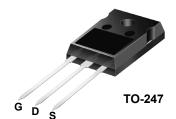
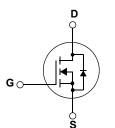


SEMICONDUCTOR

# FCH35N60 600V N-Channel MOSFET

## Features


- 650V @ T<sub>J</sub> = 150°C
- Typ.R<sub>DS(on)</sub> = 0.079Ω
- Ultra low gate charge ( Typ. Q<sub>g</sub> = 139nC )
- Low effective output capacitance (Typ. C<sub>oss</sub>.eff = 340pF)
- 100% avalanche tested




## Description

SuperFET<sup>TM</sup> is Farichild's proprietary, new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is very suitable for various AC/DC power conversion in switching mode operation for system miniaturization and higher efficiency.

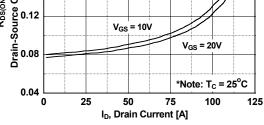


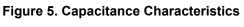


## MOSFET Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted\*

| Symbol                            |                                                                                 | Parameter                                         | Ratings                                          | Units       |      |  |
|-----------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-------------|------|--|
| V <sub>DSS</sub>                  | Drain to Source Voltage                                                         | rain to Source Voltage                            |                                                  |             |      |  |
| V <sub>GSS</sub>                  | Gate-Soure voltage                                                              |                                                   |                                                  | ±30         | V    |  |
| ID                                | Drain Current                                                                   | -Continuous (T <sub>C</sub> = 25 <sup>o</sup> C)  | -Continuous (T <sub>C</sub> = 25 <sup>o</sup> C) |             | ^    |  |
|                                   | DrainCurrent                                                                    | -Continuous (T <sub>C</sub> = 100 <sup>o</sup> C) |                                                  | 22.2        | — A  |  |
| I <sub>DM</sub>                   | Drain Current                                                                   | - Pulsed                                          | - Pulsed (Note 1)                                |             |      |  |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note                                            |                                                   | (Note 2)                                         | 1455        | mJ   |  |
| I <sub>AR</sub>                   | Avalanche Current                                                               |                                                   | (Note 1)                                         | 35          | А    |  |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy                                                     |                                                   | (Note 1)                                         | 31.25       | mJ   |  |
| dv/dt                             | Peak Diode Recovery dv/dt                                                       |                                                   | (Note 3)                                         | 20          | V/ns |  |
| P <sub>D</sub>                    | Dewer Dissinction                                                               | (T <sub>C</sub> = 25°C)                           |                                                  | 312.5       | W    |  |
|                                   | Power Dissipation                                                               | - Derate above 25 <sup>o</sup> C                  |                                                  | 2.5         | W/ºC |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                         |                                                   |                                                  | -55 to +150 | °C   |  |
| TL                                | Maximum Lead Temperature for Soldering Purpose,<br>1/8" from Case for 5 Seconds |                                                   |                                                  | 300         | °C   |  |

## Thermal Characteristics


| Symbol              | Parameter                                | Тур. | Max. | Units |
|---------------------|------------------------------------------|------|------|-------|
| $R_{	ext{	heta}JC}$ | Thermal Resistance, Junction to Case     | -    | 0.4  |       |
| $R_{\theta CS}$     | CS Thermal Resistance, Case-to-Heat Sink |      | -    | °C/W  |
| $R_{	ext{	heta}JA}$ | Thermal Resistance, Junction to Ambient  | -    | 42   |       |


February 2010

| Т        |
|----------|
| n        |
| I        |
| ω        |
| ភ        |
| 4        |
| g        |
| _        |
| Ż        |
| Ċ        |
| ž        |
| a        |
|          |
| Z        |
| Ð        |
| 2        |
| Š        |
| Ö        |
| <u>S</u> |
|          |
| ш        |
|          |

| Device Marking<br>FCH35N60 |                                                          | Device<br>FCH35N60                         | Packa<br>TO-24                                                                                          | <b>·</b>                                     |                                                     | e Width Qu |      | Quantit<br>30 | •     |       |
|----------------------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|------------|------|---------------|-------|-------|
| Electrica                  | al Chara                                                 | acteristics                                |                                                                                                         |                                              |                                                     |            |      |               |       |       |
| Symbol                     |                                                          | Parameter                                  |                                                                                                         |                                              | Test Conditions                                     |            | Min. | Тур.          | Max.  | Units |
| Off Chara                  | cteristics                                               | 5                                          |                                                                                                         |                                              |                                                     |            |      |               |       |       |
| BV <sub>DSS</sub>          | Drain to Source Breakdown Voltage                        |                                            | $I_D = 250 \mu A, V_{GS} = 0V, T_J = 25^{\circ}C$<br>$I_D = 250 \mu A, V_{GS} = 0V, T_J = 150^{\circ}C$ |                                              | 600                                                 | - 650      | -    | V             |       |       |
| ΔBV <sub>DSS</sub><br>/ ΔT | Breakdo                                                  | akdown Voltage Temperature<br>fficient     |                                                                                                         |                                              | 50μA, Referenced to 2                               |            | -    | 0.6           | -     | V/°C  |
| BV <sub>DS</sub>           | Drain-Source Avalanche Breakdown<br>Voltage              |                                            |                                                                                                         | V <sub>GS</sub> =                            | 0V, I <sub>D</sub> = 16A                            |            | -    | 700           | -     | V     |
| 1                          | 7                                                        |                                            |                                                                                                         | V <sub>DS</sub> =                            | 600V, V <sub>GS</sub> = 0V                          |            | -    | -             | 1     | •     |
| DSS                        | zero Ga                                                  | ite Voltage Drain Curr                     | ent                                                                                                     |                                              | 480V, T <sub>C</sub> = 125 <sup>o</sup> C           |            | -    | -             | 10    | μA    |
| I <sub>GSS</sub>           | Gate to                                                  | Body Leakage Curre                         | nt                                                                                                      | V <sub>GS</sub> =                            | ±30V, V <sub>DS</sub> = 0V                          |            | -    | -             | ±100  | nA    |
| On Charao                  |                                                          |                                            |                                                                                                         | - T                                          |                                                     |            |      |               |       |       |
| V <sub>GS(th)</sub>        |                                                          | reshold Voltage                            |                                                                                                         |                                              | · V <sub>DS</sub> , I <sub>D</sub> = 250μA          |            | 3.0  | -             | 5.0   | V     |
| R <sub>DS(on)</sub>        |                                                          |                                            |                                                                                                         |                                              | = 10V, I <sub>D</sub> = 17.5A                       |            | -    | 0.079         | 0.098 | Ω     |
| FS                         | Forward Transconductance                                 |                                            |                                                                                                         | V <sub>DS</sub> =                            | 40V, I <sub>D</sub> = 17.5A                         |            | -    | 28.8          | -     | S     |
| Oynamic (                  | Characte                                                 | eristics                                   |                                                                                                         |                                              |                                                     |            |      |               |       |       |
| C <sub>iss</sub>           | 1                                                        | apacitance                                 |                                                                                                         |                                              |                                                     |            | -    | 4990          | 6640  | pF    |
| C <sub>oss</sub>           | Output C                                                 | It Capacitance<br>rse Transfer Capacitance |                                                                                                         |                                              | 25V, V <sub>GS</sub> = 0V                           | -          | -    | 2380          | 3170  | pF    |
| C <sub>rss</sub>           | Reverse                                                  |                                            |                                                                                                         | f = 1N                                       | IHZ                                                 | -          | -    | 140           | -     | pF    |
| C <sub>oss</sub>           | Output C                                                 | Itput Capacitance                          |                                                                                                         |                                              | 480V, V <sub>GS</sub> = 0V, f = 1                   | 1.0MHz     | -    | 113           | -     | pF    |
| C <sub>oss</sub> eff.      | Effective                                                | Effective Output Capacitance               |                                                                                                         |                                              | $0V \text{ to } 480V, V_{GS} = 0^{10}$              |            | -    | 340           | -     | pF    |
| Q <sub>g</sub>             | Total Ga                                                 | Total Gate Charge at 10V                   |                                                                                                         |                                              |                                                     |            | -    | 139           | 181   | nC    |
| ຊ <sub>gs</sub>            | Gate to                                                  | e to Source Gate Charge                    |                                                                                                         | V <sub>DS</sub> = 480V, I <sub>D</sub> = 35A |                                                     | -          | 31   | -             | nC    |       |
| Q <sub>gd</sub>            | Gate to                                                  | e to Drain "Miller" Charge                 |                                                                                                         | V <sub>GS</sub> =                            | : 10V                                               | (Nata 4)   | -    | 69            | -     | nC    |
| ESR                        |                                                          | Equivalent Series Resistance (G-S)         |                                                                                                         | Drain                                        | Open, F= 1MHZ                                       | (Note 4)   | -    | 1.4           | _     | Ω     |
|                            |                                                          |                                            | (0-0)                                                                                                   | Drain                                        |                                                     |            | -    | 1.4           | -     | 52    |
| Switching                  |                                                          |                                            |                                                                                                         | 1                                            |                                                     |            | 1    |               | 1     | T     |
| d(on)                      |                                                          | D = 170                                    |                                                                                                         | 00011                                        | _                                                   | -          | 34   | 78            | ns    |       |
| r                          |                                                          |                                            |                                                                                                         |                                              | $V_{DD} = 300V, I_D = 35A$<br>R <sub>G</sub> = 4.7Ω |            | -    | 120           | 250   | ns    |
| d(off)                     |                                                          |                                            | _                                                                                                       | -                                            | 105                                                 | 220        | ns   |               |       |       |
| f                          | Turn-Off                                                 | Fall Time                                  |                                                                                                         |                                              |                                                     | (Note 4)   | -    | 73            | 155   | ns    |
| )rain-Sou                  | rce Diod                                                 | le Characteristic                          | s                                                                                                       |                                              |                                                     |            |      |               |       |       |
| S                          | Maximum Continuous Drain to Source Diode Forward Current |                                            |                                                                                                         |                                              |                                                     | -          | -    | 35            | Α     |       |
| SM                         | Maximur                                                  | Maximum Pulsed Drain to Source Diode Fo    |                                                                                                         |                                              | urrent                                              |            | -    | -             | 105   | Α     |
| V <sub>SD</sub>            | Drain to                                                 | Drain to Source Diode Forward Voltage      |                                                                                                         | V <sub>GS</sub> =                            | $V_{GS} = 0V, I_{SD} = 35A$                         |            | -    | -             | 1.4   | V     |
| rr                         | Reverse                                                  | Recovery Time                              |                                                                                                         | V <sub>GS</sub> =                            | 0V, I <sub>SD</sub> = 35A                           |            | -    | 614           | -     | ns    |
| 11                         | -                                                        |                                            |                                                                                                         |                                              | = 100Å/µs                                           | F          | -    | 16.3          | -     | μC    |

## 查询"FCH35N60"供应商 **Typical Performance Characteristics Figure 1. On-Region Characteristics** 200 V<sub>GS</sub> = 15.0 V 100 10.0 V 8.0 V 7.0 V 6.5 V l<sub>b</sub>, Drain Current[A] 6.0 V 5.5 V 10 1 Notes: 1. 250µs Pulse Test 2. T<sub>C</sub> = 25<sup>o</sup>C 0.3 L 0.1 10 20 1 V<sub>DS</sub>, Drain-Source Voltage[V] Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage 0.24 Drain-Source On-Resistance 0.16 0.12 0.02 0.02 $R_{DS(ON)}$ [ $\Omega$ ], $V_{GS} = 10V$





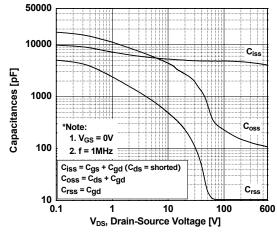
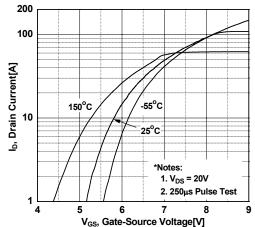




Figure 2. Transfer Characteristics





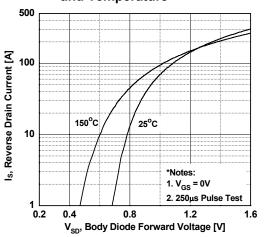
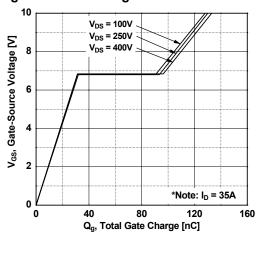
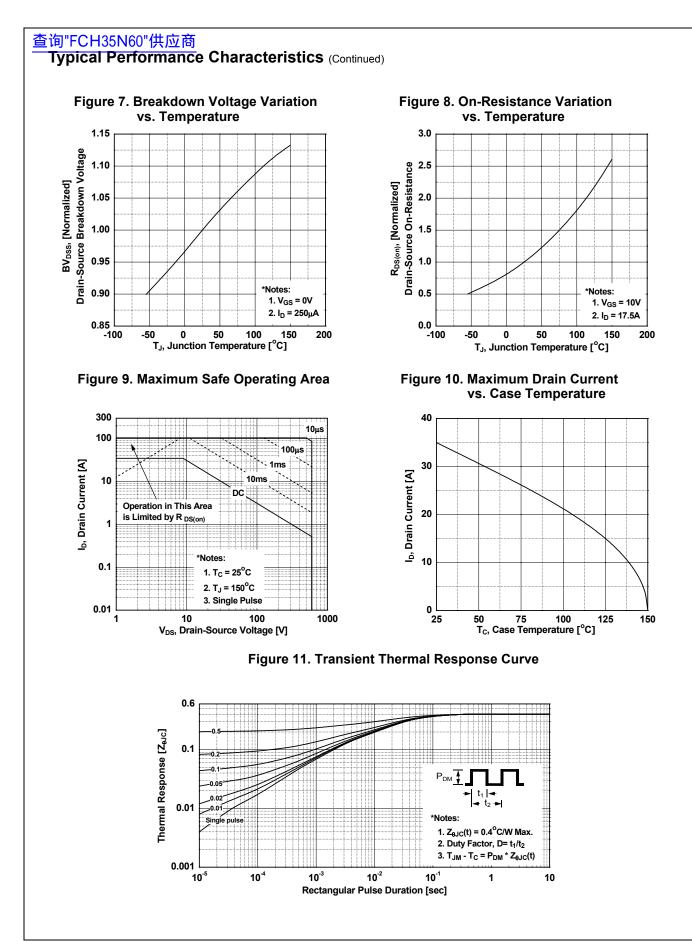
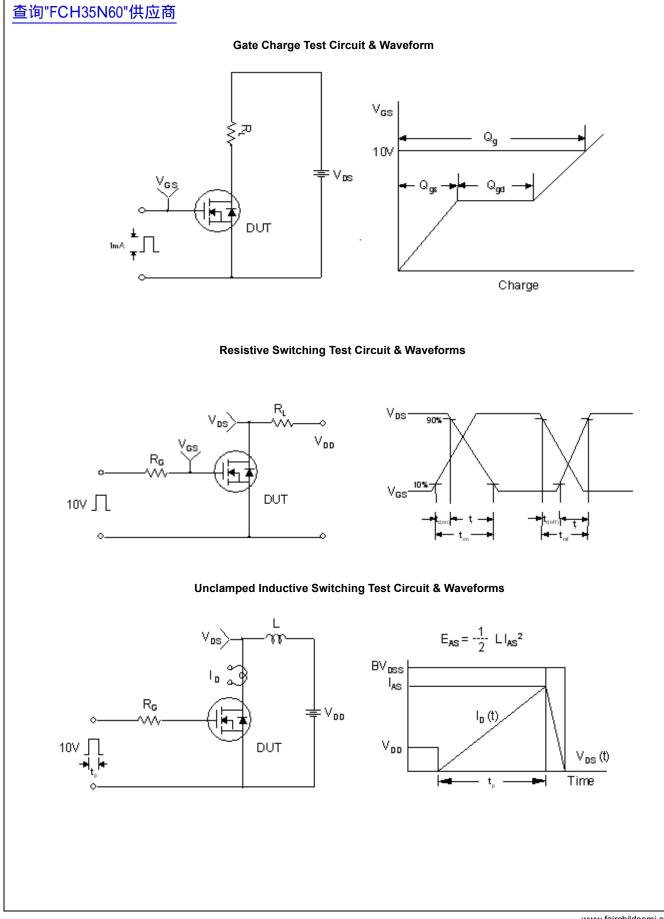
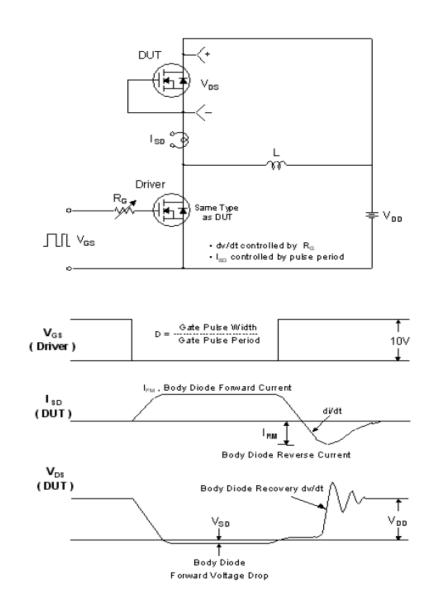
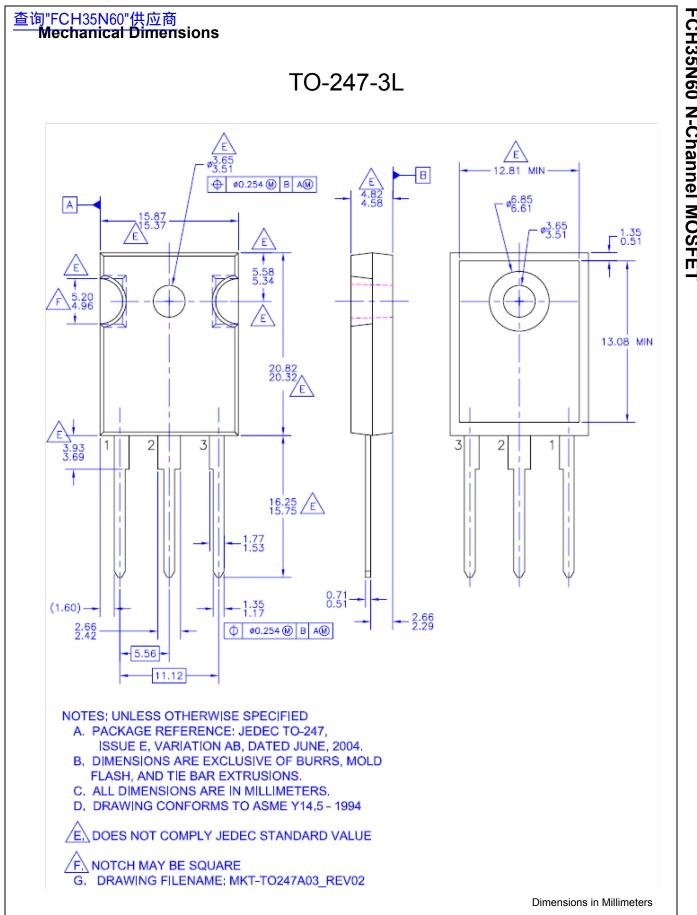






Figure 6. Gate Charge Characteristics







FCH35N60 N-Channel MOSFET





#### Peak Diode Recovery dv/dt Test Circuit & Waveforms





FCH35N60 N-Channel MOSFET

## 查询"FCH35N60"供应商

## FAIRCHILD

SEMICONDUCTOR

#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not

| AccuPower™                | FRFET®                              | PowerTrench <sup>®</sup>              | The Power Franchise     |
|---------------------------|-------------------------------------|---------------------------------------|-------------------------|
| Auto-SPM™                 | Global Power Resource <sup>SM</sup> | PowerXS™                              | the                     |
| Build it Now™             | Green FPS™                          | Programmable Active Droop™            | puwer                   |
| CorePLUS™                 | Green FPS™ e-Series™                | QFET®                                 | franchise<br>TinyBoost™ |
| CorePOWER™                | Gmax™                               | QS™                                   | TinyBuck™               |
| CROSSVOLT™                | GTO™                                | Quiet Series™                         | TinyCalc™               |
| CTL™                      | IntelliMAX™                         | RapidConfigure™                       | TinyLogic®              |
| Current Transfer Logic™   | ISOPLANAR™                          |                                       | TINYOPTO™               |
| DEUXPEED®                 | MegaBuck™                           |                                       | TinyPower™              |
| Dual Cool™                | MICROCOUPLER™                       | Saving our world, 1mW/W/kW at a time™ | TinyPWM™                |
| EcoSPARK <sup>®</sup>     | MicroFET™                           | SignalWise™                           | TinyWire™               |
| fficentMax™               | MicroPak™                           | SmartMax™                             | TriFault Detect™        |
| R                         | MicroPak2™                          | SMART START™                          | TRUECURRENT™*           |
| F                         | MillerDrive™                        | SPM®                                  | µSerDes™                |
| airchild®                 | MotionMax™                          | STEALTH™                              | μoerbes                 |
| airchild Semiconductor®   | Motion-SPM™                         | SuperFET™                             | $\mathcal{M}$           |
| ACT Quiet Series™         | OptiHiT™                            | SuperSOT™-3                           | / SerDes <sup>™</sup>   |
| ACT®                      | OPTOLOGIC®                          | SuperSOT™-6                           | UHC®                    |
| AST®                      | OPTOPLANAR®                         | SuperSOT™-8                           | Ultra FRFET™            |
| astvCore™                 | ®                                   | SupreMOS™                             | UniFET™                 |
| ETBench™                  | U.                                  | SyncFET™                              | VCXTM                   |
| lashWriter <sup>®</sup> * | PDP SPM™                            | Sync-Lock™                            | VisualMax™              |
| PS™                       | Power-SPM™                          | SYSTEM <sup>®*</sup>                  | XS™                     |
| F-PFS™                    |                                     | GENERAL                               |                         |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### **PRODUCT STATUS DEFINITIONS** Definition of Terms

| Datasheet Identification   | Product Status        | Definition   Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                          |  |  |
|----------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Advance Information        | Formative / In Design |                                                                                                                                                                                                     |  |  |
| Preliminary                | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |  |
| No Identification Needed   | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |  |  |
| Obsolete Not In Production |                       | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |  |  |