

Current Transducer LF 205-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

1	61	

Electrical data

I _{PN}	Primary nominal r.m.s. current		200				Α
I _P	Primary current, measuring range			0	± 420)	Α
\mathbf{R}_{M}	Measuring resistance @		$T_A =$	70°C	T _A =	= 85°(2
			$R_{_{ m M\ min}}$	$\mathbf{R}_{M\;max}$	$R_{_{ m M\ min}}$	R _{M max}	«
	with ± 12 V	$@ \pm 200 A_{max}$	0	71	0	69	Ω
		@ ± 420 A _{max}	0	14	0	12	Ω
	with ± 15 V	@ $\pm 200 A_{max}$	0	100	23	98	Ω
		$@ \pm 420 A_{max}$	0	28	23	26	Ω
I _{SN}	Secondary nominal r.m.s. current			100)		mΑ
K _N	Conversion ratio			1:	2000		
V _C	Supply voltage (± 5 %)			± 1	2 1	5	V
I _C	Current consumption @ ± 15 V			17	+ I _s		mΑ

Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$		± 0.5		%
e _	Linearity error		< 0.1		%
			Тур	Max	
Io	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.2	mΑ
I _{OM}	Residual current 1) @ $\mathbf{I}_{p} = 0$, after an	overload of 3 x I _{PN}		± 0.1	mΑ
I_{OT}	Thermal drift of \mathbf{I}_{o}	- 40°C + 85°C	± 0.12	± 0.4	mΑ
t _{ra}	Reaction time @ 10 % of \mathbf{I}_{PN}		< 500		ns
t,	Response time 2) @ 90 % of I _{PN}		< 1		μs
di/dt	di/dt accurately followed		> 100		A/µs
f	Frequency bandwidth (- 3 dB)		DC 1	00	kHz

General data

General data					
T _A	Ambient operating temperature	- 40 + 85	°C		
T _s	Ambient storage temperature	- 40 + 90	°C		
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	33	Ω		
-	@ $T_A = 85^{\circ}C$	35	Ω		
m	Mass	78	g		
	Standards	EN 50178 : 1997			

$I_{PN} = 200 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- What frequency barre
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industry.

Notes: 1) The result of the coercive field of the magnetic circuit

 $^{2)}$ With a di/dt of 100 A/ μ s.

Current Transducer LF 205-S

Isolation characteristics					
V d V w	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn Impulse withstand voltage 1.2/50 µs	3.5 8.8	kV kV		
V _w	R.m.s. voltage for partial discharge extinction @ 10pC	> 2	kV		
dCp	Creepage distance	Min 11	m m		
dCI CTI	Clearance distance Comparative Tracking Index (Group III a)	10.2 175	m m		

Application examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 2
- Pollution degree PD3
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, $\hat{\boldsymbol{V}}_{_{w}}$	Rated isolation voltage	Nominal voltage
Single isolation	500 V	500 V
Reinforced isolation	250 V	250 V

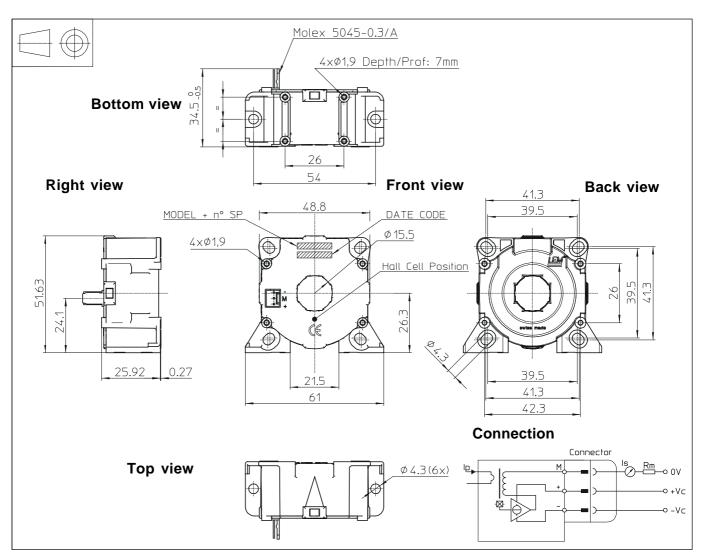
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 205-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance ± 0.2 mm
- Transducer fastening Vertical position

2 holes Ø 4.3 mm 2 M4 steel screws

Fastening torque, max or

3.2 Nm or 2.37 Lb. - Ft. 4 holes \varnothing 1.9 mm depth 7 mm 4 x PT KA25 screws long 6 mm

• Transducer fastening Horizontal position

4 holes Ø 4.3 mm 4 M4 steel screws

Fastening torque, max

3.2 Nm or 2.37 Lb. - Ft.

or

4 holes Ø 1.9 mm 4 x PT KA25 screws 0.7 Nm or 0.52 Lb. - Ft.

Fastening torque, max • Primary through-hole

Ø 15.5 mm

· Connection of secondary

Molex 5045-0.3/A

Remarks

- I_s is positive when I_P flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

060522/11