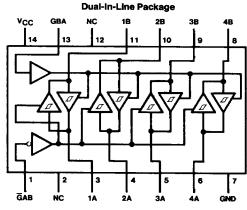


查询"DM54L\$243J"供应商 DM74L\$243 Quadruple Bus Transceiver


General Description

This four data line transceiver is designed for asynchronous two-way communications between data buses. It can be used to drive terminated lines down to 133Ω .

Features

- Two-way asynchronous communication between data buses
- PNP inputs reduce DC loading on bus line
- Hysteresis at data inputs improves noise margin

Connection Diagram

Order Number DM74LS243WM or DM74LS243N See NS Package Number M14B or N14A TL/F/6412-1

Function Table

Control Inputs			Port itus	
GAB	GBA	A	В	
н	н	0	I	
L	н	•		
Н	L	ISOLATED		
L	L	ŀ	0	

^{*}Possibly destructive oscillation may occur if the transceivers are enabled in both directions at once.

I = Input, O = Output.

 $H = High \ Logic \ Level, \ L = \ Low \ Logic \ Level.$

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Operating Free Air Temperature Range

DM74LS

0°C to +70°C

Storage Temperature Range

-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Units		
		Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
ViH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
loн	High Level Output Current			-15	mA
loL	Low Level Output Current			24	mA
TA	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter		Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I	= -18 mA				-1.5	V
HYS	Hysteresis (V _{T+} - V _{T-}) (Data Inputs Only)	V _{CC} = Min			0.2	0.4	-	٧
V _{OH}	High Level Output Voltage	$V_{CC} = Min, V$ $V_{IL} = Max, I_{C}$		-	2.7		-	
		V _{CC} = Min, V V _{IL} = Max, I _O			2.4	3.4		٧
		$V_{CC} = Min, V$ $V_{IL} = 0.5V, I_{C}$			2			
VOL	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 m/	A			0.4	
		V _{IL} = Max V _{IH} = Min	I _{OL} = Max				0.5	\ \ \
lozh	Off-State Output Current, High Level Voltage Applied	V _{CC} = Max V _{IL} = Max	$V_0 = 2.7V$				40	μΑ
lozL	Off-State Output Current, Low Level Voltage Applied	V _{IH} = Min	V _O = 0.4V				-200	μΑ
I _I	Input Current at Maximum	V _{CC} = Max	V _I = 5.5V	A or B			0.1	mA
	Input Voltage	Input Voltage V _I =	V _I = 7V	Any G			0.1	mA
l _{IH}	High Level Input Current	V _{CC} = Max, V	/j = 2.7V				20	μА
I _Ι L	Low Level Input Current	V _{CC} = Max, V	/ _I = 0.4V		-		-0.2	mA
los	Short Circuit Output Current	V _{CC} = Max (N	lote 2)		-40	-	225	mA
lcc	Supply Current	V _{CC} = Max	Outputs High	1		22	38	
		Outputs Open	Outputs Low			29	50	mA
		Poi	Outputs Disa	bled		32	54	

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Symbol	Parameter	Conditions	Min	Max	Units
^{tpLH} 查询	"DNPrepagation Delay/Ima 商	$C_L = 45 pF$ $R_L = 667 \Omega$		18	ns
^t PHL	Propagation Delay Time High to Low Level Output	$C_L = 45 \text{ pF}$ $R_L = 667\Omega$		18	ns
^t PZL	Output Enable Time to Low Level	$C_L = 45 \text{ pF}$ $R_L = 667\Omega$		30	ns
^t PZH	Output Enable Time to High Level	$C_L = 45 pF$ $R_L = 667 \Omega$		23	ns
^t PLZ	Output Disable Time from Low Level	$C_L = 5 pF$ $R_L = 667 \Omega$		25	ns
t _{PHZ}	Output Disable Time from High Level	$C_L = 5 pF$ $R_L = 667\Omega$		18	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	$C_L = 150 pF$ $R_L = 667 \Omega$		21	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	$C_L = 150 \text{ pF}$ $R_L = 667\Omega$		22	ns
[†] PZL	Output Enable Time to Low Level	$C_L = 150 pF$ $R_L = 667 \Omega$		33	ns
t _{PZH}	Output Enable Time to High Level	$C_L = 150 pF$ $R_1 = 667 \Omega$		26	ns