

查询"54F547DMQB"供应商

54F/74F547

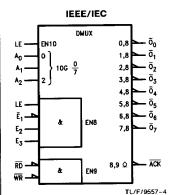
Octal Decoder/Demultiplexer with Address Latches and Acknowledge

General Description

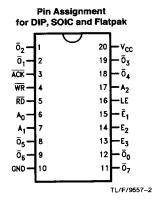
The 'F547 is a 3-to-8 line address decoder with latches for address storage. Designed primarily to simplify multiple chip selection in a microprocessor system, it contains one active LOW and two active HIGH Enables to conserve address space. Also included is an active LOW Acknowledge output that responds to either a Read or Write input signal when the Enables are active.

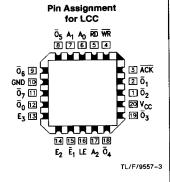
Features

- 3-to-8 line address decoder
- Address storage latches
- Multiple enables for address extension
- Open collector acknowledge output


Ordering Code: See Section 5

Logic Symbols


LE A0 A1 A2


00 01 02 03 04 05 06

TL/F/9557-1

Connection Diagrams

4-446

Unit Loading/Fan Out: See Section 2 for U.L. definitions

		54	F/74F
Pin Names	查询"54F54 759M"以 B"供应商	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}
A ₀ -A ₂	Address Select Inputs	1.0/1.0	20 μA/ – 0.6 mA
A ₀ −A ₂ Ē ₁	Chip Enable Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA
E ₂ , E ₃	Chip Enable Inputs	1.0/1.0	20 μA/ – 0.6 mA
LE	Latch Enable Input	1.0/1.0	20 μA/ – 0.6 mA
RD	Read Acknowledge Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA
WR	Write Acknowledge Input (Active LOW)	1.0/1.0	20 μA/ - 0.6 mA
ACK	Open Collector Acknowledge Output (Active LOW)	*OC/33.3	*OC/20 mA
$\overline{O}_0 - \overline{O}_7$	Decoded Outputs (Active LOW)	50/33.3	−1 mA/20 mA

^{*}OC = Open Collector

Functional Description

When enabled, the 'F547 accepts the A_0-A_2 Address inputs and decodes them to select one of eight active LOW, mutually exclusive outputs, as shown in the Decoder Truth Table. With LE HIGH, the Address latches are transparent and the output selection changes each time the A_0-A_2 address changes. When LE is LOW, the latches store the last valid address preceding the HIGH-to-LOW transition of the LE input signal. For applications in which the separation of latch enable and chip enable functions is not required, LE and \overline{E}_1 can be tied together, such that when HIGH the outputs are OFF and the latches are transparent, and when LOW the latches are storing and the selected output is enabled.

The open collector Acknowledge (\overline{ACK}) output is normally HIGH (i.e., OFF) and goes LOW when \overline{E}_1 , E_2 and E_3 are all active and either the Read (\overline{RD}) or Write (\overline{WR}) input is LOW, as indicated in the Acknowledge Truth Table.

Acknowledge Truth Table

	Inputs							
Ē,	E ₂	E ₃	RD	WR	ACK			
Н	Х	X	Х	Х	Н			
x	L	Х	X	Х	н			
x	Х	L	X	X	н			
L	Н	Н	H	Н	Н			
L	Н	Н	L	X	L			
L	Н	Н	X	L	L			

H = HIGH Voltage Level

Latch Status Table

Input LE	Latch Status
Н	Transparent
L	Storing

Output Status Table

	Inputs	Decoder	
Ē ₁	Ē₁ E₂		Outputs
L	Н	Н	$\overline{O}_n = LOW^{\dagger}$
н	X	X	$O_0 - O_7 = HIGH$
×	L	×	$O_0 - O_7 = HIGH$
Х	X	L	$O_0 - O_7 = HIGH$

[†]See Decoder Truth Table

Decoder Truth Table*

	Inputs			Outputs						
A ₂	A ₁	A ₀	O ₀	Ō₁	O ₂	\overline{O}_3	\overline{O}_4	Ō ₅	Ō ₆	07
L	L	L	L	Н	Н	Н	Н	н	н	Н
L	L	Н	н	L	Н	Н	Н	Н	Н	Н
L	Н	L	н	Н	L	Н	Н	Н	Н	Н
L	Н	Н	н	Н	Н	L	Н	н	Н	Н
Н	L	L	н	Н	Н	Н	L	Н	Н	н
н	L	н	н	Н	Н	Н	н	L	Н	Н
н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	Н	н	Н	Н	н	Н	Н	H	Н	L

^{*}Assuming E1, LOW; E2 and E3, HIGH

Powered by ICminer.com Electronic-Library Service CopyRight 2003

L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings (Note 1)

if Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distribution of the Maria of the Maria

Storage Temperature 65°C to +150°C

Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias —55°C to +175°C

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V

Input Current (Note 2)

-30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC}
TRI-STATE® Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

 Military
 −55°C to +125°C

 Commercial
 0°C to +70°C

Supply Voltage

Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

DC Electrical Characteristics

Combal	Parameter		54F/74F			Units	Vcc	Conditions	
Symbol			Min	Тур	Max	Oille	VCC	Conditions	
V _{IH}	Input HIGH Voltage	,	2.0			٧		Recognized as a HIGH Signa	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	ltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			٧	Min	$I_{OH} = -1 \text{ mA } (\overline{O}_n)$ $I_{OH} = -1 \text{ mA } (\overline{O}_n)$ $I_{OH} = -1 \text{ mA } (\overline{O}_n)$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	>	Min	$I_{OL} = 20 \text{ mA } (\overline{ACK}, \overline{O}_n)$ $I_{OL} = 20 \text{ mA } (\overline{ACK}, \overline{O}_n)$	
lін	Input HIGH Current	54F 7 4 F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
l _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}(\overline{O}_n)$	
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
l _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{fL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
los	Output Short-Circuit (Current	-60		-150	mA	Max	$V_{OUT} = 0V(\overline{O}_n)$	
ОНС	Open Collector, Outp OFF Leakage Test	ut			250	μΑ	Min	$V_{OUT} = V_{CC} (\overline{ACK})$	
lcc	Power Supply Curren	t		17	30	mA	Max		

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

			74F		5	4F	7	4F		
查询 Symbol	"54F547DMQB" Parameter	供应商 _A = +25°C V _{CC} = +5.0V C _L = 50 pF		T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.	
		Min	Тур	Max	Min	Max	Min	Max]	
t _{PLH} t _{PHL}	Propagation Delay An to On	2.0 4.5	7.0 9.0	9.0 12.0	3.0 5.0	10.5 13.5	1.5 4.0	10.0 13.0	ns	2-3
t _{PLH} t _{PHL}	Propagation Delay E ₁ to O _n	2.5 3.0	6.5 6.5	8.5 8.5	3.0 3.5	10.0 10.0	2.0 3.0	9.5 9.5	ns	2-3
t _{PLH} t _{PHL}	Propagation Delay LE to $\overline{\mathbb{O}}_n$	3.5 5.0	7.5 14.5	10.0 14.0	4.0 5.0	11.5 20.0	3.0 5.0	11.0 15.0	ns	2-3
t _{PLH} t _{PHL}	Propagation Delay E_2 or E_3 to \overline{O}_n	4.0 4.0	8.5 8.5	10.0 10.0	4.5 4.5	12.5 12.5	3.0 4.0	11.0 11.0	ns	2-3
t _{PLH}	Propagation Delay E ₁ , RD or WR to ACK	6.5 3.5	11.0 7.5	13.0 9.5	6.5 3.5	16.0 11.0	6.5 3.0	14.0 10.5	ns	2-3
t _{PLH} t _{PHL}	Propagation Delay E ₂ or E ₃ to ACK	7.5 4.5	13.0 8.5	14.0 12.0	8.0 5.0	18.5 12.5	7.0 4.0	15.0 11.0	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol		74F		54 F		74F			Fig.
	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $T_A, V_{CC} = Mil$		$T_A, V_{CC} = Mil$ $T_A, V_{CC} = Cor$		T _A , V _{CC} = Com		
		Min	Max	Min	Max	Min	Min Max		
t _s (H)	Setup Time, HIGH or LOW	5.0		5.0		5.0			
t _s (L)	A _n to LE	5.0		5.0		5.0		ns	2-6
t _h (H)	Hold Time, HIGH or LOW	6.0		6.0		6.0			
t _h (L)	A _n to LE	6.0		6.0		6.0			
t _w (H)	LE Pulse Width, HIGH	6.0		6.0		6.0		ns	2-4