

LM4562

Dual High Performance, High Fidelity Audio Operational Amplifier

General Description

The LM4562 is part of the ultra-low distortion, low noise, high slew rate operational amplifier series optimized and fully specified for high performance, high fidelity applications. Combining advanced leading-edge process technology with state-of-the-art circuit design, the LM4562 audio operational amplifiers deliver superior audio signal amplification for outstanding audio performance. The LM4562 combines extremely low voltage noise density (2.7nV/\day|Hz) with vanishingly low THD+N (0.00003%) to easily satisfy the most demanding audio applications. To ensure that the most challenging loads are driven without compromise, the LM4562 has a high slew rate of ±20V/µs and an output current capability of ±26mA. Further, dynamic range is maximized by an output stage that drives $2k\Omega$ loads to within 1V of either power supply voltage and to within 1.4V when driving 600Q loads.

The LM4562's outstanding CMRR (120dB), PSRR (120dB), and $\rm V_{OS}$ (0.1mV) give the amplifier excellent operational amplifier DC performance.

The LM4562 has a wide supply range of ±2.5V to ±17V. Over this supply range the LM4562's input circuitry maintains excellent common-mode and power supply rejection, as well as maintaining its low input bias current. The LM4562 is unity gain stable. This Audio Operational Amplifier achieves outstanding AC performance while driving complex loads with values as high as 100pF.

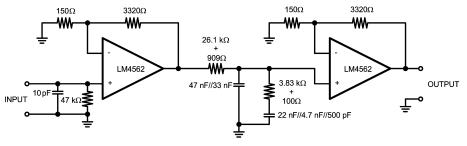
The LM4562 is available in 8-lead narrow body SOIC, 8-lead Plastic DIP and 8-lead Metal Can TO-99. Demonstration boards are available for each package.

Key Specifications

■ Power Supply Voltage Range ±2.5V to ±17V

 $\blacksquare \text{ THD+N } (A_V = 1, \ V_{OUT} = 3V_{RMS}, \ f_{IN} = 1kHz)$

$R_L = 2k\Omega$	0.00003% (typ)
$R_L = 600\Omega$	0.00003% (typ)
■ Input Noise Density	2.7nV/√Hz (typ)
■ Slew Rate	±20V/μs (typ)
■ Gain Bandwidth Product	55MHz (typ)
■ Open Loop Gain ($R_L = 600\Omega$)	140dB (typ)
■ Input Bias Current	10nA (typ)
■ Input Offset Voltage	0.1mV (typ)
■ DC Gain Linearity Error	0.000009%

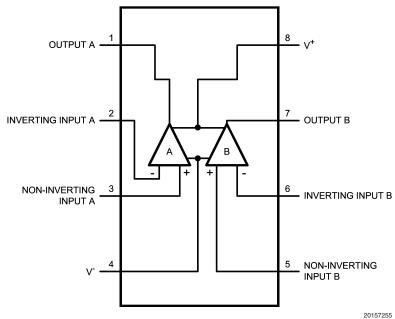

Features

- Easily drives 600Ω loads
- Optimized for superior audio signal fidelity
- Output short circuit protection
- PSRR and CMRR exceed 120dB (typ)
- SOIC, DIP, TO-99 metal can packages

Applications

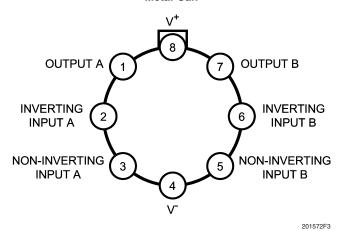
- Ultra high quality audio amplification
- High fidelity preamplifiers
- High fidelity multimedia
- State of the art phono pre amps
- High performance professional audio
- High fidelity equalization and crossover networks
- High performance line drivers
- High performance line receivers
- High fidelity active filters

Typical Application


Note: 1% metal film resistors, 5% polypropylene capacitors

201572K5

Passively Equalized RIAA Phono Preamplifier


Connection Diagrams 询"LM4562HA"供应商

Dual-In-Line Package

Order Number LM4562MA See NS Package Number — M08A Order Number LM4562NA See NS Package Number — N08E

Metal Can

Order Number LM4562HA See NS Package Number — H08C

If milery Ale of bade Apeditive Bulletine are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage	
$(V_S = V^+ - V^-)$	36V
Storage Temperature	−65°C to 150°C
Input Voltage	(V-) - 0.7V to (V+) + 0.7V

(V-) - 0.7V to (V+) + 0.7V Output Short Circuit (Note 3) Continuous

Power Dissipation Internally Limited

ESD Susceptibility (Note 4)	2000V
ESD Susceptibility (Note 5)	
Pins 1, 4, 7 and 8	200V
Pins 2, 3, 5 and 6	100V
Junction Temperature	150°C
Thermal Resistance	
θ_{JA} (SO)	145°C/W
θ_{JA} (NA)	102°C/W
θ_{JA} (HA)	150°C/W
θ_{JC} (HA)	35°C/W
Temperature Range	

 $I_{MIN} \subseteq I_A \le T_{MAX}$ Supply Voltage Range $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$ $\pm 2.5 \text{V} \le \text{V}_{\text{S}} \le \pm 17 \text{V}$

Electrical Characteristics for the LM4562 (Note 1)

The following specifications apply for the circuit shown in Figure X. $V_S = \pm 15V$, $R_L = 2k\Omega$, $R_{SOURCE} = 10\Omega$, $f_{IN} = 1kHz$, and $T_A = 25^{\circ}C$, unless otherwise specified.

Symbol Parameter	Parameter	Conditions	LM4562		
			Typical	Limit	Units (Limits)
		(Note 6)	(Note 7)	(Lillins)	
THD+N	Total Harmonic Distortion + Noise	$A_{V} = 1, V_{OUT} = 3V_{rms}$ $R_{L} = 2k\Omega$ $R_{L} = 600\Omega$	0.00003 0.00003	0.00009	% (max)
IMD	Intermodulation Distortion	$A_V = 1$, $V_{OUT} = 3V_{RMS}$ Two-tone, 60kHz & 7kHz 4:1	0.00005		dB
GBWP	Gain Bandwidth Product		55	45	MHz (min)
SR	Slew Rate		±20	±15	V/μs (min)
FPBW	Full Power Bandwidth	V _{OUT} = 1V _{P-P} , -3dB referenced to output magnitude at f = 1kHz	10		MHz
t _s	Settling time	$A_V = -1$, 10V step, $C_L = 100$ pF 0.1% error range	1.2		μs
	Equivalent Input Noise Voltage	f _{BW} = 20Hz to 20kHz	0.34	0.65	μV _{RMS} (max)
e _n	Equivalent Input Noise Density	f = 1kHz f = 10Hz	2.7 6.4	4.7	nV/√Hz (max)
i _n	Current Noise Density	f = 1kHz f = 10Hz	1.6 3.1		p A/ √Hz
Vos	Offset Voltage		±0.1	±0.7	mV (max)
$\Delta V_{OS}/\Delta Temp$	Average Input Offset Voltage Drift vs Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$	0.2		μV/°C
PSRR	Average Input Offset Voltage Shift vs Power Supply Voltage	ΔV _S = 20V (Note 8)	120	110	dB (min)
ISO _{CH-CH}	Channel-to-Channel Isolation	$f_{IN} = 1kHz$ $f_{IN} = 20kHz$	118 112		dB
I _B	Input Bias Current	V _{CM} = 0V	10	72	nA (max)
$\Delta I_{OS}/\Delta Temp$	Input Bias Current Drift vs Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$	0.1		nA/°C
I _{os}	Input Offset Current	$V_{CM} = 0V$	11	65	nA (max)
V _{IN-CM}	Common-Mode Input Voltage Range		+14.1 -13.9	(V+) - 2.0 (V-) + 2.0	V (min)
CMRR	Common-Mode Rejection	-10V <vcm<10v< td=""><td>120</td><td>110</td><td>dB (min)</td></vcm<10v<>	120	110	dB (min)

Electrical Characteristics for the LM4562 (Note 1)

[] "[] "[] " [] = 25°C, unless otherwise specified. (Continued)

Symbol	Parameter	Conditions	LM ²	LM4562		
			Typical	Limit	Units (Limits)	
			(Note 6)	(Note 7)		
7	Differential Input Impedance		30		kΩ	
Z_{IN}	Common Mode Input Impedance	-10V <vcm<10v< td=""><td>1000</td><td></td><td>MΩ</td></vcm<10v<>	1000		MΩ	
		$-10V$ <vout<10v, r<sub="">L = 600Ω</vout<10v,>	140	125		
A _{VOL} Open Loop Voltage Gain	$-10V < Vout < 10V, R_L = 2k\Omega$	140		dB (min)		
	$-10V$ <vout<10v, r<sub="">L = $10k\Omega$</vout<10v,>	140				
	$R_L = 600\Omega$	±13.6	±12.5			
V_{OUTMAX}	Maximum Output Voltage Swing	$R_L = 2k\Omega$	±14.0		V (min)	
		$R_L = 10k\Omega$	±14.1		7	
l _{out}	Output Current	$R_L = 600\Omega, V_S = \pm 17V$	±26	±23	mA (min)	
1	landada a constitución de la con		+53		mA	
I _{OUT-CC} Instantaneous Short Circuit Current			-42		IIIA	
		$f_{IN} = 10kHz$				
R_{OUT}	Output Impedance	Closed-Loop	0.01		Ω	
		Open-Loop	13			
C_{LOAD}	Capacitive Load Drive Overshoot	100pF	16		%	
I _s	Total Quiescent Current	I _{OUT} = 0mA	10	12	mA (max)	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.

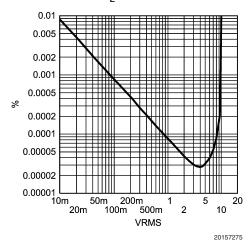
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: Amplifier output connected to GND, any number of amplifiers within a package.

Note 4: Human body model, 100pF discharged through a $1.5k\Omega$ resistor.

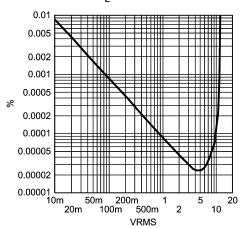
Note 5: Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50Ω).

Note 6: Typical specifications are specified at +25°C and represent the most likely parametric norm.

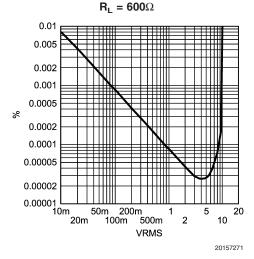

Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

Note 8: PSRR is measured as follows: V_{OS} is measured at two supply voltages, $\pm 5V$ and $\pm 15V$. PSRR = $|20log(\Delta V_{OS}/\Delta V_S)|$.

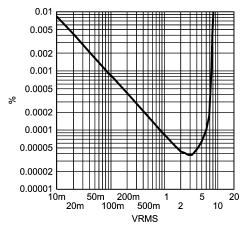
Typical Performance Characteristics


查询"LM4562HA"供应商 Voltage

$$V_{CC} = 15V$$
, $V_{EE} = -15V$
 $R_L = 2k\Omega$

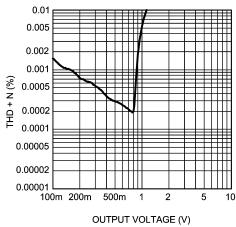

THD+N vs Output Voltage

$$V_{CC}$$
 = 17V, V_{EE} = -17V R_L = 2k Ω



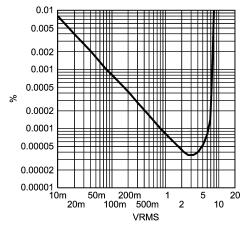
20157276

THD+N vs Output Voltage $V_{CC} = 15V$, $V_{EE} = -15V$


THD+N vs Output Voltage V_{CC} = 12V, V_{EE} = -12V R_L = 2k Ω

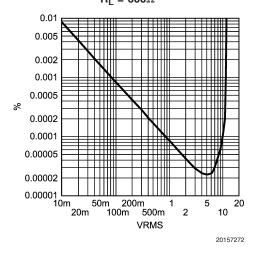
20157274

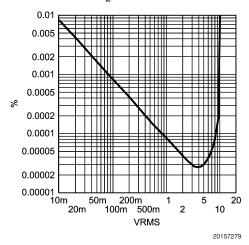
THD+N vs Output Voltage


$$V_{CC}$$
 = 2.5V, V_{EE} = -2.5V R_L = 2k Ω

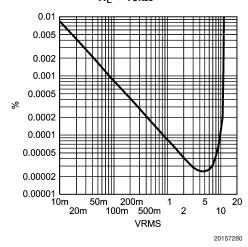
20157214

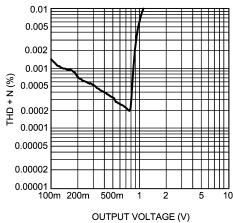
THD+N vs Output Voltage


$$\begin{aligned} \text{V}_{\text{CC}} &= \text{12V}, \, \text{V}_{\text{EE}} = -\text{12V} \\ \text{R}_{\text{L}} &= \text{600}\Omega \end{aligned}$$

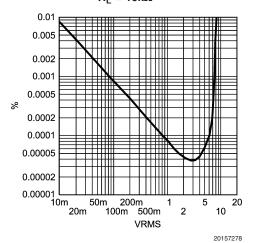

201572K2

旬"LM4562HA"供应商

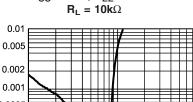

THD+N vs Output Voltage V_{CC} = 17V, V_{EE} = -17V R_L = 600 Ω

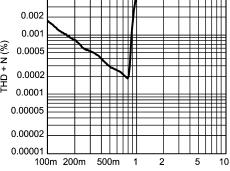

THD+N vs Output Voltage $\begin{aligned} \text{V}_{\text{CC}} &= \text{15V}, \ \text{V}_{\text{EE}} = -\text{15V} \\ \text{R}_{\text{L}} &= \text{10k}\Omega \end{aligned}$

THD+N vs Output Voltage $V_{CC} = 17V, \, V_{EE} = -17V \\ R_L = 10k\Omega$



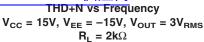
THD+N vs Output Voltage V_{CC} = 2.5V, V_{EE} = -2.5V R_L = 600 Ω

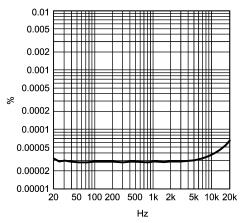



20157216

THD+N vs Output Voltage V_{CC} = 12V, V_{EE} = -12V R_L = 10k Ω

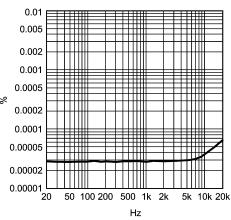
THD+N vs Output Voltage $V_{CC} = 2.5V$, $V_{EE} = -2.5V$

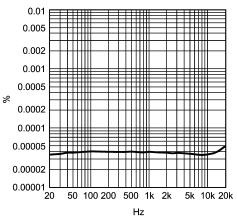




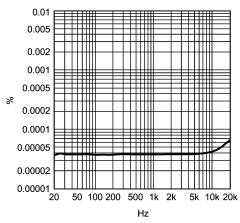
OUTPUT VOLTAGE (V)

20157215

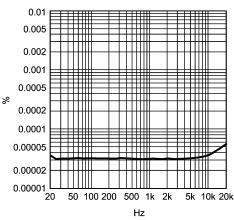

查询"LM4562HA"供应商


20157263

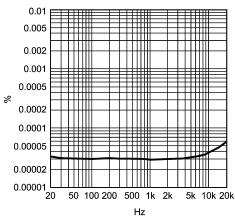
THD+N vs Frequency V_{CC} = 17V, V_{EE} = -17V, V_{OUT} = $3V_{RMS}$ R_L = $2k\Omega$


20157264

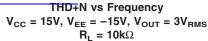
THD+N vs Frequency $\begin{aligned} \text{V}_{\text{CC}} &= \text{12V}, \, \text{V}_{\text{EE}} = -\text{12V}, \, \text{V}_{\text{OUT}} = \text{3V}_{\text{RMS}} \\ \text{R}_{\text{L}} &= 600\Omega \end{aligned}$

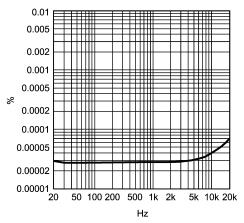

201572K3

THD+N vs Frequency V_{CC} = 12V, V_{EE} = -12V, V_{OUT} = $3V_{RMS}$

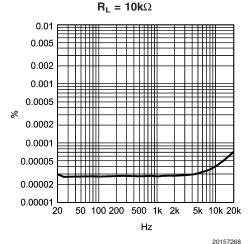

20157262

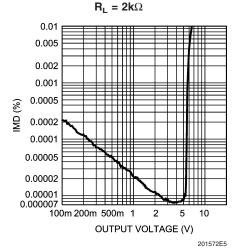
THD+N vs Frequency $\begin{aligned} \text{V}_{\text{CC}} &= \text{15V}, \ \text{V}_{\text{EE}} = -\text{15V}, \ \text{V}_{\text{OUT}} = \text{3V}_{\text{RMS}} \\ \text{R}_{\text{L}} &= 600\Omega \end{aligned}$


20157259

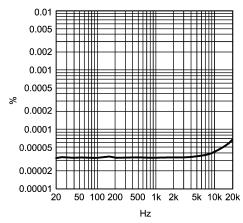

THD+N vs Frequency $\begin{aligned} \text{V}_{\text{CC}} &= \text{17V}, \, \text{V}_{\text{EE}} = -\text{17V}, \, \text{V}_{\text{OUT}} = \text{3V}_{\text{RMS}} \\ \text{R}_{\text{L}} &= 600\Omega \end{aligned}$

20157260

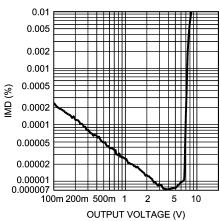

询"LM4562HA"供应商



20157267

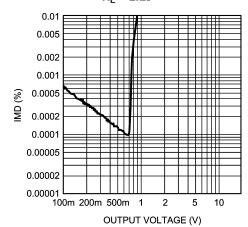

THD+N vs Frequency V_{CC} = 17V, V_{EE} = -17V, V_{OUT} = $3V_{RMS}$

IMD vs Output Voltage $V_{CC} = 12V$, $V_{EE} = -12V$


THD+N vs Frequency V_{CC} = 12V, V_{EE} = -12V, V_{OUT} = $3V_{RMS}$ $R_L = 10k\Omega$

20157266

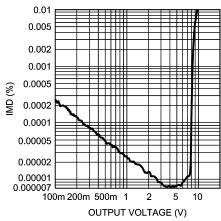
IMD vs Output Voltage $V_{CC} = 15V, V_{EE} = -15V$


= 15V,
$$V_{EE} = -15V$$

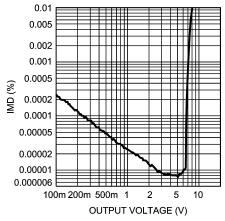
 $R_L = 2k\Omega$

201572E6

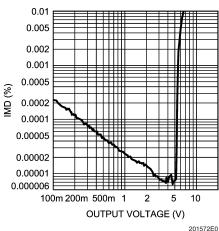
IMD vs Output Voltage


$$V_{CC}$$
 = 2.5V, V_{EE} = -2.5V R_L = 2k Ω

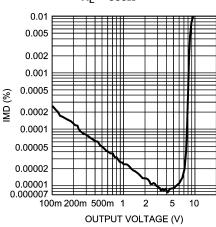
201572E4


查询"LM4562HA"供应商

IMD vs Output Voltage $V_{CC} = 17V, V_{EE} = -17V$ $R_L = 2k\Omega$

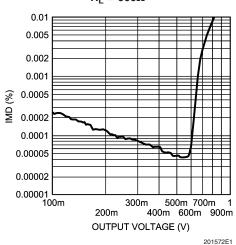

201572E7

IMD vs Output Voltage $V_{CC} = 15V$, $V_{EE} = -15V$ $R_L = 600\Omega$

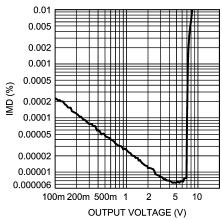


201572E2

IMD vs Output Voltage $V_{CC} = 12V$, $V_{EE} = -12V$ $R_L = 600\Omega$

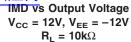


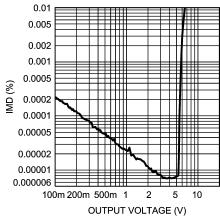
IMD vs Output Voltage $V_{CC} = 17V$, $V_{EE} = -17V$ $R_L = 600\Omega$



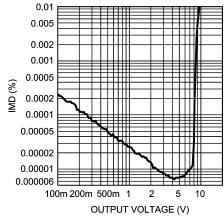
201572E3

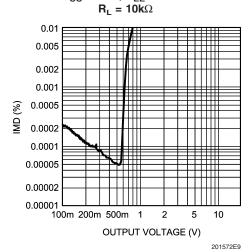
IMD vs Output Voltage $V_{CC} = 2.5V, V_{EE} = -2.5V$ $R_L = 600\Omega$



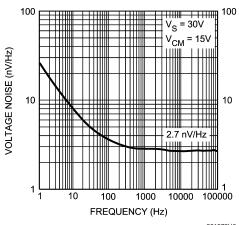

IMD vs Output Voltage $V_{CC} = 15V, V_{EE} = -15V$ $R_L = 10k\Omega$

201572F1


旬"LM4562HA"供应商

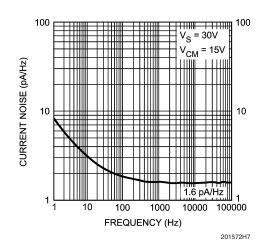

201572F0

IMD vs Output Voltage $V_{CC} = 17V$, $V_{EE} = -17V$ $R_L = 10k\Omega$

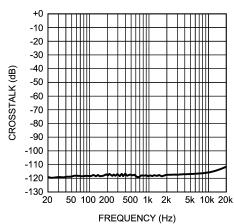


201572F2

IMD vs Output Voltage V_{CC} = 2.5V, V_{EE} = -2.5V

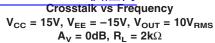


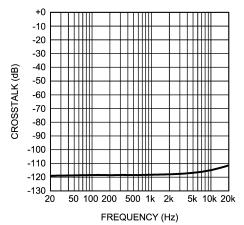
Voltage Noise Density vs Frequency



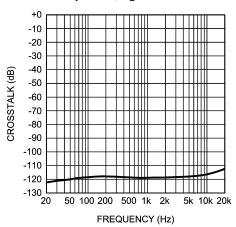
201572H6

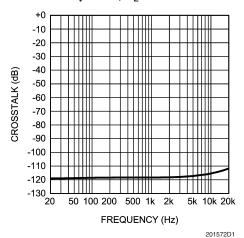
Current Noise Density vs Frequency



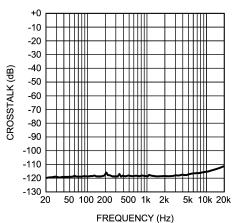

Crosstalk vs Frequency V_{CC} = 15V, V_{EE} = -15V, V_{OUT} = $3V_{RMS}$ A_V = 0dB, R_L = $2k\Omega$

201572C8


查询"LM4562HA"供应商

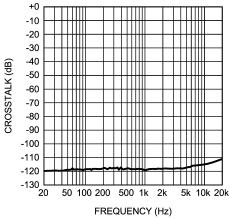

201572C9

Crosstalk vs Frequency $V_{CC} = 12V, V_{EE} = -12V, V_{OUT} = 10V_{RMS}$ $A_V = 0dB$, $R_L = 2k\Omega$

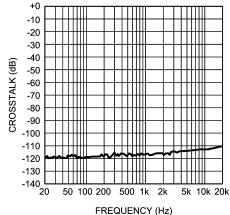


201572C7

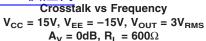
Crosstalk vs Frequency V_{CC} = 17V, V_{EE} = -17V, V_{OUT} = 10 V_{RMS} $A_V = 0$ dB, $R_L = 2$ k Ω

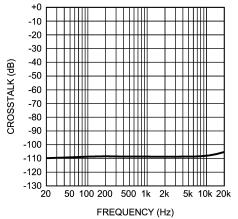


Crosstalk vs Frequency V_{CC} = 12V, V_{EE} = -12V, V_{OUT} = $3V_{RMS}$ $A_V = 0dB$, $R_I = 2k\Omega$

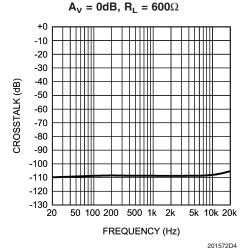

201572C6

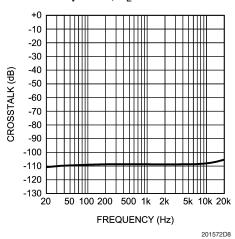
Crosstalk vs Frequency $V_{CC} = 17V$, $V_{EE} = -17V$, $V_{OUT} = 3V_{RMS}$ $A_V = 0$ dB, $R_L = 2$ k Ω


201572D0

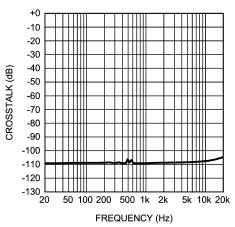

Crosstalk vs Frequency V_{CC} = 2.5V, V_{EE} = -2.5V, V_{OUT} = 1 V_{RMS} $A_V = 0$ dB, $R_L = 2k\Omega$

201572C4

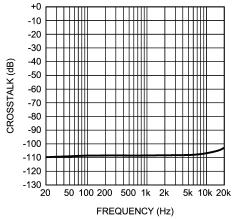

询"LM4562HA"供应商



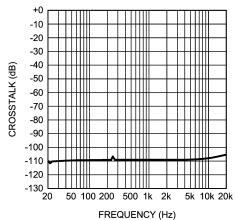
201572D6


Crosstalk vs Frequency $V_{CC} = 12V$, $V_{EE} = -12V$, $V_{OUT} = 3V_{RMS}$

 $\begin{aligned} & \text{Crosstalk vs Frequency} \\ \text{V}_{\text{CC}} &= \text{17V}, \, \text{V}_{\text{EE}} = -\text{17V}, \, \text{V}_{\text{OUT}} = \text{3V}_{\text{RMS}} \\ & \text{A}_{\text{V}} = \text{0dB}, \, \text{R}_{\text{L}} = \text{600}\Omega \end{aligned}$

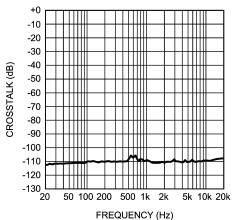


Crosstalk vs Frequency V_{CC} = 15V, V_{EE} = -15V, V_{OUT} = 10 V_{RMS} A_V = 0dB, R_I = 600 Ω

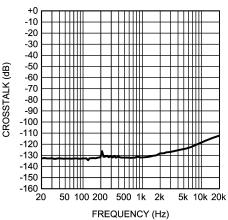

201572D7

Crosstalk vs Frequency $\begin{aligned} &\textbf{V}_{\text{CC}} = \textbf{12V}, \, \textbf{V}_{\text{EE}} = -\textbf{12V}, \, \textbf{V}_{\text{OUT}} = \textbf{10V}_{\text{RMS}} \\ &\textbf{A}_{\text{V}} = \textbf{0dB}, \, \textbf{R}_{\text{L}} = \textbf{600}\Omega \end{aligned}$

201572D5

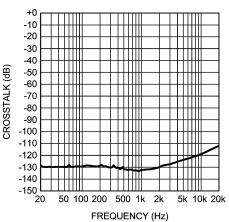

Crosstalk vs Frequency V_{CC} = 17V, V_{EE} = -17V, V_{OUT} = $10V_{RMS}$ A_V = 0dB, R_L = 600Ω

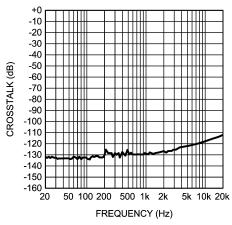
201572D9


查询"LM4562HA"供应商

Crosstalk vs Frequency V_{CC} = 2.5V, V_{EE} = -2.5V, V_{OUT} = $1V_{RMS}$ A_V = 0dB, R_L = 600Ω

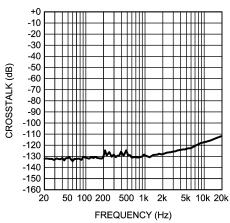
201572D2


Crosstalk vs Frequency V_{CC} = 15V, V_{EE} = -15V, V_{OUT} = 10 V_{RMS} A_V = 0dB, R_L = 10 $k\Omega$

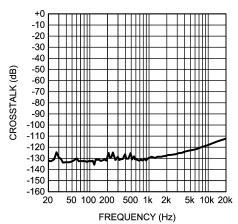

201572C1

201572B9

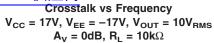
Crosstalk vs Frequency $\begin{aligned} &V_{\text{CC}} = 12\text{V, } V_{\text{EE}} = -12\text{V, } V_{\text{OUT}} = 10\text{V}_{\text{RMS}} \\ &A_{\text{V}} = 0\text{dB, } R_{\text{L}} = 10\text{k}\Omega \end{aligned}$

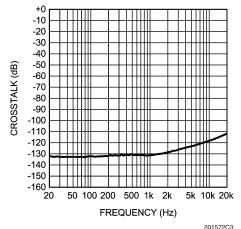


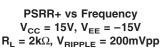
Crosstalk vs Frequency $\begin{aligned} \textbf{V}_{\text{CC}} &= \textbf{15V}, \, \textbf{V}_{\text{EE}} = -\textbf{15V}, \, \textbf{V}_{\text{OUT}} = \textbf{3V}_{\text{RMS}} \\ \textbf{A}_{\text{V}} &= \textbf{0dB}, \, \textbf{R}_{\text{I}} = \textbf{10k}\Omega \end{aligned}$

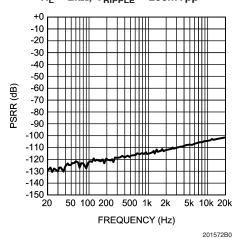

201572C0

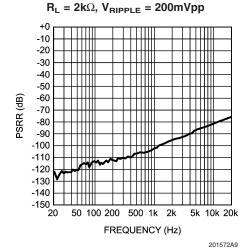
 $\begin{aligned} & \text{Crosstalk vs Frequency} \\ \text{V}_{\text{CC}} &= 12\text{V}, \, \text{V}_{\text{EE}} = -12\text{V}, \, \text{V}_{\text{OUT}} = 3\text{V}_{\text{RMS}} \\ & \text{A}_{\text{V}} = 0\text{dB}, \, \text{R}_{\text{L}} = 10\text{k}\Omega \end{aligned}$


201572B8

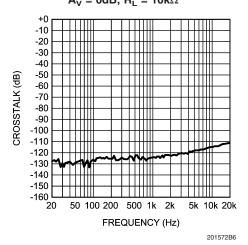

Crosstalk vs Frequency V_{CC} = 17V, V_{EE} = -17V, V_{OUT} = $3V_{RMS}$ A_V = 0dB, R_L = $10k\Omega$


201572C2

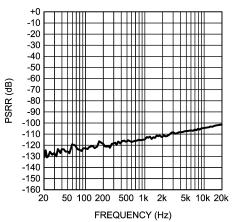

询"LM4562HA"供应商



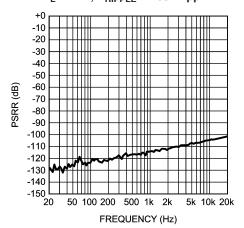
201572

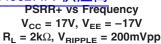


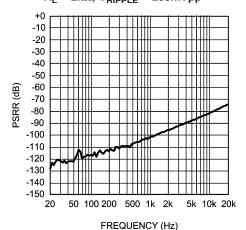
PSRR+ vs Frequency V_{CC} = 12V, V_{EE} = -12V



Crosstalk vs Frequency $\begin{aligned} &V_{CC} = 2.5V, \ V_{EE} = -2.5V, \ V_{OUT} = 1V_{RMS} \\ &A_V = 0 dB, \ R_1 = 10 k\Omega \end{aligned}$

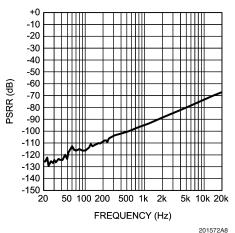

PSRR- vs Frequency

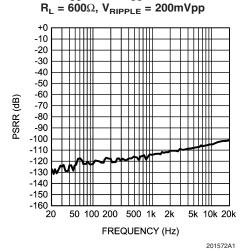

201572B4


PSRR- vs Frequency V_{CC} = 12V, V_{EE} = -12V R_L = 2k Ω , V_{RIPPLE} = 200mVpp

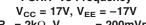
201572B3

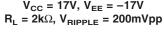
查询"LM4562HA"供应商

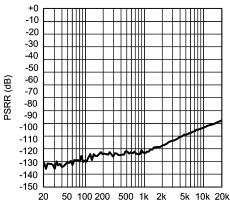



201572J3

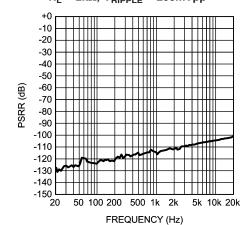
PSRR+ vs Frequency


$$\begin{aligned} &V_{CC} = 2.5V, \, V_{EE} = -2.5V \\ &R_L = 2k\Omega, \, V_{RIPPLE} = 200mVpp \end{aligned}$$




PSRR+ vs Frequency $V_{CC} = 15V, V_{CC} = -15V$

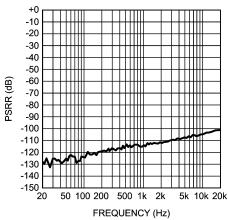
PSRR- vs Frequency



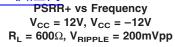
FREQUENCY (Hz)

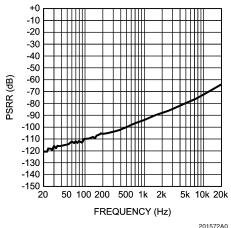
201572J2

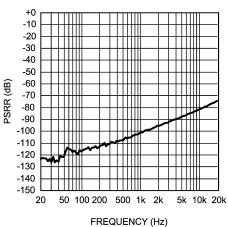
PSRR- vs Frequency


$$V_{CC}$$
 = 2.5V, V_{EE} = -2.5V R_L = 2k Ω , V_{RIPPLE} = 200mVpp

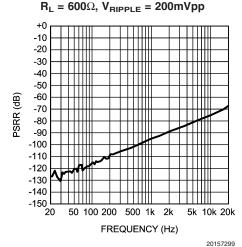
201572B2

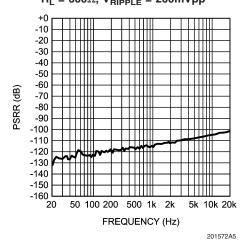

PSRR- vs Frequency


$$V_{CC}$$
 = 15V, V_{EE} = -15V R_L = 600 Ω , V_{RIPPLE} = 200mVpp

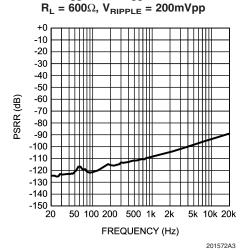

201572A6

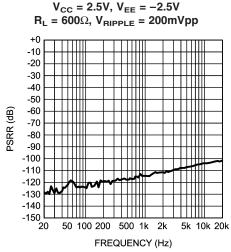
询"LM4562HA"供应商


 $\begin{aligned} & \text{PSRR+ vs Frequency} \\ & \text{V}_{\text{CC}} = \text{17V}, \, \text{V}_{\text{CC}} = -\text{17V} \\ & \text{R}_{\text{L}} = 600\Omega, \, \text{V}_{\text{RIPPLE}} = 200\text{mVpp} \end{aligned}$


PSRR+ vs Frequency V_{CC} = 2.5V, V_{CC} = -2.5V

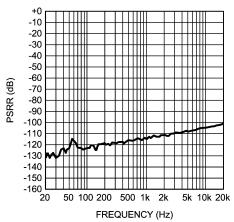
201572J4


16

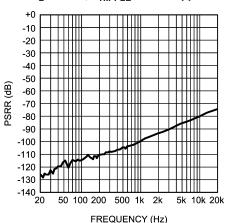

PSRR- vs Frequency
$$\begin{split} V_{CC} = 12V, \, V_{EE} = -12V \\ R_L = 600\Omega, \, V_{RIPPLE} = 200 mVpp \end{split}$$

PSRR- vs Frequency V_{CC} = 17V, V_{CC} = -17V

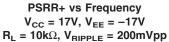
2015/2

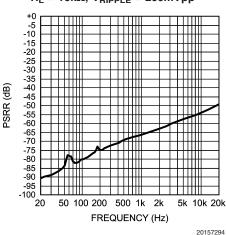


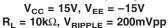
PSRR- vs Frequency

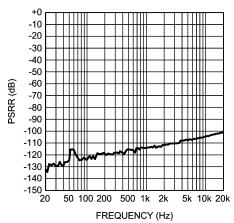

201572A4

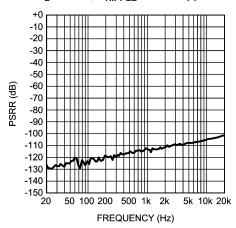
查询"LM4562HA"供应商

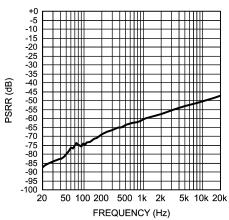



PSRR+ vs Frequency
$$\begin{split} &V_{\text{CC}} = 12\text{V}, \, V_{\text{EE}} = -12\text{V} \\ &R_{\text{L}} = 10\text{k}\Omega, \, V_{\text{RIPPLE}} = 200\text{mVpp} \end{split}$$


20157292


20157293

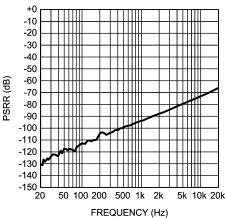

PSRR- vs Frequency


20157297

PSRR- vs Frequency $$\begin{split} \mathbf{V_{CC}} &= 12\mathbf{V}, \ \mathbf{V_{EE}} = -12\mathbf{V} \\ \mathbf{R_L} &= 10\mathbf{k}\Omega, \ \mathbf{V_{RIPPLE}} = 200\mathbf{mVpp} \end{split}$$

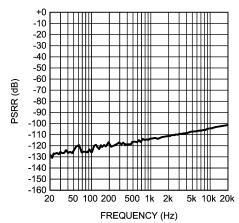
20157296

PSRR- vs Frequency V_{CC} = 17V, V_{EE} = -17V R_L = 10k Ω , V_{RIPPLE} = 200mVpp



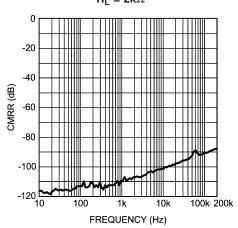
20157298

Typical Perform **Typical Perform 查**询"LM4562HA"供应商 Typical Performance Characteristics (Continued)

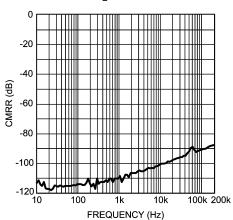


 $V_{CC} = 2.5V$, $V_{EE} = -2.5V$ $R_L = 10k\Omega$, $V_{RIPPLE} = 200mVpp$

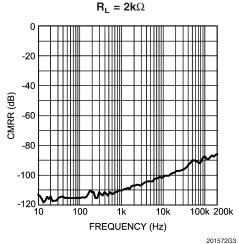
20157291

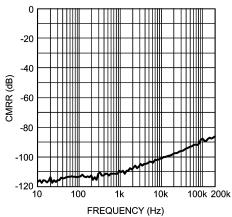

PSRR- vs Frequency $V_{CC} = 2.5V, V_{EE} = -2.5V$ $R_L = 10k\Omega$, $V_{RIPPLE} = 200mVpp$

20157295

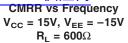

CMRR vs Frequency

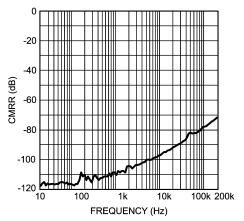
$$V_{CC}$$
 = 15V, V_{EE} = -15V R_L = 2k Ω


201572G0

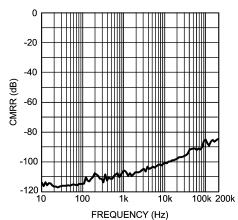

201572F7

$$V_{CC} = 17V, V_{EE} = -17V$$

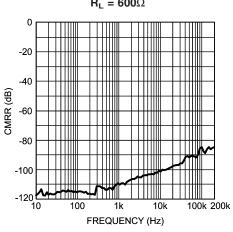

CMRR vs Frequency $V_{CC} = 2.5V$, $V_{EE} = -2.5V$


$$R_L = 2k\Omega$$

201572F4

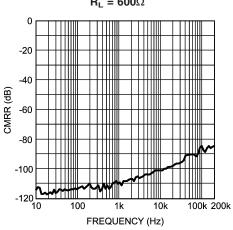

查询"LM4562HA"供应商

201572G2


CMRR vs Frequency V_{CC} = 12V, V_{EE} = -12V R_L = 600 Ω

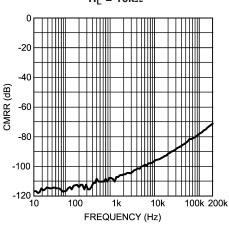
201572F9

CMRR vs Frequency $V_{CC} = 17V$, $V_{EE} = -17V$


$$R_L = 600\Omega$$

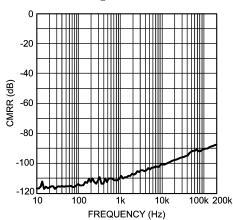
201572G5

CMRR vs Frequency $V_{CC} = 2.5V$, $V_{FF} = -2.5$

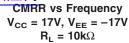

$$V_{CC} = 2.5V, V_{EE} = -2.5V$$

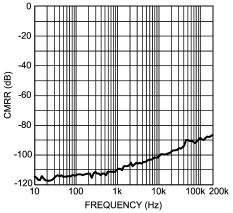
 $R_{L} = 600\Omega$

201572F6

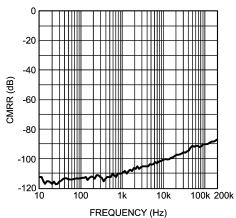

CMRR vs Frequency

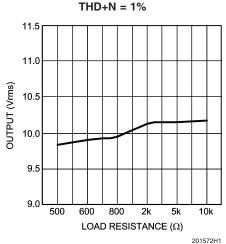
$$V_{CC}$$
 = 15V, V_{EE} = -15V R_L = 10k Ω


201572G1

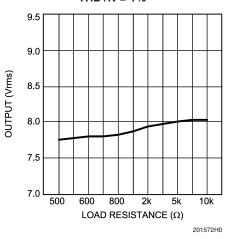

CMRR vs Frequency V_{CC} = 12V, V_{EE} = -12V R_L = 10k Ω

201572F8

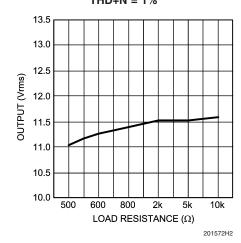

旬"LM4562HA"供应商

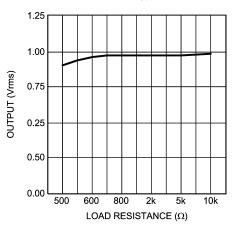

201572G4

CMRR vs Frequency $V_{CC} = 2.5V$, $V_{EE} = -2.5V$ $R_L = 10k\Omega$

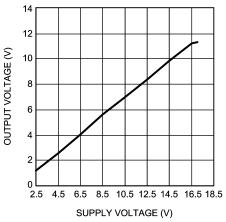


201572F5

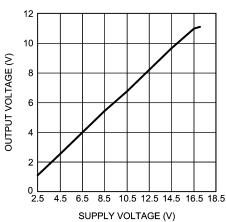

Output Voltage vs Load Resistance $V_{DD} = 15V, V_{EE} = -15V$


Output Voltage vs Load Resistance $V_{DD} = 12V$, $V_{EE} = -12V$ THD+N = 1%

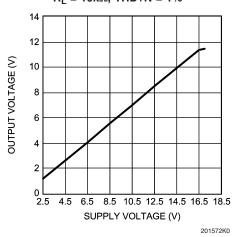
Output Voltage vs Load Resistance $V_{DD} = 17V$, $V_{EE} = -17V$ THD+N = 1%


Output Voltage vs Load Resistance $V_{DD} = 2.5V, V_{EE} = -2.5V$ THD+N = 1%

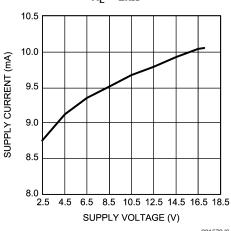
201572G9


Typical Performance Characteristics (Continued) 查询"LM4562HA"供应商

Output Voltage vs Supply Voltage $R_L = 2k\Omega$, THD+N = 1%

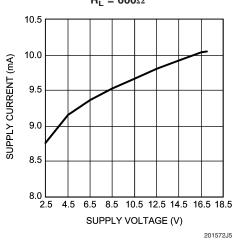

201572J9

Output Voltage vs Supply Voltage $R_L = 600\Omega$, THD+N = 1%

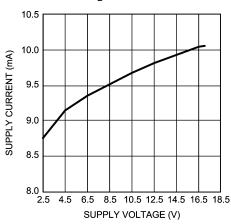


201572J8

Output Voltage vs Supply Voltage $R_L = 10k\Omega$, THD+N = 1%

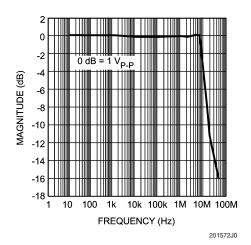


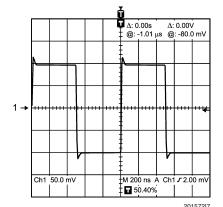
Supply Current vs Supply Voltage $R_L = 2k\Omega$



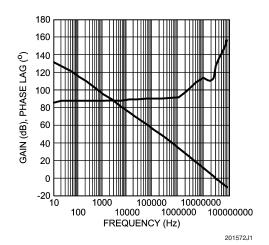
201572J6

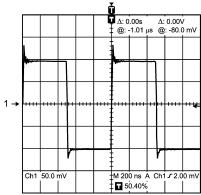
Supply Current vs Supply Voltage $R_L = 600\Omega$


Supply Current vs Supply Voltage $R_L = 10k\Omega$


201572J7

Typical Performance Characteristics (Continued) 季询"LM4562HA"供应商


Full Power Bandwidth vs Frequency


Small-Signal Transient Response $A_V = 1$, CL = 10pF

Gain Phase vs Frequency

Small-Signal Transient Response $A_{V} = 1$, CL = 100pF

Application Information 查询"LM4562HA"供应商 **DISTORTION MEASUREMENTS**

The vanishingly low residual distortion produced by LM4562 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution, however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.

The LM4562's low residual distortion is an input referred internal error. As shown in Figure 1, adding the 10Ω resistor connected between the amplifier's inverting and noninverting inputs changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure

This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so produces distortion components that are within the measurement equipment's capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

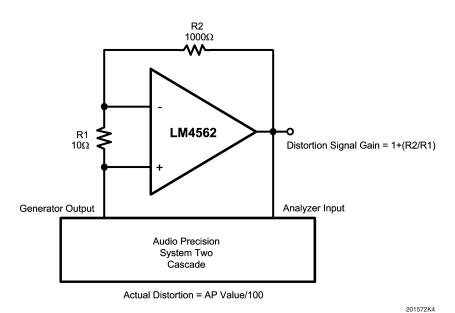
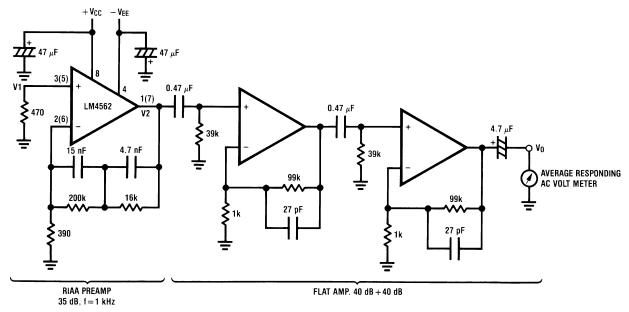
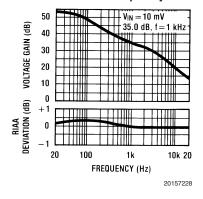



FIGURE 1. THD+N and IMD Distortion Test Circuit

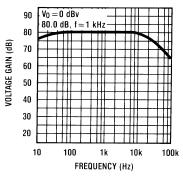
Application Information (Continued) 季河"LNA至6公社会"供证的 CIRCUIT

The LM4562 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this is to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

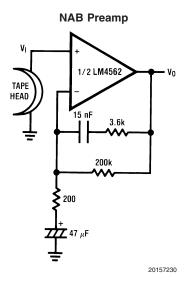


20157227

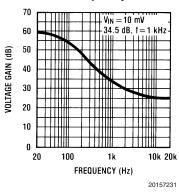

Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.

Total Gain: 115 dB @f = 1 kHz Input Referred Noise Voltage: e_n = V0/560,000 (V)

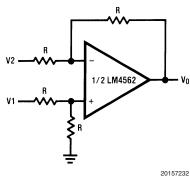
RIAA Preamp Voltage Gain, RIAA **Deviation vs Frequency**



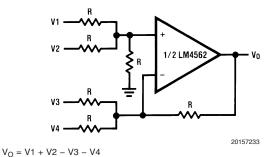
Flat Amp Voltage Gain vs Frequency



20157229

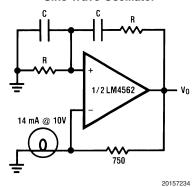


NAB Preamp Voltage Gain vs Frequency

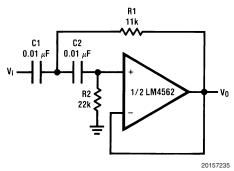


 $A_V = 34.5$ F = 1 kHz $E_n = 0.38 \; \mu V$ A Weighted

Balanced to Single Ended Converter



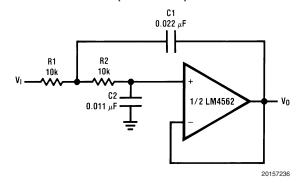
Adder/Subtracter



V_O = V1-V2

Sine Wave Oscillator

Second Order High Pass Filter (Butterworth)

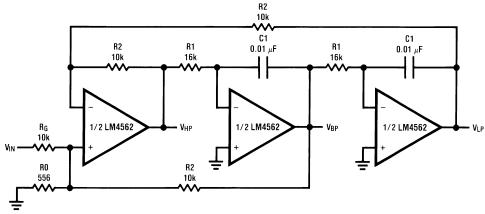


if
$$C1 = C2 = C$$

$$R1 = \frac{\sqrt{2}}{2\omega_0 C}$$

Illustration is $f_0 = 1 \text{ kHz}$

Second Order Low Pass Filter (Butterworth)

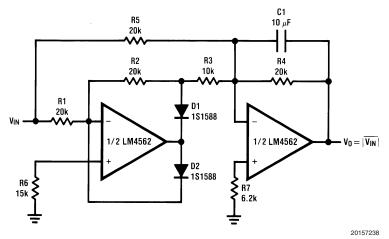


$$C1 = \frac{\sqrt{2}}{\omega_0 R}$$

$$C2 = \frac{C1}{2}$$

Illustration is $f_0 = 1 \text{ kHz}$

State Variable Filter



20157237

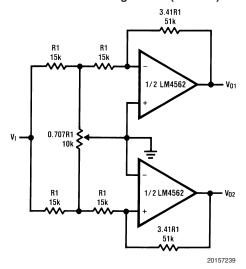
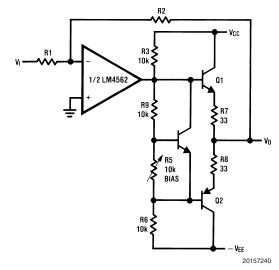
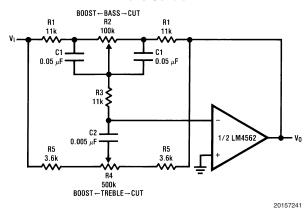
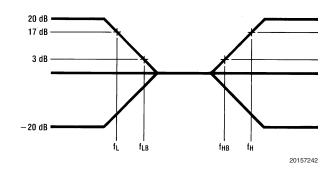

$$\mathsf{f}_0 = \frac{1}{2\pi C \mathsf{1R1}}, \mathsf{Q} = \frac{1}{2} \left(1 + \frac{\mathsf{R2}}{\mathsf{R0}} + \frac{\mathsf{R2}}{\mathsf{RG}} \right), \mathsf{A}_{\mathsf{BP}} = \mathsf{QA}_{\mathsf{LP}} = \mathsf{QA}_{\mathsf{LH}} = \frac{\mathsf{R2}}{\mathsf{RG}}$$

Illustration is $f_0 = 1 \text{ kHz}$, Q = 10, $A_{BP} = 1$


AC/DC Converter


2 Channel Panning Circuit (Pan Pot)

Line Driver


Tone Control

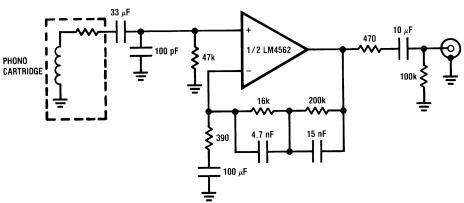

$$\begin{split} \mathbf{f}_{L} &= \frac{1}{2\pi R2C1}, \mathbf{f}_{LB} = \frac{1}{2\pi R1C1} \\ \mathbf{f}_{H} &= \frac{1}{2\pi R5C2}, \mathbf{f}_{HB} = \frac{1}{2\pi (R1 + R5 + 2R3)C2} \end{split}$$

Illustration is:

$$f_L = 32 \text{ Hz}, f_{LB} = 320 \text{ Hz}$$

 $f_H = 11 \text{ kHz}, f_{HB} = 1.1 \text{ kHz}$

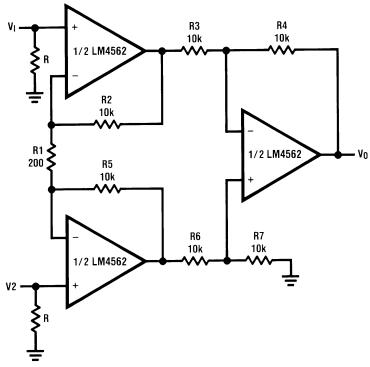
RIAA Preamp

20157203

 $A_v = 35 \text{ dB}$

 $E_n = 0.33 \ \mu V$

S/N = 90 dB


f = 1 kHz

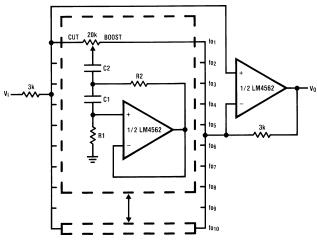
A Weighted

A Weighted, $V_{IN} = 10 \text{ mV}$

@f = 1 kHz

Balanced Input Mic Amp

20157243


If R2 = R5, R3 = R6, R4 = R7

$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

Illustration is:

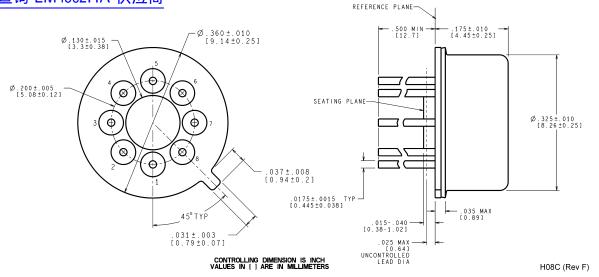
V0 = 101(V2 - V1)

10 Band Graphic Equalizer

20157244

fo (Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12µF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51kΩ	510Ω

Note 9: At volume of change = ±12 dB


Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

Revision History

查询"LM4562HA"供应商	Date	Description	
0.05	5/24/05	Added edits and changes per TW Chan's and M Koterasawa-san's	
		inputs and conference call	
		(5/20/05).	
		Changed part number to LM4562.	
0.10	5/25/05	Updates based on inputs from	
		design after KPC review.	
0.15	10/5/05	Edited 201572 55 (pkg drwg) and	
		added the M08A mktg outline.	
0.20	11/01/05	Mjor edits on the EC table (by	
		Heather).	
0.25	02/02/06	Input major text (Typical limits)	
		edits.	
0.30	05/31/06	Some text edits.	
0.35	06/07/06	Edited Typical values on Zin.	
0.40	08/02/06	Added the Typ. Perf. Curves and	
		some text edits.	
0.45	08/07/06	Added the 2 curves	
		(Voltage/Current Noise Density vs	
		Freq.)	
0.50	08/08/06	Replaced some of the curves.	
0.55	08/10/06	Added more curves.	
0.56	08/16/06	Initial WEB.	
0.57	08/22/06	Changed the Typical values on	
		Instantaneous Short Circuit Curren	
		from +30/-38 into +53/-42 (per	
		Robin S.), then re-released the D/S	
		to the WEB.	

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

查询"LM4562HA"供应商

TO-99 Metal Can Package Order Number LM4562HA **NS Package Number H08C**

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at: www.national.com/quality/green.

Lead free products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560