

16V, 180µA Low Power, Low Noise, Single Precision CMOS Rail-to-Rail Output Operational Amplifiers

Preliminary Technical Data

AD8663

FEATURES

Lower Power at High Voltage: 180 μA typ

Low offset voltage: 100 μV

Low input bias current: 300 fA Max

Low Voltage Noise: 21nV/ \sqrt{Hz} @ 10kHz 23nV/ \sqrt{Hz} @ 1kHz

Single-supply operation: 5V to 16V Dual-supply operation: ±2.5V to ±8V

Output Drive 10mA
Unity Gain Stable

APPLICATIONS

Medical Equipment
Precision References
Buffer / Level Shifting
Portable Operated Systems
Sensors
Photodiode Amplification
ADC Drivers

GENERAL DESCRIPTION

The AD8663 is single rail-to-rail output single/dual supply amplifiers that use Analog Devices' patented DigiTrim® trimming technique to achieve low offset voltage, 300µV over the common mode range. The AD8663 family features an extended operating range with supply voltage up to 16V for low power operation with I_{SY} of < 325µA over the extended industrial temperature. These devices are designed for low noise at higher voltages, $21nV/\sqrt{Hz}$ at 10kHz and $23~nV/\sqrt{Hz}$ at 1~kHz. They also feature low input bias currents of 300fA and 10mA output drive.

The combination of low supply currents, low offsets, very low input bias currents, and wide supply range make these amplifiers useful in a wide variety of low power applications. Systems utilizing DC to low frequency measurements, or high impedance sensors, such as photo-diodes benefit from the combination of low input bias current, low noise, low offset and drive current. The wide operating voltage range matches today's high performance ADCs and DACs. Medical monitoring equipment can take advantage of the low voltage noise, high input impedance, low voltage and current noise.

The AD8663 is specified over the extended industrial (-40°C to +125°C) temperature range.

Rev. PrA
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, not for any infringements of patents or other

f.dzsc.com

responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Trademarks and registered trademarks are the property of their respective owners.

PIN CONFIGURATIONS

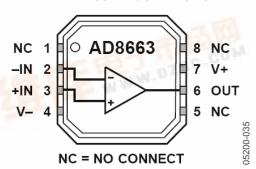


Figure 1. 8-Lead LFCSP_VD (CP-16-4 Suffix)

Figure 2. 8-Lead SOIC_N (R-8 Suffix)

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.

Preliminary Technical Data

AD8663 查询"<u>AD8663ARZ-R7"供应商</u>

TABLE OF CONTENTS

Features	Specifications	3
Applications	Absolute Maximum Ratings	5
General Description	Thermal Resistance	5
Pin Configurations	ESD Caution	5
Revision History	Ordering Guide	5
Specifications Error! Bookmark not defined.		

REVISION HISTORY

4/07—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 V_{S} = 5.0 V, V_{CM} = $V_{\text{S}}/2,\,T_{\text{A}}$ = 25°C unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = 2.5 \text{ V}$			100	μV
		-40°C < T _A < +125°C			350	μV
		$V_{CM} = 0 V \text{ to } 3.5 V$		70	300	μV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$		100	450	μV
		$V_{CM} = 0.2 \text{ V to } 3.5 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$		100	450	μV
Input Bias Current	I _B			0.3		рA
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			20	рА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			150	рА
Input Offset Current	los			0.2		рA
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			15	рA
		-40°C < T _A < +125°C			50	pА
Input Voltage Range	IVR	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	0		3.5	V
		-40°C < T _A < +125°C	0.2		3.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 3.5 \text{ V}$	80	90		dB
		$V_{CM} = 0.2 \text{ V to } 3.5 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	80	90		dB
Large Signal Voltage Gain	A _{vo}	$R_L = 2 \text{ k}\Omega$, $V_O = 0.5 \text{ V to } 4.5 \text{ V}$	106	115		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		1.3	5	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$I_L = 1 \text{ mA}$	4.65	4.8		V
		-40°C < T _A < +125°C	4.6	4.7		V
Output Voltage Low	VoL	$I_L = 1 \text{ mA}$		150	200	mV
		-40°C < T _A < +125°C		200	250	mV
Short-Circuit Current	Isc			±6		mA
Closed-Loop Output Impedance	Zout	$f = 100 \text{ kHz}, A_V = 1$		120		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 5 V \text{ to } 16 V$	95	105		dB
Supply Current/Amplifier	Isy			180	275	μΑ
		-40°C < T _A < +125°C			325	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		0.2		V/µs
Settling Time	ts	To 0.1%, 0 V to 2 V step, $A_V = 10$		12		μs
Gain Bandwidth Product	GBP			600		kHz
Phase Margin	Фм			60		Degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		3		μV p-p
Voltage Noise Density	e _n	f = 10 kHz		21		nV/√Hz
-		f = 1 kHz		23		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.05		pA/√Hz

 $V_S = 16$ V, $V_{CM} = V_S/2$, $T_A = 25$ °C unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = 8 V$		40	300	μV
		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$			350	μV
		$V_{CM} = 0 V \text{ to } 14.5 V$		70	300	μV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			450	μV
		$V_{CM} = 0.2 \text{ V to } 14.5 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			450	μV
Input Bias Current	I _B			0.3		рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			30	рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$			250	рА
Input Offset Current	los			0.2		рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			25	рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$			150	рА
Input Voltage Range	IVR	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	0		14.5	V
		-40°C < T _A < +125°C	0.2		14.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 14.5 V$	90	100		dB
		$V_{CM} = 0.2 \text{ V to } 14.5 \text{ V}, -40^{\circ}\text{C} < T_{A} < +125^{\circ}\text{C}$	90	100		dB
Large Signal Voltage Gain	Avo	$R_L = 2 \text{ k}\Omega$, $V_O = 0.5 \text{ V}$ to 15.5 V	112	124		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			1.2	5	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$I_L = 1 \text{ mA}$	15.8	15.9		V
		$I_L = 10 \text{ mA}$	14.8	15.1		V
		$I_L = 10 \text{ mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	14.65	14.8		V
Output Voltage Low	VoL	$I_L = 1 \text{ mA}$		80	100	mV
		$I_L = 10 \text{ mA}$		600	720	mV
		$I_L = 10 \text{ mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$		800	900	mV
Short-Circuit Current	Isc			±50		mA
Closed-Loop Output Impedance	Z _{оит}	$f = 100 \text{ kHz}, A_V = 1$		100		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 5 \text{ V to } 16 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	95	105		dB
Supply Current/Amplifier	Isy			230	285	μΑ
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			325	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		0.3		V/µs
Settling Time	ts	To 0.1%, 0 V to 2 V step		12		μs
Gain Bandwidth Product	GBP			600		kHz
Phase Margin	Фм			60		Degree
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		3		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		23		nV/√Hz
		f = 10 kHz		21		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.05		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 1.

Parameter	Rating
Supply Voltage	18V
Input Voltage	V _S supply
Differential Input Voltage	18V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering 60 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in circuit board for surface-mount packages.

Table 2.

Package Type	θ _{JA}	θ _{JC}	Unit
8-Lead SOIC_N	121	43	°C/W
8-Lead LFCSP_VD	75	18	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8663ACPZ-R2 ¹	−40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP_VD]	CP-8-2
AD8663ACPZ-R7 ¹	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP_VD]	CP-8-2
AD8663ACPZ-RL ¹	−40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP_VD]	CP-8-2
AD8663ARZ ¹	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8
AD8663ARZ-R7 ¹	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8
AD8663ARZ-RL ¹	−40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8

¹ Z = Pb-free part.

