

《FBF20S, SiHFBF20S, IRFBF20L, SiHFBF20L"供应商

Vishay Siliconix

HALOGEN FREE

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	900				
R _{DS(on)} (Ω)	V _{GS} = 10 V 8.0				
Q _g (Max.) (nC)	38				
Q _{gs} (nC)	4.7				
Q _{gd} (nC)	21				
Configuration	Single				

N-Channel MOSFET

FEATURES

• Halogen-free According to IEC 61249-2-21 Definition

- Low-Profile Through-Hole (IRFBF20L, SiHFBF20L) RoHS*
- Available in Tape and Reel (IRFBF20S, SiHFBF20S) COMPLIANT

Dynamic dV/dt Rating

- 150 °C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs form Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The D²PAK is a surface mount power package capabel of the accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²PAK is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application. The through-hole version (IRFBF20L, SiHFBF20L) is available for low-profile applications.

ORDERING INFORMATION						
Package	D ² PAK (TO-263)	D ² PAK (TO-263)	D ² PAK (TO-263)	I ² PAK (TO-262)		
Lead (Pb)-free and Halogen-free	SiHFBF20S-GE3	SiHFBF20STRL-GE3a	SiHFBF20STRR-GE3a	SiHFBF20L-GE3		
Lead (Pb)-free	IRFBF20SPbF	IRFBF20STRLPbFa	IRFBF20STRRPbFa	IRFBF20LPbF		
	SiHFBF20S-E3	SiHFBF20STL-E3a	SiHFBF20STR-E3a	SiHFBF20L-E3		
SnPb	IRFBF20S	IRFBF20STRL ^a	IRFBF20STRR ^a	IRFBF20L		
Note	SiHFBF20S-E3	SiHFBF20STL ^a	SiHFBF20STR ^a	SiHFBF20L		

a. See device orientation.

PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltagee			V _{DS}	900	.,	
Gate-Source Voltagee	G. G. G.		V _{GS}	± 20	V	
Continuous Drain Current	14 14014	T _C = 25 °C		1.7		
	V _{GS} at 10 V	$T_C = 25 ^{\circ}C$ $T_C = 100 ^{\circ}C$	I _D	1.1	Α	
Pulsed Drain Current ^{a,e}	I _{DM}	6.8				
Linear Derating Factor				0.43	W/°C	
Single Pulse Avalanche Energy ^{b, e}			E _{AS}	180	mJ	
Repetitive Avalanche Currenta			I _{AR}	1.7 5.6 -	Α	
Repetitive Avalanche Energy ^a			E _{AR}	5.4	mJ	
Maximum Dowar Discinstion	T _C = 25 °C T _A = 25 °C			54	W	
Maximum Power Dissipation			P _D	3.1] vv	
Peak Diode Recovery dV/dt ^{c, e}			dV/dt	1.5	V/ns	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150	- °C	
Soldering Recommendations (Peak Temperature)	for	10 s		300 ^d	C	
Mounting Torque	6-32 or N	M3 screw		10	N	

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. $V_{DD} = 50 \text{ V}$; starting $T_J = 25 ^{\circ}\text{C}$, L = 117 mH, $R_g = 25 ^{\circ}\Omega$, $I_{AS} = 1.7 \text{ A}$ (see fig. 12). c. $I_{SD} \le 1.7 \text{ A}$, $I_{AS} = 1.7 \text{ A}$, $I_{AS} = 1.7 \text{ A}$, $I_{AS} = 1.7 \text{ A}$.
- 1.6 mm from case.
- Uses IRFBF20, SiHFBF20 data and test conditions

* Pb containing terminations are not RoHS compliant, exemptions may apply

IRFBF20S, SiHFBF20S, IRFBF20L, SiHFBF20L

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	TYP.	MAX.	UNIT		
Maximum Junction-to-Ambient (PCB Mounted, steady-state) ^a	R _{thJA}	-	40	°C/W		
Maximum Junction-to-Case	R_{thJC}	-	2.3			

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material).

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)									
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT		
Static	- -			•	•	•	•		
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D = 250 μA	900	-	-	V		
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I _D = 1 mA	-	1.1	-	mV/°C		
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	V _{GS} , I _D = 250 μA	2.0	-	4.0	V		
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 20 V	-	-	± 100	nA		
Zara Cata Valtaga Prain Current		V _{DS} =	900 V, V _{GS} = 0 V	-	-	100	μА		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 720 V	V, V _{GS} = 0 V, T _J = 125 °C	-	-	500			
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 1.0 A ^b	-	-	8.0	Ω		
Forward Transconductance	9fs	V _{DS} = 50 V, I _D = 1.0 A ^b		0.6	-	-	S		
Dynamic	•								
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 25 \text{ V},$ f = 1.0 MHz, see fig. 5		-	490	-	pF		
Output Capacitance	C _{oss}			-	55	-			
Reverse Transfer Capacitance	C _{rss}			-	18	-			
Total Gate Charge	Qg		I _D = 1.7 A, V _{DS} = 360 V, see fig. 6 and 13 ^b	-	-	38			
Gate-Source Charge	Q _{gs}	$V_{GS} = 10 \text{ V}$		-	-	4.7	nC		
Gate-Drain Charge	Q_{gd}			-	-	21			
Turn-On Delay Time	t _{d(on)}			-	8.0	-			
Rise Time	t _r	V_{DD} = 450 V, I_D = 1.7 A, R_g = 18 Ω , V_{GS} = 10 V, see fig. 10 ^b		-	21	-	7		
Turn-Off Delay Time	t _{d(off)}			-	56	-	ns		
Fall Time	t _f			-	32	-	1		

查询"LRFBF20S, SiHFBF20S, IRFBF20L, SiHFBF20L"供应商

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Drain-Source Body Diode Characteristics								
Continuous Source-Drain Diode Current	I _S	MOSFET symbol showing the integral reverse p - n junction diode	-	-	1.7	Α		
Pulsed Diode Forward Current ^a	I _{SM}		-	-	6.8			
Body Diode Voltage	V_{SD}	$T_J = 25 ^{\circ}\text{C}, \ I_S = 1.7 \text{A}, \ V_{GS} = 0 \text{V}^{\text{b}}$	-	-	1.5	V		
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 1.7 A, dl/dt = 100 A/μs ^b	-	350	530	ns		
Body Diode Reverse Recovery Charge	Q _{rr}	$I_1 = 25$ C, $I_F = 1.7$ A, I_{A} and $I_{A} = 100$ A/ μ S	-	0.85	1.3	μC		
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{\mbox{\scriptsize S}}$ and $L_{\mbox{\scriptsize D}}$)						

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width \leq 300 µs; duty cycle \leq 2 %.
- c. Uses IRFBF20/SiHFBF20 data and test conditions.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

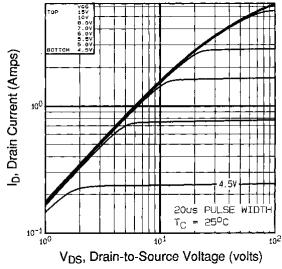
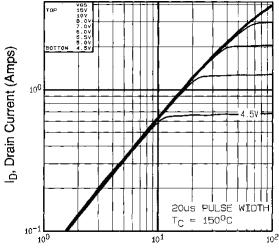
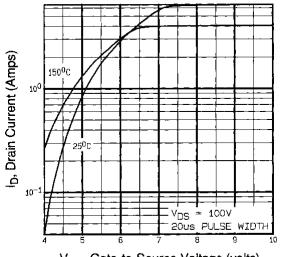



Fig. 1 - Typical Output Characteristics



V_{DS}, Drain-to-Source Voltage (volts) Fig. 2 - Typical Output Characteristics

IRFBF20S, SiHFBF20S, IRFBF20L, SiHFBF20L

Vi**雪hayi SiliEconi ix**iHFBF20S, IRFBF20L, SiHFBF20L"供应商

V_{GS}, Gate-to-Source Voltage (volts) Fig. 3 - Typical Transfer Characteristics

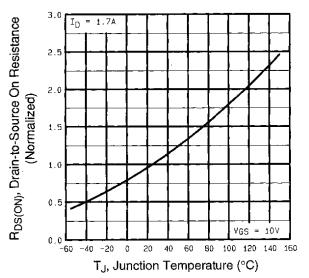


Fig. 4 - Normalized On-Resistance vs. Temperature

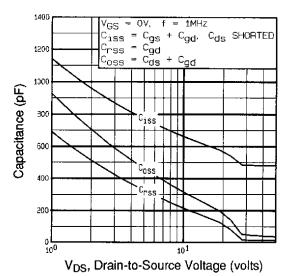


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

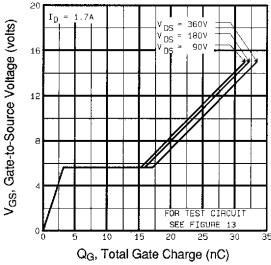


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

查询"IRFBF20S, SiHFBF20S, IRFBF20L, SiHFBF20L"供应商

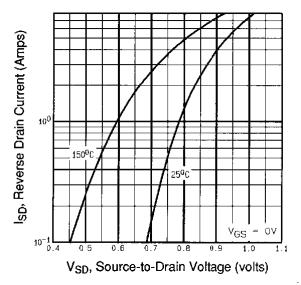


Fig. 7 - Typical Source-Drain Diode Forward Voltage

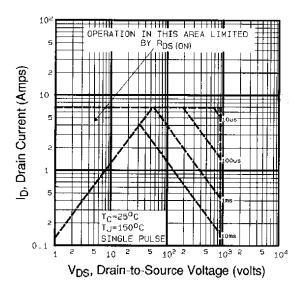


Fig. 8 - Maximum Safe Operating Area

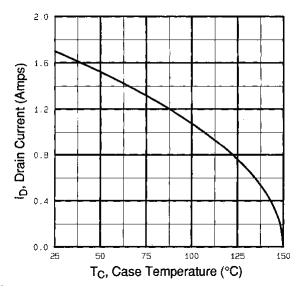


Fig. 9 - Maximum Drain Current vs. Case Temperature

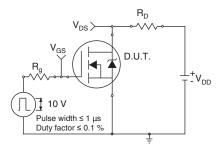


Fig. 10a - Switching Time Test Circuit

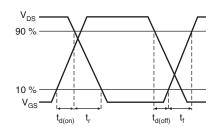


Fig. 10b - Switching Time Waveforms

IRFBF20S, SiHFBF20S, IRFBF20L, SiHFBF20L

Vi**营nay**il SiliEconi ixiHFBF20S, IRFBF20L, SiHFBF20L"供应商

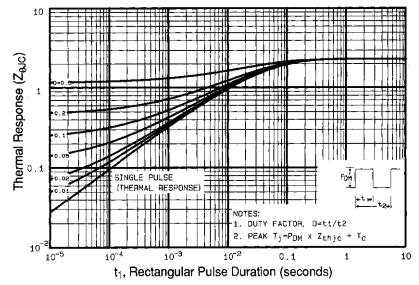


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

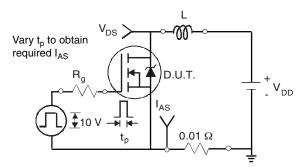


Fig. 12a - Unclamped Inductive Test Circuit

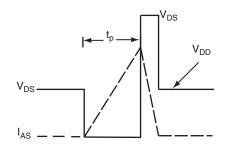


Fig. 12b - Unclamped Inductive Waveforms

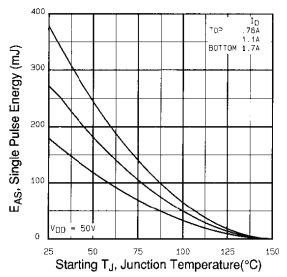


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

查询"IRFBF20S, SiHFBF20S, IRFBF20L, SiHFBF20L"供应商

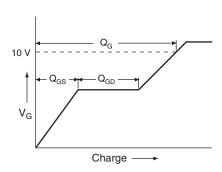


Fig. 13a - Basic Gate Charge Waveform

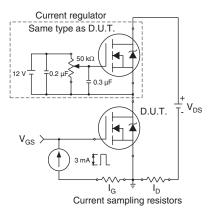


Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit Circuit layout considerations Low stray inductance Ground plane Low leakage inductance current transformer d d d d v dV/dt controlled by R_g Driver same type as D.U.T. I_{SD} controlled by duty factor "D" D.U.T. - device under test

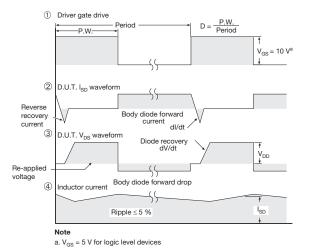


Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91121.

Document Number: 91121 S10-2433-Rev. A, 25-Oct-10 FBF20S, SiHFBF20S, IRFBF20L, SiHFBF20L"供应商

Vishav

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08