω		1	50	μs
V _{CC} Output			•		•	
I _{CC OUT} Hi-Z	High Impedance Output Leakage Current	shutdown mode, V _{CC} OUT = 0V		1	20	μΑ
I _{ccsc}	Short Circuit Current Limit	V _{CC} OUT = 0, normal mode, V _{CC3} or V _{CC5} switches, Note 4	1.0	2.0	3.0	А
R _O	Switch Resistance	V _{CC} OUT = 3.3V selected, I _{CC} OUT = -1A (sourcing)		120	150	mΩ
		V _{CC} OUT = 5V selected, I _{CC} OUT = -1A (sourcing)		85	120	mΩ
		V _{CC} OUT = 0V [ground] selected, I _{CC} OUT = 0.1mA (sinking)		2000	3900	Ω
V _{CC} Switching	ng Time (See Figure 3)					
t ₁₇	Output Turn-On Delay Time,	V_{CC} OUT = 0V to 10% of 3.3, $R_L = 10\Omega$		250	500	μs
t ₁₈	Note 5	V_{CC} OUT = 0V to 10% of 5.0, $R_L = 10\Omega$		500	1000	μs
t ₁₉	Output Rise Time	V_{CC} OUT = 10% to 90% of 3.3V, $R_L = 10\Omega$	750	1200	5000	μs
t ₂₀		V_{CC} OUT = 10% to 90% of 5, R_L = 10 Ω	1000	2200	5000	μs
t ₂₁	Output Fall Time	V_{CC} OUT = 90% to 10% of 3.3, R_{L} = 10 Ω	100	550	1000	μs
t ₂₂		V_{CC} OUT = 90% to 10% of 5.0, R_{L} = 10 Ω	100	400	2000	μs
t ₂₃	Output Turnoff Delay, Notes 5, 6	V_{CC} OUT = 3.3V to 90% of 3.3V , R_L = 10 Ω		400	2000	μs
t ₂₄		V_{CC} OUT = 5V to 90% of 5V, $R_L = 10\Omega$		400	2000	μs
Power Supp	ly					
I _{CC3}	V _{CC3} IN Supply Current (3.3V)	V _{CC} OUT = 5V or 3.3V, I _{CC} OUT = 0		120	200	μΑ
	Note 7	V _{CC} OUT = Hi-Z (sleep mode)		5	10	μΑ
I _{CC5}	V _{CC5} IN Supply Current (5V)	V _{CC} OUT = 5V or 3.3V, I _{CC} OUT = 0		25	50	μΑ
	Note 8	V _{CC} OUT = Hi-Z (sleep mode)		0.2	10	μΑ
I _{PP} IN	V _{PP} IN Supply Current (12V)	V_{PP} OUT = 0V, 3.3V, 5V, or Hi-Z; I_{PP} OUT = 0		1	10	μΑ
	Note 8	V _{PP} OUT = V _{PP} IN		4	50	μΑ
V _{CC3}	Operating Input Voltage (3.3V)	Note 7	3.0	3.3	5.5	V
V _{CC5}	Operating Input Voltage (5V)	Note 8	_	5.0	5.5	V
$\overline{V_{PP}}$	Operating Input Voltage (12V)	Note 8, 9	_	12	13.2	V
Thermal Shu	ıtdown					
T_{SD}	Thermal Shutdown Temperature			145		°C
	nce DC Specifications		•		•	
$\overline{V_{IH}}$	Input Voltage: SDA, SCL, SLA pins		0.7V _{CC3} IN		5.5	V
V _{IL}	Input Voltage: SDA, SCL, SLA pins		-0.3		0.3V _{CC3} IN	V
I _{IN}	Input Current	0V < V _{IN} < 5.5V	-1	0.2	1	μΑ
Flag			•		•	
I _{FLG}	Flag Leakage Current	V _{FLG} = 5V			1	μΑ
	ı	ı 			1	

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Serial Inter	face Timing Requirements (See F	igure 1), Note 10		•		
t _{HD:DAT}	SDA Hold Time		75			ns
t _{SU:DAT}	SDA Setup Time	data before clock	75			ns
t _{SU:SLA}	Latch Setup Time		50			ns
t _{SU:RST#}	Reset to Data Setup Time	RST# before data	50			ns
t_W	Minimum Pulse Width	clock (t _{W:CLK})	50			ns
		latch (t _{W:SLA})	100			ns
		reset (t _{W:RST})	50			ns
		data (t _{W:DA})	50			ns

- Note 1. Exceeding the absolute maximum rating may damage the device.
- Note 2. The device is not guaranteed to function outside its operating rating.
- Note 3. Devices are ESD sensitive. Handling precautions recommended.
- Note 4. Output enabled into short circuit.
- Note 5. Measurement is from the 50% point of the SLA rising edge.
- **Note 6.** Measurement is from the Hi-Z- or 0V-state command to the beginning of the slope. Measurement does not apply when device is in current limit or thermal shutdown.
- **Note 7.** V_{CC3} IN powers all internal logic, bias, and drive circuitry, and is required for operation.
- Note 8. V_{PP} and V_{CC5} IN are not required for operation.
- Note 9. V_{PP} IN must be either high impedance or greater than or approximately equal to the highest voltage V_{CC} in the system. For example, if both 3.3V and 5V are connected to the MIC2564A, V_{PP} IN must be either 5V, 12V, or high impedance.
- Note 10. Guaranteed by design not production tested.

Serial Control Timing Diagram

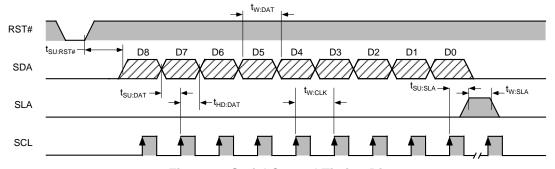


Figure 1. Serial Control Timing Diagram

The MIC2564A uses a three-wire serial interface to control V_{CC} and V_{PP} outputs for both sections A and B. The three control lines have thresholds compatible with both 3.3V and 5V logic families. Data (SDA) is clocked in on the rising clock edge. The clock signal may be continuous or it may halt after all data is clocked in.

Output Timing Diagrams

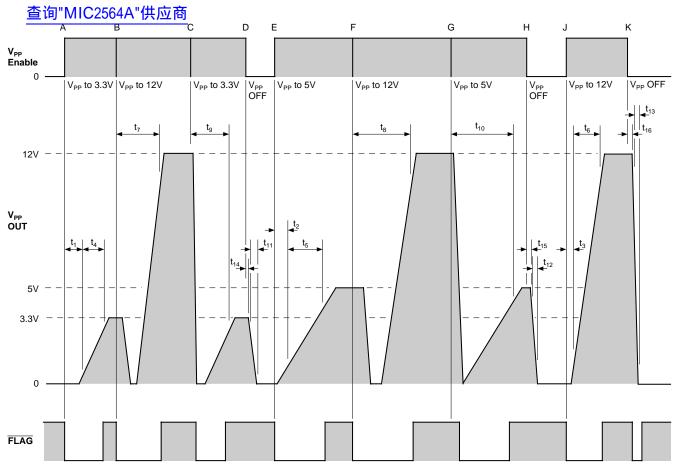


Figure 2. V_{PP} Timing Diagram

 V_{PP} Enable is shown generically. R_L = 100 Ω . C_L = negligible. Refer to the serial control timing diagrams for details. At time **A**) V_{PP} = 3.3V is selected, **B**) V_{PP} is set to 12V, **C**) V_{PP} = 3.3V (from 12V), **D**) V_{PP} is disabled, **E**) V_{PP} is programmed to 5V, **F**) V_{PP} is set to 12V, **G**) V_{PP} is programmed to 5V, **H**) V_{PP} is disabled, **J**) V_{PP} is set to 12V, **K**) V_{PP} is again disabled.

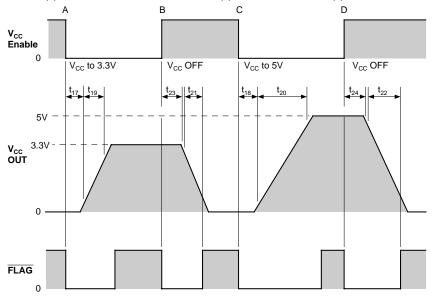
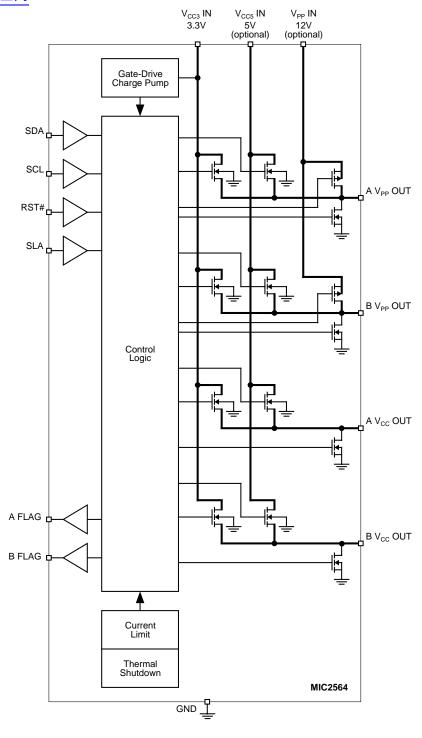


Figure 3. V_{CC} Timing Diagram

 V_{CC} Enable is shown generically. R_L = 10 Ω . Refer to the serial control timing diagrams for specific control logic input. At time **A**) V_{CC} is programmed to 3.3V, **B**) V_{CC} is disabled, **C**) V_{CC} is programmed to 5V, **D**) V_{CC} is disabled.


(D)
<u> </u>
$\overline{}$
7
ינט
()
.≃
מ
ð.
٧.
_
0
T
⋖
Ä
ဖွ
S
S
Ċ
\simeq
₹

SHDN	D7 B V _{CC} 5	D6 B V _{CC} 3	D5 B V _{PP_VCC}	D4 B V _{PP_PGM}	D3 A V _{CC} 5	$^{ m D2}$ A $^{ m Cc}$ ³	D1 A V _{PP_VCC}	DU A V _{PP_} PGM	B V _{PP} OUT	B V _{CC} OUT	A V _{PP} OUT	A V _C CUT
0	×	×	×		×	×	×		Hi-Z	Hi-Z	Hi-Z	VV(
1					0	0	0	0			*\0	25
_					0	0	0	_			12V [†]	64 .
_					0	0	_	0			*\0	A"1 6
_					0	0	_	-			Hi-Z	共立
-					0	_	0	0			*\0	3.3
~					0	_	0	-			12V	3.37
_					0	_	_	0			3.3V	3.3V
_					0	_	-	-			H-Z	3.3V
_					_	0	0	0			*\0	20
_					_	0	0	-			12V	20
-					_	0	_	0			5V	5V
_					_	0	_	-			Hi-Z	5V
_					_	_	0	0			*\0	*\0
_					_	_	0	_			12V [†]	1V0
_					_	_	_	0			*\0	*\0
_					_	_	_	-			Hi-Z	*\0
-	0	0	0	0					*\0	*\0		
_	0	0	0	_					12V [†]	1*\0		
-	0	0	~	0					*\0	*\0		
-	0	0	_	-					Hi-Z	*\0		
-	0	_	0	0					*\0	20		
-	0	_	0	-					12V	20		
_	0	_	_	0					5V	20		
_	0	_	_	-					Hi-Z	20		
1	1	0	0	0					*\00	3.3V		
_	-	0	0	-					12V	3.3V		
1	1	0	1	0					3.3V	3.3V		
-	-	0	_	-					Z-iH	3.3V		
_	-	_	0	0					*\0	*\0		
_			0	_					12V [†]	1*\0		
_	-	_	_	0					*\00	*\0		
-	_	_	-	-					Z-!H	*\0		

4
Ψ
$\overline{}$
<u> </u>
Œ
<u>~</u>
()
.≌
7
Ŏ,
0
Ĭ
_
_
$\overline{}$
ī
Ą
`ı_
,4A-
Ą
,4A-

D8 SHDN	D7 B V _{CC} 5	D6 B V _{CC} 3	D5 B V _{PP_VCC}	D4 B V _{PP_PGM}	D3 А V _{CC} 5	$^{ m D2}$ A $^{ m Cc}$ ³	D1 A V _{PP_VCC}	D0 A V _{PP_PGM}	B V _{PP} OUT	B V _{CC} OUT	A V _{PP} OUT	A V _{CC} OUT
0	×	×	×		×	×	×		Z-!H	Hi-Z	Hi-Z	询主
_					0	0	0	0			*\0	<mark>"M</mark> 0
_					0	0	0	_			12V†	ic:
_					0	0	_	0			*\0	2 <u>5</u> 6
_					0	0	_	-			Hi-Z	4A 6
_					0	_	0	0			*\0	" <mark>供</mark> 3.3 <mark>次</mark> "
_					0	-	0	-			12V	3.3玄
_					0	-	-	0			3.3V	3.3
_					0	_	~	-			20	3.3V
_					-	0	0	0			*\0	20
_					-	0	0	-			12V	20
_					~	0	_	0			20	20
_					_	0	_	-			3.3V	20
_					_	_	0	0			*\0	*\0
_					_	_	0	_			12V†	100
_					-	-	-	0			*\0	*\0
1					_	_	_	-			Hi-Z	*\0
1	0	0	0	0					*\0	*\0		
_	0	0	0	_					12V [†]	1*\0		
_	0	0	_	0					*\0	*\0		
_	0	0	_	_					Hi-Z	*\0		
_	0	_	0	0					*\0	5V		
_	0	_	0	_					12V	20		
_	0	_	_	0					5V	5V		
_	0	_	-	_					3.3V	20		
_	_	0	0	0					*\0	3.3V		
_	_	0	0	_					12V	3.3V		
1	1	0	1	0					3.3V	3.3V		
_	1	0	_	_					2V	3.3V		
1	1	1	0	0					*\0	*\0		
_	_	_	0	_					12V†	1*\\0		
1	1	1	1	0					_* /\0	*\0		
1	-	_	_	-					Z-!H	*\0		

Functional Diagram

Applications Information

PC Card power control for two spekets is easily accomplished using the MIC2564A PC Card/CardBus power controller. Control commands from a three-wire (plus Reset) serial bus determine V_{CC} and V_{PP} output voltages and select standby or operate mode.

 V_{CC} outputs of 3.3V and 5V at the maximum allowable PC Card current are supported. The V_{CC} outputs also support GND (0V) and high-impedance states. The V_{PP} outputs support V_{PP} (12V), V_{CC} voltages (3.3V or 5V), GND (0V), or high impedance. When the V_{CC} = Hi-Z (high impedance) condition is selected, the device switches into sleep mode and draws only leakage current.

Full protection during hot switching is provided which prevents feedback from the V_{CC} output (for example, from the 5V supply into the 3.3V supply) by locking out the low voltage switch until the initial switch's gate voltage drops below 0.7V.

MIC2564A internal logic and MOSFET drive circuitry is powered from the $\rm V_{CC3}$ input and internal charge-pump voltage multipliers. Switching speeds are carefully controlled to prevent damage to sensitive loads and meet all PC Card Specification timing requirements, including those for the CardBus option.

Supply Bypassing

The MIC2564A is a switch and has no stability problems; however, supply bypass capacitors are recommended to reduce inductive transients and improve output ripple. As all internal device logic and comparison functions are powered from the V_{CC3} input, the power supply quality on this line is the most important. Micrel recommends placing $1\mu F$ surfacemount ceramic (low ESR) capacitors from V_{CC3} IN and V_{CC5} IN pins to ground and two $0.1\mu F$ surface-mount ceramic capacitors, one from each V_{PP} IN pin, to ground. Also, the V_{CC} OUT and V_{PP} OUT pins may use $0.01\mu F$ to $0.1\mu F$ capacitors for noise reduction and to reduce the chance of ESD (electrostatic discharge) damage.

Power Status Feedback (Flags)

Two flag outputs monitor the V_{CC} and V_{PP} output voltages on both slot A and B, falling low when the voltage is not proper. Use of these open-drain flag outputs is optional; if they are used, a pull-up resistor to either the 3.3V or 5V supply is required. Unused flag outputs may be left open.

PC Card Slot Implementation

The MIC2564A is designed for full compatibility with the Personal Computer Memory Card International Association (PCMCIA) PC Card Specification including the CardBus and Zoom Video (ZV) options.

When a PC card is initially inserted, it should receive V_{CC} (3.3V \pm 0.3V or 5.0V \pm 5%). The initial voltage is determined by a combination of mechanical socket keys and voltage sense pins. The card sends a handshaking data stream to the logic controller, which then determines if this card requires V_{PP} and if the card is designed for dual V_{CC} . If the card is compatible with, and requires, a different V_{CC} level, the logic controller commands the power controller to make this change by disabling V_{CC} , waiting at least 100ms, and then reenabling the other V_{CC} voltage.

If no card is inserted, or the system is in sleep mode, the logic controller commands the MIC2564A to shut down V_{CC} . This also places the switch into a shutdown (sleep) mode, where current consumption drops to nearly zero, with only tiny CMOS leakage currents flowing.

Internal device control logic, MOSFET drive and bias voltage is powered from V_{CC3} IN. The high voltage bias is generated by an internal charge pump multiplier. Input logic threshold voltages are compatible with common PC Card logic controllers using either 3.3V or 5V supplies.

PC Card Voltage Regulation

The MIC2564A has been designed to meet or exceed PC Card voltage regulation specifications. The on-resistance of the FET switches will meet regulation requirements at 600mA and 1A respectively for $V_{\rm CC}$ = 5V ±3% and 3.3V ±3%.

Flash Memory Implementation

When programming flash memory (standard +12V flash memories), the PC Card slot logic controller enables V_{PP} on the MIC2564A, which connects V_{PP} IN (nominally +12V) to V_{PP} OUT. The low on-resistance of the MIC2564A switch allows using a small bypass capacitor on the V_{PP} OUT pins, with the main filtering performed by a large filter capacitor on V_{PP} IN. (Usually the main power supply filter capacitor is sufficient.) Using a small-value capacitor such as $0.1\mu F$ on the output causes little or no timing delays.

The V_{PP} OUT transition from V_{CC} to 12.0V typically takes 200 μ s. After programming is completed, the logic controller signals to the MIC2564A, which then reduces V_{PP} OUT to the V_{CC} level. Break-before-make switching action and controlled rise times reduce switching transients and lower current spikes through the switch.

Output Current and Protection

The MIC2564A meets or exceeds all PCMCIA specifications. MIC2564A output switches are capable of passing the maximum current needed by any PC Card. For system and card protection, output currents are internally limited. For full system protection, long term (longer than a few milliseconds) output short circuits invoke overtemperature shutdown, protecting the MIC2564A, the system power supplies, the card socket pins, board traces, and the PC Card. Individual internal status registers for each slot indicate when power problems exist.

Control Bus Interface Overview

The MIC2564A power controller communicates with a logic controller (host adapter) via a 3-wire serial interface. A fourth control line attaches to the system reset line (RST#) and places all MIC2564A switches in the high impedance (off) state. The reset function is active low.

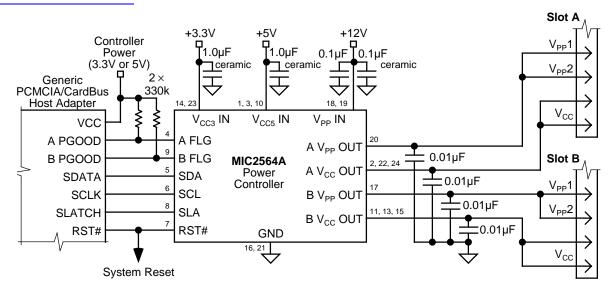


Figure 4. Generic "3-Wire" Serial Control Interface

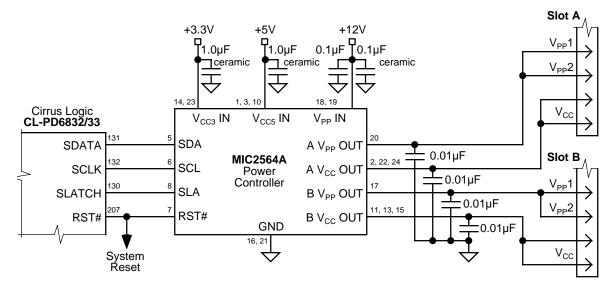


Figure 5. Cirrus Logic CL-PD6832 and CL-PD6833 Interface

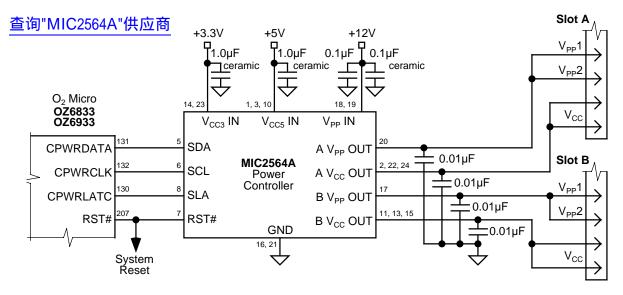


Figure 6. O₂ Micro OZ6833 and OZ6933

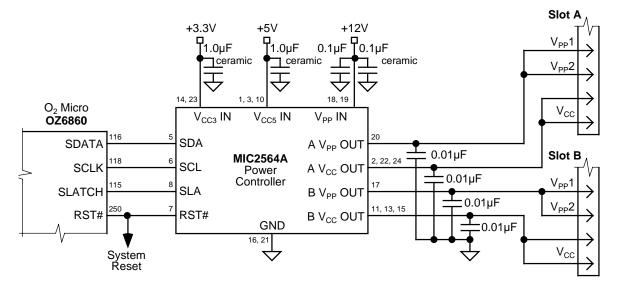
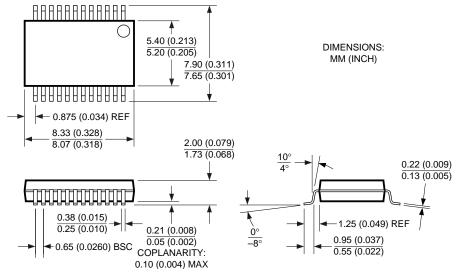
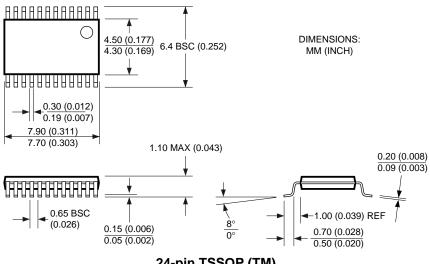




Figure 7. O₂ Micro OZ6860

Package Dimensions

24-pin SSOP (SM)

24-pin TSSOP (TM)

查询"MIC2564A"供应商

MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 1999 Micrel Incorporated