Microchip

dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610
 Data Sheet

High－Performance， 16－bit Digital Signal Controllers

询dsPIC33FJ32GS606供应商

Note the following details of the code protection feature on Microchip devices：
－Microchip products meet the specification contained in their particular Microchip Data Sheet．
－Microchip believes that its family of products is one of the most secure families of its kind on the market today，when used in the intended manner and under normal conditions．
－There are dishonest and possibly illegal methods used to breach the code protection feature．All of these methods，to our knowledge，require using the Microchip products in a manner outside the operating specifications contained in Microchip＇s Data Sheets．Most likely，the person doing so is engaged in theft of intellectual property．
－Microchip is willing to work with the customer who is concerned about the integrity of their code．
－Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code．Code protection does not mean that we are guaranteeing the product as＂unbreakable．＂

Code protection is constantly evolving．We at Microchip are committed to continuously improving the code protection features of our products．Attempts to break Microchip＇s code protection feature may be a violation of the Digital Millennium Copyright Act．If such acts allow unauthorized access to your software or other copyrighted work，you may have a right to sue for relief under that Act．

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates．It is your responsibility to ensure that your application meets with your specifications． MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED，WRITTEN OR ORAL，STATUTORY OR OTHERWISE，RELATED TO THE INFORMATION， INCLUDING BUT NOT LIMITED TO ITS CONDITION， QUALITY，PERFORMANCE，MERCHANTABILITY OR FITNESS FOR PURPOSE．Microchip disclaims all liability arising from this information and its use．Use of Microchip devices in life support and／or safety applications is entirely at the buyer＇s risk，and the buyer agrees to defend，indemnify and hold harmless Microchip from any and all damages，claims， suits，or expenses resulting from such use．No licenses are conveyed，implicitly or otherwise，under any Microchip intellectual property rights．

Trademarks

The Microchip name and logo，the Microchip logo，dsPIC， KEELOQ，KEELoQ logo，MPLAB，PIC，PICmicro，PICSTART， PIC ${ }^{32}$ logo，rfPIC and UNI／O are registered trademarks of Microchip Technology Incorporated in the U．S．A．and other countries．

FilterLab，Hampshire，HI－TECH C，Linear Active Thermistor， MXDEV，MXLAB，SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U．S．A．
Analog－for－the－Digital Age，Application Maestro，CodeGuard， dsPICDEM，dsPICDEM．net，dsPICworks，dsSPEAK，ECAN， ECONOMONITOR，FanSense，HI－TIDE，In－Circuit Serial Programming，ICSP，Mindi，MiWi，MPASM，MPLAB Certified logo，MPLIB，MPLINK，mTouch，Octopus，Omniscient Code Generation，PICC，PICC－18，PICDEM，PICDEM．net，PICkit， PICtail，REAL ICE，rfLAB，Select Mode，Total Endurance， TSHARC，UniWinDriver，WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U．S．A．and other countries．

SQTP is a service mark of Microchip Technology Incorporated in the U．S．A．
All other trademarks mentioned herein are property of their respective companies．
© 2010，Microchip Technology Incorporated，Printed in the U．S．A．，All Rights Reserved．
8 Printed on recycled paper．

ISBN：978－1－60932－027－0
Microchip received ISO／TS－16949：2002 certification for its worldwide headquarters，design and wafer fabrication facilities in Chandler and Tempe，Arizona；Gresham，Oregon and design centers in California and India．The Company＇s quality system processes and procedures are for its $P I C^{\circledR}$ MCUs and dsPIC® DSCs，KEELOQ ${ }^{\circledR}$ code hopping devices，Serial EEPROMs，microperipherals，nonvolatile memory and analog products．In addition，Microchip＇s quality system for the design and manufacture of development systems is ISO 9001：2000 certified．

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

High-Performance, 16-Bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

High-Performance DSC CPU:

- Modified Harvard architecture
- C compiler optimized instruction set
- 16-bit wide data path
- 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- Linear data memory addressing up to 64 Kbytes
- 83 base instructions: mostly 1 word/1 cycle
- Two 40-bit accumulators with rounding and saturation options
- Flexible and powerful addressing modes:
- Indirect
- Modulo
- Bit-Reversed
- Software stack
- 16×16 fractional/integer multiply operations
- 32/16 and 16/16 divide operations
- Single-cycle multiply and accumulate:
- Accumulator write back for DSP operations
- Dual data fetch
- Up to ± 16-bit shifts for up to 40 -bit data

Direct Memory Access (DMA):

- 4-channel hardware DMA
- 1 Kbyte dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
- Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

Digital I/O:

- Up to 85 programmable digital I/O pins
- Wake-up/Interrupt-on-Change for up to 24 pins
- Output pins can drive voltage from 3.0 V to 3.6 V
- Up to 5 V output with open drain configuration
- 5 V tolerant digital input pins
- 16 mA source/sink on all PWM pins

On-Chip Flash and SRAM:

- Flash program memory (up to 64 Kbytes)
- Data SRAM (up to 8 Kbytes)
- Boot and General Security for program Flash

Peripheral Features:

- Timer/Counters, up to five 16 -bit timers
- Can pair up to make one 32-bit timer
- Input Capture (up to four channels):
- Capture on up, down or both edges
- 16-bit capture input functions
- 4-deep FIFO on each capture
- Output Compare (up to four channels):
- Single or Dual 16-bit Compare mode
- 16-bit Glitchless PWM mode
- 4-wire SPI (up to two modules):
- Framing supports I/O interface to simple codecs
- 1-deep FIFO buffer
- Supports 8-bit and 16-bit data
- Supports all serial clock formats and sampling modes
- $\mathrm{I}^{2} \mathrm{C}^{\text {TM }}$ (up to two modules):
- Supports Full Multi-Master Slave mode
- 7-bit and 10-bit addressing
- Bus collision detection and arbitration
- Integrated signal conditioning
- Slave address masking

- UART (up to two modules):
- Interrupt on address bit detect
- Interrupt on UART error
- Wake-up on Start bit from Sleep mode
- 4-character TX and RX FIFO buffers
- LIN bus support
- IrDA^{\odot} encoding and decoding in hardware
- High-Speed Baud mode
- Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN ${ }^{\text {TM }}$ module) 2.0B active:
- Up to eight transmit and up to 32 receive buffers
- 16 receive filters and three masks
- Loopback, Listen Only and Listen All
- Messages modes for diagnostics and bus monitoring
- Wake-up on CAN message
- Automatic processing of Remote Transmission Requests
- FIFO mode using DMA
- DeviceNet ${ }^{\text {TM }}$ addressing support
- Quadrature Encoder Interface (up to 2 modules):
- Phase A, Phase B, and index pulse input
- 16-bit up/down position counter
- Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Interrupt on position counter rollover/underflow

High-Speed PWM Module Features:

- Up to nine PWM generators with up to 18 outputs
- Primary and Secondary time-base
- Individual time base and duty cycle for each of the PWM output
- Dead time for rising and falling edges:
- Duty cycle resolution of 1.04 ns
- Dead-time resolution of 1.04 ns
- Phase shift resolution of 1.04 ns
- Frequency resolution of 1.04 ns
- PWM modes supported:
- Standard Edge-Aligned
- True Independent Output
- Complementary
- Center-Aligned
- Push-Pull
- Multi-Phase
- Variable Phase
- Fixed Off-Time
- Current Reset
- Current-Limit
- Independent Fault/Current-Limit inputs
- Output override control
- Special Event Trigger
- PWM capture feature
- Prescaler for input clock
- Dual Trigger from PWM TO ADC
- PWMxL, PWMxH output pin swapping
- On-the-Fly PWM Frequency, Duty cycle and Phase Shift changes
- Disabling of Individual PWM generators
- Leading-Edge Blanking (LEB) functionality

High-Speed Analog Comparator:

- Up to four Analog Comparators:
- 20 ns response time
- 10-bit DAC for each analog comparator
- DACOUT pin to provide DAC output
- Programmable output polarity
- Selectable input source
- ADC sample and convert capability
- PWM module interface:
- PWM Duty Cycle Control
- PWM Period Control
- PWM Fault Detect

Interrupt Controller:

- 5-cycle latency
- Up to five external interrupts
- Seven programmable priority levels
- Five processor exceptions

High-Speed 10-bit ADC:

- 10-bit resolution
- Up to 24 input channels grouped into 12 conversion pairs
- Two internal reference monitoring inputs grouped into a pair
- Successive Approximation Register (SAR) converters for parallel conversions of analog pairs:
- 4 Msps for devices with two SARs
- 2 Msps for devices with one SAR
- Dedicated result buffer for each analog channel
- Independent trigger source section for each analog input conversion pairs

Power Management:

- On-chip 2.5 V voltage regulator
- Switch between clock sources in real time
- Idle, Sleep, and Doze modes with fast wake-up

询dsPIC33FJ32GS606供应商

CMOS Flash Technology：

－Low－power，high－speed Flash technology
－Fully static design
－ $3.3 \mathrm{~V}(\pm 10 \%)$ operating voltage
－Industrial and Extended temperature
－Low power consumption

System Management：

－Flexible clock options：
－External，crystal，resonator，internal RC
－Phase－Locked Loop（PLL）with 120 MHz VCO
－Primary Crystal Oscillator（OSC）in the range of 3 MHz to 40 MHz
－Secondary oscillator（SOSC）
－Internal Low－Power RC（LPRC）oscillator at a frequency of 32.767 kHz
－Internal Fast RC（FRC）oscillator at a frequency of 7.37 MHz
－Power－on Reset（POR）
－Brown－out Reset（BOR）
－Power－up Timer（PWRT）
－Oscillator Start－up Timer（OST）
－Watchdog Timer with its RC oscillator
－Fail－Safe Clock Monitor
－Reset by multiple sources
－In－Circuit Serial Programming ${ }^{\text {TM }}$（ICSP ${ }^{\text {TM }}$ ）
－Reference Oscillator Output

Application Examples：

－AC－to－DC Converters
－Automotive HID
－Battery Chargers
－DC－to－DC Converters
－Digital Lighting
－Induction Cooking
－LED Ballast
－Renewable Power／Pure Sine Wave Inverters
－Uninterruptible Power Supply（UPS）

Packaging：

－64－pin QFN（9x9x0．9 mm）
－64－pin TQFP（10x10x1 mm）
－80－pin TQFP（ $12 \times 12 \times 1 \mathrm{~mm}$ ）
－100－pin TQFP（ $14 \times 14 \times 1 \mathrm{~mm}$ and $12 \times 12 \times 1 \mathrm{~mm}$ ）
Note：See the dsPIC33FJ32GS406／606／608／ 610 and dsPIC33FJ64GS406／606／608／ 610 Controller Families table for exact peripheral features per device．

查询dsPIC33FJ32GS606供应商

dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 PRODUCT FAMILIES

The device names，pin counts，memory sizes，and peripheral availability of each device are listed in Table 1．The following pages show their pinout diagrams．

TABLE 1：dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 CONTROLLER FAMILIES

		\bar{y}																ADC			
Device	$\stackrel{n}{=}$						$\stackrel{\leftarrow}{\stackrel{\rightharpoonup}{c}}$		$\overline{0}$			$\sum_{\sum_{1}}$				$\begin{aligned} & \text { E } \\ & \text { Nu } \end{aligned}$	$\stackrel{\mathfrak{n}}{\stackrel{n}{4}}$			$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & \underline{0} \end{aligned}$	¢
dsPIC33FJ32GS406	64	32	4K	5	4	4	2	1	2	0	0	6x2	0	5	0	2	1	5	16	58	PT,
dsPIC33FJ32GS606	64	32	4K	5	4	4	2	2	2	0	0	6x2	4	5	1	2	2	6	16	58	PT, MR
dsPIC33FJ32GS608	80	32	4K	5	4	4	2	2	2	0	0	8×2	4	5	1	2	2	6	18	74	PT
dsPIC33FJ32GS610	100	32	4K	5	4	4	2	2	2	0	0	9x2	4	5	1	2	2	6	24	85	$\begin{array}{\|l\|} \hline \mathrm{PT}, \\ \mathrm{PF} \end{array}$
dsPIC33FJ64GS406	64	64	8K	5	4	4	2	1	2	0	0	6x2	0	5	0	2	1	5	16	58	$\begin{array}{\|l\|} \hline \mathrm{PT}, \\ \mathrm{MR} \\ \hline \end{array}$
dsPIC33FJ64GS606	64	64	$9 K^{(1)}$	5	4	4	2	2	2	1	4	6x2	4	5	1	2	2	6	16	58	$\left.\begin{array}{\|l\|} \hline \mathrm{PT}, \\ \mathrm{MR} \end{array} \right\rvert\,$
dsPIC33FJ64GS608	80	64	9K ${ }^{(1)}$	5	4	4	2	2	2	1	4	8x2	4	5	1	2	2	6	18	74	PT
dsPIC33FJ64GS610	100	64	$9 K^{(1)}$	5	4	4	2	2	2	1	4	9x2	4	5	1	2	2	6	24	85	$\begin{aligned} & \mathrm{PT}, \end{aligned}$

Note 1：RAM size is inclusive of 1 Kbyte DMA RAM．

查询dsPIC33FJ32GS606供应商

Pin Diagrams

Pin Diagrams（Continued）

Note：The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally．

查询dsPIC33FJ32GS606供应商

Pin Diagrams（Continued）

Pin Diagrams（Continued）

64－Pin TQFP PWM3H／RE5 PWM4L／RE6 PWM4H／RE7 SCK2／FLT12／CN8／RG6 SDI2／FLT11／CN9／RG7 SDO2／FLT10／CN10／RG8 MCLR SS2／FLT9／SYNCI2／T5CK／CN11／RG9 Vss Vdd AN5／CMP3B／AQEB1／CN7／RB5 AN4／CMP2C／CMP3A／AQEA1／CN6／RB4 AN3／CMP2B／AINDX1／CN5／RB3 AN2／CMP1C／CMP2A／ASS1／CN4／RB2 PGEC3／B／AN1／CMP1B／CN3／RB1 PGED3／ANO／CMP1A／CMP4C／CN2／RB0		$=$ Pins are up to 5 V tolerant

查询dsPIC33FJ32GS606供应商

Pin Diagrams（Continued）

Note：The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally．

Pin Diagrams（Continued）

Note：The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally．

查询dsPIC33FJ32GS606供应商

Pin Diagrams（Continued）

Pin Diagrams（Continued）

查询dsPIC33FJ32GS606供应商

Pin Diagrams（Continued）

查询dsPIC33FJ32GS606供应商
Pin Diagrams（Continued）

查询dsPIC33FJ32GS606供应商

Table of Contents

dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 Product Families 6
1．0 Device Overview 19
2．0 Guidelines for Getting Started with 16－bit Digital Signal Controllers 25
3.0 CPU 35
4．0 Memory Organization 47
5．0 Flash Program Memory 109
6．0 Resets 115
7．0 Interrupt Controller 123
8．0 Direct Memory Access（DMA） 177
9．0 Oscillator Configuration 187
10．0 Power－Saving Features． 199
11.0 I／O Ports 209
12．0 Timer1 211
13．0 Timer2／3／4／5 features 213
14．0 Input Capture 219
15．0 Output Compare． 221
16．0 High－Speed PWM 225
17．0 Quadrature Encoder Interface（QEI）Module 255
18．0 Serial Peripheral Interface（SPI） 259
19．0 Inter－Integrated Circuit（ $I^{2} \mathrm{C}^{\top M}$ ） 265
20．0 Universal Asynchronous Receiver Transmitter（UART） 273
21．0 Enhanced CAN（ECAN ${ }^{\text {TM }}$ ）Module 279
22．0 High－Speed 10－bit Analog－to－Digital Converter（ADC） 305
23．0 High－Speed Analog Comparator 329
24．0 Special Features 333
25．0 Instruction Set Summary 341
26．0 Development Support． 349
27．0 Electrical Characteristics 353
28．0 Packaging Information． 389
Appendix A：Migrating from dsPIC33FJ06GS101／X02 and dsPIC33FJ16GSX02／X04 to dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 Devices 403
Appendix B：Revision History 404
Index 409
The Microchip Web Site 415
Customer Change Notification Service 415
Customer Support 415
Reader Response 416
Product Identification System 417

询dsPIC33FJ32GS606供应商

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products．To this end，we will continue to improve our publications to better suit your needs．Our publications will be refined and enhanced as new volumes and updates are introduced．
If you have any questions or comments regarding this publication，please contact the Marketing Communications Department via E－mail at docerrors＠microchip．com or fax the Reader Response Form in the back of this data sheet to（480）792－4150．We welcome your feedback．

Most Current Data Sheet

To obtain the most up－to－date version of this data sheet，please register at our Worldwide Web site at： http：／／www．microchip．com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page． The last character of the literature number is the version number，（e．g．，DS30000A is version A of document DS30000）．

Errata

An errata sheet，describing minor operational differences from the data sheet and recommended workarounds，may exist for current devices．As device／documentation issues become known to us，we will publish an errata sheet．The errata will specify the revision of silicon and revision of document to which it applies．
To determine if an errata sheet exists for a particular device，please check with one of the following：
－Microchip＇s Worldwide Web site；http：／／www．microchip．com
－Your local Microchip sales office（see last page）
When contacting a sales office，please specify which device，revision of silicon and data sheet（include literature number）you are using．

Customer Notification System

Register on our web site at www．microchip．com to receive the most current information on all of our products．

查询dsPIC33FJ32GS606供应商
 1．0 DEVICE OVERVIEW

Note：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to the＂dsPIC33F／PIC24H Family Reference Manual＂．Please see the Microchip web site（www．micro－ chip．com）for the latest dsPIC33F／PIC24H Family Reference Manual sections．

This document contains device－specific information for the following dsPIC33F Digital Signal Controller（DSC） devices：
－dsPIC33FJ32GS406
－dsPIC33FJ32GS606
－dsPIC33FJ32GS608
－dsPIC33FJ32GS610
－dsPIC33FJ64GS406
－dsPIC33FJ64GS606
－dsPIC33FJ64GS608
－dsPIC33FJ64GS610
The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices contain extensive Digital Signal Processor（DSP）func－ tionality with a high－performance 16 －bit microcontroller （MCU）architecture．
Figure 1－1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GS406／ 606／608／610 and dsPIC33FJ64GS406／606／608／610 devices．Table 1－1 lists the functions of the various pins shown in the pinout diagrams．

FIGURE 1－1：BLOCK DIAGRAM

Note：\quad Not all pins or features are implemented on all device pinout configurations．See pinout diagrams for the specific pins and features present on each device．

旬dsPIC33FJ32GS606供应商
TABLE 1－1：PINOUT IIO DESCRIPTIONS

Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
ANO－AN23	I	Analog	Analog input channels
$\begin{array}{\|l\|} \hline \text { CLKI } \\ \text { CLKO } \end{array}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	ST／CMOS －	External clock source input．Always associated with OSC1 pin function． Oscillator crystal output．Connects to crystal or resonator in Crystal Oscillator mode．Optionally functions as CLKO in RC and EC modes． Always associated with OSC2 pin function．
$\begin{aligned} & \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$	I I／O	ST／CMOS	Oscillator crystal input．ST buffer when configured in RC mode；CMOS otherwise． Oscillator crystal output．Connects to crystal or resonator in Crystal Oscillator mode．Optionally functions as CLKO in RC and EC modes．
$\begin{aligned} & \text { SOSCI } \\ & \text { SOSCO } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	ST/CMOS	32.768 kHz low－power oscillator crystal input；CMOS otherwise． 32.768 kHz low－power oscillator crystal output．
CN0－CN23	I	ST	Change notification inputs．Can be software programmed for internal weak pull－ups on all inputs．
$\begin{aligned} & \text { C1RX } \\ & \text { C1TX } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	ST	ECAN1 bus receive pin． ECAN1 bus transmit pin．
IC1－IC4	1	ST	Capture inputs 1／4
INDX1，INDX2，AINDX1 QEA1，QEA2，AQEA1 QEB1，QEB2，AQEB1 UPDN1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	ST ST ST CMOS	Quadrature Encoder Index Pulse input． Quadrature Encoder Phase A input in QEI mode． Auxiliary Timer External Clock／Gate input in Timer mode． Quadrature Encoder Phase A input in QEI mode． Auxiliary Timer External Clock／Gate input in Timer mode． Position Up／Down Counter Direction State．
$\begin{aligned} & \text { OCFA } \\ & \text { OCFB } \\ & \text { OC1-OC4 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { ST } \end{aligned}$	Compare Fault A input（for Compare Channels 1 and 2） Compare Fault B input（for Compare Channels 3 and 4） Compare Outputs 1 through 4
$\begin{array}{\|l} \hline \text { INT0 } \\ \text { INT1 } \\ \text { INT2 } \\ \text { INT3 } \\ \text { INT4 } \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { ST } \end{aligned}$	External Interrupt 0 External Interrupt 1 External Interrupt 2 External Interrupt 3 External Interrupt 4
RA0－RA15	I／O	ST	PORTA is a bidirectional I／O port
RB0－RB15	I／O	ST	PORTB is a bidirectional I／O port
RC0－RC15	I／O	ST	PORTC is a bidirectional I／O port
RD0－RD15	I／O	ST	PORTD is a bidirectional I／O port
RE0－RE9	I／O	ST	PORTE is a bidirectional I／O port
RF0－RF13	I／O	ST	PORTF is a bidirectional I／O port
RG0－RG15	I／O	ST	PORTG is a bidirectional I／O port
$\begin{aligned} & \text { T1CK } \\ & \text { T2CK } \\ & \text { T3CK } \\ & \text { T4CK } \\ & \text { T5CK } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { ST } \end{aligned}$	Timer1 External Clock Input Timer2 External Clock Input Timer3 External Clock Input Timer4 External Clock Input Timer5 External Clock Input
Legend： CMOS＝CMOS compatible input or output Analog＝Analog in ST＝Schmitt Trigger input with CMOS levels $\mathrm{P}=$ Power			

查询dsPIC33FJ32GS606供应商

TABLE 1－1：PINOUT IIO DESCRIPTIONS（CONTINUED）

Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
U1CTS	1	ST	UART1 clear to send
U1RTS	0	－	UART1 ready to send
U1RX	I	ST	UART1 receive
U1TX	O	－	UART1 transmit
U2CTS	1	ST	UART2 clear to send
U2RTS	O	－	UART2 ready to send
U2RX	I	ST	UART2 receive
U2TX	0	－	UART2 transmit
SCK1	I／O	ST	Synchronous serial clock input／output for SPI1
SDI1	1	ST	SPI1 data in
SDO1	0	－	SPI1 data out
SS1，ASS1	I／O	ST	SPI1 slave synchronization or frame pulse I／O
SCK2	I／O	ST	Synchronous serial clock input／output for SPI2
SDI2	1	ST	SPI2 data in
SDO2	0	－	SPI2 data out
SS2	I／O	ST	SPI2 slave synchronization or frame pulse I／O
SCL1	I／O	ST	Synchronous serial clock input／output for I2C1
SDA1	I／O	ST	Synchronous serial data input／output for I2C1
SCL2	I／O	ST	Synchronous serial clock input／output for I2C2
SDA2	I／O	ST	Synchronous serial data input／output for I2C2
TMS	1	TTL	JTAG Test mode select pin
TCK	1	TTL	JTAG test clock input pin
TDI	1	TTL	JTAG test data input pin
TDO	0	－	JTAG test data output pin
CMP1A	1	Analog	Comparator 1 Channel A
CMP1B	1	Analog	Comparator 1 Channel B
CMP1C	1	Analog	Comparator 1 Channel C
CMP1D	1	Analog	Comparator 1 Channel D
CMP2A	I	Analog	Comparator 2 Channel A
CMP2B	1	Analog	Comparator 2 Channel B
CMP2C	1	Analog	Comparator 2 Channel C
CMP2D	I	Analog	Comparator 2 Channel D
CMP3A	1	Analog	Comparator 3 Channel A
CMP3B	1	Analog	Comparator 3 Channel B
CMP3C	I	Analog	Comparator 3 Channel C
CMP3D	1	Analog	Comparator 3 Channel D
CMP4A	I	Analog	Comparator 4 Channel A
CMP4B	I	Analog	Comparator 4 Channel B
CMP4C	I	Analog	Comparator 4 Channel C
CMP4D	1	Analog	Comparator 4 Channel D
DACOUT	0	－	DAC output voltage
EXTREF	1	Analog	External Voltage Reference Input for the Reference DACs
REFCLK	0	－	REFCLK output signal is a postscaled derivative of the sys

Legend：	CMOS $=$ CMOS compatible input or output	Analog＝Analog input	$I=$ Input
	ST＝Schmitt Trigger input with CMOS levels	$\mathrm{P}=\mathrm{Power}$	$\mathrm{O}=$ Output

TTL $=$ Transistor－Transistor Logic

询dsPIC33FJ32GS606供应商

TABLE 1－1：PINOUT IIO DESCRIPTIONS（CONTINUED）

Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
FLT1－FLT23	1	ST	Fault Inputs to PWM Module
SYNCI1－SYNCI4	1	ST	External synchronization signal to PWM Master Time Base
SYNCO1－SYNCO2	0	－	PWM Master Time Base for external device synchronization
PWM1L	0	－	PWM1 Low output
PWM1H	0	－	PWM1 High output
PWM2L	0	－	PWM2 Low output
PWM2H	0	－	PWM2 High output
PWM3L	0	－	PWM3 Low output
PWM3H	0	－	PWM3 High output
PWM4L	0	－	PWM4 Low output
PWM4H	0	－	PWM4 High output
PWM5L	0	－	PWM5 Low output
PWM5H	0	－	PWM5 High output
PWM6L	O	－	PWM6 Low output
PWM6H	0	－	PWM6 High output
PWM7L	0	－	PWM7 Low output
PWM7H	0	－	PWM7 High output
PWM8L	0	－	PWM8 Low output
PWM8H	0	－	PWM8 High output
PWM9L	O	－	PWM9 Low output
PWM9H	O	－	PWM9 High output
PGED1	I／O	ST	Data I／O pin for programming／debugging communication Channel 1
PGEC1	1	ST	Clock input pin for programming／debugging communication Channel 1
PGED2	I／O	ST	Data I／O pin for programming／debugging communication Channel 2
PGEC2	1	ST	Clock input pin for programming／debugging communication Channel 2
PGED3	I／O	ST	Data I／O pin for programming／debugging communication Channel 3
PGEC3	I	ST	Clock input pin for programming／debugging communication Channel 3
$\overline{\mathrm{MCLR}}$	I／P	ST	Master Clear（Reset）input．This pin is an active－low Reset to the device．
AVDD	P	P	Positive supply for analog modules
AVss	P	P	Ground reference for analog modules
Vdd	P	－	Positive supply for peripheral logic and I／O pins
VCAP／VDDCORE	P	－	CPU logic filter capacitor connection
Vss	P	－	Ground reference for logic and I／O pins
Legend： CMOS＝CMOS compatible input or output Analog＝Analog input $\mathrm{I}=$ Input ST＝Schmitt Trigger input with CMOS levels $\mathrm{P}=\mathrm{Power}$ $\mathrm{O}=$ Output TTL＝Transistor－Transistor Logic			

询dsPIC33FJ32GS606供应商
 2．0 GUIDELINES FOR GETTING STARTED WITH 16－BIT DIGITAL SIGNAL CONTROLLERS

Note 1：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 family of devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to the＂dsPIC33F／PIC24H Family Reference Manual＂．Please see the Microchip web site （www．microchip．com）for the latest 74dsPIC33F／PIC24H Family Reference Manual sections．

2：Some registers and associated bits described in this section may not be avail－ able on all devices．Refer to Section 4.0 ＂Memory Organization＂in this data sheet for device－specific register and bit information．

2．1 Basic Connection Requirements

$$
\begin{array}{llr}
\begin{array}{l}
\text { Getting started } \\
\text { dsPIC33FJ32GS406/606/608/610 }
\end{array} & \text { with } & \text { the } \\
\text { dsPIC33FJ64GS406/606/608/610 family of } & \text { and } \\
\text { Digital Signal Controllers (DSC) requires attention to a }
\end{array}
$$

－All Vdd and Vss pins （see Section 2.2 ＂Decoupling Capacitors＂）
－All AVDD and AVss pins（regardless if ADC module is not used）
（see Section 2.2 ＂Decoupling Capacitors＂）
－Vcap／Vddcore
（see Section 2.3 ＂Capacitor on Internal Voltage Regulator（Vcap／Vddcore）＂）
－MCLR pin
（see Section 2.4 ＂Master Clear（MCLR）Pin＂）
－PGECx／PGEDx pins used for In－Circuit Serial Programming ${ }^{\text {TM }}$（ICSP ${ }^{\text {TM }}$ ）and debugging purposes （see Section 2.5 ＂ICSP Pins＂）
－OSC1 and OSC2 pins when external oscillator source is used
（see Section 2.6 ＂External Oscillator Pins＂）

2．2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins，such as VDD，Vss，AVDD，and AVss is required．
Consider the following criteria when using decoupling capacitors：
－Value and type of capacitor：Recommendation of $0.1 \mu \mathrm{~F}(100 \mathrm{nF}), 10-20 \mathrm{~V}$ ．This capacitor should be a low－ESR and have resonance frequency in the range of 20 MHz and higher．It is recommended that ceramic capacitors be used．
－Placement on the printed circuit board：The decoupling capacitors should be placed as close to the pins as possible．It is recommended to place the capacitors on the same side of the board as the device．If space is constricted，the capacitor can be placed on another layer on the PCB using a via；however，ensure that the trace length from the pin to the capacitor is within one－quarter inch（ 6 mm ）in length．
－Handling high frequency noise：If the board is experiencing high frequency noise，upward of tens of MHz ，add a second ceramic－type capaci－ tor in parallel to the above described decoupling capacitor．The value of the second capacitor can be in the range of $0.01 \mu \mathrm{~F}$ to $0.001 \mu \mathrm{~F}$ ．Place this second capacitor next to the primary decoupling capacitor．In high－speed circuit designs，consider implementing a decade pair of capacitances as close to the power and ground pins as possible． For example， $0.1 \mu \mathrm{~F}$ in parallel with $0.001 \mu \mathrm{~F}$ ．
－Maximizing performance：On the board layout from the power supply circuit，run the power and return traces to the decoupling capacitors first， and then to the device pins．This ensures that the decoupling capacitors are first in the power chain． Equally important is to keep the trace length between the capacitor and the power pins to a minimum，thereby reducing PCB track inductance．

查询dsPIC33FJ32GS606供应商

2．2．1 TANK CAPACITORS

On boards with power traces running longer than six inches in length，it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source．The value of the tank capacitor should be determined based on the trace resistance that con－ nects the power supply source to the device，and the maximum current drawn by the device in the applica－ tion．In other words，select the tank capacitor so that it meets the acceptable voltage sag at the device．Typical values range from $4.7 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$ ．

2．3 Capacitor on Internal Voltage Regulator（Vcap／Vddcore）

A low－ESR（＜ 5 Ohms）capacitor is required on the VCAP／VDDCORE pin，which is used to stabilize the voltage regulator output voltage．The Vcap／Vddcore pin must not be connected to VDD，and must have a capacitor between $4.7 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}, 16 \mathrm{~V}$ connected to ground．The type can be ceramic or tantalum．Refer to Section 27.0 ＂Electrical Characteristics＂for additional information．
The placement of this capacitor should be close to the Vcap／VDDCore．It is recommended that the trace length not exceed one－quarter inch（ 6 mm ）．Refer to Section 24.2 ＂On－Chip Voltage Regulator＂for details．

2．4 Master Clear（MCLR）Pin

The $\overline{\mathrm{MCLR}}$ pin provides for two specific device functions：
－Device Reset
－Device programming and debugging．
During device programming and debugging，the resistance and capacitance that can be added to the pin must be considered．Device programmers and debuggers drive the $\overline{\mathrm{MCLR}} \mathrm{pin}$ ．Consequently， specific voltage levels（ V_{IH} and VIL ）and fast signal transitions must not be adversely affected．Therefore， specific values of R and C will need to be adjusted based on the application and PCB requirements．

For example，as shown in Figure 2－2，it is recommended that the capacitor C ，be isolated from the $\overline{\mathrm{MCLR}}$ pin during programming and debugging operations．
Place the components shown in Figure 2－2 within one－quarter inch（ 6 mm ）from the $\overline{\mathrm{MCLR}}$ pin．

FIGURE 2－2：EXAMPLE OF MCLR PIN CONNECTIONS

Note 1： $\mathrm{R} \leq 10 \mathrm{k} \Omega$ is recommended．A suggested starting value is $10 \mathrm{k} \Omega$ ．Ensure that the MCLR pin VIH and VIL specifications are met．
2：R1 $\leq 470 \Omega$ will limit any current flowing into $\overline{\mathrm{MCLR}}$ from the external capacitor C ，in the event of $\overline{M C L R}$ pin breakdown，due to Electrostatic Discharge（ESD）or Electrical Overstress（EOS）．Ensure that the MCLR pin VIH and VIL specifications are met．

查询dsPIC33FJ32GS606供应商

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In－Circuit Serial Programming ${ }^{\text {TM }}$（ICSP ${ }^{\text {TM }}$ ）and debugging pur－ poses．It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible．If the ICSP connector is expected to experience an ESD event，a series resistor is recommended，with the value in the range of a few tens of Ohms，not to exceed 100 Ohms．
Pull－up resistors，series diodes，and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer／debugger communi－ cations to the device．If such discrete components are an application requirement，they should be removed from the circuit during programming and debugging． Alternatively，refer to the AC／DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low（VIL）requirements．
Ensure that the＂Communication Channel Select＂（i．e．， PGECx／PGEDx pins）programmed into the device matches the physical connections for the ICSP to MPLAB ${ }^{\circledR}$ ICD 2，MPLAB ${ }^{\circledR}$ ICD 3，or MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {™ }}$ ．
For more information on ICD 2，ICD 3，and REAL ICE connection requirements，refer to the following documents that are available on the Microchip web site．
－＂MPLAB ${ }^{\circledR}$ ICD 2 In－Circuit Debugger User＇s Guide＂DS51331
－＂Using MPLAB ${ }^{\circledR}$ ICD 2＂（poster）DS51265
－＂MPLAB ${ }^{\circledR}$ ICD 2 Design Advisory＂DS51566
－＂Using MPLAB ${ }^{\circledR}$ ICD $3^{\prime \prime}$（poster）DS51765
－＂MPLAB ${ }^{\circledR}$ ICD 3 Design Advisory＂DS51764
－＂MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM }}$ In－Circuit Debugger User＇s Guide＂DS51616
－＂Using MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM＂（ poster）DS51749 }}$

2．6 External Oscillator Pins

Many DSCs have options for at least two oscillators：a high－frequency primary oscillator and a low－frequency secondary oscillator（refer to Section 9.0 ＂Oscillator Configuration＂for details）．
The oscillator circuit should be placed on the same side of the board as the device．Also，place the oscillator circuit close to the respective oscillator pins， not exceeding one－half inch（ 12 mm ）distance between them．The load capacitors should be placed next to the oscillator itself，on the same side of the board．Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits．The grounded copper pour should be routed directly to the MCU ground．Do not run any signal traces or power traces inside the ground pour．Also，if using a two－sided board，avoid any traces on the other side of the board where the crystal is placed．A suggested layout is shown in Figure 2－3．

FIGURE 2－3：SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

查询dsPIC33FJ32GS606供应商

2．7 Oscillator Value Condítions on Device Start－up

If the PLL of the target device is enabled and configured for the device start－up oscillator，the maximum oscillator source frequency must be limited to $4 \mathrm{MHz}<\mathrm{FIN}<8 \mathrm{MHz}$ to comply with device PLL start－up conditions．This means that if the external oscillator frequency is outside this range，the application must start－up in the FRC mode first．The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed．

Once the device powers up，the application firmware can initialize the PLL SFRs，CLKDIV，and PLLDBF to a suitable value，and then perform a clock switch to the Oscillator＋PLL clock source．Note that clock switching must be enabled in the device Configuration Word．

2．8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2，ICD 3，or REAL ICE is selected as a debugger，it automatically initializes all of the A／D input pins（ANx）as＂digital＂pins，by setting all bits in the ADPCFG and ADPCFG2 registers．
The bits in the registers that correspond to the A／D pins that are initialized by MPLAB ICD 2，ICD 3，or REAL ICE，must not be cleared by the user application firmware；otherwise，communication errors will result between the debugger and the device．

If your application needs to use certain A／D pins as analog input pins during the debug session，the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module．

When MPLAB ICD 2，ICD 3，or REAL ICE is used as a programmer，the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers．Automatic initialization of these registers is only done during debugger operation．Failure to correctly configure the register（s）will result in all A／D pins being recognized as analog input pins，resulting in the port value being read as a logic＇0＇，which may affect user application functionality．

2．9 Unused I／Os

Unused I／O pins should be configured as outputs and driven to a logic－low state．
Alternatively，connect a 1 k to 10k resistor to Vss on unused pins and drive the output to logic low．

2．10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2－4 through Figure 2－11．

查询dsPIC33FJ32GS606供应商
FIGURE 2－4：DIGITAL PFC

FIGURE 2－5：
BOOST CONVERTER IMPLEMENTATION

FIGURE 2－6：SINGLE－PHASE SYNCHRONOUS BUCK CONVERTER

FIGURE 2－7：
MULTI－PHASE SYNCHRONOUS BUCK CONVERTER

查询dsPIC33FJ32GS606供应商

FIGURE 2－8：OFF－LINE UPS

查询dsPIC33FJ32GS606供应商
FIGURE 2－9：INTERLEAVED PFC

FIGURE 2－10：PHASE－SHIFTED FULL－BRIDGE CONVERTER

查询dsPIC33FJ32GS606供应商

3.0 CPU

Note 1：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to Section 2．＂CPU＂ （DS70204）in the＂dsPIC33F／PIC24H Family Reference Manual＂，which is avail－ able from the Microchip web site （www．microchip．com）．

2：Some registers and associated bits described in this section may not be avail－ able on all devices．Refer to Section 4.0 ＂Memory Organization＂in this data sheet for device－specific register and bit information．

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 CPU module has a 16－bit（data）modified Harvard architecture with an enhanced instruction set，including significant support for DSP．The CPU has a 24－bit instruction word with a variable length opcode field．The Program Counter (PC) is 23 bits wide and addresses up to $4 \mathrm{M} \times 24$ bits of user program memory space．The actual amount of program memory implemented varies from device to device．A single－cycle instruction prefetch mechanism is used to help maintain throughput and provides pre－ dictable execution．All instructions execute in a single cycle，with the exception of instructions that change the program flow，the double－word move（MOV．D） instruction and the table instructions．Overhead－free program loop constructs are supported using the DO and REPEAT instructions，both of which are interruptible at any point．
The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices have six－ teen， 16 －bit working registers in the programmer＇s model．Each of the working registers can serve as a data，address or address offset register．The sixteenth working register（W15）operates as a software Stack Pointer（SP）for interrupts and calls．
There are two classes of instruction in the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices：MCU and DSP．These two instruction classes are seamlessly integrated into a single CPU．The instruction set includes many addressing modes and is designed for optimum C compiler efficiency．For most instructions， the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 is capable of exe－ cuting a data（or program data）memory read，a work－ ing register（data）read，a data memory write and a program（instruction）memory read per instruction
cycle．As a result，three parameter instructions can be supported，allowing $A+B=C$ operations to be executed in a single cycle．
A block diagram of the CPU is shown in Figure 3－1， and the programmer＇s model for the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 is shown in Figure 3－2．

3．1 Data Addressing Overview

The data space can be addressed as 32 K words or 64 Kbytes and is split into two blocks，referred to as X and Y data memory．Each memory block has its own independent Address Generation Unit（AGU）．The MCU class of instructions operates solely through the X memory AGU，which accesses the entire memory map as one linear data space．Certain DSP instructions operate through the X and Y AGUs to support dual operand reads，which splits the data address space into two parts．The X and Y data space boundary is device－specific．

Overhead－free circular buffers（Modulo Addressing mode）are supported in both X and Y address spaces． The Modulo Addressing removes the software boundary checking overhead for DSP algorithms． Furthermore，the X AGU circular addressing can be used with any of the MCU class of instructions．The X AGU also supports Bit－Reversed Addressing to greatly simplify input or output data reordering for radix－2 FFT algorithms．
The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16 K program word boundary defined by the 8 －bit Program Space Visibility Page（PSVPAG）register．The program－to－data space mapping feature lets any instruction access program space as if it were data space．

3．2 DSP Engine Overview

The DSP engine features a high－speed，17－bit by 17－bit multiplier，a 40－bit ALU，two 40－bit saturating accumulators and a 40－bit bidirectional barrel shifter． The barrel shifter is capable of shifting a 40－bit value up to 16 bits，right or left，in a single cycle．The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real－ time performance．The MAC instruction and other asso－ ciated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle．This instruction functionality requires that the RAM data space be split for these instructions and linear for all others．Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space．

查询dsPIC33FJ32GS606供应商

3.3 Special MCU Features

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 features a 17－bit by 17－bit single－cycle multiplier that is shared by both the MCU ALU and DSP engine．The multiplier can perform signed，unsigned and mixed sign multiplication．Using a 17 －bit by 17 －bit multiplier for 16 －bit by 16 －bit multiplication not only allows you to perform mixed sign multiplication， it also achieves accurate results for special operations， such as $(-1.0) \times(-1.0)$ ．

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 supports 16／16 and 32／16 divide operations，both fractional and integer．All divide instructions are iterative operations．They must be executed within a REPEAT loop，resulting in a total execution time of 19 instruction cycles．The divide operation can be interrupted during any of those 19 cycles without loss of data．
A 40－bit barrel shifter is used to perform up to a 16－bit left or right shift in a single cycle．The barrel shifter can be used by both MCU and DSP instructions．

FIGURE 3－1：dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 CPU CORE BLOCK DIAGRAM

查询dsPIC33FJ32GS606供应商
FIGURE 3－2：PROGRAMMER＇S MODEL

查询dsPIC33FJ32GS606供应商

3.4 CPU Control Registers

REGISTER 3－1：SR：CPU STATUS REGISTER

R－0	R－0	R／C－0	R／C－0	R－0	$R / C-0$	$R-0$	$R / W-0$
OA	OB	$\mathrm{SA}^{(1)}$	$\mathrm{SB}^{(1)}$	OAB	$\mathrm{SAB}^{(1,4)}$	DA	DC
bit 15							

R／W－0 $0^{(\mathbf{2})}$	$\mathrm{R} / \mathrm{W}-0^{(\mathbf{3})}$	$\mathrm{R} / \mathrm{W}-0^{(3)}$	$\mathrm{R}-0$	$\mathrm{R} / \mathrm{W}-0$	$\mathrm{R} / \mathrm{W}-0$	$\mathrm{R} / \mathrm{W}-0$	$\mathrm{R} / \mathrm{W}-0$
	$\mathrm{IPL}<2: 0>^{(2)}$	RA	N	OV	Z	C	
bit 7				bit 0			

Legend：

$C=$ Clearable bit	$R=$ Readable bit	$U=$ Unimplemented bit，read as＇ 0 ＇
$S=$ Settable bit	$W=$ Writable bit	$-n=$ Value at POR
＇ 1 ＇＝Bit is set	$' 0$＇$=$ Bit is cleared	$x=$ Bit is unknown

bit 15 OA：Accumulator A Overflow Status bit
1 ＝Accumulator A overflowed
$0=$ Accumulator A has not overflowed
bit $14 \quad \mathbf{O B}$ ：Accumulator B Overflow Status bit
1 ＝Accumulator B overflowed
0 ＝Accumulator B has not overflowed
bit 13 SA：Accumulator A Saturation ‘Sticky＇Status bit ${ }^{(1)}$
1 ＝Accumulator A is saturated or has been saturated at some time
$0=$ Accumulator A is not saturated
bit 12 SB：Accumulator B Saturation＇Sticky＇Status bit ${ }^{(1)}$
$1=$ Accumulator B is saturated or has been saturated at some time
$0=$ Accumulator B is not saturated
bit $11 \quad$ OAB：OA｜｜OB Combined Accumulator Overflow Status bit
1 ＝Accumulators A or B have overflowed
$0=$ Neither Accumulators A or B have overflowed
bit 10
SAB：SA｜｜SB Combined Accumulator＇Sticky＇Status bit ${ }^{(1,4)}$
$1=$ Accumulators A or B are saturated or have been saturated at some time in the past
0 ＝Neither Accumulator A or B are saturated
bit 9 DA：DO Loop Active bit
1 ＝DO loop in progress
0 ＝DO loop not in progress
bit 8 DC：MCU ALU Half Carry／$\overline{\text { Borrow }}$ bit
$1=$ A carry－out from the 4th low－order bit（for byte－sized data）or 8th low－order bit（for word－sized data） of the result occurred
$0=$ No carry－out from the 4th low－order bit（for byte－sized data）or 8th low－order bit（for word－sized data）of the result occurred

Note 1：This bit can be read or cleared（not set）．
2：The IPL＜2：0＞bits are concatenated with the IPL＜3＞bit（CORCON $<3>$ ）to form the CPU Interrupt Priority Level（IPL）．The value in parentheses indicates the IPL if IPL＜3＞＝1．User interrupts are disabled when $\mathrm{IPL}<3>=1$ ．
3：The IPL＜2：0＞Status bits are read－only when NSTDIS＝ 1 （INTCON1＜15＞）．
4：Clearing this bit will clear SA and SB．

询dsPIC33FJ32GS606供应商

REGISTER 3－1：SR：CPU STATUS REGISTER（CONTINUED）

bit 7－5	IPL＜2：0＞：CPU Interrupt Priority Level Status bits ${ }^{(2)}$
	111 ＝CPU Interrupt Priority Level is 7 （15），user interrupts disabled
	110 ＝CPU Interrupt Priority Level is 6 （14）
	101 ＝CPU Interrupt Priority Level is 5 （13）
	100 ＝CPU Interrupt Priority Level is 4 （12）
	011 ＝CPU Interrupt Priority Level is 3 （11）
	010 ＝CPU Interrupt Priority Level is 2 （10）
	001 ＝CPU Interrupt Priority Level is 1 （9）
	000 ＝CPU Interrupt Priority Level is 0 （8）
bit 4	RA：REPEAT Loop Active bit
	1 ＝REPEAT loop in progress
	0 ＝REPEAT loop not in progress
bit 3	N：MCU ALU Negative bit
	1 ＝Result was negative
	0 ＝Result was non－negative（zero or positive）
bit 2	OV：MCU ALU Overflow bit
	This bit is used for signed arithmetic（2＇s complement）．It indicates an overflow of a magnitude that causes the sign bit to change state．
	1 ＝Overflow occurred for signed arithmetic（in this arithmetic operation）
	0 ＝No overflow occurred
bit 1	Z：MCU ALU Zero bit
	1 ＝An operation that affects the Z bit has set it at some time in the past
	$0=$ The most recent operation that affects the Z bit has cleared it（i．e．，a non－zero result）
bit 0	C：MCU ALU Carry／$\overline{\text { Borrow }}$ bit
	1 ＝A carry－out from the Most Significant bit of the result occurred
	$0=$ No carry－out from the Most Significant bit of the result occurred

Note 1：This bit can be read or cleared（not set）．
2：The IPL＜2：0＞bits are concatenated with the IPL＜3＞bit（CORCON $<3>$ ）to form the CPU Interrupt Priority Level（IPL）．The value in parentheses indicates the IPL if IPL＜3＞＝1．User interrupts are disabled when $1 P L<3>=1$ ．

3：The IPL＜2：0＞Status bits are read－only when NSTDIS＝ 1 （INTCON1＜15＞）．
4：Clearing this bit will clear SA and SB．

bit 15-13 Unimplemented: Read as ' 0 '
bit 12 US: DSP Multiply Unsigned/Signed Control bit
1 = DSP engine multiplies are unsigned
0 = DSP engine multiplies are signed
bit 11 EDT: Early DO Loop Termination Control bit ${ }^{(1)}$
1 = Terminate executing DO loop at end of current loop iteration
$0=$ No effect
bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits
111 = 7 DO loops active
-
-
$001=1$ DO loop active
$000=0$ DO loops active
bit 7 SATA: ACCA Saturation Enable bit
1 = Accumulator A saturation enabled
$0=$ Accumulator A saturation disabled
bit 6 SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation enabled
$0=$ Accumulator B saturation disabled
bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
$0=$ Data space write saturation disabled
bit 4 ACCSAT: Accumulator Saturation Mode Select bit
$1=9.31$ saturation (super saturation)
$0=1.31$ saturation (normal saturation)
bit $3 \quad$ IPL3: CPU Interrupt Priority Level Status bit $3^{(2)}$
1 = CPU Interrupt Priority Level is greater than 7
$0=$ CPU Interrupt Priority Level is 7 or less
bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
$0=$ Program space not visible in data space
bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
$0=$ Unbiased (convergent) rounding enabled
bit $0 \quad$ IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply ops
0 = Fractional mode enabled for DSP multiply ops
Note 1: This bit will always read as ' 0 '.
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

询dsPIC33FJ32GS606供应商

3．5 Arithmetic Logic Unit（ALU）
The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 ALU is 16 bits wide and is capable of addition，subtraction，bit shifts and logic operations．Unless otherwise mentioned，arithmetic operations are 2＇s complement in nature．Depending on the operation，the ALU can affect the values of the Carry （C），Zero（Z），Negative（N），Overflow（OV）and Digit Carry （DC）Status bits in the SR register．The C and DC Status bits operate as $\overline{\text { Borrow }}$ and $\overline{\text { Digit Borrow }}$ bits，respectively， for subtraction operations．

The ALU can perform 8 －bit or 16 －bit operations， depending on the mode of the instruction that is used． Data for the ALU operation can come from the W register array or data memory，depending on the addressing mode of the instruction．Likewise，output data from the ALU can be written to the W register array or a data memory location．

Refer to the＂16－bit MCU and DSC Programmer＇s Ref－ erence Manual＂（DS70157）for information on the SR bits affected by each instruction．
The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 CPU incorporates hardware support for both multiplication and division．This includes a dedicated hardware multiplier and support hardware for 16 －bit－divisor division．

3．5．1 MULTIPLIER

Using the high－speed，17－bit x 17－bit multiplier of the DSP engine，the ALU supports unsigned，signed or mixed sign operation in several MCU multiplication modes：
－ 16 －bit x 16 －bit signed
－ 16 －bit $\times 16$－bit unsigned
－16－bit signed $\times 5$－bit（literal）unsigned
－ 16 －bit unsigned $\times 16$－bit unsigned
－16－bit unsigned $\times 5$－bit（literal）unsigned
－ 16 －bit unsigned $\times 16$－bit signed
－8－bit unsigned x 8 －bit unsigned

3．5．2 DIVIDER

The divide block supports 32 －bit／16－bit and 16 －bit／16－bit signed and unsigned integer divide operations with the following data sizes：
－32－bit signed／16－bit signed divide
－32－bit unsigned／16－bit unsigned divide
－16－bit signed／16－bit signed divide
－16－bit unsigned／16－bit unsigned divide
The quotient for all divide instructions ends up in WO and the remainder in W1．16－bit signed and unsigned DIV instructions can specify any W register for both the 16－bit divisor（Wn）and any W register（aligned）pair $(W(m+1): W m)$ for the 32－bit dividend．The divide algorithm takes one cycle per bit of divisor，so both 32－bit／ 16 －bit and 16 －bit／16－bit instructions take the same number of cycles to execute．

3．6 DSP Engine

The DSP engine consists of a high－speed，17－bit x 17－bit multiplier，a barrel shifter and a 40－bit adder／ subtracter（with two target accumulators，round and saturation logic）．

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 is a single－cycle instruction flow architecture；therefore，concurrent opera－ tion of the DSP engine with MCU instruction flow is not possible．However，some MCU ALU and DSP engine resources can be used concurrently by the same instruc－ tion（for example，ED，EDAC）．
The DSP engine can also perform inherent accumulator－to－accumulator operations that require no additional data．These instructions are ADD，SUB and NEG．
The DSP engine has options selected through bits in the CPU Core Control register（CORCON），as listed below：
－Fractional or integer DSP multiply（IF）
－Signed or unsigned DSP multiply（US）
－Conventional or convergent rounding（RND）
－Automatic saturation on／off for ACCA（SATA）
－Automatic saturation on／off for ACCB（SATB）
－Automatic saturation on／off for writes to data memory（SATDW）
－Accumulator Saturation mode selection（ACC－ SAT）
A block diagram of the DSP engine is shown in Figure 3－3．

查询dsPIC33F J32GS606供应商
TABLE 3－1：DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	$A=0$	Yes
ED	$A=(x-y) 2$	No
EDAC	$A=A+(x-y) 2$	No
MAC	$A=A+\left(x^{*} y\right)$	Yes
MAC	$A=A+x 2$	No
MOVSAC	No change in A	Yes
MPY	$A=x^{*} y$	No
MPY	$A=x^{2}$	No
MPY．N	$A=-x^{*} y$	No
MSC	$A=A-x^{*} y$	Yes

FIGURE 3－3：DSP ENGINE BLOCK DIAGRAM

询dsPIC33FJ32GS606供应商
 3．6．1 MULTIPLIER

The 17 －bit $\times 17$－bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional（Q31）or 32－bit integer results．Unsigned operands are zero－extended into the 17th bit of the multiplier input value．Signed operands are sign－extended into the 17th bit of the multiplier input value．The output of the 17－bit $\times 17$－bit multiplier／scaler is a 33－bit value that is sign－extended to 40 bits．Integer data is inherently represented as a signed 2＇s complement value，where the Most Significant bit（MSb）is defined as a sign bit．The range of an N －bit 2 ＇s complement integer is $-2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$ ．
－For a 16－bit integer，the data range is -32768 （ 0×8000 ）to 32767 （0x7FFF）including 0.
－For a 32－bit integer，the data range is $-2,147,483,648(0 \times 80000000)$ to $2,147,483,647$ （0x7FFF FFFF）．
When the multiplier is configured for fractional multiplication，the data is represented as a 2 ＇s complement fraction，where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit（ QX format）．The range of an N －bit 2 ＇s complement fraction with this implied radix point is -1.0 to $\left(1-2^{1-N}\right)$ ．For a 16 －bit fraction，the Q15 data range is -1.0 （ 0×8000 ）to 0.999969482 （ 0×7 FFF）including 0 and has a precision of 3.01518×10^{-5} ．In Fractional mode，the 16×16 multiply operation generates a 1.31 product that has a precision of 4.65661×10^{-10} ．

The same multiplier is used to support the MCU multiply instructions，which include integer 16－bit signed，unsigned and mixed sign multiply operations．
The MUL instruction can be directed to use byte or word－sized operands．Byte operands will direct a 16 －bit result，and word operands will direct a 32－bit result to the specified register（s）in the W array．

3．6．2 DATA ACCUMULATORS AND ADDER／SUBTRACTER

The data accumulator consists of a 40－bit adder／ subtracter with automatic sign extension logic．It can select one of two accumulators（A or B）as its pre－ accumulation source and post－accumulation destination．For the ADD and LAC instructions，the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation．

3．6．2．1 Adder／Subtracter，Overflow and Saturation

The adder／subtracter is a 40－bit adder with an optional zero input into one side，and either true or complement data into the other input．
－In the case of addition，the Carry／$\overline{\text { Borrow }}$ input is active－high and the other input is true data（not complemented）．
－In the case of subtraction，the Carry／Borrow input is active－low and the other input is complemented．
The adder／subtracter generates Overflow Status bits， SA／SB and OA／OB，which are latched and reflected in the STATUS register：
－Overflow from bit 39：this is a catastrophic overflow in which the sign of the accumulator is destroyed．
－Overflow into guard bits， 32 through 39：this is a recoverable overflow．This bit is set whenever all the guard bits are not identical to each other．

The adder has an additional saturation block that controls accumulator data saturation，if selected．It uses the result of the adder，the Overflow Status bits described previously and the $S A T<A: B>$ （CORCON＜7：6＞）and ACCSAT（CORCON＜4＞）mode control bits to determine when and to what value to saturate．

Six STATUS register bits support saturation and overflow：
－OA：ACCA overflowed into guard bits
－OB：ACCB overflowed into guard bits
－SA：ACCA saturated（bit 31 overflow and saturation）
or
ACCA overflowed into guard bits and saturated （bit 39 overflow and saturation）
－SB：ACCB saturated（bit 31 overflow and saturation）
or
ACCB overflowed into guard bits and saturated （bit 39 overflow and saturation）
－OAB：Logical OR of OA and OB
－SAB：Logical OR of SA and SB
The OA and OB bits are modified each time data passes through the adder／subtracter．When set，they indicate that the most recent operation has overflowed into the accumulator guard bits（bits 32 through 39）． The OA and OB bits can also optionally generate an arithmetic warning trap when set and the correspond－ ing Overflow Trap Flag Enable bits（OVATE，OVBTE） in the INTCON1 register are set（refer to Section 7.0 ＂Interrupt Controller＂）．This allows the user applica－ tion to take immediate action，for example，to correct system gain．

查询dsPIC33FJ32GS606供应商

The SA and SB bits are modified each time data passes through the adder／subtracter，but can only be cleared by the user application．When set，they indicate that the accumulator has overflowed its maximum range（bit 31 for 32 －bit saturation or bit 39 for 40 －bit saturation）and will be saturated（if saturation is enabled）．When saturation is not enabled，SA and SB default to bit 39 overflow and thus，indicate that a cata－ strophic overflow has occurred．If the COVTE bit in the INTCON1 register is set，SA and SB bits will generate an arithmetic warning trap when saturation is disabled．

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register（SR）as the logical OR of OA and OB（in bit OAB）and the logical OR of SA and SB（in bit SAB）．Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed，or one bit to determine if either accumulator has saturated．This is useful for complex number arithmetic，which typically uses both accumulators．

The device supports three Saturation and Overflow modes：
－Bit 39 Overflow and Saturation：
When bit 39 overflow and saturation occurs，the saturation logic loads the maximally positive 9.31 （0x7FFFFFFFFFF）or maximally negative 9.31 value（ 0×8000000000 ）into the target accumu－ lator．The SA or SB bit is set and remains set until cleared by the user application．This condition is referred to as＇super saturation＇and provides protection against erroneous data or unexpected algorithm problems（such as gain calculations）．
－Bit 31 Overflow and Saturation：
When bit 31 overflow and saturation occurs，the saturation logic then loads the maximally positive 1.31 value（0x007FFFFFFFF）or maximally nega－ tive 1.31 value（ 0×0080000000 ）into the target accumulator．The SA or SB bit is set and remains set until cleared by the user application．When this Saturation mode is in effect，the guard bits are not used，so the OA，OB or OAB bits are never set．
－Bit 39 Catastrophic Overflow：
The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit，which remains set until cleared by the user application．No saturation operation is performed，and the accumulator is allowed to overflow，destroying its sign．If the COVTE bit in the INTCON1 register is set，a catastrophic overflow can initiate a trap exception．

3．6．3 ACCUMULATOR＇WRITE BACK＇

The MAC class of instructions（with the exception of MPY，MPY．N，ED and EDAC）can optionally write a rounded version of the high word（bits 31 through 16） of the accumulator that is not targeted by the instruction into data space memory．The write is performed across the X bus into combined X and Y address space．The following addressing modes are supported：
－W13，Register Direct：
The rounded contents of the non－target accumulator are written into W13 as a 1.15 fraction．
－［W13］＋＝2，Register Indirect with Post－Increment： The rounded contents of the non－target accumulator are written into the address pointed to by W13 as a 1.15 fraction．W13 is then incremented by 2 （for a word write）．

3．6．3．1 Round Logic

The round logic is a combinational block that performs a conventional（biased）or convergent（unbiased） round function during an accumulator write（store）．The Round mode is determined by the state of the RND bit in the CORCON register．It generates a 16－bit， 1.15 data value that is passed to the data space write saturation logic．If rounding is not indicated by the instruction，a truncated 1.15 data value is stored and the least significant word is simply discarded．

Conventional rounding zero－extends bit 15 of the accu－ mulator and adds it to the ACCxH word（bits 16 through 31 of the accumulator）．
－If the ACCxL word（bits 0 through 15 of the accumulator）is between 0×8000 and $0 \times F F F F$ （ 0×8000 included），ACCxH is incremented．
－If ACCXL is between $0 x 0000$ and $0 x 7 F F F, A C C x H$ is left unchanged．

A consequence of this algorithm is that over a succession of random rounding operations，the value tends to be biased slightly positive．
Convergent（or unbiased）rounding operates in the same manner as conventional rounding，except when ACCxL equals 0x8000．In this case，the Least Significant bit（bit 16 of the accumulator）of ACCxH is examined：
－If it is＇ 1 ＇， ACCxH is incremented．
－If it is＇ 0 ＇， ACCxH is not modified．
Assuming that bit 16 is effectively random in nature， this scheme removes any rounding bias that may accumulate．

The SAC and SAC．R instructions store either a truncated（SAC），or rounded（SAC．R）version of the contents of the target accumulator to data memory via the X bus，subject to data saturation（see Section 3．6．3．2＂Data Space Write Saturation＂）．For the MAC class of instructions，the accumulator write－ back operation functions in the same manner， addressing combined MCU（ X and Y ）data space though the X bus．For this class of instructions，the data is always subject to rounding．

询dsPIC33FJ32GS606供应商

3．6．3．2 Data Space Write Saturation
In addition to adder／subtracter saturation，writes to data space can also be saturated，but without affecting the contents of the source accumulator．The data space write saturation logic block accepts a 16 －bit， 1.15 fractional value from the round logic block as its input， together with overflow status from the original source （accumulator）and the 16 －bit round adder．These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory．
If the SATDW bit in the CORCON register is set，data （after rounding or truncation）is tested for overflow and adjusted accordingly：
－For input data greater than 0x007FFF，data written to memory is forced to the maximum positive 1.15 value， $0 \times 7 F F F$ ．
－For input data less than 0xFF8000，data written to memory is forced to the maximum negative 1.15 value， 0×8000 ．

The Most Significant bit of the source（bit 39）is used to determine the sign of the operand being tested．
If the SATDW bit in the CORCON register is not set，the input data is always passed through unmodified under all conditions．

3．6．4 BARREL SHIFTER

The barrel shifter can perform up to 16 －bit arithmetic or logic right shifts，or up to 16 －bit left shifts in a single cycle．The source can be either of the two DSP accumulators or the X bus（to support multi－bit shifts of register or memory data）．
The shifter requires a signed binary value to determine both the magnitude（number of bits）and direction of the shift operation．A positive value shifts the operand right． A negative value shifts the operand left．A value of＇ 0 ＇ does not modify the operand．

The barrel shifter is 40 bits wide，thereby obtaining a 40－bit result for DSP shift operations and a 16－bit result for MCU shift operations．Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts，and between bit positions 0 and 16 for left shifts．

询dsPIC33FJ32GS606供应商

4．0 MEMORY ORGANIZATION

Note：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to the dsPIC33F／PIC24H Family Reference Manual，＂Section 4. Program Memory＂（DS70202），which is available from the Microchip web site （www．microchip．com）．

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 architecture features separate program and data memory spaces and buses． This architecture also allows the direct access to program memory from the data space during code execution．

4．1 Program Address Space

The program address memory space of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices is 4 M instructions．The space is addressable by a 24－bit value derived either from the 23 －bit Program Counter （PC）during program execution，or from table operation or data space remapping as described in Section 4.6 ＂Interfacing Program and Data Memory Spaces＂．
User application access to the program memory space is restricted to the lower half of the address range （ 0×000000 to $0 \times 7 F F F F F$ ）．The exception is the use of TBLRD／TBLWT operations，which use TBLPAG＜7＞to permit access to the Configuration bits and Device ID sections of the configuration memory space．
The memory maps for the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices are shown in Figure 4－1．

FIGURE 4－1：PROGRAM MEMORY MAPS FOR dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 DEVICES

查询dsPIC33FJ32GS606供应商
 4．1．1 PROGRAMMEMORY
 ORGANIZATION

The program memory space is organized in word－addressable blocks．Although it is treated as 24 bits wide，it is more appropriate to think of each address of the program memory as a lower and upper word，with the upper byte of the upper word being unimplemented．The lower word always has an even address，while the upper word has an odd address（see Figure 4－2）．
Program memory addresses are always word－aligned on the lower word，and addresses are incremented or decremented by two during the code execution．This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible．

4．1．2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices reserve the addresses between 0×00000 and 0×000200 for hard－coded program execution vectors．A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code．A GOTO instruction is programmed by the user application at 0×000000 ，with the actual address for the start of code at 0x000002．
The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices also have two interrupt vector tables，located from 0x000004 to $0 \times 0000 F F$ and 0×000100 to $0 \times 0001 F F$ ．These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines（ISRs）． A more detailed discussion of the interrupt vector tables is provided in Section 7.1 ＂Interrupt Vector Table＂．

FIGURE 4－2：PROGRAM MEMORY ORGANIZATION

查询dsPIC33FJ32GS606供应商

4．2 Data Address Space

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 CPU has a separate 16 －bit－wide data memory space．The data space is accessed using separate Address Generation Units （AGUs）for read and write operations．The data memory maps is shown in Figure 4－3．
All Effective Addresses（EAs）in the data memory space are 16 bits wide and point to bytes within the data space． This arrangement gives a data space address range of 64 Kbytes or 32 K words．The lower half of the data memory space（that is，when EA＜15＞＝0）is used for implemented memory addresses，while the upper half （ $E A<15>=1$ ）is reserved for the Program Space Visibility area（see Section 4．6．3＂Reading Data From Program Memory Using Program Space Visibility＂）．

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices implement up to 9 Kbytes of data memory．Should an EA point to a location outside of this area，an all－zero word or byte will be returned．

4．2．1 DATA SPACE WIDTH

The data memory space is organized in byte addressable， 16 －bit wide blocks．Data is aligned in data memory and registers as 16 －bit words，but all data space EAs resolve to bytes．The Least Significant Bytes（LSBs）of each word have even addresses，while the Most Significant Bytes（MSBs）have odd addresses．

4．2．2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\circledR} MCU devices and improve data space memory usage efficiency，the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 instruction set sup－ ports both word and byte operations．As a conse－ quence of byte accessibility，all effective address calculations are internally scaled to step through word－aligned memory．For example，the core recog－ nizes that Post－Modified Register Indirect Addressing mode［Ws＋＋］that results in a value of Ws +1 for byte operations and Ws +2 for word operations．
Data byte reads will read the complete word that contains the byte，using the LSB of any EA to determine which byte to select．The selected byte is placed onto the LSB of the data path．That is，data memory and registers are organized as two parallel byte－wide entities with shared（word）address decode but separate write lines．Data byte writes only write to the corresponding side of the array or register that matches the byte address．

All word accesses must be aligned to an even address． Misaligned word data fetches are not supported，so care must be taken when mixing byte and word operations，or translating from 8 －bit MCU code．If a misaligned read or write is attempted，an address error trap is generated．If the error occurred on a read，the instruction underway is completed．If the error occurred on a write，the instruction is executed but the write does not occur．In either case，a trap is then executed， allowing the system and／or user application to examine the machine state prior to execution of the address Fault．
All byte loads into any W register are loaded into the Least Significant Byte．The Most Significant Byte is not modified．

A sign－extend instruction（SE）is provided to allow user applications to translate 8 －bit signed data to 16 －bit signed values．Alternatively，for 16－bit unsigned data， user applications can clear the MSB of any W register by executing a zero－extend（ZE）instruction on the appropriate address．

4．2．3 SFR SPACE

The first 2 Kbytes of the Near Data Space，from 0x0000 to $0 \times 07 \mathrm{FF}$ ，is primarily occupied by Special Function Registers（SFRs）．These are used by the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 core and peripheral modules for controlling the operation of the device．
SFRs are distributed among the modules that they control，and are generally grouped together by module． Much of the SFR space contains unused addresses； these are read as＇ 0 ＇．

Note：	The actual set of peripheral features and interrupts varies by the device．Refer to the corresponding device tables and pinout diagrams for device－specific information．

4．2．4 NEAR DATA SPACE

The 8 Kbyte area between $0 x 0000$ and 0x1FFF is referred to as the near data space．Locations in this space are directly addressable via a 13－bit absolute address field within all memory direct instructions． Additionally，the whole data space is addressable using MOV instructions，which support Memory Direct Addressing mode with a 16 －bit address field，or by using Indirect Addressing mode using a working register as an Address Pointer．

查询dsPIC33FJ32GS606供应商
FIGURE 4－3：DATA MEMORY MAP FOR DEVICES WITH 4 KB RAM

FIGURE 4－4：DATA MEMORY MAP FOR DEVICES WITH 8 KB RAM

查询dsPIC33FJ32GS606供应商
FIGURE 4－5： DATA MEMORY MAP FOR DEVICES WITH 9 KB RAM

查询dsPIC33FJ32GS606供应商

4．2．5 X AND Y DATA SPACES
The core has two data spaces， X and Y ．These data spaces can be considered either separate（for some DSP instructions），or as one unified linear address range（for MCU instructions）．The data spaces are accessed using two Address Generation Units（AGUs） and separate data paths．This feature allows certain instructions to concurrently fetch two words from RAM， thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response（FIR）filtering and Fast Fourier Transform（FFT）．
The X data space is used by all instructions and supports all addressing modes．X data space has separate read and write data buses．The X read data bus is the read data path for all instructions that view data space as combined X and Y address space．It is also the X data prefetch path for the dual operand DSP instructions（MAC class）．
The Y data space is used in concert with the X data space by the MAC class of instructions（CLR，ED， EDAC，MAC，MOVSAC，MPY，MPY．N and MSC）to pro－ vide two concurrent data read paths．
Both the X and Y data spaces support Modulo Addressing mode for all instructions，subject to addressing mode restrictions．Bit－Reversed Addressing mode is only supported for writes to X data space．
All data memory writes，including in DSP instructions， view data space as combined X and Y address space． The boundary between the X and Y data spaces is device－dependent and is not user－programmable．
All effective addresses are 16 bits wide and point to bytes within the data space．Therefore，the data space address range is 64 Kbytes，or 32 K words，though the implemented memory locations vary by device．

4．2．6 DMA RAM

Some devices contain 1 Kbyte of dual ported DMA RAM，which is located at the end of Y data space． Memory locations that are part of Y data RAM and are in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module．DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA，as well as data transferred from various peripherals using DMA． The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU．
When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location，the hardware ensures that the CPU is given precedence in accessing the DMA RAM location．Therefore，the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU．
查询dsPIC33FJ32GS606供应商

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
WREG0	0000	Working Register 0																0000
WREG1	0002	Working Register 1																0000
WREG2	0004	Working Register 2																0000
WREG3	0006	Working Register 3																0000
WREG4	0008	Working Register 4																0000
WREG5	000A	Working Register 5																0000
WREG6	000C	Working Register 6																0000
WREG7	000E	Working Register 7																0000
WREG8	0010	Working Register 8																0000
WREG9	0012	Working Register 9																0000
WREG10	0014	Working Register 10																0000
WREG11	0016	Working Register 11																0000
WREG12	0018	Working Register 12																0000
WREG13	001A	Working Register 13																0000
WREG14	001C	Working Register 14																0000
WREG15	001E	Working Register 15																0800
SPLIM	0020	Stack Pointer Limit Register																xxxx
ACCAL	0022	ACCAL																xxxx
ACCAH	0024	ACCAH																xxxx
ACCAU	0026	ACCA＜39＞	ACCAU								xxxx							
ACCBL	0028	ACCBL																xxxx
ACCBH	002A	ACCBH																XXXX
ACCBU	002C	ACCB＜39＞	ACCBU								xxxx							
PCL	002E	Program Counter Low Word Register																0000
PCH	0030	－	－	－	－	－	－	－	－	Program Counter High Byte Register								0000
TBLPAG	0032	－	－	－	－	－	－	－	－	Table Page Address Pointer Register								0000
PSVPAG	0034	－	－	－	－	－	－	－	－	Program Memory Visibility Page Address Pointer Register								0000
RCOUNT	0036	Repeat Loop Counter Register																xxxx
DCOUNT	0038	DCOUNT＜15：0＞																$x x x x$
DOSTARTL	003A	DOSTARTL＜15：1＞															0	xxxx
DOSTARTH	003C	－	－	－	－	－	－	－	－	－	－	DOSTARTH＜5：0＞						00xx
DOENDL	003E	DOENDL＜15：1＞															0	Xxxx
DOENDH	0040	－	－	－	－	－	－	－	－	－	－	DOENDH						00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPLO	RA	N	OV	Z	C	0000
CORCON	0044	－	－	－	US	EDT	DL＜2：0＞			SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000
MODCON	0046	XMODEN	YMODEN	－	－	BWM＜3：0＞				YWM＜3：0＞				XWM＜3：0＞				0000
Legend：	$x=$ unknown value on Reset，－＝unimplemented，read as＇0＇．Reset values are shown in hexadecimal．																	

查询dsPIC33FJ32GS606供应商

TABLE 4－1：CPU CORE REGISTER MAP（CONTINUED）																		
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
XMODSRT	0048	XS＜15：1＞															0	xxxx
XMODEND	004A	XE＜15：1＞															1	$x x x x$
YMODSRT	004C	YS＜15：1＞															0	xxxx
YMODEND	004E	YE＜15：1＞															1	xxxx
XBREV	0050	BREN	XB＜14：0＞															xxxx
DISICNT	0052	－	－	Disable Interrupts Counter Register														xxxx
Legend：$\quad x=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal．																		

查询dsPIC33FJ32GS606供应商

查询dsPIC33FJ32GS606供应商

查询dsPIC33FJ32GS606供应商

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	－	0000
INTCON2	0082	ALTIVT	DISI	－	－	－	－	－	－	－	－	－	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	0000
IFS0	0084	－	DMA1IF	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMAOIF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	－	－	－	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0088	－	－	－	－	－	－	－	－	－	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	008A	－	－	－	－	－	QEI1IF	PSEMIF	－	－	INT4IF	INT3IF	－	－	MI2C2IF	SI2C2IF	－	0000
IFS4	008C	－	－	－	－	QEI2IF	－	PSESMIF	－	－	C1TXIF	－	－	－	U2EIF	U1EIF	－	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	－	－	－	－	－	－	－	－	－	－	－	ADCP8IF	－	0000
IFS6	0090	ADCP1IF	ADCPOIF	－	－	－	－	AC4IF	AC3IF	AC2IF	－	－	－	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	－	－	－	－	－	－	－	－	－	－	－	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	－	DMA1IE	ADIE	U1TXIE	U1RXIE	SPIIIE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	－	－	－	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC2	0098	－	－	－	－	－	－	－	－	－	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	009A	－	－	－	－	－	QEI1IE	PSEMIE	－	－	INT4IE	INT3IE	－	－	MI2C2IE	SI2C2IE	－	0000
IEC4	009C	－	－	－	－	QEI2IE	－	PSESMIE	－	－	C1TXIE	－	－	－	U2EIE	U1EIE	－	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	－	－	－	－	－	－	－	－	－	－	－	ADCP8IE	－	0000
IEC6	00AO	ADCP1IE	ADCPOIE	－	－	－	－	AC4IE	AC3IE	AC2IE	－	－	－	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2	－	－	－	－	－	－	－	－	－	－	－	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4	－	T11P＜2：0＞			－	OC1IP＜2：0＞			－	IC1IP＜2：0＞			－	INTOIP＜2：0＞			4444
IPC1	00A6	－	T2IP＜2：0＞			－	OC2IP＜2：0＞			－	IC2IP＜2：0＞			－	DMAOIP＜2：0＞			4444
IPC2	00A8	－	U1RXIP＜2：0＞			－	SPIIIP＜2：0＞			－	SPI1EIP＜2：0＞			－	T3IP＜2：0＞			4444
IPC3	00AA	－	－	－	－	－	DMA1IP＜2：0＞			－	ADIP＜2：0＞			－	U1TXIP＜2：0＞			4444
IPC4	00AC	－	CNIP＜2：0＞			－	AC1IP＜2：0＞			－	MI2C1IP＜2：0＞			－	SI2C1IP＜2：0＞			4444
IPC5	OOAE	－	－	－	－	－	－	－	－	－	－	－	－	－	INT1IP＜2：0＞			0004
IPC6	00B0	－	T4IP＜2：0＞			－	OC4IP＜2：0＞			－	OC3IP＜2：0＞			－	DMA2IP＜2：0＞			4444
IPC7	00B2	－	U2TXIP＜2：0＞			－	U2RXIP＜2：0＞			－	INT2IP＜2：0＞			－	T5IP＜2：0＞			4444
IPC8	00B4	－	C1IP＜2：0＞			－	C1RXIP＜2：0＞			－	SPI2IP＜2：0＞			－	SPI2EIP＜2：0＞			4444
IPC9	00B6	－	－	－	－	－	IC4IP＜2：0＞			－	IC3IP＜2：0＞			－	DMA3IP＜2：0＞			0444
IPC12	00BC	－	－	－	－	－	MI2C2IP＜2：0＞			－	SI2C2IP＜2：0＞			－	－	－	－	0440
IPC13	OOBE	－	－	－	－	－	INT4IP＜2：0＞			－	INT3IP＜2：0＞			－	－	－	－	0440
IPC14	00C0	－	－	－	－	－	QEIIIP＜2：0＞			－	PSEMIP＜2：0＞			－	－	－	－	0440
IPC16	00C4	－	－	－	－	－	U2EIP＜2：0＞			－	U1EIP＜2：0＞			－	－	－	－	0440
IPC17	00C6	－	－	－	－	－	C1TXIP＜2：0＞			－	－	－	－	－	－	－	－	0400
IPC18	00C8	－	QEI2IP＜2：0＞			－	－	－	－	－	PSESMIP＜2：0＞			－	－	－	－	4040
Legend：$\quad x=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal．																		

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
IPC20	00CC	-	-	-	-	-	-	-	-	-		CP8IP		-	-	-	-	0040
IPC21	OOCE	-	-	-	-	-	-	-	-	-	ADCP12IP<2:0>			-	-	-	-	0040
IPC23	OOD2	-	PWM21P<2:0>			-	PWM11P<2:0>			-	-	-	-	-	-	-	-	4400
IPC24	OOD4	-	PWM6IP<2:0>			-	PWM5IP<2:0>			-	PWM4IP<2:0>			-	PWM31P<2:0>			4444
IPC25	00D6	-	AC2IP<2:0>			-	-	-	-	-	-	-	-	-	-	-	-	4000
IPC26	00D8	-	-	-	-	-	-	-	-	-	AC4IP<2:0>			-	AC3IP<2:0>			0044
IPC27	00DA	-	ADCP1IP<2:0>			-	ADCPOIP<2:0>			-	-	-	-	-	-	-	-	4400
IPC28	00DC	-	ADCP5IP<2:0>			-	ADCP4IP<2:0>			-	ADCP3IP<2:0>			-	ADCP2IP<2:0>			4444
IPC29	OODE	-	-	-	-	-	-	-	-	-	-	-	-	-		P6IP<		0004
INTTREG	OOEO	-	-	-	-	ILR<3:0>				-	VECNUM<6:0>							0000

查询dsPIC33FJ32GS606供应商

查询dsPIC33FJ32GS606供应商

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES（CONTINUED）																			叫
SFR Name	$\begin{array}{\|l} \text { SFR } \\ \text { Addr } \end{array}$	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$	思
IPC21	OOCE	－	－	－	－	－	－	－	－	－	ADCP12IP＜2：0＞			－	ADCP11IP＜2：0＞			0044	
IPC23	OOD2	－	PWM2IP＜2：0＞			－	PWM11P＜2：0＞			－	－	－	－	－	－	－	－	4400	U
IPC24	00D4	－	PWM6IP＜2：0＞			－	PWM5IP＜2：0＞			－	PWM4IP＜2：0＞			－	PWM31P＜2：0＞			4444	1
IPC25	00D6	－	AC2IP＜2：0＞			－	PWM9IP＜2：0＞			－	PWM8IP＜2：0＞			－	PWM7IP＜2：0＞			4444	ω
IPC26	00D8	－	－	－	－	－	－	－	－	－	AC4IP＜2：0＞			－	AC3IP＜2：0＞			0044	O
IPC27	00DA	－	ADCP1IP＜2：0＞			－	ADCPOIP＜2：0＞			－	－	－	－	－	－	－	－	4400	8
IPC28	OODC	－	ADCP5IP＜2：0＞			－	ADCP4IP＜2：0＞			－	ADCP31P＜2：0＞			－	ADCP2IP＜2：0＞			4444	\％
IPC29	OODE	－	－	－	－	－	－	－	－	－	ADCP7IP＜2：0＞			－		P6IP＜2，		0044	准
INTTREG	OOEO	－	－	－	－	ILR＜3：0＞				－	VECNUM＜6：0＞							0000	12，
Legend：																			戒

查询dsPIC33FJ32GS606供应商

TABLE 4-9: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608 (CONTINUED)

查询dsPIC33FJ32GS606供应商

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{c\|\|} \text { All } \\ \text { Resets } \end{array}$
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	－	MATHERR	ADDRERR	STKERR	OSCFAIL	－	0000
INTCON2	0082	ALTIVT	DISI	－	－	－	－	－	－	－	－	－	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	0000
IFS0	0084	－	－	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	－	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	－	－	－	－	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0088	－	－	－	－	－	－	－	－	－	IC4IF	IC3IF	－	－	－	SPI2IF	SPI2EIF	0000
IFS3	008A	－	－	－	－	－	QEI1IF	PSEMIF	－	－	INT4IF	INT3IF	－	－	MI2C2IF	SI2C2IF	－	0000
IFS4	008C	－	－	－	－	QEI2IF	－	PSESMIF	－	－	－	－	－	－	U2EIF	U1EIF	－	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	－	－	－	－	－	－	－	－	－	－	－	ADCP8IF	－	0000
IFS6	0090	ADCP1IF	ADCPOIF	－	－	－	－	AC4IF	AC3IF	AC2IF	－	－	－	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	－	－	－	－	－	－	－	－	－	－	－	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	－	－	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	－	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	－	－	－	－	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC2	0098	－	－	－	－	－	－	－	－	－	IC4IE	IC3IE	－	－	－	SPI2IE	SPI2EIE	0000
IEC3	009A	－	－	－	－	－	QEIIIE	PSEMIE	－	－	INT4IE	INT3IE	－	－	MI2C2IE	SI2C2IE	－	0000
IEC4	009C	－	－	－	－	QEI2IE	－	PSESMIE	－	－	－	－	－	－	U2EIE	U1EIE	－	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	－	－	－	－	－	－	－	－	－	－	－	ADCP8IE	－	0000
IEC6	00AO	ADCP1IE	ADCPOIE	－	－	－	－	AC4IE	AC3IE	AC2IE	－	－	－	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2	－	－	－	－	－	－	－	－	－	－	－	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4	－	T11P＜2：0＞			－	OC1IP＜2：0＞			－	IC1IP＜2：0＞			－	INTOIP＜2：0＞			4444
IPC1	00A6	－	T2IP＜2：0＞			－	OC2IP＜2：0＞			－	IC2IP＜2：0＞			－	－	－	－	4440
IPC2	00A8	－	U1RXIP＜2：0＞			－	SPI1IP＜2：0＞			－	SPI1EIP＜2：0＞			－	T3IP＜2：0＞			4444
IPC3	00AA	－	－	－	－	－	－	－	－	－	ADIP＜2：0＞			－	U1TXIP＜2：0＞			0044
IPC4	00AC	－	CNIP＜2：0＞			－	AC1IP＜2：0＞			－	MI2C1IP＜2：0＞			－	SI2C1IP＜2：0＞			4444
IPC5	OOAE	－	－	－	－	－	－	－	－	－	－	－	－	－	INT1IP＜2：0＞			0004
IPC6	OOB0	－	T4IP＜2：0＞			－	OC4IP＜2：0＞			－	OC3IP＜2：0＞			－	－	－	－	4440
IPC7	00B2	－	U2TXIP＜2：0＞			－	U2RXIP＜2：0＞			－	INT2IP＜2：0＞			－	T5IP＜2：0＞			4444
IPC8	00B4	－	－	－	－	－	－	－－	－	－	SPI2IP＜2：0＞			－	SPI2EIP＜2：0＞			0044
IPC9	00B6	－	－	－	－	－	IC4IP＜2：0＞			－	IC3IP＜2：0＞			－	－	－	－	0440
IPC12	00BC	－	－	－	－	－	MI2C2IP＜2：0＞			－	SI2C2IP＜2：0＞			－	－	－	－	0440
IPC13	00BE	－	－	－	－	－	INT4IP＜2：0＞			－	INT3IP＜2：0＞			－	－	－	－	0440
IPC14	00C0	－	－	－	－	－	QEI1IP＜2：0＞			－	PSEMIP＜2：0＞			－	－	－	－	0440
IPC16	00C4	－	－	－	－	－	U2EIP＜2：0＞			－	U1EIP＜2：0＞			－	－	－	－	0440
IPC18	00C8	－	QEI2IP＜2：0＞			－	－	－－	－	－	PSESMIP＜2：0＞			－	－	－	－	4040
IPC20	00CC	－	－	－	－	－	－	－	－	－	ADCP8IP＜2：0＞			－	－	－	－	0040
Legend：$\quad \mathrm{x}=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal．																		

TABLE 4－11：TIMERS REGISTER MAP

[^0]\mp@subsup{}{}{(1)
111 = Interrupt is priority 7 (highest priority interrupt)
•
-

```

```

 001 = Interrupt is priority 1
 000 = Interrupt source is disabled
 bit 7-0 Unimplemented: Read as '0'

```

Note 1：Interrupts disabled on devices without ECAN \({ }^{\text {TM }}\) modules

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 7－36：IPC18：INTERRUPT PRIORITY CONTROL REGISTER 18
\begin{tabular}{|c|ccc|c|c|c|c|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & U－0 & U－0 & U－0 \\
\hline- & QEI2IP＜2：0＞ & - & - & - & - \\
\hline bit 15 & & & \\
\hline U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline U & PSESMIP＜2：0＞ & U－0 & U－0 & U－0 & U－0 \\
\hline bit 7 & & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{7}{*}{bit 14－12} & QEI2IP＜2：0＞：QEI2 Interrupt Priority bits \\
\hline & \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
\hline & － \\
\hline & － \\
\hline & － \\
\hline & 001 ＝Interrupt is priority 1 \\
\hline & \(000=\) Interrupt source is disabled \\
\hline bit 11－7 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{7}{*}{bit 6－4} & PSESMIP＜2：0＞：PWM Special Event Secondary Match Interrupt Priority bits \\
\hline & 111 ＝Interrupt is priority 7 （highest priority interrupt） \\
\hline & － \\
\hline & － \\
\hline & － \\
\hline & 001 ＝Interrupt is priority 1 \\
\hline & \(000=\) Interrupt source is disabled \\
\hline bit 3－0 & Unimplemented：Read as＇ 0 ＇ \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 7－37：IPC20：INTERRUPT PRIORITY CONTROL REGISTER 20
\begin{tabular}{|c|ccc|c|cccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & ADCP10IP＜2：0＞ & - & & ADCP9IP＜2：0＞ & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|c|c|c|c|c|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & U－0 & U－0 & U－0 \\
\hline- & ADCP8IP＜2：0＞ & - & - & - & - \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W＝Writable bit & \(\mathrm{U}=\) Unimplemente & as＇ 0 ＇ \\
\hline －n＝Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared & \(\mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented：Read as＇ 0 ＇ \\
\hline bit 14－12 & \begin{tabular}{l}
ADCP10IP＜2：0＞：ADC Pair 10 Conversion Done Interrupt 1 Priority bits \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
\(001=\) Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 11 & Unimplemented：Read as＇ 0 ＇ \\
\hline bit 10－8 & \begin{tabular}{l}
ADCP9IP＜2：0＞：ADC Pair 9 Conversion Done Interrupt 1 Priority bits \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
\(001=\) Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 7 & Unimplemented：Read as＇ 0 ＇ \\
\hline bit 6－4 & \begin{tabular}{l}
ADCP8IP＜2：0＞：ADC Pair 8 Conversion Done Interrupt 1 Priority bits \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
\(001=\) Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 3－0 & Unimplemented：Read as＇0＇ \\
\hline
\end{tabular}

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 7－38：IPC21：INTERRUPT PRIORITY CONTROL REGISTER 21
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & U－0 & U－0 & U－O & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|c|ccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & ADCP12IP＜2：0＞ & - & & ADCP11IP＜2：0＞ & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}
```

bit 15-7 Unimplemented: Read as '0'
bit 6-4 ADCP12IP<2:0>: ADC Pair 12 Conversion Done Interrupt }1\mathrm{ Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
\bullet
\bullet
-
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as '0'
bit 2-0 ADCP11IP<2:0>: ADC Pair 11 Conversion Done Interrupt 1 Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
•
•
\bullet
001 = Interrupt is priority 1
000 = Interrupt source is disabled

```

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 7－39：IPC23：INTERRUPT PRIORITY CONTROL REGISTER 23
\begin{tabular}{|c|ccc|c|cccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & PWM2IP＜2：0＞ & - & & PWM1IP＜2：0＞ & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－O & U－O & U－0 & U－0 & U－0 & U－0 & U－O & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 7
\end{tabular}

\section*{Legend：}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W＝Writable bit & \(\mathrm{U}=\) Unimplemente & as＇ 0 ＇ \\
\hline －n＝Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared & \(\mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{7}{*}{bit 14－12} & PWM2IP＜2：0＞：PWM2 Interrupt Priority bits \\
\hline & 111 ＝Interrupt is priority 7 （highest priority） \\
\hline & － 711 （higest priority \\
\hline & － \\
\hline & － \\
\hline & 001 ＝Interrupt is priority 1 \\
\hline & \(000=\) Interrupt source is disabled \\
\hline bit 11 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{7}{*}{bit 10－8} & PWM1IP＜2：0＞：PWM1 Interrupt Priority bits \\
\hline & 111 ＝Interrupt is priority 7 （highest priority） \\
\hline & － \\
\hline & － \\
\hline & － \\
\hline & \(001=\) Interrupt is priority 1 \\
\hline & \(000=\) Interrupt source is disabled \\
\hline bit 7－0 & Unimplemented：Read as＇ 0 ＇ \\
\hline
\end{tabular}

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 7－40：IPC24：INTERRUPT PRIORITY CONTROL REGISTER 24
\begin{tabular}{|c|ccc|c|ccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & PWM6IP＜2：0＞ & - & & PWM5IP＜2：0＞ & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|c|ccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & PWM4IP＜2：0＞ & - & & PWM3IP＜2：0＞ & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇\(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Unimplemented：Read as＇0＇ \\
\hline bit 14－12 & \begin{tabular}{l}
PWM6IP＜2：0＞：PWM6 Interrupt Priority bits 111 ＝Interrupt is priority 7 （highest priority） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 11 & Unimplemented：Read as＇0＇ \\
\hline bit 10－8 & \begin{tabular}{l}
PWM5IP＜2：0＞：PWM5 Interrupt Priority bits 111 ＝Interrupt is priority 7 （highest priority） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 7 & Unimplemented：Read as＇0＇ \\
\hline bit 6－4 & \begin{tabular}{l}
PWM4IP＜2：0＞：PWM4 Interrupt Priority bits \\
111 ＝Interrupt is priority 7 （highest priority） \\
\(001=\) Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 3 & Unimplemented：Read as＇ 0 ＇ \\
\hline bit 2－0 & \begin{tabular}{l}
PWM3IP＜2：0＞：PWM3 Interrupt Priority bits \(111=\) Interrupt is priority 7 （highest priority） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 7－41：IPC25：INTERRUPT PRIORITY CONTROL REGISTER 25
\begin{tabular}{|c|ccc|c|cccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & & AC2IP＜2：0＞ & - & & PWM9IP＜2：0＞ & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|lclc|c|ccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & PWM8IP＜2：0＞ & - & & PWM7IP＜2：0＞ & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented：Read as＇0＇ \\
\hline bit 14－12 & \begin{tabular}{l}
AC2IP＜2：0＞：Analog Comparator 2 Interrupt Priority bits \(111=\) Interrupt is priority 7 （highest priority） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 11 & Unimplemented：Read as＇0＇ \\
\hline bit 10－8 & \begin{tabular}{l}
PWM9IP＜2：0＞：PWM9 Interrupt Priority bits \(111=\) Interrupt is priority 7 （highest priority） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 7 & Unimplemented：Read as＇ 0 ＇ \\
\hline bit 6－4 & \begin{tabular}{l}
PWM8IP＜2：0＞：PWM8 Interrupt Priority bits 111 ＝Interrupt is priority 7 （highest priority） \\
\(001=\) Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 3 & Unimplemented：Read as＇ 0 ＇ \\
\hline bit 2－0 & \begin{tabular}{l}
PWM7IP＜2：0＞：PWM7 Interrupt Priority bits 111 ＝Interrupt is priority 7 （highest priority） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline
\end{tabular}

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 7－42：IPC26：INTERRUPT PRIORITY CONTROL REGISTER 26
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & U－0 & U－0 & U－O & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|c|cccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & & AC4IP＜2：0＞ & - & & AC3IP＜2：0＞ & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇\(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15－7 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{7}{*}{bit 6－4} & AC4IP＜2：0＞：Analog Comparator 4 Interrupt Priority bits \\
\hline & 111 ＝Interrupt is priority 7 （highest priority） \\
\hline & － \\
\hline & － \\
\hline & － \\
\hline & \(001=\) Interrupt is priority 1 \\
\hline & \(000=\) Interrupt source is disabled \\
\hline bit 3 & Unimplemented：Read as＇ 0 ＇ \\
\hline \multirow[t]{7}{*}{bit 2－0} & AC3IP＜2：0＞Analog Comparator 3 Interrupt Priority bits \\
\hline & \(111=\) Interrupt is priority 7 （highest priority） \\
\hline & － \\
\hline & － \\
\hline & － \\
\hline & \(001=\) Interrupt is priority 1 \\
\hline & \(000=\) Interrupt source is disabled \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 7－43：IPC27：INTERRUPT PRIORITY CONTROL REGISTER 27
\begin{tabular}{|c|ccc|c|cccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & ADCP1IP＜2：0＞ & - & & ADCPOIP＜2：0＞ & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－O & U－O & U－0 & U－0 & U－0 & U－0 & U－O & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 7
\end{tabular}

\section*{Legend：}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemente & as＇ 0 ＇ \\
\hline －n＝Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15 & Unimplemented：Read as ‘ 0 ＇ \\
bit 14－12 & ADCP1IP＜2：0＞：ADC Pair 1 Conversion Done Interrupt Priority bits \\
& \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
& － \\
& － \\
& \(001=\) Interrupt is priority 1 \\
& \(000=\) Interrupt source is disabled \\
bit 11 & Unimplemented：Read as ‘ 0 ＇ \\
bit 10－8 & ADCPOIP＜2：0＞：ADC Pair 0 Conversion Done Interrupt Priority bits \\
& \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
& － \\
& － \\
& \(001=\) Interrupt is priority 1 \\
& \(000=\) Interrupt source is disabled \\
bit \(7-0\) & Unimplemented：Read as ‘ 0 ＇
\end{tabular}

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 7－44：IPC28：INTERRUPT PRIORITY CONTROL REGISTER 28
\begin{tabular}{|c|ccc|c|cccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & ADCP5IP＜2：0＞ & - & & ADCP4IP＜2：0＞ & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|c|ccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & ADCP3IP＜2：0＞ & - & & ADCP2IP＜2：0＞ & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{llll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Unimplemented：Read as＇0＇ \\
\hline bit 14－12 & \begin{tabular}{l}
ADCP5IP＜2：0＞：ADC Pair 5 Conversion Done Interrupt Priority bits \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 11 & Unimplemented：Read as＇ 0 ＇ \\
\hline bit 10－8 & \begin{tabular}{l}
ADCP4IP＜2：0＞：ADC Pair 4 Conversion Done Interrupt Priority bits \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 7 & Unimplemented：Read as＇0＇ \\
\hline bit 6－4 & \begin{tabular}{l}
ADCP3IP＜2：0＞：ADC Pair 3 Conversion Done Interrupt Priority bits \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline bit 3 & Unimplemented：Read as＇0＇ \\
\hline bit 2－0 & \begin{tabular}{l}
ADCP2IP＜2：0＞：ADC Pair 2 Conversion Done Interrupt Priority bits \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
001 ＝Interrupt is priority 1 \\
\(000=\) Interrupt source is disabled
\end{tabular} \\
\hline
\end{tabular}

查询dsPIC33FJ32GS606供应商
REGISTER 7－45：IPC29：INTERRUPT PRIORITY CONTROL REGISTER 29
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|rc|c|c|ccc|}
\hline U－0 & R／W－1 & R／W－0 & R／W－0 & U－0 & R／W－1 & R／W－0 & R／W－0 \\
\hline- & ADCP7IP＜2：0＞ & - & & ADCP6IP＜2：0＞ & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W＝Writable bit & \(\mathrm{U}=\) Unimplement & as＇0＇ \\
\hline －n＝Value at POR & ＇ 1 ＇＝Bit is set & ＇0＇＝Bit is cleared & \(\mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15－7 & Unimplemented：Read as＇ 0 ＇ \\
bit 6－4 & ADCP7IP＜2：0＞：ADC Pair 7 Conversion Done Interrupt 1 Priority bits \\
& \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
& － \\
& － \\
& \(001=\) Interrupt is priority 1 \\
bit 3 & Unimplemented：Read as＇ 0 ＇ \\
bit 2－0 & ADCP6IP＜2：0＞：ADC Pair 6 Conversion Done Interrupt 1 Priority bits \\
& \(111=\) Interrupt is priority 7 （highest priority interrupt） \\
& － \\
& － \\
& － \\
& \(001=\) Interrupt is priority 1 \\
& \(000=\) Interrupt source is disabled
\end{tabular}

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 7－46：INTTREG：INTERRUPT CONTROL AND STATUS REGISTER
\begin{tabular}{|c|c|c|c|cccc|}
\hline U－0 & U－0 & U－0 & U－0 & R－0 & R－0 & R－0 & R－0 \\
\hline- & - & - & - & & ILR＜3：0＞ & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U－0 & R－0 \\
\hline- & & & VECNUM＜6：0＞ & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15－12 & Unimplemented：Read as ‘ 0 ＇ \\
bit 11－8 & ILR＜3：0＞：New CPU Interrupt Priority Level bits \\
& \(1111=\) CPU Interrupt Priority Level is 15 \\
& － \\
& － \\
& \(0001=\) CPU Interrupt Priority Level is 1 \\
bit 7 & Unimplemented：Read as＇ 0 ＇ \\
bit 6－0 & VECNUM＜6：0＞：Vector Number of Pending Interrupt bits \\
& \(0111111=\) Interrupt vector pending is number 135 \\
& － \\
& － \\
& \\
& \(0000001=\) Interrupt vector pending is number 9 \\
& \(0000000=\) Interrupt vector pending is number 8
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

\subsection*{7.4 Interrupt Setup Procedures}

\section*{7．4．1 INITIALIZATION}

Complete the following steps to configure an interrupt source at initialization：
1．Set the NSTDIS bit（INTCON1＜15＞）if nested interrupts are not desired．
2．Select the user－assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register．The priority level will depend on the specific application and type of interrupt source．If multiple priority levels are not desired，the IPCx register control bits for all enabled interrupt sources can be programmed to the same non－zero value．

Note：At a device Reset，the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

3．Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register．
4．Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register．

\section*{7．4．2 INTERRUPT SERVICE ROUTINE}

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language（ \(C\) or assembler）and the language development toolsuite used to develop the application．
In general，the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles．Otherwise，program will re－enter the ISR immediately after exiting the routine．If the ISR is coded in assembly language，it must be terminated using a RETFIE instruction to unstack the saved PC value，SRL value and old CPU priority level．

\section*{7．4．3 TRAP SERVICE ROUTINE}

A Trap Service Routine（TSR）is coded like an ISR， except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re－entry into the TSR．

\section*{7．4．4 INTERRUPT DISABLE}

The following steps outline the procedure to disable all user interrupts：
1．Push the current SR value onto the software stack using the PUSH instruction．
2．Force the CPU to priority level 7 by inclusive ORing the value EOh with SRL．
To enable user interrupts，the POP instruction can be used to restore the previous SR value．
Note：Only user interrupts with a priority level of 7 or lower can be disabled．Trap sources （level 8－level 15）cannot be disabled．

The DISI instruction provides a convenient way to disable interrupts of priority levels 1－6 for a fixed period of time．Level 7 interrupt sources are not disabled by the DISI instruction．

\section*{询dsPIC33FJ32GS606供应商}

\subsection*{8.0 DIRECT MEMORY ACCESS （DMA）}

Note 1：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 family of devices．However，it is not intended to be a comprehensive refer－ ence source．To complement the informa－ tion in this data sheet，refer to Section 22．＂Direct Memory Access（DMA）＂ （DS70182）in the＂dsPIC33F／PIC24H Family Reference Manual＂，which is avail－ able from the Microchip web site （www．microchip．com）．
2：Some registers and associated bits described in this section may not be avail－ able on all devices．Refer to Section 4.0 ＂Memory Organization＂in this data sheet for device－specific register and bit information．

Direct Memory Access（DMA）is a very efficient mechanism of copying data between peripheral SFRs （e．g．，the UART Receive register and Input Capture 1 buffer）and buffers or variables stored in RAM，with minimal CPU intervention．The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers（SFRs）every time a peripheral interrupt occurs．The DMA controller uses a dedicated bus for data transfers and，therefore， does not steal cycles from the code execution flow of the CPU．To exploit the DMA capability，the corresponding user buffers or variables must be located in DMA RAM．

\section*{Note：The DMA module is not available on dsIPC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406 devices．}

The peripherals that can utilize DMA are listed in Table 8－1 along with their associated Interrupt Request （IRQ）numbers．

TABLE 8－1：DMA CHANNEL TO PERIPHERAL ASSOCIATIONS
\begin{tabular}{|c|c|c|c|}
\hline Peripheral to DMA Association & DMAxREQ Register IRQSEL＜6：0＞Bits & DMAxPAD Register Values to Read From Peripheral & DMAxPAD Register Values to Write to Peripheral \\
\hline INT0－External Interrupt 0 & 0000000 & － & － \\
\hline IC1－Input Capture 1 & 0000001 & \(0 \times 0140\)（IC1BUF） & － \\
\hline IC2－Input Capture 2 & 0000101 & \(0 \times 0144\)（IC2BUF） & － \\
\hline IC3－Input Capture 3 & 0100101 & \(0 \times 0148\)（IC3BUF） & － \\
\hline IC4－Input Capture 4 & 0100110 & 0x0148C（IC4BUF） & － \\
\hline OC1－Output Compare 1 Data & 0000010 & － & 0x0182（OC1R） \\
\hline OC1－Output Compare 1 Secondary Data & 0000010 & － & \(0 \times 0180\)（OC1RS） \\
\hline OC2－Output Compare 2 Data & 0000110 & － & 0x0188（OC2R） \\
\hline OC2－Output Compare 2 Secondary Data & 0000110 & － & \(0 \times 0186\)（OC2RS） \\
\hline OC3－Output Compare 3 Data & 0011001 & － & 0x018E（OC3R） \\
\hline OC3－Output Compare 3 Secondary Data & 0011001 & － & 0x018C（OC3RS） \\
\hline OC4－Output Compare 4 Data & 0011010 & － & 0x0194（OC4R） \\
\hline OC4－Output Compare 4 Secondary Data & 0011010 & － & 0x0192（OC4RS） \\
\hline TMR2－Timer2 & 0000111 & － & － \\
\hline TMR3－Timer3 & 0001000 & － & － \\
\hline TMR4－Timer4 & 0011011 & － & － \\
\hline TMR5－Timer5 & 0011100 & － & － \\
\hline SPI1－Transfer Done & 0001010 & 0x0248（SPI1BUF） & 0x0248（SPI1BUF） \\
\hline SPI2－Transfer Done & 0100001 & 0x0268（SPI2BUF） & 0x0268（SPI2BUF） \\
\hline UART1RX－UART1 Receiver & 0001011 & 0x0226（U1RXREG） & － \\
\hline UART1TX－UART1 Transmitter & 0001100 & － & 0x0224（U1TXREG） \\
\hline UART2RX－UART2 Receiver & 0011110 & 0x0236（U2RXREG） & － \\
\hline UART2TX－UART2 Transmitter & 0011111 & － & 0x0234（U2TXREG） \\
\hline ECAN1－RX Data Ready & 0100010 & 0x0440（C1RXD） & － \\
\hline ECAN1－TX Data Request & 1000110 & － & 0x0442（C1TXD） \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

The DMA controller features four identical data transfer channels．Each channel has its own set of control and STATUS registers．Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs or from peripheral SFRs to buffers in DMA RAM．
The DMA controller supports the following features：
－Word or byte sized data transfers．
－Transfers from peripheral to DMA RAM or DMA RAM to peripheral．
－Indirect Addressing of DMA RAM locations with or without automatic post－increment．
－Peripheral Indirect Addressing－In some peripherals，the DMA RAM read／write addresses may be partially derived from the peripheral．
－One－Shot Block Transfers－Terminating DMA transfer after one block transfer．
－Continuous Block Transfers－Reloading DMA RAM buffer start address after every block transfer is complete．
－Ping－Pong Mode－Switching between two DMA RAM start addresses between successive block transfers，thereby filling two buffers alternately．
－Automatic or manual initiation of block transfers．
For each DMA channel，a DMA interrupt request is generated when a block transfer is complete． Alternatively，an interrupt can be generated when half of the block has been filled．

\section*{8．1 DMAC Registers}

Each DMAC Channel \(x(x=0,1,2\) ，or 3\()\) contains the following registers：
－A 16－bit DMA Channel Control register （DMAxCON）
－A 16－bit DMA Channel IRQ Select register （DMAxREQ）
－A 16－bit DMA RAM Primary Start Address Offset register（DMAxSTA）
－A 16－bit DMA RAM Secondary Start Address Offset register（DMAxSTB）
－A 16－bit DMA Peripheral Address register （DMAxPAD）
－A 10－bit DMA Transfer Count register（DMAxCNT）
An additional pair of STATUS registers，DMACSO and DMACS1，are common to all DMAC channels．

FIGURE 8－1：TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS


Note：For clarity，CPU and DMA address buses are not shown．

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 8－1：DMAxCON：DMA CHANNEL x CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & U－0 & U－0 & U－0 \\
\hline CHEN & SIZE & DIR & HALF & NULLW & － & － & － \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U－0 & U－0 & R／W－0 & R／W－0 & U－0 & U－0 & R／W－0 & R／W－0 \\
\hline － & － & AMO & ：0＞ & － & － & & \\
\hline \multicolumn{8}{|l|}{bit 7 bit 0} \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}
bit 15 CHEN：Channel Enable bit
1 ＝Channel enabled
\(0=\) Channel disabled
bit 14 SIZE：Data Transfer Size bit
1 ＝Byte
0 ＝Word
bit 13 DIR：Transfer Direction bit（source／destination bus select）
1 ＝Read from DMA RAM address；write to peripheral address
0 ＝Read from peripheral address；write to DMA RAM address
bit 12
bit 11
bit 10－6
bit 5－4

HALF：Early Block Transfer Complete Interrupt Select bit
1 ＝Initiate block transfer complete interrupt when half of the data has been moved
0 ＝Initiate block transfer complete interrupt when all of the data has been moved
NULLW：Null Data Peripheral Write Mode Select bit
1 ＝Null data write to peripheral in addition to DMA RAM write（DIR bit must also be clear）
\(0=\) Normal operation
bit 1－0 MODE＜1：0＞：DMA Channel Operating Mode Select bits
AMODE＜1：0＞：DMA Channel Operating Mode Select bits
11 ＝Reserved
\(10=\) Peripheral Indirect Addressing mode
01 ＝Register Indirect without Post－Increment mode
\(00=\) Register Indirect with Post－Increment mode
bit 3－2 Unimplemented：Read as＇ 0 ＇

11 ＝One－Shot，Ping－Pong modes enabled（one block transfer from／to each DMA RAM buffer）
\(10=\) Continuous，Ping－Pong modes enabled
01 ＝One－Shot，Ping－Pong modes disabled
\(00=\) Continuous，Ping－Pong modes disabled

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 8－2：DMAxREQ：DMA CHANNEL x IRQ SELECT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 \\
\hline FORCE \({ }^{(1)}\) & － & － & － & － & － & － & － \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U－0 & R／W－1 \\
\hline － & \multicolumn{7}{|c|}{IRQSEL＜6：0＞\({ }^{(2)}\)} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0\)＇＝Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit \(15 \quad\) FORCE：Force DMA Transfer bit \({ }^{(\mathbf{1})}\)
1 ＝Force a single DMA transfer（Manual mode）
0 ＝Automatic DMA transfer initiation by DMA request
bit 14－7 Unimplemented：Read as＇ 0 ＇
bit 6－0 IRQSEL＜6：0＞：DMA Peripheral IRQ Number Select bits \({ }^{(\mathbf{2})}\)
0000000－1111111＝DMAIRQ0－DMAIRQ127 selected to be Channel DMAREQ
Note 1：The FORCE bit cannot be cleared by the user．The FORCE bit is cleared by hardware when the forced DMA transfer is complete．
2：See Table 8－1 for a complete listing of IRQ numbers for all interrupt sources．

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 8－3：DMAxSTA：DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & STA＜15：8＞ & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) & R／W－0 \\
\hline & & \(S T A<7: 0>\) & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown \(\quad\).
bit 15－0 STA＜15：0＞：Primary DMA RAM Start Address bits（source or destination）

REGISTER 8－4：DMAxSTB：DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{8}{|c|}{STB＜15：8＞} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{8}{|c|}{STB＜7：0＞} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Legend：} \\
\hline \(\mathrm{R}=\) Readable bit & W＝Writable bit & \(\mathrm{U}=\) Unimplement & as＇ 0 ＇ \\
\hline －n＝Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared & \(\mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15－0 STB＜15：0＞：Secondary DMA RAM Start Address bits（source or destination）

查询dsPIC33FJ32GS606供应商
REGISTER 8－5：DMAxPAD：DMA CHANNEL \(\times\) PERIPHERAL ADDRESS REGISTER \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{8}{|c|}{PAD＜15：8＞} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{8}{|c|}{PAD＜7：0＞} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0\)＇＝Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15－0 PAD＜15：0＞：Peripheral Address Register bits

Note 1：If the channel is enabled（i．e．，active），writes to this register may result in unpredictable behavior of the DMA channel and should be avoided．

2：See Table 8－1 for a complete list of peripheral addresses．

REGISTER 8－6：DMAxCNT：DMA CHANNEL x TRANSFER COUNT REGISTER \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & U－0 & U－0 & R／W－0 \\
\hline- & - & - & - & - & - & R／W－0 \\
\hline bit 15 & CNT＜9：8＞（2） \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & \(C N T<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}
\begin{tabular}{ll} 
bit 15－10 & Unimplemented：Read as ‘0＇ \\
bit 9－0 & CNT＜9：0＞：DMA Transfer Count Register bits \({ }^{(2)}\)
\end{tabular}

Note 1：If the channel is enabled（i．e．，active），writes to this register may result in unpredictable behavior of the DMA channel and should be avoided．
2：Number of DMA transfers \(=C N T<9: 0>+1\) ．

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 8－7：DMACSO：DMA CONTROLLER STATUS REGISTER 0
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & R／C－0 & R／C－0 & R／C－0 & R／C－0 \\
\hline- & - & - & - & PWCOL3 & PWCOL2 & PWCOL1 & PWCOL0 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & R／C－0 & R／C－0 & R／C－0 & R／C－0 \\
\hline- & - & - & - & XWCOL3 & XWCOL2 & XWCOL1 & XWCOLO \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(\prime 0\)＇ Bit is cleared
\end{tabular}
bit 15－12 Unimplemented：Read as＇ 0 ＇
bit 11 PWCOL3：Channel 3 Peripheral Write Collision Flag bit
1 ＝Write collision detected
0 ＝No write collision detected
bit 10 PWCOL2：Channel 2 Peripheral Write Collision Flag bit
1 ＝Write collision detected
\(0=\) No write collision detected
bit \(9 \quad\) PWCOL1：Channel 1 Peripheral Write Collision Flag bit
1 ＝Write collision detected
\(0=\) No write collision detected
bit \(8 \quad\) PWCOLO：Channel 0 Peripheral Write Collision Flag bit
1 ＝Write collision detected
\(0=\) No write collision detected
bit 7－4 Unimplemented：Read as＇ 0 ＇
bit \(3 \quad\) XWCOL3：Channel 3 DMA RAM Write Collision Flag bit
1 ＝Write collision detected
\(0=\) No write collision detected
bit \(2 \quad\) XWCOL2：Channel 2 DMA RAM Write Collision Flag bit
1 ＝Write collision detected
\(0=\) No write collision detected
bit \(1 \quad\) XWCOL1：Channel 1 DMA RAM Write Collision Flag bit
1 ＝Write collision detected
\(0=\) No write collision detected
bit \(0 \quad\) XWCOLO：Channel 0 DMA RAM Write Collision Flag bit
1 ＝Write collision detected
\(0=\) No write collision detected

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 8－8：DMACS1：DMA CONTROLLER STATUS REGISTER 1
\begin{tabular}{|c|c|c|c|cccc|}
\hline U－0 & U－0 & U－0 & U－0 & R－1 & R－1 & R－1 & R－1 \\
\hline- & - & - & - & & LSTCH＜3：0＞ & \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{l|}{ bit 15}
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & R－0 & R－0 & R－0 & R－0 \\
\hline- & - & - & - & PPST3 & PPST2 & PPST1 & PPST0 \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15－12 Unimplemented：Read as＇ 0 ＇
bit 11－8 LSTCH＜3：0＞：Last DMA Channel Active bits
1111 ＝No DMA transfer has occurred since system Reset
1110－0100＝Reserved
0011 ＝Last data transfer was by DMA Channel 3
\(0010=\) Last data transfer was by DMA Channel 2
0001 ＝Last data transfer was by DMA Channel 1 0000 ＝Last data transfer was by DMA Channel 0
bit 7－4 Unimplemented：Read as＇ 0 ’
bit \(3 \quad\) PPST3：Channel 3 Ping－Pong Mode Status Flag bit
\(1=\) DMA3STB register selected
\(0=\) DMA3STA register selected
bit 2 PPST2：Channel 2 Ping－Pong Mode Status Flag bit
1 ＝DMA2STB register selected
\(0=\) DMA2STA register selected
bit \(1 \quad\) PPST1：Channel 1 Ping－Pong Mode Status Flag bit
1 ＝DMA1STB register selected
\(0=\) DMA1STA register selected
bit \(0 \quad\) PPSTO：Channel 0 Ping－Pong Mode Status Flag bit
1 ＝DMAOSTB register selected
\(0=\) DMAOSTA register selected

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 8－9：DSADR：MOST RECENT DMA RAM ADDRESS
\begin{tabular}{|llllllll|}
\hline R－0 & R－0 \\
\hline & & DSADR＜15：8＞ & & & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline \(\mathrm{R}-0\) & \(\mathrm{R}-0\) \\
\hline & & \(\mathrm{DSADR}<7: 0>\) & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15－0
DSADR＜15：0＞：Most Recent DMA RAM Address Accessed by DMA Controller bits


\section*{CONFIGURATION}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 oscillator system provides:
- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.
- Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 9-1.
 OSCILLATOR SYSTEM DIAGRAM


\section*{查询dsPIC33FJ32GS606供应商}

\subsection*{9.1 CPU Clocking System}

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices provide six system clock options：
－Fast RC（FRC）Oscillator
－FRC Oscillator with PLL
－Primary（XT，HS，or EC）Oscillator
－Primary Oscillator with PLL
－Low－Power RC（LPRC）Oscillator
－FRC Oscillator with Postscaler
－Secondary（LP）Oscillator

\section*{9．1．1 SYSTEM CLOCK SOURCES}

The Fast RC（FRC）internal oscillator runs at a nominal frequency of 7.37 MHz ．User software can tune the FRC frequency．User software can optionally specify a factor（ranging from 1：2 to \(1: 256\) ）by which the FRC clock frequency is divided．This factor is selected using the FRCDIV＜2：0＞（CLKDIV＜10：8＞）bits．
The primary oscillator can use one of the following as its clock source：
－XT（Crystal）：Crystals and ceramic resonators in the range of 3 MHz to 10 MHz ．The crystal is connected to the OSC1 and OSC2 pins．
－HS（High－Speed Crystal）：Crystals in the range of 10 MHz to 40 MHz ．The crystal is connected to the OSC1 and OSC2 pins．
－EC（External Clock）：The external clock signal is directly applied to the OSC1 pin．
The secondary（LP）oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator． The LP oscillator uses the SOSCI and SOSCO pins．
The LPRC internal osclllator runs at a nominal frequency of 32.768 kHz ．It is also used as a reference clock by the Watchdog Timer（WDT）and Fail－Safe Clock Monitor（FSCM）．

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on－chip Phase－Locked Loop（PLL）to provide a wide range of output frequencies for device operation．PLL configuration is described in Section 9．1．3＂PLL Configuration＂．
The FRC frequency depends on the FRC accuracy （see Table 27－20）and the value of the FRC Oscillator Tuning register（see Register 9－4）．

\section*{9．1．2 SYSTEM CLOCK SELECTION}

The oscillator source used at a device Power－on Reset event is selected using Configuration bit settings．The oscillator Configuration bit settings are located in the Configuration registers in the program memory．（Refer to Section 24.1 ＂Configuration Bits＂for further details．）The Initial Oscillator Selection Configuration bits， \(\mathrm{FNOSC}<2: 0>\)（FOSCSEL＜2：0＞），and the Primary Oscillator Mode Select Configuration bits， POSCMD＜1：0＞（FOSC＜1：0＞），select the oscillator source that is used at a Power－on Reset．The FRC primary oscillator is the default（unprogrammed） selection．
The Configuration bits allow users to choose among 12 different clock modes，shown in Table 9－1．

The output of the oscillator（or the output of the PLL if a PLL mode has been selected），Fosc，is divided by 2 to generate the device instruction clock（Fcy）and the peripheral clock time base（Fp）．FCy defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJ32GS406／606／ 608／610 and dsPIC33FJ64GS406／606／608／610 architecture．

Instruction execution speed or device operating frequency，Fcy，is given by Equation 9－1．

\section*{EQUATION 9－1：DEVICE OPERATING FREQUENCY}
\[
F C Y=F O S C / 2
\]

\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Oscillator Mode } & Oscillator Source & POSCMD<1:0> & FNOSC<2:0> & Note \\
\hline \hline Fast RC Oscillator with Divide-by-N (FRCDIVN) & Internal & xx & 111 & \(\mathbf{1 , 2}\) \\
\hline Fast RC Oscillator with Divide-by-16 (FRCDIV16) & Internal & xx & 110 & \(\mathbf{1}\) \\
\hline Low-Power RC Oscillator (LPRC) & Internal & xx & 101 & \(\mathbf{1}\) \\
\hline Secondary Oscillator (SOSC) & Secondary & xx & 100 & - \\
\hline Primary Oscillator (HS) with PLL (HSPLL) & Primary & 10 & 011 & - \\
\hline Primary Oscillator (XT) with PLL (XTPLL) & Primary & 01 & 011 & - \\
\hline Primary Oscillator (EC) with PLL (ECPLL) & Primary & 00 & 011 & \(\mathbf{1}\) \\
\hline Primary Oscillator (HS) & Primary & 10 & 010 & - \\
\hline Primary Oscillator (XT) & Primary & 01 & 010 & - \\
\hline Primary Oscillator (EC) & Primary & 00 & 010 & \(\mathbf{1}\) \\
\hline Fast RC Oscillator with PLL (FRCPLL) & Internal & xx & 001 & \(\mathbf{1}\) \\
\hline Fast RC Oscillator (FRC) & Internal & xx & 000 & \(\mathbf{1}\) \\
\hline
\end{tabular}

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.
2: This is the default oscillator mode for an unprogrammed (erased) device.

\subsection*{9.1.3 PLL CONFIGURATION}

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.
The output of the primary oscillator or FRC, denoted as 'Fin', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz . The prescale factor ' N 1 ' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).
The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, ' \(M\) ', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz .
The VCO output is further divided by a postscale factor, ' N 2 '. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8 , and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz , which generates device operating speeds of \(6.25-40\) MIPS.

For a primary oscillator or FRC oscillator, output 'Fin', the PLL output 'Fosc' is given by Equation 9-2.

EQUATION 9-2: Fosc CALCULATION
Fosc \(=\) Fin * \(\left(\frac{\mathrm{M}}{\mathrm{N} 1 * \mathrm{~N} 2}\right)\)

For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 9-3).
- If PLLPRE<4:0> \(=0\), then \(\mathrm{N} 1=2\). This yields a VCO input of \(10 / 2=5 \mathrm{MHz}\), which is within the acceptable range of \(0.8-8 \mathrm{MHz}\).
- If PLLDIV<8:0> \(=0 \times 1 E\), then \(\mathrm{M}=32\). This yields a VCO output of \(5 \times 32=160 \mathrm{MHz}\), which is within the \(100-200 \mathrm{MHz}\) ranged needed.
- If PLLPOST<1:0> = 0 , then \(\mathrm{N} 2=2\). This provides a Fosc of \(160 / 2=80 \mathrm{MHz}\). The resultant device operating speed is \(80 / 2=40 \mathrm{MIPS}\).

EQUATION 9-3: XT WITH PLL MODE EXAMPLE
\[
\text { FCY }=\frac{\text { FOSC }}{2}=\frac{1}{2}\left(\frac{10000000 * 32}{2 * 2}\right)=40 \mathrm{MIPS}
\]


Note 1：This frequency range must be satisfied at all times．

\section*{9．2 Auxiliary Clock Generation}

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock such as a PWM or ADC．
\begin{tabular}{ll} 
Note： & \begin{tabular}{l} 
To achieve 1.04 ns PWM resolution，the \\
auxiliary clock must be set up for 120 MHz.
\end{tabular} \\
\hline
\end{tabular}

The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock．The auxiliary PLL has a fixed \(16 x\) multiplication factor．

Note：If the primary PLL is used as a source for the auxiliary clock，then the primary PLL should be configured up to a maximum operation of 30 MIPS or less．

\section*{9．3 Reference Clock Generation}

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin．The user application can specify a wide range of clock scaling prior to outputting the reference clock．

查询dsPIC33FJ32GS606供应商
最EGISTER 9－1：OSCCONN：OSCILLATOR CONTROL REGISTER \({ }^{(1)}\)
\begin{tabular}{|c|ccc|c|ccc|}
\hline U－0 & R－y & R－y & R－y & U－0 & R／W－y & R／W－y & \(R / W-y\) \\
\hline- & \(C O S C<2: 0>\) & - & & NOSC \(<2: 0>{ }^{(2)}\) & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c}{ R／W－0 } & U－0 & U－0 & R／C－0 & U－0 & U－0 & R／W－0 \\
\hline CLKLOCK & - & LOCK & - & CF & - & - & OSWEN \\
\hline bit 7 & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(y=\) Value set from Configuration bits on POR \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(\quad\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{9}{*}{bit 14－12} & COSC＜2：0＞：Current Oscillator Selection bits（read－only） \\
\hline & 000 ＝Fast RC oscillator（FRC） \\
\hline & 001 ＝Fast RC oscillator（FRC）with PLL \\
\hline & 010 ＝Primary oscillator（XT，HS，EC） \\
\hline & 011 ＝Primary oscillator（XT，HS，EC）with PLL \\
\hline & 100 ＝Secondary oscillator（SOSC） \\
\hline & 101 ＝Low－Power RC oscillator（LPRC） \\
\hline & 110 ＝Fast RC oscillator（FRC）with divide－by－16 \\
\hline & 111 ＝Fast RC oscillator（FRC）with divide－by－n \\
\hline bit 11 & Unimplemented：Read as＇ 0 ＇ \\
\hline \multirow[t]{9}{*}{bit 10－8} & NOSC＜2：0＞：New Oscillator Selection bits \({ }^{(2)}\) \\
\hline & 000 ＝Fast RC oscillator（FRC） \\
\hline & 001 ＝Fast RC oscillator（FRC）with PLL \\
\hline & 010 ＝Primary oscillator（XT，HS，EC） \\
\hline & 011 ＝Primary oscillator（XT，HS，EC）with PLL \\
\hline & 100 ＝Secondary oscillator（SOSC） \\
\hline & 101 ＝Low－Power RC oscillator（LPRC） \\
\hline & 110 ＝Fast RC oscillator（FRC）with divide－by－16 \\
\hline & 111 ＝Fast RC oscillator（FRC）with divide－by－n \\
\hline \multirow[t]{4}{*}{bit 7} & CLKLOCK：Clock Lock Enable bit \\
\hline & If clock switching is enabled and FSCM is disabled，（FOSC＜FCKSM＞＝0b01）： \\
\hline & 1 ＝Clock switching is disabled，system clock source is locked \\
\hline & 0 ＝Clock switching is enabled，system clock source can be modified by clock switching \\
\hline bit 6 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{3}{*}{bit 5} & LOCK：PLL Lock Status bit（read－only） \\
\hline & 1 ＝Indicates that PLL is in lock，or PLL start－up timer is satisfied \\
\hline & \(0=\) Indicates that PLL is out of lock，start－up timer is in progress or PLL is disabled \\
\hline bit 4 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{3}{*}{bit 3} & CF：Clock Fail Detect bit（read／clear by application） \\
\hline & 1 ＝FSCM has detected clock failure \\
\hline & \(0=\) FSCM has not detected clock failure \\
\hline bit 2－1 & Unimplemented：Read as＇ 0 ＇ \\
\hline \multirow[t]{2}{*}{bit 0} & OSWEN：Oscillator Switch Enable bit \\
\hline & \begin{tabular}{l}
\(1=\) Request oscillator switch to selection specified by NOSC \(<2: 0>\) bits \\
\(0=\) Oscillator switch is complete
\end{tabular} \\
\hline
\end{tabular}

Note 1：Writes to this register require an unlock sequence．Refer to Section 42．＂Oscillator（Part IV）＂（DS70307） in the＂dsPIC33F Family Reference Manual＂（available from the Microchip web site）for details．
2：Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted． This applies to clock switches in either direction．In these instances，the application must switch to FRC mode as a transition clock source between the two PLL modes．

旬dsPIC33FJ32GS606供应商
REGISTER 9－2：CLKDV：CLOCK DIVISOR REGISTER
\begin{tabular}{|c|ccc|c|ccc|}
\hline R／W－0 & R／W－0 & R／W－1 & R／W－1 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline ROI & & DOZE＜2：0＞ & & DOZEN \(^{(1)}\) & & FRCDIV＜2：0＞ & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|ccccc|}
\hline R／W－0 & R／W－1 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline PLLPOST＜1：0＞ & - & & & PLLPRE＜4：0＞ & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

Legend：
\begin{tabular}{lll} 
L＝Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared \\
\hline
\end{tabular}

\section*{bit 15 ROI：Recover on Interrupt bit}

1 ＝Interrupts will clear the DOZEN bit and the processor clock／peripheral clock ratio is set to 1：1
\(0=\) Interrupts have no effect on the DOZEN bit
bit 14－12 DOZE＜2：0＞：Processor Clock Reduction Select bits
000 ＝FCY／1
001 ＝FCY／2
010 ＝FCy／4
\(011=\) Fcy／8（default）
\(100=\mathrm{FCY} / 16\)
101 ＝FcY／32
\(110=\mathrm{FcY} / 64\)
111 ＝FCy／128
bit 11 DOZEN：Doze Mode Enable bit \({ }^{(1)}\)
\(1=\mathrm{DOZE}<2: 0>\) field specifies the ratio between the peripheral clocks and the processor clocks
\(0=\) Processor clock／peripheral clock ratio forced to 1：1
bit 10－8 FRCDIV＜2：0＞：Internal Fast RC Oscillator Postscaler bits
000 ＝FRC divide by 1 （default）
001 ＝FRC divide by 2
010 ＝FRC divide by 4
011 ＝FRC divide by 8
\(100=\) FRC divide by 16
101 ＝FRC divide by 32
\(110=\) FRC divide by 64
111 ＝FRC divide by 256
bit 7－6 PLLPOST＜1：0＞：PLL VCO Output Divider Select bits（also denoted as＇N2＇，PLL postscaler）
\(00=\) Output／2
\(01=\) Output／4（default）
10 ＝Reserved
11 ＝Output／8
bit \(5 \quad\) Unimplemented：Read as＇ 0 ＇
bit 4－0 PLLPRE＜4：0＞：PLL Phase Detector Input Divider bits（also denoted as＇N1＇，PLL prescaler）
\(00000=\) Input／2（default）
\(00001=\) Input \(/ 3\)
－
－
－
\(11111=\) Input／33
Note 1：This bit is cleared when the ROI bit is set and an interrupt occurs．

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & - & - & - & - & - & - & PLLDIV<8> \\
\hline bit 15
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & & PLLDIV \(<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & 0 ' = Bit is cleared \\
\hline
\end{tabular}
```

bit 15-9 Unimplemented: Read as '0'
bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)
000000000 = 2
000000001 = 3
000000010 = 4
-
-
-
000110000 = 50 (default)
-
-
-
111111111 = 513

```

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 9－4：OSCTUN：OSCILLATOR TUNING REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|cccccc|}
\hline U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline- & - & & TUN \(<5: 0>\boldsymbol{P}^{(\mathbf{1})}\) & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & ＇ 0 ＇＝Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
```

bit 15-6 Unimplemented: Read as '0'
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits (1)
011111 = Center frequency + 11.625% (8.23 MHz)
011110 = Center frequency + 11.25% (8.20 MHz)
\bullet
•
-
000001 = Center frequency + 0.375% (7.40 MHz)
000000 = Center frequency (7.37 MHz nominal)
111111 = Center frequency -0.375% (7.345 MHz)
•
•
-
100001 = Center frequency -11.625% (6.52 MHz)
100000 = Center frequency -12% (6.49 MHz)

```

Note 1：OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures．The tuning step size is an approximation and is neither characterized nor tested．

\begin{tabular}{|c|c|c|c|c|cccc|}
\hline R/W-0 & R-0 & R/W-1 & U-0 & U-0 & R/W-1 & R/W-1 & R/W-1 \\
\hline ENAPLL & APLLCK & SELACLK & - & - & & APSTSCLR<2:0> & \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-O & R/W-O & U-0 & U-0 & U-0 & U-0 & U-O & U-0 \\
\hline ASRCSEL & FRCSEL & - & - & - & - & - & - \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit \(15 \quad\) ENAPLL: Auxiliary PLL Enable bit
bit 14 APLLCK: APLL Locked Status bit (read-only)
1 = Indicates that auxiliary PLL is in lock
\(0=\) Indicates that auxiliary PLL is not in lock
bit 13 SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit
1 = Auxiliary Oscillators provides the source clock for auxiliary clock divider
0 = Primary PLL (Fvco) provides the source clock for auxiliary clock divider
bit 7 ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit
bit \(6 \quad\) FRCSEL: Select Reference Clock Source for Auxiliary PLL bit
bit 12-11
bit 10-8
bit 5-0

Unimplemented: Read as '0'
APSTSCLR<2:0>: Auxiliary Clock Output Divider bits
111 = Divided by 1
110 = Divided by 2
101 = Divided by 4
\(100=\) Divided by 8
011 = Divided by 16
010 = Divided by 32
001 = Divided by 64
000 = Divided by 256

1 = Primary oscillator is the clock source
\(0=\) No clock input is selected

1 = Select FRC clock for auxiliary PLL
\(0=\) Input clock source is determined by ASRCSEL bit setting
Unimplemented: Read as ' 0 '

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 9－6：REFOCON：REFERENCE OSCILLATOR CONTROL REGISTER
\begin{tabular}{|l|c|c|c|cccc|}
\hline R／W－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline ROON & - & ROSSLP & ROSEL & & RODIV＜3：0＞（1） & \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－O & U－O & U－0 & U－O & U－O & U－O & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 7 & & & \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇\(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15 ROON：Reference Oscillator Output Enable bit
1 ＝Reference oscillator output enabled on REFCLK0 pin \(0=\) Reference oscillator output disabled
bit 14 Unimplemented：Read as＇ 0 ＇
bit 13 ROSSLP：Reference Oscillator Run in Sleep bit
1 ＝Reference oscillator output continues to run in Sleep
0 ＝Reference oscillator output is disabled in Sleep
bit 12
ROSEL：Reference Oscillator Source Select bit
1 ＝Oscillator crystal used as the reference clock
\(0=\) System clock used as the reference clock
bit 11－8 RODIV＜3：0＞：Reference Oscillator Divider bits \({ }^{(1)}\)
1111 ＝Reference clock divided by 32，768
\(1110=\) Reference clock divided by 16,384
1101 ＝Reference clock divided by 8,192
\(1100=\) Reference clock divided by 4,096
1011 ＝Reference clock divided by 2,048
1010 ＝Reference clock divided by 1，024
1001 ＝Reference clock divided by 512
\(1000=\) Reference clock divided by 256
0111 ＝Reference clock divided by 128
0110 ＝Reference clock divided by 64
0101 ＝Reference clock divided by 32
0100 ＝Reference clock divided by 16
0011 ＝Reference clock divided by 8
\(0010=\) Reference clock divided by 4
0001 ＝Reference clock divided by 2
0000 ＝Reference clock
bit 7－0 Unimplemented：Read as＇ 0 ’
Note 1：The reference oscillator output must be disabled \((R O O N=0)\) before writing to these bits．

\section*{查询dsPIC33FJ32GS606供应商}

\subsection*{9.4 Clock Switching Operation}

Applications are free to switch among any of the four clock sources（primary，LP，FRC and LPRC）under software control at any time．To limit the possible side effects of this flexibility，dsPIC33FJ32GS406／606／608／ 610 and dsPIC33FJ64GS406／606／608／610 devices have a safeguard lock built into the switch process．
Note：Primary oscillator mode has three different submodes（XT，HS and EC），which are determined by the POSCMD＜1：0＞ Configuration bits．While an application can switch to and from primary oscillator mode in software，it cannot switch among the different primary submodes without reprogramming the device．

\section*{9．4．1 ENABLING CLOCK SWITCHING}

To enable clock switching，the FCKSM1 Configuration bit in the Configuration register must be programmed to ＇0＇．（Refer to Section 24.1 ＂Configuration Bits＂for further details．）If the FCKSM1 Configuration bit is unprogrammed（＇ 1 ＇），the clock switching function and Fail－Safe Clock Monitor function are disabled．This is the default setting．
The NOSC control bits（ \(O S C C O N<10: 8>\) ）do not control the clock selection when clock switching is disabled．However，the COSC bits（OSCCON＜14：12＞） reflect the clock source selected by the FNOSC Configuration bits．
The OSWEN control bit（OSCCON＜0＞）has no effect when clock switching is disabled．It is held at＇ 0 ＇at all times．

\section*{9．4．2 OSCILLATOR SWITCHING SEQUENCE}

To perform a clock switch，the following basic sequence is required：
1．If desired，read the COSC bits （OSCCON＜14：12＞）to determine the current oscillator source．
2．Perform the unlock sequence to allow a write to the OSCCON register high byte．
3．Write the appropriate value to the NOSC control bits（ \(O S C C O N<10: 8>\) ）for the new oscillator source．
4．Perform the unlock sequence to allow a write to the OSCCON register low byte．
5．Set the OSWEN bit（OSCCON＜0＞）to initiate the oscillator switch．
Once the basic sequence is completed，the system clock hardware responds automatically as follows：
1．The clock switching hardware compares the COSC Status bits with the new value of the NOSC control bits．If they are the same，the clock switch is a redundant operation．In this case，the OSWEN bit is cleared automatically
and the clock switch is aborted．
2．If a valid clock switch has been initiated，the LOCK（OSCCON \(<5>\) ）and the CF （OSCCON＜3＞）Status bits are cleared．
3．The new oscillator is turned on by the hardware if it is not currently running．If a crystal oscillator must be turned on，the hardware waits until the Oscillator Start－up Timer（OST）expires．If the new source is using the PLL，the hardware waits until a PLL lock is detected（LOCK＝1）．
4．The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch．
5．The hardware clears the OSWEN bit to indicate a successful clock transition．In addition，the NOSC bit values are transferred to the COSC Status bits．
6．The old clock source is turned off at this time， with the exception of LPRC（if WDT or FSCM are enabled）or LP（if LPOSCEN remains set）．
Note 1：The processor continues to execute code throughout the clock switching sequence． Timing－sensitive code should not be executed during this time．
2：Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted．This applies to clock switches in either direction．In these instances，the application must switch to FRC mode as a transition clock source between the two PLL modes．
3：Refer to Section 42．＂Oscillator（Part IV）＂（DS70307）in the＂dsPIC33F Family Reference Manual＂for details．

\section*{9．5 Fail－Safe Clock Monitor（FSCM）}

The Fail－Safe Clock Monitor（FSCM）allows the device to continue to operate even in the event of an oscillator failure．The FSCM function is enabled by programming． If the FSCM function is enabled，the LPRC internal oscillator runs at all times（except during Sleep mode） and is not subject to control by the Watchdog Timer．
In the event of an oscillator failure，the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator．Then，the application program can either attempt to restart the oscillator or execute a controlled shutdown．The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector．
If the PLL multiplier is used to scale the system clock， the internal FRC is also multiplied by the same factor on clock failure．Essentially，the device switches to FRC with PLL on a clock failure．

\section*{}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices can manage power consumption in four different ways:
- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

\subsection*{10.1 Clock Frequency and Clock Switching}

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

\subsection*{10.2 Instruction-Based Power-Saving Modes}

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

\section*{Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.}

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

\subsection*{10.2.1 SLEEP MODE}

The following occur in Sleep mode:
- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate. This includes the items such as the input change notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.
The device will wake-up from Sleep mode on any of these events:
- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX
\begin{tabular}{|ll}
\hline PWRSAV \#SLEEP_MODE & ; Put the device into SLEEP mode \\
PWRSAV \#IDLE_MODE & ; Put the device into IDLE mode
\end{tabular}

\section*{查询dsPIGB3ETM2GSE606供应商}

The following occur in Idle mode：
－The CPU stops executing instructions．
－The WDT is automatically cleared．
－The system clock source remains active．By default，all peripheral modules continue to operate normally from the system clock source，but can also be selectively disabled（see Section 10.5 ＂Peripheral Module Disable＂）．
－If the WDT or FSCM is enabled，the LPRC also remains active．

The device will wake－up from Idle mode on any of these events：
－Any interrupt that is individually enabled
－Any device Reset
－A WDT time－out
On wake－up from Idle mode，the clock is reapplied to the CPU and instruction execution will begin（2－4 clock cycles later），starting with the instruction following the PWRSAV instruction，or the first instruction in the ISR．

\section*{10．2．3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS}

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed．The device then wakes up from Sleep or Idle mode．

\section*{10．3 Doze Mode}

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power－saving modes．In some circumstances，this may not be practical．For example， it may be necessary for an application to maintain uninterrupted synchronous communication，even while it is doing nothing else．Reducing system clock speed can introduce communication errors，while using a power－saving mode can stop communications completely．
Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code．In this mode，the system clock continues to operate from the same source and at the same speed．Peripheral modules continue to be clocked at the same speed，while the CPU clock speed is reduced．Synchronization between the two clock domains is maintained，allowing the peripherals to access the SFRs while the CPU executes code at a slower rate．

Doze mode is enabled by setting the DOZEN bit （CLKDIV＜11＞）．The ratio between peripheral and core clock speed is determined by the DOZE＜2：0＞bits （CLKDIV＜14：12＞）．There are eight possible configurations，from 1：1 to \(1: 128\) ，with \(1: 1\) being the default setting．
Programs can use Doze mode to selectively reduce power consumption in event－driven applications．This allows clock－sensitive functions，such as synchronous communications，to continue without interruption while the CPU idles，waiting for something to invoke an interrupt routine．An automatic return to full－speed CPU operation on interrupts can be enabled by setting the ROI bit（CLKDIV＜15＞）．By default，interrupt events have no effect on Doze mode operation．
For example，suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed．If the device is placed in Doze mode with a clock frequency ratio of 1：4，the CAN module continues to communicate at the required bit rate of 500 kbps ，but the CPU now starts executing instructions at a frequency of 5 MIPS．

\section*{10．4 PWM Power－Saving Features}

Typically，many applications need either a high resolution duty cycle or phase offset（for fixed frequency operation）or a high resolution PWM period for variable frequency modes of operation（such as Resonant mode）．Very few applications require both high resolution modes simultaneously．
The HRPDIS and the HRDDIS bits in the AUXCONx registers permit the user to disable the circuitry associ－ ated with the high resolution duty cycle and PWM period to reduce the operating current of the device．
If the HRDDIS bit is set，the circuitry associated with the high resolution duty cycle，phase offset，and dead time for the respective PWM generator is disabled．If the HRPDIS bit is set，the circuitry associated with the high resolution PWM period for the respective PWM generator is disabled．
When the HRPDIS bit is set，the smallest unit of measure for the PWM period is 8.32 ns ．
If the HRDDIS bit is set，the smallest unit of measure for the PWM duty cycle，phase offset and dead time is 8.32 ns．

\section*{}

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and STATUS registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.
A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC \({ }^{\circledR}\) DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.
Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

查询dsPIC33FT32CS606供应商

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 \\
\hline T5MD & T4MD & T3MD & T2MD & T1MD & QEIIMD & PWMMD \({ }^{(1)}\) & － \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & U－0 & R／W－0 & R／W－0 \\
\hline I2C1MD & U2MD & U1MD & SPI2MD & SPI1MD & － & C1MD & ADCMD \\
\hline \multicolumn{8}{|l|}{bit \(7 \times 0\)} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}


Note 1：Once the PWM module is re－enabled（PWMMD is set to＇ 1 ＇and then set to＇ 0 ＇），all PWM registers must be reinitialized．

\section*{查询dsPIC33FJ32GS606供应商}

\begin{tabular}{|c|c|}
\hline bit 3 & SPI1MD：SPI1 Module Disable bit \\
\hline & \begin{tabular}{l}
\(1=\) SPI1 module is disabled \\
\(0=\) SPI1 module is enabled
\end{tabular} \\
\hline bit 2 & Unimplemented：Read as＇0＇ \\
\hline bit 1 & \begin{tabular}{l}
C1MD：ECAN1 Module Disable bit \\
1 ＝ECAN1 module is disabled \\
\(0=\) ECAN1 module is enabled
\end{tabular} \\
\hline bit 0 & \begin{tabular}{l}
ADCMD：ADC Module Disable bit \\
\(1=\) ADC module is disabled \\
\(0=\) ADC module is enabled
\end{tabular} \\
\hline
\end{tabular}

Note 1：Once the PWM module is re－enabled（PWMMD is set to＇ 1 ＇and then set to＇ 0 ＇），all PWM registers must be reinitialized．

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & IC4MD & IC3MD & IC2MD & IC1MD \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & OC4MD & OC3MD & OC2MD & OC1MD \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-12 Unimplemented: Read as '0'
bit 11 IC4MD: Input Capture 4 Module Disable bit
1 = Input Capture 4 module is disabled \(0=\) Input Capture 4 module is enabled
bit 19 IC3MD: Input Capture 3 Module Disable bit 1 = Input Capture 3 module is disabled \(0=\) Input Capture 3 module is enabled
bit 9 IC2MD: Input Capture 2 Module Disable bit 1 = Input Capture 2 module is disabled 0 = Input Capture 2 module is enabled
bit \(8 \quad\) IC1MD: Input Capture 1 Module Disable bit
1 = Input Capture 1 module is disabled \(0=\) Input Capture 1 module is enabled
bit 7-4 Unimplemented: Read as ' 0 '
bit 3 OC4MD: Output Compare 4 Module Disable bit
1 = Output Compare 4 module is disabled
\(0=\) Output Compare 4 module is enabled
bit 2 OC3MD: Output Compare 3 Module Disable bit
1 = Output Compare 3 module is disabled
\(0=\) Output Compare 3 module is enabled
bit 1 OC2MD: Output Compare 2 Module Disable bit
1 = Output Compare 2 module is disabled
\(0=\) Output Compare 2 module is enabled
bit \(0 \quad\) OC1MD: Output Compare 1 Module Disable bit
1 = Output Compare 1 module is disabled
\(0=\) Output Compare 1 module is enabled

旬dsPIC33FJ32GS606供应商
REGISTER 10－3：PMD 3：PERIPHERAL MODULE DISABLE CONTROL REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & U－0 & R／W－0 & U－0 & U－0 \\
\hline- & - & - & - & - & CMPMD & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & R／W－0 & U－0 & U－0 & U－0 & R／W－0 & U－0 \\
\hline- & - & QEI2MD & - & - & - & I2C2MD & - \\
\hline bit 7 & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15－11 & Unimplemented：Read as＇0＇ \\
\hline bit 10 & \begin{tabular}{l}
CMPMD：Analog Comparator Module Disable bit \\
1 ＝Analog Comparator module is disabled \\
0 ＝Analog Comparator module is enabled
\end{tabular} \\
\hline bit 9－6 & Unimplemented：Read as＇0＇ \\
\hline bit 5 & \begin{tabular}{l}
QEI2MD：QEI2 Module Disable bit \\
\(1=\) QEI2 module is disabled \\
\(0=\) QEI2 module is enabled
\end{tabular} \\
\hline bit 4－2 & Unimplemented：Read as＇0’ \\
\hline bit 1 & \begin{tabular}{l}
I2C2MD：I2C2 Module Disable bit \\
\(1=\) I2C2 module is disabled \\
\(0=\) I2C2 module is enabled
\end{tabular} \\
\hline bit 0 & Unimplemented：Read as＇0＇ \\
\hline
\end{tabular}

REGISTER 10－4：PMD4：PERIPHERAL MODULE DISABLE CONTROL REGISTER 4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & R／W－0 & U－0 & U－0 & U－0 \\
\hline － & － & － & － & REFOMD & － & － & － \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15－4 Unimplemented：Read as＇ 0 ＇
bit 3 REFOMD：Reference Clock Generator Module Disable bit
1 ＝Reference clock generator module is disabled
\(0=\) Reference clock generator module is enabled
bit 2－0 Unimplemented：Read as＇ 0 ’

是EESSER 10－5：PMD6：PERTHERAL MODULE DISABLE CONTROL REGISTER 6
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 \\
\hline PWM8MD & PWM7MD & PWM6MD & PWM5MD & PWM4MD & PWM3MD & PWM2MD & PWM1MD \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U－0 & U－0 \\
\hline － & － & － & － & － & － & － & － \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{bit 15} & PWM8MD：PWM Generator 8 Module Disable bit \\
\hline & 1 ＝PWM Generator 8 module is disabled \\
\hline & 0 ＝PWM Generator 8 module is enabled \\
\hline \multirow[t]{3}{*}{bit 14} & PWM7MD：PWM Generator 7 Module Disable bit \\
\hline & 1 ＝PWM Generator 7 module is disabled \\
\hline & 0 ＝PWM Generator 7 module is enabled \\
\hline \multirow[t]{3}{*}{bit 13} & PWM6MD：PWM Generator 6 Module Disable bit \\
\hline & 1 ＝PWM Generator 6 module is disabled \\
\hline & 0 ＝PWM Generator 6 module is enabled \\
\hline \multirow[t]{3}{*}{bit 12} & PWM5MD：PWM Generator 5 Module Disable bit \\
\hline & 1 ＝PWM Generator 5 module is disabled \\
\hline & 0 ＝PWM Generator 5 module is enabled \\
\hline \multirow[t]{3}{*}{bit 11} & PWM4MD：PWM Generator 4 Module Disable bit \\
\hline & 1 ＝PWM Generator 4 module is disabled \\
\hline & 0 ＝PWM Generator 4 module is enabled \\
\hline \multirow[t]{3}{*}{bit 10} & PWM3MD：PWM Generator 3 Module Disable bit \\
\hline & 1 ＝PWM Generator 3 module is disabled \\
\hline & 0 ＝PWM Generator 3 module is enabled \\
\hline \multirow[t]{3}{*}{bit 9} & PWM2MD：PWM Generator 2 Module Disable bit \\
\hline & 1 ＝PWM Generator 2 module is disabled \\
\hline & 0 ＝PWM Generator 2 module is enabled \\
\hline \multirow[t]{3}{*}{bit 8} & PWM1MD：PWM Generator 1 Module Disable bit \\
\hline & 1 ＝PWM Generator 1 module is disabled \\
\hline & 0 ＝PWM Generator 1 module is enabled \\
\hline bit 7－0 & Unimplemented：Read as＇0＇ \\
\hline
\end{tabular}

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 10－6：PMD7：PERIPHERAL MODULE DISABLE CONTROL REGISTER 7
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline- & - & - & - & CMP4MD & CMP3MD & CMP2MD & CMP1MD \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & R／W－0 \\
\hline- & - & - & - & - & - & - & PWM9MD \\
\hline bit 7
\end{tabular}

\section*{Legend：}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W＝Writable bit & \(\mathrm{U}=\) Unimplement & as＇ 0 ＇ \\
\hline －n＝Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared & \(\mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
bit 15－12 Unimplemented：Read as＇ 0 ＇
bit 11 CMP4MD：Analog Comparator 4 Module Disable bit 1 ＝Analog Comparator 4 module is disabled \(0=\) Analog Comparator 4 module is enabled
bit \(10 \quad\) CMP3MD：Analog Comparator 3 Module Disable bit 1 ＝Analog Comparator 3 module is disabled \(0=\) Analog Comparator 3 module is enabled
bit 9 CMP2MD：Analog Comparator 2 Module Disable bit 1 ＝Analog Comparator 2 module is disabled \(0=\) Analog Comparator 2 module is enabled
bit 8 CMP1MD：Analog Comparator 1 Module Disable bit 1 ＝Analog Comparator 1 module is disabled \(0=\) Analog Comparator 1 module is enabled
bit 7－1 Unimplemented：Read as＇0＇
bit \(0 \quad\) PWM9MD：PWM Generator 9 Module Disable bit
1 ＝PWM Generator 9 module is disabled
\(0=\) PWM Generator 9 module is enabled

\section*{}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except Vdd, Vss, \(\overline{M C L R}\) and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

\subsection*{11.1 Parallel I/O (PIO) Ports}

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port
has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.
When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.
All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is ' 1 ', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.
When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE


\section*{}

In addition to the PORT, LAT and TRIS registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.
The open-drain feature allows the generation of outputs higher than VDD (for example, 5 V ) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum \(\mathrm{VIH}_{\mathrm{I}}\) specification.

Refer to "Pin Diagrams" for the available pins and their functionality.

\subsection*{11.3 Configuring Analog Port Pins}

The ADPCFG and TRIS registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VoL) will be converted.
The ADPCFG and ADPCFG2 registers have a default value of \(0 \times 000\); therefore, all pins that share ANx functions are analog (not digital) by default.
When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).
Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

\subsection*{11.4 I/O Port Write/Read Timing}

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 11-1.

\subsection*{11.5 Input Change Notification}

The input change notification function of the I/O ports allows the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices to generate interrupt requests to the processor in response to a Change-Of-State (COS) on selected input pins. This feature can detect input Change-Of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin ) can be selected (enabled) for generating an interrupt request on a Change-Of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.
Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.
\begin{tabular}{|ll|}
\hline Note: & \begin{tabular}{l} 
Pull-ups on change notification pins \\
should always be disabled when the port \\
pin is configured as a digital output.
\end{tabular} \\
\hline
\end{tabular}

\section*{EQUATION 11-1: PORT WRITE/READ EXAMPLE}
\begin{tabular}{lll} 
MOV & \(0 x F F 00\), W0 & ; Configure PORTB<15:8> as inputs \\
MOV & W0, TRISBB & ; and PORTB<7:0> as outputs \\
NOP & & ; Delay 1 cycle \\
BTSS & PORTB, \#13 & ; Next Instruction
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

\section*{12．0 TIMER1}

Note 1：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to Section 11．＂Timers＂ （DS70205）in the＂dsPIC33F／PIC24H Family Reference Manual＂，which is avail－ able from the Microchip web site （www．microchip．com）．

2：Some registers and associated bits described in this section may not be avail－ able on all devices．Refer to Section 4.0 ＂Memory Organization＂in this data sheet for device－specific register and bit information．

The Timer1 module is a 16 －bit timer，which can serve as a time counter for the Real－Time Clock（RTC），or operate as a free－running interval timer／counter．
The Timer1 module has the following unique features over other timers：
－Can be operated from the low－power 32.767 kHz crystal oscillator available on the device
－Can be operated in Asynchronous Counter mode from an external clock source．
－The external clock input（T1CK）can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler．

The unique features of Timer1 allow it to be used for Real－Time Clock（RTC）applications．A block diagram of Timer1 is shown in Figure 12－1．
The Timer1 module can operate in one of the following modes：
－Timer mode
－Gated Timer mode
－Synchronous Counter mode
－Asynchronous Counter mode
In Timer and Gated Timer modes，the input clock is derived from the internal instruction cycle clock（Fcy）． In Synchronous and Asynchronous Counter modes， the input clock is derived from the external clock input at the T1CK pin．
The Timer modes are determined by the following bits：
－Timer Clock Source Control bit（TCS）：T1CON＜1＞
－Timer Synchronization Control bit（TSYNC）： T1CON＜2＞
－Timer Gate Control bit（TGATE）：T1CON＜6＞
The timer control bit settings for different operating modes are given in the Table 12－1．

TABLE 12－1：TIMER MODE SETTINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Mode } & TCS & TGATE & TSYNC \\
\hline \hline Timer & 0 & 0 & x \\
\hline Gated Timer & 0 & 1 & x \\
\hline \begin{tabular}{l} 
Synchronous \\
Counter
\end{tabular} & 1 & x & 1 \\
\hline \begin{tabular}{l} 
Asynchronous \\
Counter
\end{tabular} & 1 & x & 0 \\
\hline
\end{tabular}

FIGURE 12－1：16－BIT TIMER1 MODULE BLOCK DIAGRAM


\section*{胢询dsPIC33FJ32GS606供应商}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 & R／W－0 & U－0 & U－0 & U－0 & U－0 & U－0 \\
\hline TON & - & TSIDL & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & R／W－0 & R／W－0 & R／W－0 & U－0 & R／W－0 & R／W－0 & U－0 \\
\hline- & TGATE & TCKPS＜1：0＞ & - & TSYNC & TCS & - \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇\(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15 TON：Timer1 On bit
1 ＝Starts 16－bit Timer1
\(0=\) Stops 16－bit Timer1
bit 14 Unimplemented：Read as＇ 0 ’
bit 13 TSIDL：Stop in Idle Mode bit
1 ＝Discontinue module operation when device enters Idle mode
0 ＝Continue module operation in Idle mode
bit 12－7 Unimplemented：Read as＇ 0 ＇
bit 6 TGATE：Timer1 Gated Time Accumulation Enable bit
When T1CS＝1：
This bit is ignored．
When T1CS＝ 0 ：
1 ＝Gated time accumulation enabled
0 ＝Gated time accumulation disabled
bit 5－4 TCKPS＜1：0＞Timer1 Input Clock Prescale Select bits
\(11=1: 256\)
\(10=1: 64\)
\(01=1: 8\)
\(00=1: 1\)
bit \(3 \quad\) Unimplemented：Read as＇ 0 ＇
bit 2 TSYNC：Timer1 External Clock Input Synchronization Select bit
When TCS＝1：
1 ＝Synchronize external clock input
\(0=\) Do not synchronize external clock input
When TCS \(=0\) ：
This bit is ignored．
bit 1
TCS：Timer1 Clock Source Select bit
1 ＝External clock from T1CK pin（on the rising edge）
0 ＝Internal clock（FCy）
bit \(0 \quad\) Unimplemented：Read as＇ 0 ’

\section*{询dsPIC33FJ32GS606供应商}

\subsection*{13.0 THMER2／314／5 FEATURES}

Note 1：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to Section 11．＂Timers＂ （DS70205）in the＂dsPIC33F／PIC24H Family Reference Manual＂，which is avail－ able from the Microchip web site （www．microchip．com）．
2：Some registers and associated bits described in this section may not be avail－ able on all devices．Refer to Section 4.0 ＂Memory Organization＂in this data sheet for device－specific register and bit information．

Timer2 and Timer4 are Type B timers that offer the following major features：
－A Type B timer can be concatenated with a Type C timer to form a 32－bit timer
－External clock input（TxCK）is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler．
Figure 13－1 shows a block diagram of the Type B timer．
Timer3 and Timer5 are Type C timers that offer the following major features：
－A Type C timer can be concatenated with a Type B timer to form a 32－bit timer
－At least one Type \(C\) timer has the ability to trigger an A／D conversion．
－The external clock input（TxCK）is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler
A block diagram of the Type \(C\) timer is shown in Figure 13－2．

Note：Timer3 is not available on all devices．

FIGURE 13－1：\(\quad\) TYPE B TIMER BLOCK DIAGRAM \((x=2,4)\)


FIGURE 13－2：TYPE C TIMER BLOCK DIAGRAM \((x=3,5)\)


\section*{查询dsPIC33FJ32GS606供应商}

杽位 1 imer \(2 / 3 / 4 / 5\) modules cationeate in one of the following modes：
－Timer mode
－Gated Timer mode
－Synchronous Counter mode
In Timer and Gated Timer modes，the input clock is derived from the internal instruction cycle clock（Fcy）． In Synchronous Counter mode，the input clock is derived from the external clock input at the TxCK pin．
The timer modes are determined by the following bits：
－TCS（TxCON＜1＞）：Timer Clock Source Control bit
－TGATE（TxCON＜6＞）：Timer Gate Control bit
Timer control bit settings for different operating modes are given in the Table 13－1．

TABLE 13－1：TIMER MODE SETTINGS
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Mode } & TCS & TGATE \\
\hline \hline Timer & 0 & 0 \\
\hline Gated Timer & 0 & 1 \\
\hline Synchronous Counter & 1 & \(x\) \\
\hline
\end{tabular}

\subsection*{13.1 16－Bit Operation}

To configure any of the timers for individual 16－bit operation：
1．Clear the T32 bit corresponding to that timer．
2．Select the timer prescaler ratio using the TCKPS＜1：0＞bits．
3．Set the Clock and Gating modes using the TCS and TGATE bits．
4．Load the timer period value into the \(P R x\) register．
5．If interrupts are required，set the interrupt enable bit，TxIE．Use the priority bits，TxIP＜2：0＞，to set the interrupt priority．
6．Set the TON bit．

\subsection*{13.2 32－Bit Operation}

A 32－bit timer module can be formed by combining a Type B and a Type C 16－bit timer module．For 32－bit timer operation，the T32 control bit in the Type B Timer Control（ \(\mathrm{TxCON}<3>\) ）register must be set．The Type C timer holds the most significant word（msw）and the Type B timer holds the least significant word（lsw） for 32－bit operation．

When configured for 32－bit operation，only the Type B Timer Control（TxCON）register bits are required for setup and control while the Type C Timer Control register bits are ignored（except the TSIDL bit）．
For interrupt control，the combined 32－bit timer uses the interrupt enable，interrupt flag and interrupt priority control bits of the Type C timer．The interrupt control and status bits for the Type B timer are ignored during 32－bit timer operation．
The timers that can be combined to form a 32－bit timer are listed in Table 13－2．

TABLE 13－2：32－BIT TIMER
\begin{tabular}{|c|c|}
\hline Type B Timer（Isw） & Type C Timer（msw） \\
\hline \hline Timer2 & Timer3 \\
\hline Tlmer4 & Timer5 \\
\hline
\end{tabular}

A block diagram representation of the 32－bit timer module is shown in Figure 13－3．The 32－timer module can operate in one of the following modes：
－Timer mode
－Gated Timer mode
－Synchronous Counter mode
To configure the timer features for 32－bit operation：
1．Set the T32 control bit．
2．Select the prescaler ratio for Timer2 using the TCKPS＜1：0＞bits．
3．Set the Clock and Gating modes using the corresponding TCS and TGATE bits．
4．Load the timer period value．PR3 contains the most significant word of the value，while PR2 contains the least significant word．
5．If interrupts are required，set the interrupt enable bit，T3IE．Use the priority bits，T3IP＜2：0＞，to set the interrupt priority．While Timer2 controls the timer，the interrupt appears as a Timer3 interrupt．
6．Set the corresponding TON bit．


Note 1：Timerx is a Type B Timer \((x=2,4)\) ．
2：Timery is a Type \(C\) Timer \((y=3,5)\) ．

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 13－1：TxCON：TMER CONTROL REGISTER（ \(\mathrm{x}=2,4\) ）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 & R／W－0 & U－0 & U－0 & U－0 & U－0 & U－0 \\
\hline TON & － & TSIDL & － & － & － & － & － \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & U－0 & R／W－0 & U－0 \\
\hline － & TGATE & TC & & T32 & － & TCS & － \\
\hline \multicolumn{8}{|l|}{bit 7 bit 0} \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0\)＇＝Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15 TON：Timerx On bit
When T32＝ 1 （in 32－Bit Timer mode）：
1 ＝Starts 32－bit TMRx：TMRy timer pair
\(0=\) Stops 32－bit TMRx：TMRy timer pair
When T32＝ 0 （in 16－Bit Timer mode）：
1 ＝Starts 16－bit timer
\(0=\) Stops 16－bit timer
bit 14 Unimplemented：Read as＇ 0 ＇
bit \(13 \quad\) TSIDL：Stop in Idle Mode bit
1 ＝Discontinue timer operation when device enters Idle mode
\(0=\) Continue timer operation in Idle mode
bit 12－7 Unimplemented：Read as＇ 0 ＇
bit 6 TGATE：Timerx Gated Time Accumulation Enable bit
When TCS＝1：
This bit is ignored．
When TCS＝0：
1 ＝Gated time accumulation enabled
\(0=\) Gated time accumulation disabled
bit 5－4 TCKPS＜1：0＞：Timerx Input Clock Prescale Select bits
\(11=1: 256\) prescale value
\(10=1: 64\) prescale value
\(01=1: 8\) prescale value
\(00=1: 1\) prescale value
bit \(3 \quad\) T32：32－Bit Timerx Mode Select bit
\(1=\) TMRx and TMRy form a 32－bit timer
\(0=\) TMRx and TMRy form separate 16－bit timer
bit 2 Unimplemented：Read as＇ 0 ＇
bit 1 TCS：Timerx Clock Source Select bit
1 ＝External clock from TxCK pin
0 ＝Internal clock（Fosc／2）
bit \(0 \quad\) Unimplemented：Read as＇ 0 ’

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 13－2：TyCON：TIMER CONTROL REGISTER \((y=3,5)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 & R／W－0 & U－0 & U－0 & U－0 & U－0 & U－0 \\
\hline TON \({ }^{(2)}\) & － & TSIDL \({ }^{(1)}\) & － & － & － & － & － \\
\hline \multicolumn{8}{|l|}{bit \(15 \times\) bit 8} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & R／W－0 & R／W－0 & R／W－0 & U－0 & U－0 & R／W－0 & U－0 \\
\hline- & TGATE \(^{(\mathbf{2})}\) & TCKPS＜1：0＞\({ }^{(\mathbf{2})}\) & - & - & TCS \(^{(\mathbf{2})}\) & - \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & TON：Timery On bit \({ }^{(2)}\) \\
\hline & \begin{tabular}{l}
1 ＝Starts 16－bit Timery \\
0 ＝Stops 16－bit Timery
\end{tabular} \\
\hline bit 14 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{2}{*}{bit 13} & TSIDL：Stop in Idle Mode bit \({ }^{(\mathbf{1})}\) \\
\hline & 1 ＝Discontinue timer operation when device enters Idle mode \(0=\) Continue timer operation in Idle mode \\
\hline bit 12－7 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{6}{*}{bit 6} & TGATE：Timery Gated Time Accumulation Enable bit \({ }^{(2)}\) \\
\hline & When TCS＝1： \\
\hline & This bit is ignored． \\
\hline & When TCS＝0： \\
\hline & 1 ＝Gated time accumulation enabled \\
\hline & \(0=\) Gated time accumulation disabled \\
\hline \multirow[t]{5}{*}{bit 5－4} & TCKPS＜1：0＞：Timery Input Clock Prescale Select bits \({ }^{(2)}\) \\
\hline & \(11=1: 256\) prescale value \\
\hline & \(10=1: 64\) prescale value \\
\hline & \(01=1: 8\) prescale value \\
\hline & \(00=1: 1\) prescale value \\
\hline bit 3－2 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{3}{*}{bit 1} & TCS：Timery Clock Source Select bit \({ }^{(2)}\) \\
\hline & 1 ＝External clock from TxCK pin \\
\hline & 0 ＝Internal clock（Fosc／2） \\
\hline bit 0 & Unimplemented：Read as＇0＇ \\
\hline
\end{tabular}

Note 1：When 32－bit timer operation is enabled（ \(\mathrm{T} 32=1\) ）in the Timer Control register（ \(\mathrm{TxCON}<3>\) ），the TSIDL bit must be cleared to operate the 32 －bit timer in Idle mode．
2：When the 32－bit timer operation is enabled \((\mathrm{T} 32=1)\) in the Timer Control \((\mathrm{TxCON}<3>)\) register，these bits have no effect．

\section*{}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices support up to two input capture channels.
The input capture module captures the 16 -bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:
- Simple Capture Event modes:
- Capture timer value on every falling edge of input at ICx pin
- Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
- Capture timer value on every 4th rising edge of input at ICx pin
- Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of the two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.
Other operational features include:
- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values
- Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

FIGURE 14-1: INPUT CAPTURE BLOCK DIAGRAM


Note 1: An ' \(x\) ' in a signal, register or bit name denotes the number of the capture channel.

\section*{}

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x=1, 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-O & U-0 & U-0 & U-0 & U-0 & \\
\hline- & - & ICSIDL & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|ccc|}
\hline \multicolumn{9}{|c|}{\(\mathrm{R} / \mathrm{W}-0\)} & R/W-0 & R/W-0 & R-0, HC & R-0, HC & R/W-0 & R/W-0 & R/W-0 \\
\hline ICTMR & \(\mathrm{ICl}<1: 0>\) & ICOV & ICBNE & & ICM<2:0> & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Hardware Clearable bit & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}

\section*{bit 15-14 Unimplemented: Read as ' 0 ’}
bit \(13 \quad\) ICSIDL: Input Capture Module Stop in Idle Control bit
1 = Input capture module halts in CPU Idle mode
\(0=\) Input capture module continues to operate in CPU Idle mode
bit 12-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) ICTMR: Input Capture Timer Select bits
\(1=\) TMR2 contents are captured on capture event
\(0=\) TMR3 contents are captured on capture event
bit 6-5 \(\quad \mathbf{I C I}<\mathbf{1 : 0}\) : Select Number of Captures per Interrupt bits
\(11=\) Interrupt on every fourth capture event
\(10=\) Interrupt on every third capture event
01 = Interrupt on every second capture event
00 = Interrupt on every capture event
bit \(4 \quad\) ICOV: Input Capture Overflow Status Flag bit (read-only)
1 = Input capture overflow occurred
\(0=\) No input capture overflow occurred
bit 3 ICBNE: Input Capture Buffer Empty Status bit (read-only)
1 = Input capture buffer is not empty, at least one more capture value can be read
\(0=\) Input capture buffer is empty
bit 2-0 ICM<2:0>: Input Capture Mode Select bits
111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode. Rising edge detect-only, all other control bits are not applicable.
\(110=\) Unused (module disabled)
101 = Capture mode, every 16th rising edge
100 = Capture mode, every 4th rising edge
011 = Capture mode, every rising edge
\(010=\) Capture mode, every falling edge
001 = Capture mode, every edge (rising and falling). \(\mathrm{ICl}<1: 0>\) bits do not control interrupt generation for this mode.
\(000=\) Input capture module turned off

\section*{}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.
The output compare module has multiple operating modes:
- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM


Note: An 'x' in a signal, register or bit name denotes the number of the output compare channels.

\section*{}

Configure the Output Compare modes by setting the appropriate Output Compare Mode ( \(\mathrm{OCM}<2: 0>\) ) bits in the Output Compare Control ( \(\mathrm{OCxCON}<2: 0>\) ) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user
application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note: See Section 13. "Output Compare" in the "dsPIC33F/PIC24H Family Reference Manual" (DS7029) for OCxR and OCxRS register restrictions.

TABLE 15-1: OUTPUT COMPARE MODES
\begin{tabular}{|c|l|c|l|}
\hline OCM<2:0> & \multicolumn{1}{|c|}{ Mode } & OCx Pin Initial State & \multicolumn{1}{c|}{ OCx Interrupt Generation } \\
\hline \hline 000 & Module Disabled & Controlled by GPIO register & \\
\hline 001 & Active-Low One-Shot & 0 & - \\
\hline 010 & Active-High One-Shot & 1 & OCx rising edge \\
\hline 011 & Toggle & Current output is maintained & OCx ralling edge \\
\hline 100 & Delayed One-Shot & 0 & OCx falling edge \\
\hline 101 & Continuous Pulse & 0 & OCx falling edge \\
\hline 110 & PWM without Fault Protection & \begin{tabular}{c} 
'0', if OCxR is zero \\
'1', if OCxR is non-zero
\end{tabular} & No interrupt \\
\hline 111 & PWM with Fault Protection & \begin{tabular}{c} 
'0', if OCxR is zero \\
'1', if OCxR is non-zero
\end{tabular} & OCFA falling edge for OC1 to OC4 \\
\hline
\end{tabular}

FIGURE 15-2: OUTPUT COMPARE OPERATION

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & R／W－0 & U－0 & U－0 & U－0 & U－0 \\
\hline- & - & OCSIDL & - & - & - & - & - \\
\hline bit 15 & & \\
\hline \multicolumn{9}{|c|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|cc|}
\hline U－0 & U－0 & U－0 & R－0，HC & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline- & - & - & OCFLT & OCTSEL & & OCM＜2：0＞ & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(H C=\) Hardware Clearable bit & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \\
\hline
\end{tabular}
bit 15－14 Unimplemented：Read as＇ 0 ＇
bit 13 OCSIDL：Stop Output Compare in Idle Mode Control bit
1 ＝Output Compare \(x\) halts in CPU Idle mode
\(0=\) Output Compare \(\times\) continues to operate in CPU Idle mode
bit 12－5 Unimplemented：Read as＇0＇
bit 4 OCFLT：PWM Fault Condition Status bit
1 ＝PWM Fault condition has occurred（cleared in hardware only）
\(0=\) No PWM Fault condition has occurred（this bit is only used when OCM＜2：0＞＝111）
bit 3 OCTSEL：Output Compare Timer Select bit
1 ＝Timer3 is the clock source for Compare \(x\)
\(0=\) Timer2 is the clock source for Compare \(x\)
bit 2－0 OCM＜2：0＞：Output Compare Mode Select bits
111 ＝PWM mode on OCx，Fault pin enabled
\(110=\) PWM mode on OCx，Fault pin disabled
101 ＝Initialize OCx pin low，generate continuous output pulses on OCx pin
100 ＝Initialize OCx pin low，generate single output pulse on OCx pin
011 ＝Compare event toggles OCx pin
010 ＝Initialize OCx pin high，compare event forces OCx pin low
001 ＝Initialize OCx pin low，compare event forces OCx pin high
000 ＝Output compare channel is disabled

\section*{}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "High-Speed PWM" (DS70579) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The High-Speed PWM module on the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:
- AC/DC Converters
- DC/DC Converters
- Power Factor Correction
- Uninterruptible Power Supply (UPS)
- Inverters
- Battery Chargers
- Digital Lighting

\subsection*{16.1 Features Overview}

The High-Speed PWM module incorporates the following features:
- Two master time base modules
- Up to nine PWM generators with up to 18 outputs
- Two PWM outputs per PWM generator
- Individual time base and duty cycle for each PWM output
- Duty cycle, dead time, phase shift, and frequency resolution of 1.04 ns at 40 MIPS
- Independent fault and current-limit inputs for eight PWM Outputs
- Redundant output
- True Independent output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- Dual trigger from PWM to Analog-to-Digital Converter (ADC) per PWM period
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle, and phase shift changes
- Current compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- PWM Capture functionality
\begin{tabular}{ll} 
Note: & \begin{tabular}{l} 
Duty cycle, dead-time, phase shift and \\
frequency resolution is 8.32 ns in \\
\\
\\
Center-Aligned PWM mode.
\end{tabular} \\
\hline
\end{tabular}

Figure 16-1 conceptualizes the PWM module in a simplified block diagram. Figure 16-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode.
The PWM module contains nine PWM generators. The module has up to 18 PWM output pins: PWM1H, PWM1L, PWM2H, PWM2L, PWM3H, PWM3L, PWM4H, PWM4L, PWM5H, PWM5L, PWM6H, PWM6L, PWM7H, PWM7L, PWM8H, PWM8L, PWM9H, and PWM9L. For complementary outputs, these 18 I/O pins are grouped into \(\mathrm{H} / \mathrm{L}\) pairs.

\subsection*{16.2 Feature Description}

The PWM module is designed for applications that require:
- High-resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode, and Push-Pull mode outputs
- The ability to create multiphase PWM outputs

For Center-Aligned mode, the duty cycle, period phase and dead-time resolutions will be 8.32 ns .

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable.
Multiphase PWM is often used to improve DC/DC converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC converters are often operated in parallel, but phase-shifted in time. A single PWM output operating at 250 kHz has a period of \(4 \mu \mathrm{~s}\), but an array of four PWM channels, staggered by \(1 \mu \mathrm{~s}\) each, yields an effective switching frequency of 1 MHz . Multiphase PWM applications typically use a fixed-phase relationship.
Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always \(50 \%\), and the power flow is controlled by varying the relative phase shift between the two PWM generators.



\section*{}


\section*{查淘dsPC6niffolitegister共应商}

The following registers control the operation of the High－Speed PWM module．
－PTCON：PWM Time Base Control Register
－PTCON2：PWM Clock Divider Select Register
－PTPER：Primary Master Time Base Period Regis－ ter \((1,2)\)
－SEVTCMP：PWM Special Event Compare Regis－ ter（1）
－STCON：PWM Secondary Master Time Base Control Register
－STCON2：PWM Secondary Clock Divider Select Register
－STPER：Secondary Master Time Base Period Register
－SSEVTCMP：PWM Secondary Special Event Compare Register
－CHOP：PWM Chop Clock Generator Register
－MDC：PWM Master Duty Cycle Register
－PWMCONx：PWM Control Register
－PDCx：PWM Generator Duty Cycle Register
－PHASEx：PWM Primary Phase Shift Register
－DTRx：PWM Dead Time Register
－ALTDTRx：PWM Alternate Dead Time Register
－SDCx：PWM Secondary Duty Cycle Register
－SPHASEx：PWM Secondary Phase Shift Register
－TRGCONx：PWM Trigger Control Register
－IOCONx：PWM I／O Control Register
－FCLCONx：PWM Fault Current－Limit Control Register
－TRIGx：PWM Primary Trigger Compare Value Register
－STRIGx：PWM Secondary Trigger Compare Value Register（1）
－LEBCONx：Leading－Edge Blanking Control Register
－LEBDLYx：Leading－Edge Blanking Delay Register
－AUXCONx：PWM Auxiliary Control Register
－PWMCAPx：Primary PWM Time Base Capture Register

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & HS/HC-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline PTEN & - & PTSIDL & SESTAT & SEIEN & EIPU \({ }^{(1)}\) & SYNCPOL \({ }^{(1)}\) & SYNCOEN \({ }^{(1)}\) \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline
\end{tabular}

\begin{tabular}{|lll|}
\hline Legend: & \(H C=\) Cleared in Hardware & \(H S=\) Set in Hardware \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 PTEN: PWM Module Enable bit
\(1=P W M\) module is enabled
\(0=\) PWM module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 PTSIDL: PWM Time Base Stop in Idle Mode bit
1 = PWM time base halts in CPU Idle mode
\(0=\) PWM time base runs in CPU Idle mode
bit 12 SESTAT: Special Event Interrupt Status bit
1 = Special Event Interrupt is pending
\(0=\) Special Event Interrupt is not pending
bit 11 SEIEN: Special Event Interrupt Enable bit
1 = Special Event Interrupt is enabled
\(0=\) Special Event Interrupt is disabled
bit \(10 \quad\) EIPU: Enable Immediate Period Updates bit \({ }^{(1)}\)
1 = Active Period register is updated immediately
\(0=\) Active Period register updates occur on PWM cycle boundaries
bit \(9 \quad\) SYNCPOL: Synchronize Input and Output Polarity bit \({ }^{(1)}\)
1 = SYNCIx/SYNCO1 polarity is inverted (active-low)
\(0=\) SYNCIx/SYNCO1 is active-high
bit 8 SYNCOEN: Primary Time Base Sync Enable bit \({ }^{(1)}\)
1 = SYNCO1 output is enabled
0 = SYNCO1 output is disabled
bit 7 SYNCEN: External Time Base Synchronization Enable bit \({ }^{(\mathbf{1})}\)
1 = External synchronization of primary time base is enabled
0 = External synchronization of primary time base is disabled
bit 6-4 SYNCSRC<2:0>: Synchronous Source Selection bits \({ }^{(\mathbf{1})}\)
\[
\begin{aligned}
& 000=\text { SYNCI1 } \\
& 001=\text { SYNCI2 } \\
& 010=\text { SYNCI3 } \\
& 011=\text { SYNCI } 4 \\
& 100=\text { Reserved } \\
& 101=\text { Reserved } \\
& 111=\text { Reserved }
\end{aligned}
\]

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

\section*{}
bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits \({ }^{(\mathbf{1 )}}\)
\(1111=1: 16\) Postscaler generates Special Event Trigger on every sixteenth compare match event
-
-
-
\(0001=1: 2\) Postscaler generates Special Event Trigger on every second compare match event \(0000=1: 1\) Postscaler generates Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN \(=0\). In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|l|l|c|c|cccc|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & & PCLKDIV<2:0>(1) & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-3 Unimplemented: Read as '0’
bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits \({ }^{(1)}\)
111 = Reserved
110 = Divide by 64 , maximum PWM timing resolution
101 = Divide by 32, maximum PWM timing resolution
100 = Divide by 16, maximum PWM timing resolution
011 = Divide by 8, maximum PWM timing resolution
010 = Divide by 4, maximum PWM timing resolution
001 = Divide by 2, maximum PWM timing resolution
000 = Divide by 1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN \(=0\). Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-3: PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER \({ }^{(1,2)}\)
\begin{tabular}{|llllllll|}
\hline\(R / W-1\) & \(R / W-1\) \\
\hline & & & & PTPER<15:8> & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-1\) & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline & & PTPER \(<7: 0>\) & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits

Note 1: The PWM time base has a minimum value of \(0 \times 0010\), and a maximum value of \(0 x F F F 8\).
2: Any Period value that is less than \(0 \times 0028\) must have the least significant 3 bits set to ' 0 ', thus yielding a Period resolution at 8.32 ns (at fastest auxiliary clock rate).

查询dsPIC33FJ32GS606供应商
REGISTER 16－4：SEVTCMP：PWM SPECIAL EVENT COMPARE REGISTER \({ }^{(\mathbf{1})}\)

\begin{tabular}{|lll}
\hline Legend： & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \\
\hline
\end{tabular}
bit 15－3 SEVTCMP＜15：3＞：Special Event Compare Count Value bits
bit 2－0 Unimplemented：Read as＇ 0 ＇

Note 1：One LSB＝ 1.04 ns （at fastest auxiliary clock rate）；therefore，the minimum SEVTCMP resolution is 8.32 ns ．

REGSTER 16－5：STCON：PWM SECONDARY MASTER TIME BASE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|r|}
\hline U－0 & U－0 & U－0 & HS／HC－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline- & - & - & SESTAT & SEIEN & EIPU \(^{(1)}\) & SYNCPOL & SYNCOEN \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|ccccccc|}
\hline R／W－0 & R／W－0 \\
\hline SYNCEN & & SYNCSRC \(<2: 0>\) & & & SEVTPS＜3：0＞ & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown \begin{tabular}{l} 
\\
\hline
\end{tabular}
bit 15－13 Unimplemented：Read as＇ 0 ＇
bit 12 SESTAT：Special Event Interrupt Status bit
1 ＝Secondary Special Event Interrupt is pending
\(0=\) Secondary Special Event Interrupt is not pending
bit 11 SEIEN：Special Event Interrupt Enable bit
1 ＝Secondary Special Event Interrupt is enabled
0 ＝Secondary Special Event Interrupt is disabled
bit \(10 \quad\) EIPU：Enable Immediate Period Updates bit \({ }^{(1)}\)
1 ＝Active Secondary Period register is updated immediately
0 ＝Active Secondary Period register updates occur on PWM cycle boundries
bit \(9 \quad\) SYNCPOL：Synchronize Input and Output Polarity bit
1 ＝SYNCIx／SYNCO2 polarity is inverted（active－low）
0 ＝SYNCIx／SYNCO2 polarity is active－high
bit 8 SYNCOEN：Secondary Master Time Base Sync Enable bit
1 ＝SYNCO2 output is enabled．
\(0=\) SYNCO2 output is disabled
bit 7 SYNCEN：External Secondary Master Time Base Synchronization Enable bit
1 ＝External synchronization of secondary time base is enabled
\(0=\) External synchronization of secondary time base is disabled
bit 6－4 SYNCSRC＜2：0＞：Secondary Time Base Sync Source Selection bits
000 ＝SYNCI1
001 ＝SYNCI2
010 ＝SYNCI3
011 ＝SYNCI4
\(100=\) Reserved
101 ＝Reserved
111 ＝Reserved
bit 3－0 SEVTPS＜3：0＞：PWM Secondary Special Event Trigger Output Postscaler Select bits
1111 ＝1：16 Postcale
0001 ＝1：2 Postcale
－
－
－
\(0000=1: 1\) Postscale

Note 1：This bit only applies to the secondary master time base period．

\section*{查询dsPICB 16FT32GS606供应商M SECONDARY CLOCK DIVIDER SELECT REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & U－0 & U－0 & U－O & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{l|}{} \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline － & － & － & － & － & \multicolumn{3}{|c|}{PCLKDIV＜2：0＞\({ }^{\text {（1）}}\)} \\
\hline & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & 0 ＇\(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15－3 Unimplemented：Read as＇ 0 ＇
bit 2－0 PCLKDIV＜2：0＞：PWM Input Clock Prescaler（Divider）Select bits \({ }^{(\mathbf{1})}\)
111 ＝Reserved
110 ＝Divide by 64，maximum PWM timing resolution
101 ＝Divide by 32，maximum PWM timing resolution
100 ＝Divide by 16 ，maximum PWM timing resolution
011 ＝Divide by 8，maximum PWM timing resolution
\(010=\) Divide by 4，maximum PWM timing resolution
001 ＝Divide by 2，maximum PWM timing resolution
000 ＝Divide by 1，maximum PWM timing resolution（power－on default）

Note 1：These bits should be changed only when PTEN \(=0\) ．Changing the clock selection during operation will yield unpredictable results．

REGISTER 16－7：STPER：SECONDARY MASTER TIME BASE PERIOD REGISTER
\begin{tabular}{|llllllll|}
\hline R／W－1 & R／W－1 \\
\hline & & & STPER＜15：8＞ & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R／W－1 & R／W－1 & R／W－1 & R／W－1 & R／W－1 & R／W－0 & R／W－0 & R／W－0 \\
\hline & & STPER＜7：0＞ & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15－0 STPER＜15：0＞：Secondary Master Time Base（SMTMR）Period Value bits

REGISTER 16－8：SSEVFCMP：PWM SECONDARY SPECIAL EVENT COMPARE REGISTER
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & SSEVTCMP＜15：8＞ & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|lcc|c|c|c|c|}
\hline R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & U－0 & U－0 \\
\hline & SSEVTCMP＜7：3＞ & & - & - & - \\
\hline bit 7 & & & \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0\)＇ Bit is cleared
\end{tabular}
bit 15－3 SSEVTCMP＜15：3＞：Special Event Compare Count Value bits
bit 2－0 Unimplemented：Read as＇ 0 ＇

\section*{REGISTER 16－9：CHOP：PWM CHOP CLOCK GENERATOR REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 & U－0 & U－0 & U－0 & U－0 & R／W－0 \\
\hline CHPCLKEN & - & - & - & - & - & R／W－0 \\
\hline bit 15
\end{tabular}


\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15 CHPCLKEN：Enable Chop Clock Generator bit
1 ＝Chop clock generator is enabled
\(0=\) Chop clock generator is disabled
bit 14－10
Unimplemented：Read as＇ 0 ＇
bit 9－3 CHOP＜9：3＞：Chop Clock Divider bits
Value in 8.32 ns increments．The frequency of the chop clock signal is given by the following expression：
Chop Frequency \(=1 /(16.64\)＊\((\) CHOP \(<7: 3>+1)\)＊Primary Master PWM Input Clock Period \()\)

\footnotetext{
Note：The chop clock generator operates with the primary PWM clock prescaler（PCLKDIV＜2：0＞）in the PTCON2 register（Register 16－2）．
}

\section*{查询dsPIC33FJ32GS606供应商}

REGSTER 16－10：MDC：PWNASTER DUTY CYCLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{8}{|c|}{MDC＜15：8＞} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{8}{|c|}{MDC＜7：0＞} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇\(=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15－0
MDC＜15：0＞：Master PWM Duty Cycle Value bits

Note 1：The smallest pulse width that can be generated on the PWM output corresponds to a value of \(0 \times 0008\) ， while the maximum pulse width generated corresponds to a value of Period－0x0008．
2：As the Duty Cycle gets closer to \(0 \%\) or \(100 \%\) of the PWM Period（ 0 to 40 ns ，depending on the mode of operation），PWM Duty Cycle resolution will increase from 1 to 3 LSBs．

REGISTER 16－11：－PVANEONx：PWM CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline HS／HC－0 & HS／HC－0 & HS／HC－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline FLTSTAT \(^{(1)}\) & CLSTAT \({ }^{(1)}\) & TRGSTAT & FLTIEN & CLIEN & TRGIEN & \(1 \mathrm{IBB}^{(3)}\) & MDCS \({ }^{(3)}\) \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R／W－0 & R／W－0 & R／W－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline \multicolumn{2}{|c|}{DTC＜1：0＞} & DTCP \({ }^{(4)}\) & － & MTBS & CAM \({ }^{(2,3,5)}\) & XPRES \({ }^{(6)}\) & IUE \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(\mathrm{HC}=\) Cleared in Hardware & \(\mathrm{HS}=\) Set in Hardware \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
bit \(15 \quad\) FLTSTAT：Fault Interrupt Status bit \({ }^{(1)}\)
1 ＝Fault interrupt is pending
\(0=\) No Fault interrupt is pending
This bit is cleared by setting FLTIEN \(=0\) ．
bit 14 CLSTAT：Current－Limit Interrupt Status bit \({ }^{(1)}\)
1 ＝Current－limit interrupt is pending
\(0=\) No current－limit interrupt is pending
This bit is cleared by setting CLIEN \(=0\) ．
bit 13 TRGSTAT：Trigger Interrupt Status bit
1 ＝Trigger interrupt is pending
\(0=\) No trigger interrupt is pending
This bit is cleared by setting TRGIEN \(=0\) ．
bit 12 FLTIEN：Fault Interrupt Enable bit
1 ＝Fault interrupt is enabled
\(0=\) Fault interrupt is disabled and FLTSTAT bit is cleared
bit 11 CLIEN：Current－Limit Interrupt Enable bit
1 ＝Current－limit interrupt enabled
\(0=\) Current－limit interrupt disabled and CLSTAT bit is cleared
bit 10
TRGIEN：Trigger Interrupt Enable bit
1 ＝A trigger event generates an interrupt request
\(0=\) Trigger event interrupts are disabled and TRGSTAT bit is cleared
bit 9
ITB：Independent Time Base Mode bit \({ }^{(3)}\)
1 ＝PHASEx／SPHASEx registers provide time base period for this PWM generator \(0=\) PTPER register provides timing for this PWM generator

Note 1：Software must clear the interrupt status here，and in the corresponding IFS bit in the Interrupt Controller．
2：The Independent Time Base mode \((I T B=1)\) must be enabled to use Center－Aligned mode．If ITB \(=0\) ，the CAM bit is ignored．
3：These bits should not be changed after the PWM is enabled（PTEN＝1）（PTCON＜15＞）．
4：For DTCP to be effective，DTC \(<1: 0>\) must be set to＇ 11 ＇；otherwise，DTCP is ignored．
5：Center－Aligned mode ignores the least significant 3 bits of the duty cycle，phase，and dead time registers． The highest Center－Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest clock．
6：Configure \(C L M O D=0(F C L C O N X<8>)\) and \(I T B=1(P W M C O N x<9>)\) to operate in External Period Reset mode．

\section*{}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 8} & MDCS: Master Duty Cycle Register Select bit \({ }^{(3)}\) \\
\hline & \begin{tabular}{l}
\(1=\) MDC register provides duty cycle information for this PWM generator \\
\(0=\) PDCx and SDCx registers provide duty cycle information for this PWM generator
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 7-6} & DTC<1:0>: Dead Time Control bits \\
\hline & \begin{tabular}{l}
11 = Dead Time Compensation mode \\
\(10=\) Dead time function is disabled \\
01 = Negative dead time actively applied for Complementary Output mode \\
\(00=\) Positive dead time actively applied for all output modes
\end{tabular} \\
\hline \multirow[t]{4}{*}{bit 5} & DTCP: Dead Time Compensation Polarity bit \({ }^{(4)}\) \\
\hline & 1 = If DTCMPx \(=0, \mathrm{PWMxL}\) is shortened, and PWMxH is lengthened \\
\hline & If DTCMPx \(=1, P W M x H\) is shortened, and \(P W M x L\) is lengthened \(0=\) If DTCMPx \(=0\), PWMxH is shortened, and PWMLx is lengthened \\
\hline & If DTCMPx \(=1, \mathrm{PWMxL}\) is shortened, and PWMxH is lengthened \\
\hline bit 4 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 3} & MTBS: Master Time Base Select bit \\
\hline & \begin{tabular}{l}
1 = PWM generator uses the secondary master time base for synchronization and the clock source for the PWM generation logic (if secondary time base is available) \\
\(0=\) PWM generator uses the primary master time base for synchronization and the clock source for the PWM generation logic
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 2} & CAM: Center-Aligned Mode Enable bit \({ }^{(2,3,5)}\) \\
\hline & \begin{tabular}{l}
1 = Center-Aligned mode is enabled \\
\(0=\) Edge-Aligned mode is enabled
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 1} & XPRES: External PWM Reset Control bit \({ }^{(6)}\) \\
\hline & \begin{tabular}{l}
1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode \\
\(0=\) External pins do not affect PWM time base
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 0} & IUE: Immediate Update Enable bit \\
\hline & \begin{tabular}{l}
1 = Updates to the active MDC/PDCx/SDCx registers are immediate \\
\(0=\) Updates to the active PDCx registers are synchronized to the PWM time base
\end{tabular} \\
\hline
\end{tabular}

Note 1: Software must clear the interrupt status here, and in the corresponding IFS bit in the Interrupt Controller.
2: The Independent Time Base mode \((I T B=1)\) must be enabled to use Center-Aligned mode. If ITB \(=0\), the CAM bit is ignored.

3: These bits should not be changed after the PWM is enabled (PTEN = 1) ( \(\mathrm{PTCON}<15>\) ).
4: For DTCP to be effective, \(D T C<1: 0>\) must be set to ' 11 '; otherwise, DTCP is ignored.
5: Center-Aligned mode ignores the least significant 3 bits of the duty cycle, phase, and dead time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest clock.
6: Configure \(C L M O D=0(F C L C O N X<8>)\) and \(I T B=1(P W M C O N x<9>)\) to operate in External Period Reset mode.

REGISTER 16－12：PDC \(\%\) ：～NM GENERATOR DUTY CYCLE REGISTER
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & PDCx＜15：8＞ & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & PDCx＜7：0＞ & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇\(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15－0 PDCx＜15：0＞：PWM Generator \＃Duty Cycle Value bits

Note 1：In Independent PWM mode，the PDCx register controls the PWMxH duty cycle only．In the Complementary，Redundant and Push－Pull PWM modes，the PDCx register controls the duty cycle of both the PWMxH and PWMxL．

2：The smallest pulse width that can be generated on the PWM output corresponds to a value of \(0 \times 0008\) ， while the maximum pulse width generated corresponds to a value of Period－0x0008．
3：As the Duty Cycle gets closer to \(0 \%\) or \(100 \%\) of the PWM Period（ 0 to 40 ns ，depending on the mode of operation），PWM Duty Cycle resolution will increase from 1 to 3 LSBs．

\section*{REGISTER 16－13：SDCx：PWM SECONDARY DUTY CYCLE REGISTER}
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & & \(S D C x<15: 8>\) & & & \\
\hline bit 15 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & & SDCx＜7：0＞ & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15－0
SDCx＜15：0＞：Secondary Duty Cycle bits for PWMxL Output Pin

Note 1：The SDCx register is used in Independent PWM mode only．When used in Independent PWM mode，the SDCx register controls the PWMxL duty cycle．

2：The smallest pulse width that can be generated on the PWM output corresponds to a value of \(0 \times 0008\) ， while the maximum pulse width generated corresponds to a value of Period－0x0008．
3：As the Duty Cycle gets closer to \(0 \%\) or \(100 \%\) of the PWM Period（ 0 to 40 ns ，depending on the mode of operation），PWM Duty Cycle resolution will increase from 1 to 3 LSBs．

\section*{查询dsPIC33FT32GS606供応商}

畀期STER 16－14：PHASEx：P國M PRIMARY PHASE SHIFT REGISTER
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & PHASEx＜15：8＞ & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & PHASEx＜7：0＞ & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15－0 PHASEx＜15：0＞：PWM Phase Shift Value or Independent Time Base Period bits for the PWM Generator

Note 1：If \(\mathrm{PWMCONx}<9>=0\) ，the following applies based on the mode of operation：
－Complementary，Redundant and Push－Pull Output mode（IOCONx＜10：8＞＝00，01，or 10） PHASEx＜15：0＞＝Phase shift value for PWMxH and PWMxL outputs
－True Independent Output mode（IOCONx＜10：8＞＝11）PHASEx＜15：0＞＝Phase shift value for PWMxH only
－When the PHASEx／SPHASEx register provides the phase shift with respect to the master time base； therefore，the valid range is \(0 \times 0000\) through Period．
2：If \(\mathrm{PWMCON} \ll 9>=1\) ，the following applies based on the mode of operation：
－Complementary，Redundant，and Push－Pull Output mode（IOCONx＜10：8＞＝00，01，or 10）PHA－ SEx＜15：0＞＝Independent time base period value for PWMxH and PWMxL
－True Independent Output mode（IOCON \(x<10: 8>=11\) ）PHASEx＜15：0＞＝Independent time base period value for PWMxH only
－When the PHASEx／SPHASEx register provides the local period，the valid range is \(0 \times 0000\) through 0xFFF8．

REGISTER \(16-15:\) SPHA゙S斎：PWM SECONDARY PHASE SHIFT REGISTER
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & SPHASEx＜15：8＞ & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & & SPHASEx＜7：0＞ & & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇\(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15－0 SPHASEx＜15：0＞：Secondary Phase Offset bits for PWMxL Output Pin（used in Independent PWM mode only）

Note 1：If \(\mathrm{PWMCONx}<9>=0\) ，the following applies based on the mode of operation：
－Complementary，Redundant and Push－Pull Output mode（IOCONx＜10：8＞＝00，01，or 10）SPHA－ SEx＜15：0＞＝Not used
－True Independent Output mode（IOCONx＜10：8＞＝11）PHASEx＜15：0＞＝Phase shift value for PWMxL only
2：If \(\mathrm{PWMCONx}<9>=1\) ，the following applies based on the mode of operation：
－Complementary，Redundant and Push－Pull Output mode（IOCONx＜10：8＞＝00，01，or 10）SPHA－ SEx＜15：0＞＝Not used
－True Independent Output mode（IOCON \(x<10: 8>=11\) ）PHASEx＜15：0＞＝Independent time base period value for PWMxL only
－When the PHASEx／SPHASEx register provides the local period，the valid range of values is 0x0010－0xFFF8．

\section*{查询賏STER 16－16：DTRX：}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline － & － & \multicolumn{6}{|c|}{DTRx＜13：8＞} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R／W－0 & R／W－0 \\
\hline & & & DTRx \(<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \\
\hline
\end{tabular}
bit 15－14 Unimplemented：Read as＇ 0 ＇
bit 13－0 DTRx＜13：0＞：Unsigned 14－bit Dead Time Value bits for PWMx Dead Time Unit

REGISTER 16－17：ALTDTRx：PWM ALTERNATE DEAD TIME REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline － & － & \multicolumn{6}{|c|}{ALTDTRx＜13：8＞} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{8}{|c|}{ALTDTRx＜7：0＞} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}
bit 15－14 Unimplemented：Read as＇ 0 ＇
bit 13－0 ALTDTRx＜13：0＞：Unsigned 14－bit Dead Time Value bits for PWMx Dead Time Unit

\section*{REGISTER 16－18：TRGCON x ：PWM TRIGGER CONTROL REGISTER}

\begin{tabular}{|lll|}
\hline Legend： & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \\
\hline
\end{tabular}
bit 15－12 TRGDIV＜3：0＞：Trigger \＃Output Divider bits
1111 ＝Trigger output for every 16th trigger event
\(1110=\) Trigger output for every 15th trigger event
1101 ＝Trigger output for every 14th trigger event
\(1100=\) Trigger output for every 13th trigger event
1011 ＝Trigger output for every 12th trigger event
1010 ＝Trigger output for every 11th trigger event
1001 ＝Trigger output for every 10th trigger event
\(1000=\) Trigger output for every 9th trigger event
0111 ＝Trigger output for every 8th trigger event
0110 ＝Trigger output for every 7th trigger event 0101 ＝Trigger output for every 6th trigger event 0100 ＝Trigger output for every 5th trigger event 0011 ＝Trigger output for every 4th trigger event 0010 ＝Trigger output for every 3rd trigger event 0001 ＝Trigger output for every 2nd trigger event \(0000=\) Trigger output for every trigger event
bit 11－8 Unimplemented：Read as＇ 0 ’
bit \(7 \quad\) DTM：Dual Trigger Mode bit \({ }^{(\mathbf{1})}\)
1 ＝Secondary trigger event is combined with the primary trigger event to create PWM trigger
\(0=\) Secondary trigger event is not combined with the primary trigger event to create PWM trigger．Two separate PWM triggers are generated．
bit \(6 \quad\) Unimplemented：Read as＇ 0 ＇
bit 5－0 TRGSTRT＜5：0＞：Trigger Postscaler Start Enable Select bits
111111 ＝Wait 63 PWM cycles before generating the first trigger event after the module is enabled
－
－
－
000010 ＝Wait 2 PWM cycles before generating the first trigger event after the module is enabled 000001 ＝Wait 1 PWM cycles before generating the first trigger event after the module is enabled 000000 ＝Wait 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1：The secondary PWM generator cannot generate PWM trigger interrupts．

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 R/W-0 & R/W-0 & R/W-0 \\
\hline PENH & PENL & POLH & POLL & PMOD<1:0> \({ }^{(1)}\) & OVRENH & OVRENL \\
\hline \multicolumn{7}{|l|}{bit 15 bit 8} \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \(\quad\) R/W-0 & R/W-0 & R/W-0 \\
\hline OVRDAT<1:0> & FLTDAT<1:0> & CLDAT<1:0> & SWAP & OSYNC \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}

\section*{bit 15 PENH: PWMxH Output Pin Ownership bit} 1 = PWM module controls PWMxH pin 0 = GPIO module controls PWMxH pin
bit 14 PENL: PWMxL Output Pin Ownership bit
1 = PWM module controls PWMxL pin
\(0=\) GPIO module controls PWMxL pin
bit \(13 \quad\) POLH: PWMxH Output Pin Polarity bit
\(1=\mathrm{PWMxH}\) pin is active-low
\(0=P W M x H\) pin is active-high
bit 12 POLL: PWMxL Output Pin Polarity bit
\(1=P W M x L\) pin is active-low
\(0=P W M x L\) pin is active-high
bit 11-10 PMOD<1:0>: PWM \# I/O Pin Mode bits \({ }^{(\mathbf{1})}\)
\(11=\) PWM I/O pin pair is in the True Independent Output mode
\(10=\) PWM I/O pin pair is in the Push-Pull Output mode
01 = PWM I/O pin pair is in the Redundant Output mode
\(00=\) PWM I/O pin pair is in the Complementary Output mode
bit 9
OVRENH: Override Enable for PWMxH Pin bit
\(1=\) OVRDAT<1> provides data for output on PWMxH pin
\(0=\) PWM generator provides data for PWMxH pin
bit 8 OVRENL: Override Enable for PWMxL Pin bit
\(1=\) OVRDAT<0> provides data for output on PWMxL pin
\(0=\) PWM generator provides data for PWMxL pin
bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits
If OVERENH = 1, OVRDAT<1> provides data for PWMxH
If OVERENL \(=1\), OVRDAT \(<0>\) provides data for PWMxL
bit 5-4 \(\quad\) FLTDAT<1:0>: State \({ }^{(2)}\) for PWMxH and PWMxL Pins if FLTMOD is Enabled bits
FCLCONx<IFLTMOD> = 0: Normal Fault mode
If Fault active, then FLTDAT<1> provides state for PWMxH
If Fault active, then FLTDAT<0> provides state for PWMxL
FCLCONx<IFLTMOD> = 1: Independent Fault mode
If Current-Limit active, then FLTDAT<1> provides data for PWMxH
If Fault active, then FLTDAT<0> provides state for PWMxL

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).
2: State represents the active/inactive state of the PWM depending on the POLH and POLL bit settings.

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 16－19：IOCONX：PWM I／O CONTROL REGISTER（CONTINUED）
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{bit 3－2} & CLDAT＜1：0＞ State \(^{(2)}\) for PWMxH and PWMxL Pins if CLMOD is Enabled bits \\
\hline & FCLCONx＜IFLTMOD＞＝0：Normal Fault mode \\
\hline & If current－limit active，then CLDAT＜1＞provides state for PWMxH \\
\hline & If current－limit active，then CLDAT＜0＞provides state for PWMxL \\
\hline & FCLCONx＜IFLTMOD＞＝1：Independent Fault mode \\
\hline & CLDAT＜1：0＞is ignored \\
\hline \multirow[t]{3}{*}{bit 1} & SWAP：SWAP PWMxH and PWMxL pins bit \\
\hline & \(1=P W M \times H\) output signal is connected to \(P W M x L\) pins；\(P W M x L\) output signal is connected to \(P W M x H\) pins \\
\hline & \(0=\) PWMxH and PWMxL pins are mapped to their respective pins \\
\hline \multirow[t]{3}{*}{bit 0} & OSYNC：Output Override Synchronization bit \\
\hline & 1 ＝Output overrides via the OVRDAT＜1：0＞bits are synchronized to the PWM time base \\
\hline & 0 ＝Output overrides via the OVDDAT＜1：0＞bits occur on next CPU clock boundary \\
\hline
\end{tabular}

Note 1：These bits should not be changed after the PWM module is enabled（PTEN＝1）．
2：State represents the active／inactive state of the PWM depending on the POLH and POLL bit settings．

查询dsPIC33FJ32GS606供应商
REGISTER 16－20：TRIGx：PWM PRIMARY TRIGGER COMPARE VALUE REGISTER

\begin{tabular}{|lll}
\hline Legend： & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared
\end{tabular} \(\mathrm{x=} \mathrm{Bit} \mathrm{is} \mathrm{unknown}\)
bit 15－3 TRGCMP＜15：3＞：Trigger Compare Value bits
When the primary PWM functions in local time base，this register contains the compare values that can trigger the ADC module．
bit 2－0 Unimplemented：Read as＇ 0 ’

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 16－21：FCLCONx：PWM FAULT CURRENT－LIMIT CONTROL REGISTER
\begin{tabular}{|c|ccccc|c|c|}
\hline R／W－0 & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline IFLTMOD & & & CLSRC＜4：0＞（2，3） & & CLPOL \(^{(\mathbf{1})}\) & CLMOD \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{5}{|c|}{FLTSRC＜4：0＞\({ }^{(2,3)}\)} & FLTPOL \({ }^{(1)}\) & \multicolumn{2}{|l|}{FLTMOD＜1：0＞} \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit} \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15
IFLTMOD：Independent Fault Mode Enable bit
1 ＝Independent Fault mode：Current－limit input maps FLTDAT＜1＞to PWMxH output，and Fault input maps FLTDAT＜0＞to PWMxL output．The CLDAT＜1：0＞bits are not used for override functions．
\(0=\) Normal Fault mode：Current－Limit mode maps CLDAT＜1：0＞bits to the PWMxH and PWMxL outputs．The PWM Fault mode maps FLTDAT＜1：0＞to the PWMxH and PWMxL outputs．

Note 1：These bits should be changed only when PTEN \(=0(\) PTCON＜15＞）．
2：When Independent Fault mode is enabled（IFLTMOD＝1），and Fault 1 is used for Current－Limit mode （CLSRC＜4：0＞＝b0000），the Fault Control Source Select bits（FLTSRC＜4：0＞）should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs．
3：When Independent Fault mode is enabled（IFLTMOD＝1）and Fault 1 is used for Fault mode （FLTSRC＜4：0＞＝b0000），the Current－Limit Control Source Select bits（CLSRC＜4：0＞）should be set to an unused current－limit source to prevent the current－limit source from disabling both the PWMxH and PWMxL outputs．

\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 16－21：FCLCONX：PWM FAULT CURRENT－LIMIT CONTROL REGISTER（CONTINUED）
\begin{tabular}{|c|c|}
\hline bit 14－10 & CLSRC＜4：0＞：Current－Limit Control Signal Source Select bits for PWM Generator \＃（2，4）． \\
\hline & These bits also specify the source for the dead time compensation input signal，DTCMPx． \\
\hline & 11111 ＝Reserved \\
\hline & 11110 ＝Fault 23 \\
\hline & 11101 ＝Fault 22 \\
\hline & 11100 ＝Fault 21 \\
\hline & 11011 ＝Fault 20 \\
\hline & 11010 ＝Fault 19 \\
\hline & 11001 ＝Fault 18 \\
\hline & 11000 ＝Fault 17 \\
\hline & 10111 ＝Fault 16 \\
\hline & 10110 ＝Fault 15 \\
\hline & 10101 ＝Fault 14 \\
\hline & 10100 ＝Fault 13 \\
\hline & 10011 ＝Fault 12 \\
\hline & 10010 ＝Fault 11 \\
\hline & 10001 ＝Fault 10 \\
\hline & 10000 ＝Fault 9 \\
\hline & 01111 ＝Fault 8 \\
\hline & \(01110=\) Fault 7 \\
\hline & \(01101=\) Fault 6 \\
\hline & 01100 ＝Fault 5 \\
\hline & 01011 ＝Fault 4 \\
\hline & \(01010=\) Fault 3 \\
\hline & 01001 ＝Fault 2 \\
\hline & 01000 ＝Fault 1 \\
\hline & 00111 ＝Reserved \\
\hline & 00110 ＝Reserved \\
\hline & 00101 ＝Reserved \\
\hline & 00100 ＝Reserved \\
\hline & 00011 ＝Analog Comparator 4 \\
\hline & 00010 ＝Analog Comparator 3 \\
\hline & 00001 ＝Analog Comparator 2 \\
\hline & 00000 ＝Analog Comparator 1 \\
\hline bit 9 & CLPOL：Current－Limit Polarity bit for PWM Generator \＃\({ }^{(\mathbf{1})}\) \\
\hline & 1 ＝The selected current－limit source is active－low \\
\hline & 0 ＝The selected current－limit source is active－high \\
\hline bit 8 & CLMOD：Current－Limit Mode Enable bit for PWM Generator \＃ \\
\hline & 1 ＝Current－Limit mode is enabled \\
\hline & \(0=\) Current－Limit mode is disabled \\
\hline
\end{tabular}

Note 1：\(\quad\) These bits should be changed only when PTEN \(=0\)（PTCON＜15＞）．
2：When Independent Fault mode is enabled（IFLTMOD＝1），and Fault 1 is used for Current－Limit mode （CLSRC＜4：0＞＝b0000），the Fault Control Source Select bits（FLTSRC＜4：0＞）should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs．

3：When Independent Fault mode is enabled（IFLTMOD＝1）and Fault 1 is used for Fault mode （FLTSRC＜4：0＞＝b0000），the Current－Limit Control Source Select bits（CLSRC＜4：0＞）should be set to an unused current－limit source to prevent the current－limit source from disabling both the PWMxH and PWMxL outputs．

\section*{}
bit 7-3
bit \(2 \quad\) FLTPOL: Fault Polarity bit for PWM Generator \#(1)
1 = The selected Fault source is active-low
\(0=\) The selected Fault source is active-high
bit 1-0 FLTMOD<1:0>: Fault Mode bits for PWM Generator \#
11 = Fault input is disabled
10 = Reserved
\(01=\) The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
\(00=\) The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)

Note 1: These bits should be changed only when PTEN \(=0\) (PTCON<15>).
2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC \(<4: 0>=\) b0000), the Fault Control Source Select bits (FLTSRC \(<4: 0>\) ) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & STRGCMP<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 \\
\hline \multicolumn{5}{|c|}{STRGCMP<7:3>} & - & - & - \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemente & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-3 & STRGCMP<15:3>: Secondary Trigger Compare Value bits \\
When the secondary PWM functions in local time base, this register contains the compare values that \\
can trigger the ADC module. \\
bit 2-0 & Unimplemented: Read as ' 0 '
\end{tabular}

Note 1: STRIGx cannot generate the PWM trigger interrupts.

\section*{REGISTER Th2 23 ：696借应商：LEADING－EDGE BLANKING CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & U－0 & U－0 \\
\hline PHR & PHF & PLR & PLF & FLTLEBEN & CLLEBEN & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline- & - & BCH & BCL & BPHH & BPHL & BPLH & BPLL \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & 0 ＇\(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit \(15 \quad\) PHR：PWMxH Rising Edge Trigger Enable bit
1 ＝Rising edge of PWMxH will trigger Leading－Edge Blanking counter
0 ＝Leading－Edge Blanking ignores rising edge of PWMxH
bit \(14 \quad\) PHF：PWMxH Falling Edge Trigger Enable bit
1 ＝Falling edge of PWMxH will trigger Leading－Edge Blanking counter
\(0=\) Leading－Edge Blanking ignores falling edge of PWMxH
bit 13 PLR：PWMxL Rising Edge Trigger Enable bit
1 ＝Rising edge of PWMxL will trigger Leading－Edge Blanking counter
0 ＝Leading－Edge Blanking ignores rising edge of PWMxL
bit \(12 \quad\) PLF：PWMxL Falling Edge Trigger Enable bit
1 ＝Falling edge of PWMxL will trigger Leading－Edge Blanking counter
0 ＝Leading－Edge Blanking ignores falling edge of PWMxL
bit 11 FLTLEBEN：Fault Input Leading－Edge Blanking Enable bit
1 ＝Leading－Edge Blanking is applied to selected fault input
0 ＝Leading－Edge Blanking is not applied to selected fault input
bit 10 CLLEBEN：Current－Limit Leading－Edge Blanking Enable bit
1 ＝Leading－Edge Blanking is applied to selected current－limit input
\(0=\) Leading－Edge Blanking is not applied to selected current－limit input
bit 9－6 Unimplemented：Read as＇ 0 ＇
bit \(5 \quad\) BCH：Blanking in Selected－Blanking Signal High Enable bit \({ }^{(1)}\)
1 ＝State blanking（of current－limit and／or fault input signals）when selected blanking signal is high \(0=\) No blanking when selected blanking signal is high
bit \(4 \quad\) BCL：Blanking in Selected－Blanking Signal Low Enable bit \({ }^{(\mathbf{1})}\)
1 ＝State blanking（of current－limit and／or fault input signals）when selected blanking signal is low
0 ＝No blanking when selected blanking signal is low
bit \(3 \quad\) BPHH：Blanking in PWMxH High Enable bit
1 ＝State blanking（of current－limit and／or fault input signals）when PWMxH output is high
\(0=\) No blanking when PWMxH output is high
bit 2 BPHL：Blanking in PWMxH Low Enable bit
1 ＝State blanking（of current－limit and／or fault input signals）when PWMxH output is low
\(0=\) No blanking when PWMxH output is low
bit \(1 \quad\) BPLH：Blanking in PWMxL High Enable bit
1 ＝State blanking（of current－limit and／or fault input signals）when PWMxL output is high
\(0=\) No blanking when PWMxL output is high
bit \(0 \quad\) BPLL：Blanking in PWMxL Low Enable bit
1 ＝State blanking（of current－limit and／or fault input signals）when PWMxL output is low
\(0=\) No blanking when PWMxL output is low
Note 1：The blanking signal is selected via the BLANKSEL bits in the AUXCONx register．

\begin{tabular}{|c|c|c|c|cccc|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & LEB<11:8> & \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 \\
\hline & & B<7:3> & & & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 7 bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-12 & Unimplemented: Read as ' 0 ' \\
bit 11-3 & LEB<11:3>: Leading-Edge Blanking Delay bits for Current-Limit and Fault Inputs \\
& Value in 8.32 ns increments
\end{tabular}
bit 2-0 Unimplemented: Read as ' 0 '

Note: \(\begin{aligned} & \text { The LEB delay timing operates with the primary PWM clock prescaler bits, PCLKDIV<2:0> } \\ & (\text { PTCON }<10: 8>) \text {. }\end{aligned}\)

\section*{询dsPIC33FJ32GS606供应商}

REGISTER 16－25：AUXCONx：PWM AUXILIARY CONTROL REGISTER
\begin{tabular}{|l|c|c|c|cccc|}
\hline R／W－0 & R／W－0 & U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline HRPDIS & HRDDIS & - & - & & BLANKSEL＜3：0＞ & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cccc|c|c|}
\hline U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline- & - & CHOPSEL＜3：0＞ & & CHOPHEN & CHOPLEN \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular}
bit \(15 \quad\)\begin{tabular}{l} 
HRPDIS：High Resolution PWM Period Disable bit \({ }^{(1)}\) \\
\(1=\) High resolution PWM period is disabled to reduce power consumption \\
\(0=\) High resolution PWM period is enabled
\end{tabular}
bit \(14 \quad\) HRDDIS：High Resolution PWM Duty Cycle Disable bit \({ }^{(1)}\)
1 ＝High resolution PWM duty cycle is disabled to reduce power consumption \(0=\) High resolution PWM duty cycle is enabled
bit 13－12 Unimplemented：Read as＇ 0 ＇
bit 11－8 BLANKSEL＜3：0＞：PWM State Blank Source Select bits
The selected state blank signal will block the current limit and／or fault input signals （if enabled via the BCH and BCL bits in the LEBCONx register）
\(1001=\) PWM9H selected as state blank source
\(1000=\mathrm{PWM} 8 \mathrm{H}\) selected as state blank source
0111 ＝PWM7H selected as state blank source
\(0110=\) PWM6H selected as state blank source
0101 ＝PWM5H selected as state blank source
\(0100=\) PWM4H selected as state blank source
0011 ＝PWM3H selected as state blank source
\(0010=\) PWM2H selected as state blank source
\(0001=\) PWM1H selected as state blank source 0000 ＝1＇b0（no state blanking）
bit 7－6 Unimplemented：Read as＇ 0 ’
bit 5－2 CHOPSEL＜3：0＞：PWM Chop Clock Source Select bits
The selected signal will enable and disable（CHOP）the selected PWM outputs
\(1001=\) PWM9H selected as CHOP clock source
\(1000=\) PWM8H selected as CHOP clock source
0111 ＝PWM7H selected as CHOP clock source
0110 ＝PWM6H selected as CHOP clock source
0101 ＝PWM5H selected as CHOP clock source
\(0100=\) PWM4H selected as CHOP clock source
0011 ＝PWM3H selected as CHOP clock source
\(0010=\) PWM2H selected as CHOP clock source
0001 ＝PWM1H selected as CHOP clock source
0000 ＝Chop Clock generator selected as CHOP clock source
bit \(1 \quad\) CHOPHEN：PWMxH Output Chopping Enable bit
\(1=\mathrm{PWMxH}\) chopping function is enabled
\(0=\) PWMxH chopping function is disabled
bit \(0 \quad\) CHOPLEN：PWMxL Output Chopping Enable bit
\(1=P W M x L\) chopping function is enabled
\(0=P W M x L\) chopping function is disabled

查询dsPIC33FJ32GS606供应商
REGISTER 16－26：PWMCAPx：PRIMARY PWM TIME BASE CAPTURE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R－0 & R－0 \\
\hline \multicolumn{8}{|c|}{PWMCAP＜15：8＞} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R－0 & R－0 & R－0 & R－0 & R－0 & U－0 & U－0 & U－0 \\
\hline \multicolumn{5}{|c|}{PWMCAP＜7：3＞} & － & － & － \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0\)＇＝Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15－3 PWMCAP＜15：3＞：Captured PWM Time Base Value bits \({ }^{(1,2,3,4)}\)
The value in this register represents the captured PWM time base value when a leading edge is detected on the current－limit input．
bit 2－0 Unimplemented：Read as＇ 0 ＇

Note 1：The capture feature is only available on primary output（PWMxH）．
2：This feature is active only after LEB processing on the current－limit input signal is complete．
3：The minimum capture resolution is 8.32 ns ．
4：This feature can be used when the XPRES bit（PWMCONx＜1＞）is set to＇ 0 ＇．

\section*{ INTERFACE (QEI) MODULE}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.
The operational features of the QEI include:
- Three input channels for two phase signals and index pulse
- 16-bit up/down position counter
- Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Quadrature Encoder Interface interrupts

These operating modes are determined by setting the appropriate bits, \(\mathrm{QEIM}<2: 0>\) in (QEIxCON \(<10: 8>\) ). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

Note: An ' \(x\) ' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number ( \(\mathrm{x}=1\) or 2 ).

FIGURE 17-1: QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM ( \(\mathrm{x}=1\) OR 2)


\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline CNTERR & - & QEISIDL & INDEX & UPDN & & QEIM<2:0> & \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|cc|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline SWPAB & PCDOUT & TQGATE & TQCKPS<1:0> & POSRES & TQCS & UPDN_SRC \\
\hline bit 7
\end{tabular}
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15 CNTERR: Count Error Status Flag bit \({ }^{(1)}\)
1 = Position count error has occurred \(0=\) No position count error has occurred
bit \(14 \quad\) Unimplemented: Read as ' 0 '
bit 13 QEISIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 12 INDEX: Index Pin State Status bit (Read-Only)
1 = Index pin is High
\(0=\) Index pin is Low
bit 11 UPDN: Position Counter Direction Status bit \({ }^{(2)}\)
1 = Position Counter Direction is positive (+)
\(0=\) Position Counter Direction is negative (-)
bit 10-8 QEIM<2:0>: Quadrature Encoder Interface Mode Select bits
111 = Quadrature Encoder Interface enabled (x4 mode) with position counter reset by match (MAXxCNT)
\(110=\) Quadrature Encoder Interface enabled (x4 mode) with Index Pulse reset of position counter
101 = Quadrature Encoder Interface enabled (x2 mode) with position counter reset by match
(MAXxCNT)
100 = Quadrature Encoder Interface enabled (x2 mode) with Index Pulse reset of position counter
011 = Unused (Module disabled)
010 = Unused (Module disabled)
001 = Starts 16-bit Timer
000 = Quadrature Encoder Interface/Timer off
bit \(7 \quad\) SWPAB: Phase A and Phase B Input Swap Select bit
1 = Phase A and Phase B inputs swapped
\(0=\) Phase A and Phase B inputs not swapped
bit 6
PCDOUT: Position Counter Direction State Output Enable bit
1 = Position Counter Direction Status Output Enable (QEI logic controls state of I/O pin)
\(0=\) Position Counter Direction Status Output Disabled (Normal I/O pin operation)
Note 1: CNTERR flag only applies when QEIM<2:0> = '110' or '100'.
2: Read-only bit when QEIM<2:0> = ' 1 XX'. Read/write bit when QEIM<2:0> = ' 001 '.
3: Prescaler utilized for 16-bit Timer mode only.
4: This bit applies only when QEIM<2:0> = 100 or 110 .
5: When configured for QEI mode, this control bit is a 'don't care'.

\section*{}
bit 5 TQGATE: Timer Gated Time Accumulation Enable bit
1 = Timer gated time accumulation enabled
\(0=\) Timer gated time accumulation disabled
bit 4-3 TQCKPS<1:0>: Timer Input Clock Prescale Select bits \({ }^{(3)}\)
\(11=1: 256\) prescale value
\(10=1: 64\) prescale value
\(01=1: 8\) prescale value
\(00=1: 1\) prescale value
bit 2 POSRES: Position Counter Reset Enable bit \({ }^{(4)}\)
1 = Index Pulse resets Position Counter
0 = Index Pulse does not reset Position Counter
bit 1 TQCS: Timer Clock Source Select bit
1 = External clock from pin QEAx (on the rising edge)
0 = Internal clock (Tcy)
bit \(0 \quad\) UPDN_SRC: Position Counter Direction Selection Control bit \({ }^{(5)}\)
1 = QEBx pin state defines position counter direction
\(0=\) Control/Status bit, UPDN (QEIxCON<11>), defines timer counter (POSxCNT) direction
Note 1: CNTERR flag only applies when QEIM<2:0> = '110' or '100'.
2: Read-only bit when QEIM<2:0> = ' 1 XX'. Read/write bit when QEIM<2:0> = ' 001 '.
3: Prescaler utilized for 16-bit Timer mode only.
4: This bit applies only when \(\mathrm{QEIM}<2: 0>=100\) or 110 .
5: When configured for QEI mode, this control bit is a 'don't care'.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & IMV<2:0> & CEID \\
\hline bit 15 & bit 8 \\
\hline R/W-0 \\
\hline QEOUT & R/W-0 & QECK<2:0> & U-0 & U-0 & U-0 & U-0 \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-11 Unimplemented: Read as ' 0 '
bit 10-9 IMV<1:0>: Index Match Value bits - These bits allow the user application to specify the state of the QEAx and QEBx input pins during an Index pulse when the POSxCNT register is to be reset.
In x4 Quadrature Count Mode:
IMV1 = Required State of Phase B input signal for match on index pulse
IMV0 = Required State of Phase A input signal for match on index pulse
In x4 Quadrature Count Mode:
IMV1 = Selects Phase input signal for Index state match (0 = Phase A, \(1=\) Phase B)
IMV0 = Required state of the selected Phase input signal for match on index pulse
bit 8 CEID: Count Error Interrupt Disable bit
1 = Interrupts due to count errors are disabled
0 = Interrupts due to count errors are enabled
bit 7 QEOUT: QEAx/QEBx/INDXx Pin Digital Filter Output Enable bit
1 = Digital filter outputs enabled
\(0=\) Digital filter outputs disabled (normal pin operation)
bit 6-4 \(\quad\) QECK<2:0>: QEAx/QEBx/INDXx Digital Filter Clock Divide Select Bits
111 = 1:256 Clock Divide
110 = 1:128 Clock Divide
101 = 1:64 Clock Divide
100 = 1:32 Clock Divide
011 = 1:16 Clock Divide
010 = 1:4 Clock Divide
001 = 1:2 Clock Divide
000 = 1:1 Clock Divide
bit 3-0 Unimplemented: Read as ' 0 ’

\section*{ INTERFACE (SPI)}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters and so on. The SPI module is compatible with SPI and SIOP from Motorola \({ }^{\circledR}\).
The SPI module consists of a 16 -bit shift register, SPIxSR (where \(x=1\) ), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a STATUS register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:
- SDIx (Serial Data Input)
- SDOx (Serial Data Output)
- SCKx (Shift Clock Input Or Output)
- \(\overline{\text { SSx }}\) (Active-Low Slave Select).

In Master mode operation, SCK is a clock output; in Slave mode, it is a clock input.

FIGURE 18-1: SPI MODULE BLOCK DIAGRAM


Note 1: The SPI1 module can be connected to the \(\overline{S S 1}\) or \(\overline{\mathrm{ASS1}}\) pins, which are controlled by clearing or setting the ALTSS1 bit in the FPOR Configuration register. See Section 24.0 "Special Features" for more information.

查询dsPIC33FJ32GS606供应商
REGISTER 18－1：SPIXSTAF：SPIx STATUS AND CONTROL REGISTER
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 & R／W－0 & U－0 & U－0 & U－0 & U－0 & U－0 \\
\hline SPIEN & - & SPISIDL & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & R／C－0 & U－0 & U－0 & U－0 & U－0 & R－0 & R－0 \\
\hline- & SPIROV & - & - & - & - & SPITBF & SPIRBF \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(C=\) Clearable bit & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \\
\hline
\end{tabular}
bit \(15 \quad\) SPIEN：SPIx Enable bit \(\quad 1=\) Enables module and configures SCKx，SDOx，SDIx and \(\overline{\text { SSx }}\) as serial port pins
bit \(14 \quad\) Unimplemented：Read as＇ 0 ＇
bit \(13 \quad\) SPISIDL：Stop in Idle Mode bit
1 ＝Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 12－7 Unimplemented：Read as＇ 0 ＇
bit 6 SPIROV：Receive Overflow Flag bit
1 ＝A new byte／word is completely received and discarded．The user software has not read the previous data in the SPIxBUF register．
\(0=\) No overflow has occurred
bit 5－2 Unimplemented：Read as＇ 0 ＇
bit 1 SPITBF：SPIx Transmit Buffer Full Status bit
\(1=\) Transmit not yet started，SPIxTXB is full
\(0=\) Transmit started，SPIxTXB is empty．Automatically set in hardware when CPU writes SPIxBUF location，loading SPIxTXB．Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR．
bit \(0 \quad\) SPIRBF：SPIx Receive Buffer Full Status bit
\(1=\) Receive complete，SPIxRXB is full
\(0=\) Receive is not complete，SPIxRXB is empty．Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB．Automatically cleared in hardware when core reads SPIxBUF location，reading SPIxRXB．

REGSTER 18－2：SPACON1：SPIx CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline- & - & - & DISSCK & DISSDO & MODE16 & SMP & CKE \(^{(\mathbf{1})}\) \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}


Legend：
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared
\end{tabular} \(\mathrm{x}=\) Bit is unknown
bit 15－13 Unimplemented：Read as＇ 0 ＇
bit 12 DISSCK：Disable SCKx pin bit（SPI Master modes only）
1 ＝Internal SPI clock is disabled；pin functions as I／O
0 ＝Internal SPI clock is enabled
bit 11 DISSDO：Disable SDOx pin bit
1 ＝SDOx pin is not used by module；pin functions as I／O
\(0=\) SDOx pin is controlled by the module
bit 10 MODE16：Word／Byte Communication Select bit
1 ＝Communication is word－wide（16 bits）
\(0=\) Communication is byte－wide（ 8 bits）
bit \(9 \quad\) SMP：SPIx Data Input Sample Phase bit
Master mode：
1 ＝Input data sampled at end of data output time
\(0=\) Input data sampled at middle of data output time
Slave mode：
SMP must be cleared when SPIx is used in Slave mode．
bit \(8 \quad\) CKE：SPIx Clock Edge Select bit \({ }^{(\mathbf{1})}\)
1 ＝Serial output data changes on transition from active clock state to Idle clock state（see bit 6）
\(0=\) Serial output data changes on transition from Idle clock state to active clock state（see bit 6）
bit \(7 \quad\) SSEN：Slave Select Enable bit（Slave mode）\({ }^{(3)}\)
\(1=\overline{S S X}\) pin used for Slave mode
\(0=\overline{S S x}\) pin not used by module；pin controlled by port function
bit 6
CKP：Clock Polarity Select bit
1 ＝Idle state for clock is a high level；active state is a low level
\(0=\) Idle state for clock is a low level；active state is a high level
bit 5
MSTEN：Master Mode Enable bit
1 ＝Master mode
0 ＝Slave mode

Note 1：The CKE bit is not used in the Framed SPI modes．Program this bit to＇ 0 ＇for the Framed SPI modes （FRMEN＝1）．
2：Do not set both primary and secondary prescalers to a value of 1：1．
3： This bit must be cleared when FRMEN \(=1\) ．

\section*{}
bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode) \({ }^{(\mathbf{2 )}}\)
111 = Secondary prescale 1:1
110 = Secondary prescale 2:1
.
-
\(000=\) Secondary prescale 8:1
bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode) \({ }^{(\mathbf{2 )}}\)
11 = Primary prescale 1:1
10 = Primary prescale 4:1
01 = Primary prescale 16:1
00 = Primary prescale 64:1

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ' 0 ' for the Framed SPI modes (FRMEN = 1).
2: Do not set both primary and secondary prescalers to a value of 1:1.
3: \(\quad\) This bit must be cleared when FRMEN \(=1\).

REGISTER 18-3: SPPIXON2: SPIx CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline FRMEN & SPIFSD & FRMPOL & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-O & U-0 \\
\hline- & - & - & - & - & - & FRMDLY & - \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & FRMEN: Framed SPIx Support bit \\
\hline & 1 = Framed SPIx support enabled ( \(\overline{\mathrm{SSx}}\) pin used as frame sync pulse input/output) 0 = Framed SPIx support disabled \\
\hline \multirow[t]{3}{*}{bit 14} & SPIFSD: Frame Sync Pulse Direction Control bit \\
\hline & 1 = Frame sync pulse input (slave) \\
\hline & 0 = Frame sync pulse output (master) \\
\hline \multirow[t]{3}{*}{bit 13} & FRMPOL: Frame Sync Pulse Polarity bit \\
\hline & 1 = Frame sync pulse is active-high \\
\hline & 0 = Frame sync pulse is active-low \\
\hline bit 12-2 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 1} & FRMDLY: Frame Sync Pulse Edge Select bit \\
\hline & 1 = Frame sync pulse coincides with first bit clock \\
\hline & 0 = Frame sync pulse precedes first bit clock \\
\hline bit 0 & Unimplemented: This bit must not be set to ' 1 ' by the user application \\
\hline
\end{tabular}

\section*{ ( \(I^{2} C^{\top M}\) )}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit ( \(\mathbf{I}^{2} \mathbf{C}^{\text {TM }}\) )" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit ( \(I^{2} \mathrm{C}\) ) module provides complete hardware support for both Slave and Multi-Master modes of the \(I^{2} \mathrm{C}\) serial communication standard with a 16-bit interface.
The \(I^{2} \mathrm{C}\) module has a 2-pin interface:
- The SCLx pin is clock.
- The SDAx pin is data.

The \(I^{2} \mathrm{C}\) module offers the following key features:
- \(I^{2} \mathrm{C}\) interface supporting both Master and Slave modes of operation.
- \(I^{2} \mathrm{C}\) Slave mode supports 7 -bit and 10-bit addressing.
- \(I^{2}\) C Master mode supports 7-bit and 10-bit addressing.
- \(\mathrm{I}^{2} \mathrm{C}\) port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for \(I^{2} \mathrm{C}\) port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- \(\mathrm{I}^{2} \mathrm{C}\) supports multi-master operation, detects bus collision and arbitrates accordingly.

\subsection*{19.1 Operating Modes}

The hardware fully implements all the master and slave functions of the \(1^{2} \mathrm{C}\) Standard and Fast mode specifications, as well as 7 -bit and 10-bit addressing.
The \(I^{2} \mathrm{C}\) module can operate either as a slave or a master on an \(I^{2} \mathrm{C}\) bus.
The following types of \(I^{2} C\) operation are supported:
- \(1^{2} \mathrm{C}\) slave operation with 7 -bit addressing
- \(\mathrm{I}^{2} \mathrm{C}\) slave operation with 10 -bit addressing
- \(1^{2} \mathrm{C}\) master operation with 7 -bit or 10 -bit addressing

For details about the communication sequence in each of these modes, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.

\section*{\(19.2 \quad \mathrm{I}^{2} \mathrm{C}\) Registers}

I2CxCON and I2CxSTAT are control and STATUS registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:
- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- 12 CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A Status bit, ADD10, indicates 10-Bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to 12 CxRCV , and an interrupt pulse is generated.



REGISTER 19－1：I2CxCON．I2Cx CONTROL REGISTER
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 & R／W－0 & R／W－1，HC & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline I2CEN & - & I2CSIDL & SCLREL & IPMIEN & A10M & DISSLW & SMEN \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ R／W－0 } & R／W－0 \\
\hline GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN \\
\hline bit 7 & & R／W－0，HC & R／W－0，HC \\
\hline bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend： & \(U=\) Unimplemented bit，read as＇ 0 ＇ & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(H S=\) Hardware Settable bit & \(H C=\) Hardware Clearable bit \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 I2CEN：I2Cx Enable bit
1 ＝Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins
\(0=\) Disables the I2Cx module．All I \({ }^{2} \mathrm{C}\) pins are controlled by port functions．
bit \(14 \quad\) Unimplemented：Read as＇ 0 ＇
bit \(13 \quad\) I2CSIDL：Stop in Idle Mode bit
1 ＝Discontinue module operation when device enters an Idle mode
\(0=\) Continue module operation in Idle mode
bit 12 SCLREL：SCLX Release Control bit（when operating as \(\mathrm{I}^{2} \mathrm{C}\) slave）
1 ＝Release SCLx clock
\(0=\) Hold SCLx clock low（clock stretch）
If STREN＝1：
Bit is R／W（i．e．，software can write＇ 0 ＇to initiate stretch and write＇ 1 ＇to release clock）．Hardware clear at beginning of slave transmission．Hardware clear at end of slave reception．

\section*{If STREN＝0：}

Bit is R／S（i．e．，software can only write＇ 1 ＇to release clock）．Hardware clear at beginning of slave transmission．
bit 11 IPMIEN：Intelligent Peripheral Management Interface（IPMI）Enable bit
\(1=\) IPMI mode is enabled；all addresses Acknowledged
\(0=\) IPMI mode disabled
bit 10
A10M：10－Bit Slave Address bit
\(1=12 C x A D D\) is a 10 －bit slave address
\(0=12 C x A D D\) is a 7 －bit slave address
bit 9 DISSLW：Disable Slew Rate Control bit
1 ＝Slew rate control disabled
0 ＝Slew rate control enabled
bit 8 SMEN：SMBus Input Levels bit
1 ＝Enable I／O pin thresholds compliant with SMBus specification
0 ＝Disable SMBus input thresholds
bit \(7 \quad\) GCEN：General Call Enable bit（when operating as \(I^{2} \mathrm{C}\) slave）
1 ＝Enable interrupt when a general call address is received in the I2CxRSR
（module is enabled for reception）
\(0=\) General call address disabled
bit 6 STREN：SCLx Clock Stretch Enable bit（when operating as \(I^{2} \mathrm{C}\) slave）
Used in conjunction with SCLREL bit．
1 ＝Enable software or receive clock stretching
0 ＝Disable software or receive clock stretching

\section*{REGISTER 19－1：I2CxCON：I2Cx CONTROL REGISTER（CONTINUED）}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 5} & ACKDT：Acknowledge Data bit（when operating as \(\mathrm{I}^{2} \mathrm{C}\) master，applicable during master receive） \\
\hline & \begin{tabular}{l}
Value that is transmitted when the software initiates an Acknowledge sequence． \\
1 ＝Send NACK during Acknowledge \\
0 ＝Send ACK during Acknowledge
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 4} & ACKEN：Acknowledge Sequence Enable bit （when operating as \(I^{2} \mathrm{C}\) master，applicable during master receive） \\
\hline & ```
1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware
    clear at end of master Acknowledge sequence.
0 = Acknowledge sequence not in progress
``` \\
\hline \multirow[t]{2}{*}{bit 3} & RCEN：Receive Enable bit（when operating as \(\mathrm{I}^{2} \mathrm{C}\) master） \\
\hline & 1 ＝Enables Receive mode for \(I^{2} C\) ．Hardware clear at end of eighth bit of master receive data byte． 0 ＝Receive sequence not in progress \\
\hline \multirow[t]{2}{*}{bit 2} & PEN：Stop Condition Enable bit（when operating as \(\mathrm{I}^{2} \mathrm{C}\) master） \\
\hline & \begin{tabular}{l}
1 ＝Initiate Stop condition on SDAx and SCLx pins．Hardware clear at end of master Stop sequence． \\
\(0=\) Stop condition not in progress
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 1} & RSEN：Repeated Start Condition Enable bit（when operating as \({ }^{2} \mathrm{C}\) master） \\
\hline & ```
1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master
 Repeated Start sequence.
0 = Repeated Start condition not in progress
``` \\
\hline \multirow[t]{2}{*}{bit 0} & SEN：Start Condition Enable bit（when operating as \(\mathrm{I}^{2} \mathrm{C}\) master） \\
\hline & \begin{tabular}{l}
1 ＝Initiate Start condition on SDAx and SCLx pins．Hardware clear at end of master Start sequence． \\
\(0=\) Start condition not in progress
\end{tabular} \\
\hline
\end{tabular}

\section*{REGISTER 19－2：I2CxSTAF：I2Cx STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R－0，HSC & R－0，HSC & U－0 & U－0 & U－0 & R／C－0，HSC & R－0，HSC & R－0，HSC \\
\hline ACKSTAT & TRSTAT & - & - & - & BCL & GCSTAT & ADD10 \\
\hline bit 15 & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R／C－0，HS & R／C－0，HS & R－0，HSC & R／C－0，HSC & R／C－0，HSC & R－0，HSC & R－0，HSC & R－0，HSC \\
\hline IWCOL & I2COV & D＿A & P & S & R＿W & RBF & TBF \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend： & \(U=\) Unimplemented bit，read as＇ 0 ＇ & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(H S=\) Hardware Settable bit & HSC＝Hardware Settable／Clearable \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0 '=\) Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{bit 15} & ACKSTAT：Acknowledge Status bit （when operating as \(\mathrm{I}^{2} \mathrm{C}\) master，applicable to master transmit operation） \\
\hline & 1 ＝NACK received from slave \\
\hline & 0 ＝ACK received from slave \\
\hline & Hardware set or clear at end of slave Acknowledge． \\
\hline \multirow[t]{4}{*}{bit 14} & TRSTAT：Transmit Status bit（when operating as \(1^{2} \mathrm{C}\) master，applicable to master transmit operation） \\
\hline & 1 ＝Master transmit is in progress（8 bits＋ACK） \\
\hline & \(0=\) Master transmit is not in progress \\
\hline & Hardware set at beginning of master transmission．Hardware clear at end of slave Acknowledge． \\
\hline bit 13－11 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{4}{*}{bit 10} & BCL：Master Bus Collision Detect bit \\
\hline & 1 ＝A bus collision has been detected during a master operation \\
\hline & 0 ＝No collision \\
\hline & Hardware set at detection of bus collision． \\
\hline \multirow[t]{4}{*}{bit 9} & GCSTAT：General Call Status bit \\
\hline & 1 ＝General call address was received \\
\hline & 0 ＝General call address was not received \\
\hline & Hardware set when address matches general call address．Hardware clear at Stop detection． \\
\hline \multirow[t]{4}{*}{bit 8} & ADD10：10－Bit Address Status bit \\
\hline & 1 ＝10－bit address was matched \\
\hline & \(0=10\)－bit address was not matched \\
\hline & Hardware set at match of 2nd byte of matched 10－bit address．Hardware clear at Stop detection． \\
\hline \multirow[t]{4}{*}{bit 7} & IWCOL：Write Collision Detect bit \\
\hline & 1 ＝An attempt to write the I2CxTRN register failed because the \(\mathrm{I}^{2} \mathrm{C}\) module is busy \\
\hline & 0 ＝No collision \\
\hline & Hardware set at occurrence of write to I2CxTRN while busy（cleared by software）． \\
\hline \multirow[t]{3}{*}{bit 6} & I2COV：Receive Overflow Flag bit \\
\hline & 1 ＝A byte was received while the I2CxRCV register is still holding the previous byte \(0=\) No overflow \\
\hline & Hardware set at attempt to transfer I2CxRSR to I2CxRCV（cleared by software）． \\
\hline \multirow[t]{4}{*}{bit 5} & D＿A：Data／Address bit（when operating as \(\mathrm{I}^{2} \mathrm{C}\) slave） \\
\hline & 1 ＝Indicates that the last byte received was data \\
\hline & \(0=\) Indicates that the last byte received was device address \\
\hline & Hardware clear at device address match．Hardware set by reception of slave byte． \\
\hline \multirow[t]{3}{*}{bit 4} & \(\mathbf{P}\) ：Stop bit \\
\hline & 1 ＝Indicates that a Stop bit has been detected last \\
\hline & \(0=\) Stop bit was not detected last
Hardware set or clear when Start，Repeated Start or Stop detected． \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{bit 3} & S：Start bit \\
\hline & 1 ＝Indicates that a Start（or Repeated Start）bit has been detected last \\
\hline & 0 ＝Start bit was not detected last \\
\hline & Hardware set or clear when Start，Repeated Start or Stop detected． \\
\hline \multirow[t]{4}{*}{bit 2} & \(\mathbf{R}\)＿W：Read／Write Information bit（when operating as \(I^{2} \mathrm{C}\) slave） \\
\hline & 1 ＝Read－indicates data transfer is output from slave \\
\hline & 0 ＝Write－indicates data transfer is input to slave \\
\hline & Hardware set or clear after reception of \({ }^{2} \mathrm{C}\) device address byte． \\
\hline \multirow[t]{4}{*}{bit 1} & RBF：Receive Buffer Full Status bit \\
\hline & 1 ＝Receive complete， 12 CxRCV is full \\
\hline & 0 ＝Receive not complete，I2CxRCV is empty \\
\hline & Hardware set when I2CxRCV is written with received byte．Hardware clear when software reads I2CxRCV． \\
\hline \multirow[t]{4}{*}{bit 0} & TBF：Transmit Buffer Full Status bit \\
\hline & 1 ＝Transmit in progress，I2CxTRN is full \\
\hline & 0 ＝Transmit complete，I2CxTRN is empty \\
\hline & Hardware set when software writes I2CxTRN．Hardware clear at completion of data transmission． \\
\hline
\end{tabular}

REGISTER 19-3: 12CXNSR: I2Cx SLAVE MODE ADDRESS MASK REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & - & AMSK<9:8> \\
\hline bit 15
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) & R/W-0 & R/W-0 \\
\hline & & \(A M S K<7: 0>\) & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
\begin{tabular}{ll} 
bit 15-10 & Unimplemented: Read as ' 0 ' \\
bit 9-0 & AMSK<9:0>: Mask for Address bit \(x\) Select bits \\
& \begin{tabular}{l}
1 = Enable masking for bit \(x\) of incoming message address; bit match not required in this position \\
\\
\end{tabular}\(\quad\)\begin{tabular}{l} 
= Disable masking for bit \(x ;\) bit match required in this position
\end{tabular}
\end{tabular}
 RECEIVER TRANSMITTER (UART)

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device families. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA encoder and decoder.

The primary features of the UART module are:
- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with \(\overline{U \times C T S}\) and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support
- Support for DMA

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:
- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM


\section*{查询dsPIC33FJ32GS606供应商}

REGISTER 20－1：UXMOOE：UARTX MODE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & U－0 & R／W－0 & R／W－0 & R／W－0 & U－0 & R／W－0 & R／W－0 \\
\hline UARTEN \({ }^{(1)}\) & － & USIDL & IREN \({ }^{(2)}\) & RTSMD & － & & \\
\hline \multicolumn{8}{|l|}{bit \(15 \times\) bit 8} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 HC & R／W－0 & \multicolumn{1}{c}{ R／W－0，HC } & R／W－0 & R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline WAKE & LPBACK & ABAUD & URXINV & BRGH & PDSEL＜1：0＞ & STSEL \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(\mathrm{HC}=\) Hardware Clearable & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & UARTEN：UARTx Enable bit \({ }^{(1)}\) \\
\hline & \begin{tabular}{l}
1 ＝UARTx is enabled；all UARTx pins are controlled by UARTx as defined by UEN＜1：0＞ \\
\(0=\) UARTx is disabled；all UARTx pins are controlled by PORT latches；UARTx power consumption minimal
\end{tabular} \\
\hline bit 14 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{2}{*}{bit 13} & USIDL：Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
\(1=\) Discontinue module operation when device enters Idle mode \\
\(0=\) Continue module operation in Idle mode
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 12} & IREN：IrDA \({ }^{\circledR}\) Encoder and Decoder Enable bit \({ }^{(2)}\) \\
\hline & 1 ＝IrDA encoder and decoder enabled \\
\hline & \(0=1 r D A\) encoder and decoder disabled \\
\hline \multirow[t]{3}{*}{bit 11} & RTSMD：Mode Selection for \(\overline{\text { UxRTS }}\) Pin bit \\
\hline & \(1=\overline{\text { UxRTS }}\) pin in Simplex mode \\
\hline & \(0=\overline{\text { UxRTS }}\) pin in Flow Control mode \\
\hline bit 10 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{4}{*}{bit 9－8} & UEN＜1：0＞：UARTx Enable bits \\
\hline & \begin{tabular}{l}
\(11=\) UxTX，UxRX and BCLK pins are enabled and used；\(\overline{U x C T S}\) pin controlled by PORT latches \\
\(10=U \times T X, U \times R X, \overline{U \times C T S}\) and \(\overline{U \times R T S}\) pins are enabled and used
\end{tabular} \\
\hline & \(01=\) UxTX，UxRX and UxRTS pins are enabled and used；UxCTS pin controlled by PORT latches \\
\hline & \(00=U x T X\) and UxRX pins are enabled and used；UxCTS and \(\overline{U x R T S} / B C L K\) pins controlled by PORT latches \\
\hline \multirow[t]{2}{*}{bit 7} & WAKE：Wake－up on Start bit Detect During Sleep Mode Enable bit \\
\hline & ```
\(1=\) UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared
in hardware on following rising edge
\(0=\) No wake-up enabled
``` \\
\hline \multirow[t]{3}{*}{bit 6} & LPBACK：UARTx Loopback Mode Select bit \\
\hline & 1 ＝Enable Loopback mode \\
\hline & \(0=\) Loopback mode is disabled \\
\hline \multirow[t]{2}{*}{bit 5} & ABAUD：Auto－Baud Enable bit \\
\hline & \begin{tabular}{l}
1 ＝Enable baud rate measurement on the next character－requires reception of a Sync field（55h） before other data；cleared in hardware upon completion \\
\(0=\) Baud rate measurement disabled or completed
\end{tabular} \\
\hline
\end{tabular}

Note 1：Refer to Section 17．＂UART＂（DS70188）in the＂dsPIC33F／PIC24H Family Reference Manual＂for information on enabling the UART module for receive or transmit operation．That section of the manual is available on the Microchip web site，www．microchip．com．
2：This feature is only available for the \(16 x\) BRG mode（ \(B R G H=0\) ）．

\section*{询dsPIC33FJ32GS606供应商 \\ REGISTER20－1： \(2 \times\) MM}
bit 4 URXINV：Receive Polarity Inversion bit
1 ＝UxRX Idle state is＇ 0 ＇
\(0=U \times R X\) Idle state is＇ 1 ＇
bit 3 BRGH：High Baud Rate Enable bit
\(1=\) BRG generates 4 clocks per bit period（ \(4 x\) baud clock，High－Speed mode）
\(0=\) BRG generates 16 clocks per bit period（16x baud clock，Standard mode）
bit 2－1 PDSEL＜1：0＞：Parity and Data Selection bits
11 ＝9－bit data，no parity
\(10=8\)－bit data，odd parity
\(01=8\)－bit data，even parity
00 ＝8－bit data，no parity
bit \(0 \quad\) STSEL：Stop Bit Selection bit
1 ＝Two Stop bits
\(0=\) One Stop bit

Note 1：Refer to Section 17．＂UART＂（DS70188）in the＂dsPIC33F／PIC24H Family Reference Manual＂for information on enabling the UART module for receive or transmit operation．That section of the manual is available on the Microchip web site，www．microchip．com．
2：This feature is only available for the \(16 x\) BRG mode（ \(B R G H=0\) ）．

查询dsPIC33FJ32GS606供应商

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 & R／W－0 & U－0 & R／W－0，HC & R／W－0 & R－0 & R－1 \\
\hline UTXISEL1 & UTXINV & UTXISEL0 & - & UTXBRK & UTXEN \(^{(1)}\) & UTXBF & TRMT \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 R／W－0 & R／W－0 & R－1 & R－0 & R－0 & R／C－0 & R－0 \\
\hline URXISEL＜1：0＞ & ADDEN & RIDLE & PERR & FERR & OERR & URXDA \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(\mathrm{HC}=\) Hardware Clearable bit & \(\mathrm{C}=\) Clearable bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & \(' 0\)＇＝Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15，13 UTXISEL＜1：0＞：Transmission Interrupt Mode Selection bits
11 ＝Reserved；do not use
\(10=\) Interrupt when a character is transferred to the Transmit Shift register，and as a result，the transmit buffer becomes empty
\(01=\) Interrupt when the last character is shifted out of the Transmit Shift register；all transmit operations are completed
\(00=\) Interrupt when a character is transferred to the Transmit Shift register（this implies there is at least one character open in the transmit buffer）
bit 14 UTXINV：Transmit Polarity Inversion bit
If IREN \(=0\) ：
1 ＝UxTX Idle state is＇ 0 ＇
\(0=U \times T X\) Idle state is＇ 1 ＇
If IREN＝1：
\(1=\operatorname{IrDA}^{\circledR}\) encoded UxTX Idle state is＇ 1 ＇
\(0=\) IrDA encoded UxTX Idle state is＇ 0 ＇
bit 12 Unimplemented：Read as＇ 0 ＇
bit 11 UTXBRK：Transmit Break bit
1 ＝Send Sync Break on next transmission－Start bit，followed by twelve＇0＇bits，followed by Stop bit； cleared by hardware upon completion
\(0=\) Sync Break transmission disabled or completed
bit 10
UTXEN：Transmit Enable bit \({ }^{(\mathbf{1})}\)
1 ＝Transmit enabled，UxTX pin controlled by UARTx
\(0=\) Transmit disabled，any pending transmission is aborted and buffer is reset；UxTX pin controlled by port
bit 9 UTXBF：Transmit Buffer Full Status bit（read－only）
1 ＝Transmit buffer is full
\(0=\) Transmit buffer is not full；at least one more character can be written
bit 8 TRMT：Transmit Shift Register Empty bit（read－only）
1 ＝Transmit Shift register is empty and transmit buffer is empty（the last transmission has completed）
\(0=\) Transmit Shift register is not empty，a transmission is in progress or queued
bit 7－6
URXISEL＜1：0＞：Receive Interrupt Mode Selection bits
\(11=\) Interrupt is set on UxRSR transfer making the receive buffer full（i．e．，has 4 data characters）
\(10=\) Interrupt is set on UxRSR transfer making the receive buffer 3／4 full（i．e．，has 3 data characters）
\(0 x=\) Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer；receive buffer has one or more characters

Note 1：Refer to Section 17．＂UART＂（DS70188）in the＂dsPIC33F／PIC24H Family Reference Manual＂for information on enabling the UART module for transmit operation．That section of the manual is available on the Microchip web site，www．microchip．com．
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 5} & ADDEN: Address Character Detect bit (bit 8 of received data \(=1\)) \\
\hline & \begin{tabular}{l}
1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. \\
\(0=\) Address Detect mode disabled
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 4} & RIDLE: Receiver Idle bit (read-only) \\
\hline & \(1=\) Receiver is Idle \\
\hline & \(0=\) Receiver is active \\
\hline \multirow[t]{2}{*}{bit 3} & PERR: Parity Error Status bit (read-only) \\
\hline & \begin{tabular}{l}
1 = Parity error has been detected for the current character (character at the top of the receive FIFO) \\
\(0=\) Parity error has not been detected
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 2} & FERR: Framing Error Status bit (read-only) \\
\hline & \begin{tabular}{l}
\(1=\) Framing error has been detected for the current character (character at the top of the receive FIFO) \\
\(0=\) Framing error has not been detected
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 1} & OERR: Receive Buffer Overrun Error Status bit (clear/read-only) \\
\hline & 1 = Receive buffer has overflowed \\
\hline & \(0=\) Receive buffer has not overflowed. Clearing a previously set OERR bit (\(1 \rightarrow 0\) transition) will reset the receiver buffer and the UxRSR to the empty state. \\
\hline \multirow[t]{3}{*}{bit 0} & URXDA: Receive Buffer Data Available bit (read-only) \\
\hline & 1 = Receive buffer has data, at least one more character can be read \\
\hline & 0 = Receive buffer is empty \\
\hline
\end{tabular}

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation. That section of the manual is available on the Microchip web site, www.microchip.com.

查询dsPIC33FJ32GS606供应商
NOTES：

\section*{ MODULE}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN \({ }^{\text {TM }}\))" (DS70185) in the dsPIC33F/PIC24H Family Reference Manual, which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

\subsection*{21.1 Overview}

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:
- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to \(1 \mathrm{Mbit} / \mathrm{sec}\)
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet \({ }^{\text {TM }}\) addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

\subsection*{21.2 Frame Types}

The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:
- Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).
- Extended Data Frame:

An extended data frame is similar to a standard data frame, but includes an extended identifier as well.
- Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.
- Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.
- Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.
- Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

\section*{}

\section*{}

The ECAN module can operate in one of several operation modes selected by the user. These modes include:
- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the \(\mathrm{REQOP}<2: 0>\) bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

\subsection*{21.3.1 INITIALIZATION MODE}

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:
- All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

\subsection*{21.3.2 DISABLE MODE}

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.
If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits \((\) CiCTRL1<7:5> \()=001\), that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

\subsection*{21.3.3 NORMAL OPERATION MODE}

Normal Operation mode is selected when REQOP \(<2: 0>=000\). In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

\subsection*{21.3.4 LISTEN ONLY MODE}

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

\subsection*{21.3.5 LISTEN ALL MESSAGES MODE}

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

\subsection*{21.3.6 LOOPBACK MODE}

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

\begin{tabular}{|c|c|c|c|c|cccc|}
\hline \hline U-0 & U-0 & R/W-0 & R/W-0 & r-0 & R/W-1 & R/W-0 & R/W-0 \\
\hline- & - & CSIDL & ABAT & - & & REQOP<2:0> & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|lll|c|c|c|c|c|}
\hline R-1 & R-0 & R-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 \\
\hline & OPMODE<2:0> & - & CANCAP & - & - & WIN \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \(r=\) Bit is Reserved \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-14 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{2}{*}{bit 13} & CSIDL: Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
1 = Discontinue module operation when device enters Idle mode \\
0 = Continue module operation in Idle mode
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 12} & ABAT: Abort All Pending Transmissions bit \\
\hline & 1 = Signal all transmit buffers to abort transmission \\
\hline & \(0=\) Module will clear this bit when all transmissions are aborted \\
\hline bit 11 & Reserved: Do not use \\
\hline \multirow[t]{9}{*}{bit 10-8} & REQOP<2:0>: Request Operation Mode bits \\
\hline & 000 = Set Normal Operation mode \\
\hline & 001 = Set Disable mode \\
\hline & 010 = Set Loopback mode \\
\hline & 011 = Set Listen Only Mode \\
\hline & 100 = Set Configuration mode \\
\hline & 101 = Reserved \\
\hline & \(110=\) Reserved \\
\hline & 111 = Set Listen All Messages mode \\
\hline \multirow[t]{9}{*}{bit 7-5} & OPMODE<2:0>: Operation Mode bits \\
\hline & \(000=\) Module is in Normal Operation mode \\
\hline & 001 = Module is in Disable mode \\
\hline & \(010=\) Module is in Loopback mode \\
\hline & 011 = Module is in Listen Only mode \\
\hline & \(100=\) Module is in Configuration mode \\
\hline & 101 = Reserved \\
\hline & \(110=\) Reserved \\
\hline & 111 = Module is in Listen All Messages mode \\
\hline bit 4 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{3}{*}{bit 3} & CANCAP: CAN Message Receive Timer Capture Event Enable bit \\
\hline & 1 = Enable input capture based on CAN message receive \\
\hline & 0 = Disable CAN capture \\
\hline bit 2-1 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 0} & WIN: SFR Map Window Select bit \\
\hline & 1 = Use filter window \\
\hline & 0 = Use buffer window \\
\hline
\end{tabular}

\section*{询REGIStBER JA22：S6CG㒋度適 ECAN \({ }^{\text {TM }}\) CONTROL REGISTER 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 & U－0 & U－0 & U－0 & U－0 & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|ccccc|}
\hline U－0 & U－0 & U－0 & R－0 & R－0 & R－0 & R－0 & R－0 \\
\hline- & - & - & & DNCNT＜4：0＞ & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(C=\) Writeable bit，but only＇ 0 ＇can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇\(=\) Bit is set & \(' 0\)＇\(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
```

bit 15-5 Unimplemented: Read as '0'
bit 4-0 DNCNT<4:0>: DeviceNet }\mp@subsup{}{}{TM}\mathrm{ Filter Bit Number bits
10010-11111 = Invalid selection
10001 = Compare up to data byte 3, bit 6 with EID<17>
•
-
•
00001 = Compare up to data byte 1, bit 7 with EID<0>
00000 = Do not compare data bytes

```


\begin{tabular}{|c|c|}
\hline bit 15-13 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 12-8} & FILHIT<4:0>: Filter Hit Number bits \\
\hline & ```
10000-11111 = Reserved
01111 = Filter 15
``` \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 00001 = Filter 1 \\
\hline & 00000 = Filter 0 \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{25}{*}{bit 6-0} & ICODE<6:0>: Interrupt Flag Code bits \\
\hline & 1000101-1111111 = Reserved \\
\hline & 1000100 = FIFO almost full interrupt \\
\hline & 1000011 = Receiver overflow interrupt \\
\hline & \(1000010=\) Wake-up interrupt \\
\hline & 1000001 = Error interrupt \\
\hline & \(1000000=\) No interrupt \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 0010000-0111111 = Reserved \\
\hline & 0001111 = RB15 buffer Interrupt \\
\hline & - \\
\hline & - \\
\hline & \\
\hline & 0001001 = RB9 buffer interrupt \\
\hline & 0001000 = RB8 buffer interrupt \\
\hline & \(0000111=\) TRB7 buffer interrupt \\
\hline & \(0000110=\) TRB6 buffer interrupt \\
\hline & \(0000101=\) TRB5 buffer interrupt \\
\hline & \(0000100=\) TRB4 buffer interrupt \\
\hline & \(0000011=\) TRB3 buffer interrupt \\
\hline & \(0000010=\) TRB2 buffer interrupt \\
\hline & \(0000001=\) TRB1 buffer interrupt \\
\hline & 0000000 = TRB0 Buffer interrupt \\
\hline
\end{tabular}

\section*{}
\begin{tabular}{|ccc|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & DMABS \(<2: 0>\) & & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|ccccc|}
\hline U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & & & FSA<4:0> & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-13 DMABS<2:0>: DMA Buffer Size bits
111 = Reserved
\(110=32\) buffers in DMA RAM
\(101=24\) buffers in DMA RAM
\(100=16\) buffers in DMA RAM
\(011=12\) buffers in DMA RAM
\(010=8\) buffers in DMA RAM
\(001=6\) buffers in DMA RAM
\(000=4\) buffers in DMA RAM
bit 12-5 Unimplemented: Read as ' 0 '
bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits
11111 = Read buffer RB31
\(11110=\) Read buffer RB30
-
-
-
00001 = Tx/Rx buffer TRB1
\(00000=\) Tx/Rx buffer TRB0

\begin{tabular}{|c|c|ccccc|}
\hline \multicolumn{8}{|c|}{\(\mathrm{U}-0\)} & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & & FBP<5:0> & \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|ccccc|}
\hline \multicolumn{8}{|c|}{\(\mathrm{U}-0\)} & \(\mathrm{U}-0\) & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & & FNRB<5:0> & \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-14 & Unimplemented: Read as ‘0' \\
bit 13-8 & FBP \(05: 0>\) : FIFO Buffer Pointer bits \\
& \(011111=\) RB31 buffer \\
& \(011110=\) RB30 buffer \\
& - \\
& - \\
& \(000001=\) TRB1 buffer \\
& \(000000=\) TRB0 buffer \\
bit 7-6 & Unimplemented: Read as ‘ 0 ' \\
bit 5-0 & FNRB<5:0>: FIFO Next Read Buffer Pointer bits \\
& \(011111=\) RB31 buffer \\
& \(011110=\) RB30 buffer \\
& • \\
& • \\
& \\
& \\
& \\
& \(000001=\) TRB1 buffer \\
& \(000000=\) TRB0 buffer
\end{tabular}

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & TXBO & TXBP & RXBP & TXWAR & RXWAR & EWARN \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 & R/C-0 & U-0 & R/C-0 & R/C-0 & R/C-0 & R/C-0 \\
\hline IVRIF & WAKIF & ERRIF & - & FIFOIF & RBOVIF & RBIF & TBIF \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as '0'
bit 13 TXBO: Transmitter in Error State Bus Off bit
1 = Transmitter is in Bus Off state
\(0=\) Transmitter is not in Bus Off state
bit 12 TXBP: Transmitter in Error State Bus Passive bit
\(1=\) Transmitter is in Bus Passive state
0 = Transmitter is not in Bus Passive state
bit 11 RXBP: Receiver in Error State Bus Passive bit
1 = Receiver is in Bus Passive state
\(0=\) Receiver is not in Bus Passive state
bit 10 TXWAR: Transmitter in Error State Warning bit
1 = Transmitter is in Error Warning state
\(0=\) Transmitter is not in Error Warning state
bit 9 RXWAR: Receiver in Error State Warning bit
1 = Receiver is in Error Warning state
\(0=\) Receiver is not in Error Warning state
bit 8 EWARN: Transmitter or Receiver in Error State Warning bit
1 = Transmitter or Receiver is in Error State Warning state
\(0=\) Transmitter or Receiver is not in Error State Warning state
bit \(7 \quad\) IVRIF: Invalid Message Received Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(6 \quad\) WAKIF: Bus Wake-up Activity Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit \(3 \quad\) FIFOIF: FIFO Almost Full Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(1 \quad\) RBIF: RX Buffer Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(0 \quad\) TBIF: TX Buffer Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline IVRIE & WAKIE & ERRIE & - & FIFOIE & RBOVIE & RBIE & TBIE \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) IVRIE: Invalid Message Received Interrupt Enable bit
1 = Interrupt Request Enabled
0 = Interrupt Request not enabled
bit \(6 \quad\) WAKIE: Bus Wake-up Activity Interrupt Flag bit
1 = Interrupt Request Enabled
\(0=\) Interrupt Request not enabled
bit 5 ERRIE: Error Interrupt Enable bit
1 = Interrupt Request Enabled
0 = Interrupt Request not enabled
bit 4
Unimplemented: Read as ‘0’
bit \(3 \quad\) FIFOIE: FIFO Almost Full Interrupt Enable bit 1 = Interrupt Request Enabled
0 = Interrupt Request not enabled
bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit
1 = Interrupt Request Enabled
\(0=\) Interrupt Request not enabled
bit 1 RBIE: RX Buffer Interrupt Enable bit
1 = Interrupt Request Enabled
\(0=\) Interrupt Request not enabled
bit \(0 \quad\) TBIE: TX Buffer Interrupt Enable bit
1 = Interrupt Request Enabled
\(0=\) Interrupt Request not enabled

\section*{REGISTERJ3265666借应商}
\begin{tabular}{|lllllllll}
\hline \(\mathrm{R}-0\) & \(\mathrm{R}-0\) \\
\hline & & TERRCNT＜7：0＞ & & & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\(\left.\begin{array}{|lllllll|}\hline \mathrm{R}-0 & \mathrm{R}-0 & \mathrm{R}-0 & \mathrm{R}-0 & \mathrm{R}-0 & \mathrm{R}-0 & \mathrm{R}-0\end{array}\right]\)\begin{tabular}{l}
\(\mathrm{R}-0\) \\
\hline \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(\mathrm{C}=\) Writeable bit，but only＇ 0 ＇can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
bit 15－8 TERRCNT＜7：0＞：Transmit Error Count bits
bit 7－0 RERRCNT＜7：0＞：Receive Error Count bits

REGISTER 21－9：CiCFG1：ECAN \({ }^{\text {M }}\) BAUD RATE CONFIGURATION REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U－0 & U－0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|lc|cccccc|}
\hline R／W－0 & R／W－0 \\
\hline SJW＜1：0＞ & & \(B R P<5: 0>\) & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend：}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W＝Writable bit & \(\mathrm{U}=\) Unimplemente & as＇ 0 ＇ \\
\hline － \(\mathrm{n}=\) Value at POR & ＇ 1 ＇＝Bit is set & ＇ 0 ＇＝Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15－8 & Unimplemented：Read as＇0＇ \\
\hline \multirow[t]{5}{*}{bit 7－6} & SJW＜1：0＞：Synchronization Jump Width bits \\
\hline & \(11=\) Length is \(4 \times\) TQ \\
\hline & \(10=\) Length is \(3 \times\) TQ \\
\hline & \(01=\) Length is \(2 \times\) TQ \\
\hline & \(00=\) Length is \(1 \times\) TQ \\
\hline \multirow[t]{8}{*}{bit 5－0} & BRP＜5：0＞：Baud Rate Prescaler bits \\
\hline & \(111111=\) TQ \(=2 \times 64 \times 1 /\) FCAN \\
\hline & － \\
\hline & － \\
\hline & － \\
\hline & \(000010=\) TQ \(=2 \times 3 \times 1 /\) FCAN \\
\hline & \(000001=T Q=2 \times 2 \times 1 /\) FCAN \\
\hline & \(000000=\) TQ \(=2 \times 1 \times 1 /\) FCAN \\
\hline
\end{tabular}

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-x & U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x \\
\hline - & WAKFIL & - & - & - & & SEG2PH<2 & \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline R/W-x & R/W-x \\
\hline SEG2PHTS & SAM & \multicolumn{3}{|c|}{SEG1PH<2:0>} & \multicolumn{3}{|c|}{PRSEG<2:0>} \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}=\) Readable bit} & \multicolumn{2}{|l|}{W = Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline \multicolumn{2}{|l|}{\(-\mathrm{n}=\) Value at POR} & \multicolumn{2}{|l|}{' 1 ' = Bit is set} & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
bit 15 Unimplemented: Read as ' 0 '
bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit
1 = Use CAN bus line filter for wake-up
\(0=\) CAN bus line filter is not used for wake-up
bit 13-11 Unimplemented: Read as ' 0 '
bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits
\(111=\) Length is \(8 \times\) TQ
-
-
-
\(000=\) Length is \(1 \times\) TQ
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit
1 = Freely programmable
\(0=\) Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater
bit 6 SAM: Sample of the CAN bus Line bit
1 = Bus line is sampled three times at the sample point
\(0=\) Bus line is sampled once at the sample point
bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits
\(111=\) Length is \(8 \times\) TQ
-
-
-
\(000=\) Length is \(1 \times\) TQ
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits
\(111=\) Length is \(8 \times\) TQ
-
-
-
\(000=\) Length is \(1 \times\) TQ

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-1 & R/W-1 \\
\hline FLTEN15 & FLTEN14 & FLTEN13 & FLTEN12 & FLTEN11 & FLTEN10 & FLTEN9 & FLTEN8 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-1 & R/W-1 \\
\hline FLTEN7 & FLTEN6 & FLTEN5 & FLTEN4 & FLTEN3 & FLTEN2 & FLTEN1 & FLTEN0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writeable bit, but only ' O ' can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 FLTENn: Enable Filter n to Accept Messages bits
1 = Enable Filter n
0 = Disable Filter n

REGISTER 21-12: CiBUFPNT1: ECAN \({ }^{\text {™ }}\) FILTER 0-3 BUFFER POINTER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F3BP<3:0>} & \multicolumn{4}{|c|}{F2BP<3:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F1BP<3:0>} & \multicolumn{4}{|c|}{FOBP<3:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-12 \(\quad\) F3BP<3:0>: RX Buffer Mask for Filter 3 bits
1111 = Filter hits received in RX FIFO buffer
\(1110=\) Filter hits received in RX Buffer 14
-
-
-
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0
bit 11-8 F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bit 15-12)
bit 7-4 F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bit 15-12)
bit 3-0 FOBP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bit 15-12)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F7BP<3:0>} & \multicolumn{4}{|c|}{F6BP<3:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F5BP<3:0>} & \multicolumn{4}{|c|}{F4BP<3:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
bit 15-12 F7BP<3:0>: RX Buffer Mask for Filter 7 bits
1111 = Filter hits received in RX FIFO buffer
\(1110=\) Filter hits received in RX Buffer 14
-
-
-
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0
bit 11-8 F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bit 15-12)
bit 7-4 F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bit 15-12)
bit 3-0 F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bit 15-12)

REGISTER 21-14: CiBUFPNT3: ECAN \({ }^{\text {TM }}\) FILTER 8-11 BUFFER POINTER REGISTER
\begin{tabular}{|lcc|ccccc|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & F11BP \(<3: 0>\) & & F10BP<3:0> & \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F9BP<3:0>} & \multicolumn{4}{|c|}{F8BP<3:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-12 F11BP<3:0>: RX Buffer Mask for Filter 11 bits
1111 = Filter hits received in RX FIFO buffer
\(1110=\) Filter hits received in RX Buffer 14
-
-
-
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0
bit 11-8 F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bit 15-12)
bit 7-4 F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bit 15-12)
bit 3-0 F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bit 15-12)
dsPIC33FJ32GS606供应商
REGISTER 21－15：CIBUFPNT4：ECAN \({ }^{\text {™ }}\) FILTER 12－15 BUFFER POINTER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／W－0 & R／W－0 \\
\hline \multicolumn{4}{|c|}{F15BP＜3：0＞} & \multicolumn{4}{|c|}{F14BP＜3：0＞} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|lccccccc|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & F13BP \(<3: 0>\) & & \(F 12 B P<3: 0>\) & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(C=\) Writeable bit，but only＇ 0 ＇can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇\(=\) Bit is set & ＇ 0 ＇＝Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15－12 F15BP＜3：0＞：RX Buffer Mask for Filter 15 bits 1111 ＝Filter hits received in RX FIFO buffer
1110 ＝Filter hits received in RX Buffer 14
－
－
－
0001 ＝Filter hits received in RX Buffer 1
0000 ＝Filter hits received in RX Buffer 0
bit 11－8 F14BP＜3：0＞：RX Buffer Mask for Filter 14 bits（same values as bit 15－12）
bit 7－4 F13BP＜3：0＞：RX Buffer Mask for Filter 13 bits（same values as bit 15－12）
bit 3－0 \(\quad\) F12BP＜3：0＞：RX Buffer Mask for Filter 12 bits（same values as bit 15－12）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline SID10 & SID9 & SID8 & SID7 & SID6 & SID5 & SID4 & SID3 \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline R/W-x & R/W-x & R/W-x & U-0 & R/W-x & U-0 & R/W-x & R/W-x \\
\hline SID2 & SID1 & SID0 & - & EXIDE & - & EID17 & EID16 \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Legend: \\
\(\mathrm{R}=\) Readable bit \\
\(-n=\) Value at POR
\end{tabular}} & \multicolumn{2}{|l|}{\(\mathrm{W}=\) Writable bit} & can be writ
\(\mathrm{J}=\) Unimp

0 & clear th & ' 0 '
Bit is u & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15-5} & SID<10:0> : Standard Identifier bits \\
\hline & 1 = Message address bit SIDx must be ' 1 ' to match filter \(0=\) Message address bit SIDx must be '0' to match filter \\
\hline bit 4 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 3} & EXIDE: Extended Identifier Enable bit If MIDE \(=1\) then: \\
\hline & \begin{tabular}{l}
1 = Match only messages with extended identifier addresses \(0=\) Match only messages with standard identifier addresses If MIDE \(=0\) then: \\
Ignore EXIDE bit.
\end{tabular} \\
\hline bit 2 & Unimplemented: Read as '0' \\
\hline bit 1-0 & EID<17:16>: Extended Identifier bits \\
\hline & 1 = Message address bit EIDx must be ' 1 ' to match filter \(0=\) Message address bit EIDx must be ' 0 ' to match filter \\
\hline
\end{tabular}
                    \(\mathrm{n}(\mathrm{n}=0-15)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R／W－x & R／W－x \\
\hline EID15 & EID14 & EID13 & EID12 & EID11 & EID10 & EID9 & EID8 \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ R／W－x } & R／W－x \\
\hline EID7 & EID6 & EID5 & EID4 & EID3 & EID2 & EID1 & EID0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(\mathrm{C}=\) Writeable bit，but only＇ 0 ＇can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & \(' 1\)＇\(=\) Bit is set & ＇ 0 ＇＝Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15－0 EID＜15：0＞：Extended Identifier bits
1 ＝Message address bit EIDx must be＇ 1 ＇to match filter
\(0=\) Message address bit EIDx must be＇ 0 ＇to match filter

REGISTER 21－18：CiFMSKSEL1：ECAN \({ }^{\text {TM }}\) FILTER 7－0 MASK SELECTION REGISTER

\begin{tabular}{|c|c|c|c|c|}
\hline R／W－0 R／W－0 & R／W－0 \(\quad\) R／W－0 & R／W－0 & R／W－0 & R／W－0 \\
\hline F3MSK \(<1: 0>\) & F2MSK＜1：0＞ & F1MSK \(<1: 0>\) & FOMSK \(<1: 0>\) \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(\mathrm{C}=\) Writeable bit，but only＇ 0 ＇can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-\mathrm{n}=\) Value at POR & ＇ 1 ＇\(=\) Bit is set & ＇ 0 ＇＝Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15－14 F7MSK＜1：0＞：Mask Source for Filter 7 bits
11 ＝Reserved
10 ＝Acceptance Mask 2 registers contain mask
01 ＝Acceptance Mask 1 registers contain mask
00 ＝Acceptance Mask 0 registers contain mask
bit 13－12 F6MSK＜1：0＞：Mask Source for Filter 6 bits（same values as bit 15－14）
bit 11－10 F5MSK＜1：0＞：Mask Source for Filter 5 bits（same values as bit 15－14）
bit 9－8 F4MSK＜1：0＞：Mask Source for Filter 4 bits（same values as bit 15－14）
bit 7－6 F3MSK＜1：0＞：Mask Source for Filter 3 bits（same values as bit 15－14）
bit 5－4 F2MSK＜1：0＞：Mask Source for Filter 2 bits（same values as bit 15－14）
bit 3－2 F1MSK＜1：0＞：Mask Source for Filter 1 bits（same values as bit 15－14）
bit 1－0 FOMSK＜1：0＞：Mask Source for Filter 0 bits（same values as bit 15－14）

\section*{}
\begin{tabular}{|c|c|c|c|cc|}
\hline R/W-0 R/W-0 & R/W-0 R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline F15MSK<1:0> & F14MSK<1:0> & F13MSK<1:0> & F12MSK<1:0> \\
\hline bit 15
\end{tabular}

\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 F15MSK<1:0>: Mask Source for Filter 15 bits
11 = Reserved
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask
bit 13-12 F14MSK<1:0>: Mask Source for Filter 14 bits (same values as bit 15-14)
bit 11-10 F13MSK<1:0>: Mask Source for Filter 13 bits (same values as bit 15-14)
bit 9-8 F12MSK<1:0>: Mask Source for Filter 12 bits (same values as bit 15-14)
bit 7-6 F11MSK<1:0>: Mask Source for Filter 11 bits (same values as bit 15-14)
bit 5-4 F10MSK<1:0>: Mask Source for Filter 10 bits (same values as bit 15-14)
bit 3-2 F9MSK<1:0>: Mask Source for Filter 9 bits (same values as bit 15-14)
bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bits (same values as bit 15-14)

\section*{ REGISTER \(\mathrm{n}(\mathrm{n}=0-2)\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline SID10 & SID9 & SID8 & SID7 & SID6 & SID5 & SID4 & SID3 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ R/W-x } & R/W-x & R/W-x & U-0 & R-x & U-0 & R/W-x & R/W-x \\
\hline SID2 & SID1 & SID0 & - & MIDE & - & EID17 & EID16 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-5 SID<10:0>: Standard Identifier bits
1 = Include bit SIDx in filter comparison
\(0=\) Bit SIDx is don't care in filter comparison
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit 3 MIDE: Identifier Receive Mode bit
1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter
\(0=\) Match either standard or extended address message if filters match
(i.e., if \((\) Filter SID \()=(\) Message SID \()\) or if (Filter SID/EID) \(=(\) Message SID/EID \())\)
bit \(2 \quad\) Unimplemented: Read as ' 0 '
bit 1-0 EID<17:16>: Extended Identifier bits
1 = Include bit EIDx in filter comparison
\(0=\) Bit EIDx is don't care in filter comparison

REGISTER 21-21: CiRXMnEID: ECAN \({ }^{\text {TM }}\) ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER \(\mathrm{n}(\mathrm{n}=0-2)\)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID15 & EID14 & EID13 & EID12 & EID11 & EID10 & EID9 & EID8 \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID7 & EID6 & EID5 & EID4 & EID3 & EID2 & EID1 & EID0 \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad \mathrm{X}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 EID<15:0>: Extended Identifier bits
1 = Include bit EIDx in filter comparison
\(0=\) Bit EIDx is don't care in filter comparison

\section*{查询ASPIC33F23：2GSGO6供应商 \\ }
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／C－0 & R／C－0 \\
\hline RXFUL15 & RXFUL14 & RXFUL13 & RXFUL12 & RXFUL11 & RXFUL10 & RXFUL9 & RXFUL8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／C－0 & R／C－0 \\
\hline RXFUL7 & RXFUL6 & RXFUL5 & RXFUL4 & RXFUL3 & RXFUL2 & RXFUL1 & RXFUL0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(C=\) Writeable bit，but only＇ 0 ＇can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇＝Bit is cleared \\
\hline
\end{tabular}
bit 15－0 RXFUL＜15：0＞：Receive Buffer n Full bits
1 ＝Buffer is full（set by module）
\(0=\) Buffer is empty

\section*{REGISTER 21－23：CiRXFUL2：ECAN \({ }^{\text {M }}\) RECEIVE BUFFER FULL REGISTER 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／C－0 & R／C－0 \\
\hline RXFUL31 & RXFUL30 & RXFUL29 & RXFUL28 & RXFUL27 & RXFUL26 & RXFUL25 & RXFUL24 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R／C－0 & R／C－0 \\
\hline RXFUL23 & RXFUL22 & RXFUL21 & RXFUL20 & RXFUL19 & RXFUL18 & RXFUL17 & RXFUL16 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend： & \(C=\) Writeable bit，but only＇ 0 ＇can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit，read as＇ 0 ＇ \\
\(-n=\) Value at POR & \(' 1\)＇＝Bit is set & \(' 0\)＇\(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15－0 RXFUL＜31：16＞：Receive Buffer \(n\) Full bits
1 ＝Buffer is full（set by module）
0 ＝Buffer is empty

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF15 & RXOVF14 & RXOVF13 & RXOVF12 & RXOVF11 & RXOVF10 & RXOVF9 & RXOVF8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF7 & RXOVF6 & RXOVF5 & RXOVF4 & RXOVF3 & RXOVF2 & RXOVF1 & RXOVF0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(\quad\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 RXOVF<15:0>: Receive Buffer \(n\) Overflow bits
1 = Module attempted to write to a full buffer (set by module)
\(0=\) No overflow condition

REGISTER 21-25: CiRXOVF2: ECAN \({ }^{\text {TM }}\) RECEIVE BUFFER OVERFLOW REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF31 & RXOVF30 & RXOVF29 & RXOVF28 & RXOVF27 & RXOVF26 & RXOVF25 & RXOVF24 \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF23 & RXOVF22 & RXOVF21 & RXOVF20 & RXOVF19 & RXOVF18 & RXOVF17 & RXOVF16 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writeable bit, but only ' O ' can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 RXOVF<31:16>: Receive Buffer \(n\) Overflow bits
1 = Module attempted to write to a full buffer (set by module)
\(0=\) No overflow condition

\section*{}
( \(\mathrm{m}=\mathbf{0 , 2 , 4 , 6 ; \mathrm { n } = 1 , 3 , 5 , 7 \text { ) } ) ~}\)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ R/W-0 R-0 } & R-0 & R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline TXENn & TXABTn & TXLARBn & TXERRn & TXREQn & RTRENn & TXnPRI<1:0> \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|cc|}
\hline R/W-0 & R-0 & R-0 & R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline TXENm & TXABTm \(^{(\mathbf{1})}\) & TXLARBm \(^{\mathbf{( 1 )}}\) & TXERRm \(^{(\mathbf{1 )}}\) & TXREQm & RTRENm & TXmPRI<1:0> \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writeable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-8 & See Definition for Bits 7-0, Controls Buffer \(n\) \\
\hline \multirow[t]{3}{*}{bit 7} & TXENm: TX/RX Buffer Selection bit \\
\hline & 1 = Buffer TRBn is a transmit buffer \\
\hline & 0 = Buffer TRBn is a receive buffer \\
\hline \multirow[t]{3}{*}{bit 6} & TXABTm: Message Aborted bit \({ }^{(1)}\) \\
\hline & 1 = Message was aborted \\
\hline & 0 = Message completed transmission successfully \\
\hline \multirow[t]{3}{*}{bit 5} & TXLARBm: Message Lost Arbitration bit \({ }^{(1)}\) \\
\hline & 1 = Message lost arbitration while being sent \\
\hline & \(0=\) Message did not lose arbitration while being sent \\
\hline \multirow[t]{3}{*}{bit 4} & TXERRm: Error Detected During Transmission bit \({ }^{(1)}\) \\
\hline & 1 = A bus error occurred while the message was being sent \\
\hline & 0 = A bus error did not occur while the message was being sent \\
\hline \multirow[t]{3}{*}{bit 3} & TXREQm: Message Send Request bit \\
\hline & \(1=\) Requests that a message be sent. The bit automatically clears when the message is successfully sent. \\
\hline & \(0=\) Clearing the bit to '0' while set requests a message abort. \\
\hline \multirow[t]{3}{*}{bit 2} & RTRENm: Auto-Remote Transmit Enable bit \\
\hline & 1 = When a remote transmit is received, TXREQ will be set \\
\hline & \(0=\) When a remote transmit is received, TXREQ will be unaffected \\
\hline \multirow[t]{5}{*}{bit 1-0} & TXmPRI<1:0>: Message Transmission Priority bits \\
\hline & 11 = Highest message priority \\
\hline & 10 = High intermediate message priority \\
\hline & 01 = Low intermediate message priority \\
\hline & 00 = Lowest message priority \\
\hline
\end{tabular}

Note 1: This bit is cleared when TXREQ is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

\section*{}

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN Special Function Registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

\section*{BUFFER 21-1: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 0}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline- & - & - & SID10 & SID9 & SID8 & SID7 & SID6 \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline SID5 & SID4 & SID3 & SID2 & SID1 & SID0 & SRR & IDE \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemente & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & '0' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-2 SID<10:0>: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit
1 = Message will request remote transmission
0 = Normal message
bit \(0 \quad\) IDE: Extended Identifier bit
1 = Message will transmit extended identifier
\(0=\) Message will transmit standard identifier

BUFFER 21-2: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline- & - & - & - & EID17 & EID16 & EID15 & EID14 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ R/W-x } \\
\hline R/W-x & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline EID13 & EID12 & EID11 & EID10 & EID9 & EID8 & EID7 & EID6 \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{ll} 
bit 15-12 & Unimplemented: Read as ' 0 ' \\
bit 11-0 & EID<17:6>: Extended Identifier bits
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID5 & EID4 & EID3 & EID2 & EID1 & EID0 & RTR & RB1 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-x & U-x & U-x & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline - & - & - & RB0 & DLC3 & DLC2 & DLC1 & DLC0 \\
\hline \multicolumn{8}{|l|}{bit 7 bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-10 EID<5:0>: Extended Identifier bits
bit \(9 \quad\) RTR: Remote Transmission Request bit
1 = Message will request remote transmission
0 = Normal message
bit \(8 \quad\) RB1: Reserved Bit 1
User must set this bit to ' 0 ' per CAN protocol.
bit 7-5 Unimplemented: Read as ' 0 '
bit \(4 \quad\) RB0: Reserved Bit 0
User must set this bit to ' 0 ' per CAN protocol.
bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 3
\(\left.\begin{array}{|lcccccc|}\hline \text { R/W-x } & \text { R/W-x } & R / W-x & R / W-x & R / W-x & R / W-x & R / W-x\end{array}\right]\) R/W-x \begin{tabular}{llll} 
\\
\hline & & Byte 1 & \\
\hline bit 15 & & & \\
\hline
\end{tabular}

bit 15-8 \(\quad\) Byte \(1<15: 8>\) : ECAN \({ }^{\text {TM }}\) Message Byte 0
bit 7-0 Byte 0<7:0>: ECAN Message Byte 1

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 3} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 2} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & & W = Writable bit & & \(\mathrm{U}=\) Unimp & ed bit, rear & as '0' & \\
\hline -n = Value at POR & & ' 1 ' = Bit is set & & ' 0 ' = Bit is & & \(\mathrm{x}=\mathrm{Bit}\) is u & \\
\hline
\end{tabular}
bit 15-8 Byte \(3<15: 8>\) : ECAN \({ }^{\text {TM }}\) Message Byte 3
bit 7-0 Byte 2<7:0>: ECAN Message Byte 2

BUFFER 21-6: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 5
\begin{tabular}{|lcccccc|}
\hline\(R / W-x\) & \(R / W-x\)
\end{tabular}\(\quad\) R/W-x \begin{tabular}{lllll|}
\hline & & Byte 5 & & \\
\hline bit 15 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 4} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & & W = Writable bit & & \(\mathrm{U}=\) Unimp & ed bit, r & as '0' & \\
\hline \(-\mathrm{n}=\) Value at POR & & ' 1 ' = Bit is set & & ' 0 ' = Bit is & & \(\mathrm{x}=\mathrm{Bit}\) is & \\
\hline
\end{tabular}
bit 15-8 Byte 5<15:8>: ECAN \({ }^{\text {TM }}\) Message Byte 5
bit 7-0 Byte 4<7:0>: ECAN Message Byte 4

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 7} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 6} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}=\) Readable bit} & W = Writab & \multicolumn{5}{|c|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline -n = Value at POR & & ' 1 ' = Bit is & \multicolumn{3}{|c|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-8 & Byte \(\mathbf{7 < 1 5 : 8 >}\) : ECAN \({ }^{\text {TM }}\) Message Byte 7 \\
bit 7-0 & Byte \(\mathbf{6 < 7 : 0 >}\) : ECAN Message Byte 6
\end{tabular}

BUFFER 21-8: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 7
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline - & - & - & \multicolumn{5}{|c|}{FILHIT<4:0> \({ }^{(1)}\)} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-8 FILHIT<4:0>: Filter Hit Code bits \({ }^{(\mathbf{1})}\)
Encodes number of filter that resulted in writing this buffer.
bit 7-0 Unimplemented: Read as ' 0 '
Note 1: Only written by module for receive buffers, unused for transmit buffers.

\section*{2R20ICHIGBLSPEEED LOEBIT ANALOG-TO-DIGITAL CONVERTER (ADC)}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 44. "High-Speed 10-Bit Analog-to-Digital Converter (ADC)" (DS70321) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide high-speed successive approximation Analog-to-Digital conversions to support applications such as AC/DC and DC/DC power converters.

\subsection*{22.1 Features Overview}

The ADC module incorporates the following features:
- 10-bit resolution
- Unipolar inputs
- Up to two Successive Approximation Registers (SARs)
- Up to 24 external input channels
- Two internal analog inputs
- Dedicated result register for each analog input
- \(\pm 1\) LSB accuracy at 3.3V
- Single supply operation
- 4 Msps conversion rate at 3.3 V (devices with two SARs)
- 2 Msps conversion rate at 3.3 V (devices with one SAR)
- Low-power CMOS technology

\subsection*{22.2 Module Description}

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:
- AC/DC power supplies
- DC/DC converters
- Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This module can sample and convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated sample and hold circuits and one from the shared sample and hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.
This ADC design provides each pair of analog inputs (AN1,AN0), (AN3,AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".
In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application.
- Result alignment options
- Automated sampling
- External conversion start control
- Two internal inputs to monitor 1.2 V internal reference and EXTREF input signal
A block diagram of the ADC module is shown in Figure 22-2.

\section*{胥隐ds Modulg Fangctionalith商}

The high－speed 10 －bit ADC is designed to support power conversion applications when used with the High－Speed PWM module．The ADC may have one or two SAR modules，depending on the device variant．If two SARs are present on a device，two conversions can be processed at a time，yielding 4 Msps conversion rate．If only one SAR is present on a device，only one conversion can be processed at a time，yielding 2 Msps conversion rate．The high－speed 10－bit ADC produces two 10－bit conversion results in a 0.5 microsecond．
The ADC module supports up to 24 external analog inputs and two internal analog inputs．To monitor reference voltage，two internal inputs，AN24 and AN25， are connected to the EXTREF and internal band gap voltages（ 1.2 V ），respectively．

The analog reference voltage is defined as the device supply voltage（AVDD／AVss）．

The ADC module uses the following control and STATUS registers：
－ADCON：A／D Control Register
－ADSTAT：A／D Status Register
－ADBASE：A／D Base Register
－ADPCFG：A／D Port Configuration Register
－ADPCFG2：A／D Port Configuration Register 2
－ADCPCO：A／D Convert Pair Control Register 0
－ADCPC1：A／D Convert Pair Control Register 1
－ADCPC2：A／D Convert Pair Control Register 2
－ADCPC3：A／D Convert Pair Control Register 3
－ADCPC4：A／D Convert Pair Control Register 4
－ADCPC5：A／D Convert Pair Control Register 5
－ADCPC6：A／D Convert Pair Control Register 6
The ADCON register controls the operation of the ADC module．The ADSTAT register displays the status of the conversion processes．The ADPCFG registers configure the port pins as analog inputs or as digital I／O．The ADCPCx registers control the triggering of the ADC conversions．See Register 22－1 through Register 22－12 for detailed bit configurations．

Note：A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner．Individual sample and hold circuits can be triggered independently of each other．

\section*{DEVICES WITH ONE SAR}

 DEVICES WITH TWO SARS


DEVICES WITH TWO SARS
Even Numbered Inputs with Dedicated


Note 1: AN24 (EXTREF) is an internal analog input. To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled and EXTREF must be selected as the comparator reference.
2: AN25 (INTREF) is an internal analog input and is not available on a pin.

DEVICES WITH TWO SARS


\section*{}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & U-0 & R/W-0 \\
\hline ADON & - & ADSIDL & SLOWCLK \({ }^{(\mathbf{1})}\) & - & GSWTRG & - & FORM \(^{(\mathbf{1 2}}\) \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-1 & R/W-1 \\
\hline EIE \({ }^{(1)}\) & ORDER \({ }^{(1)}\) & SEQSAMP \({ }^{(1)}\) & ASYNCSAMP \({ }^{(1)}\) & - & & \multicolumn{2}{|l|}{ADCS<2:0> \({ }^{(1)}\)} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
bit 15 ADON: A/D Operating Mode bit
\(1=A / D\) converter module is operating
\(0=A / D\) converter is off
bit \(14 \quad\) Unimplemented: Read as ' 0 '
bit 13 ADSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 SLOWCLK: Enable The Slow Clock Divider bit \({ }^{(1)}\)
1 = ADC is clocked by the auxiliary PLL (ACLK)
\(0=\) ADC is clock by the primary PLL (Fvco)
bit 11 Unimplemented: Read as ' 0 '
bit 10 GSWTRG: Global Software Trigger bit
When this bit is set by the user, it will trigger conversions if selected by the TRGSRC<4:0> bits in the ADCPCx registers. This bit must be cleared by the user prior to initiating another global trigger (i.e., this bit is not auto-clearing).
bit \(9 \quad\) Unimplemented: Read as ' 0 '
bit \(8 \quad\) FORM: Data Output Format bit \({ }^{(1)}\)
1 = Fractional (Dout = dddd dddd dd00 0000)
\(0=\) Integer (Dout \(=0000\) 00dd dddd dddd)
bit \(7 \quad\) EIE: Early Interrupt Enable bit \({ }^{(1)}\)
1 = Interrupt is generated after first conversion is completed
\(0=\) Interrupt is generated after second conversion is completed
bit \(6 \quad\) ORDER: Conversion Order bit \({ }^{(1)}\)
1 = Odd numbered analog input is converted first, followed by conversion of even numbered input \(0=\) Even numbered analog input is converted first, followed by conversion of odd numbered input
bit 5 SEQSAMP: Sequential Sample Enable bit \({ }^{(1)}\)
1 = Shared Sample and Hold (S\&H) circuit is sampled at the start of the second conversion if ORDER \(=0\). If ORDER \(=1\), then the shared \(S \& H\) is sampled at the start of the first conversion.
\(0=\) Shared S\&H is sampled at the same time the dedicated S\&H is sampled if the shared S\&H is not currently busy with an existing conversion process. If the shared S\&H is busy at the time the dedicated S\&H is sampled, then the shared S\&H will sample at the start of the new conversion cycle.
bit 4 ASYNCSAMP: Asynchronous Dedicated S\&H Sampling Enable bit \({ }^{(1)}\)
\(1=\) The dedicated S\&H is constantly sampling and then terminates sampling as soon as the trigger pulse is detected.
\(0=\) The dedicated S\&H starts sampling when the trigger event is detected and completes the sampling process in two ADC clock cycles.

Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).

\section*{}
\begin{tabular}{|c|c|}
\hline bit 3 & Unimplemented: Read as '0' \\
\hline bit 2-0 & ADCS<2:0>: A/D Conversion Clock Divider Select bits \({ }^{(1)}\) \\
\hline & 111 = FADC/8 \\
\hline & 110 = FADC/7 \\
\hline & 101 = FADC/6 \\
\hline & 100 = FADC/5 \\
\hline & 011 = FADC/4 (default) \\
\hline & 010 = FADC/3 \\
\hline & 001 = FADC/2 \\
\hline & 000 = FADC/1 \\
\hline
\end{tabular}

Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & R/C-0, HS \\
\hline- & - & - & P12RDY & P11RDY & P10RDY & P9RDY & P8RDY \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/C-0, HS & R/C-0, HS \\
\hline P7RDY & P6RDY & P5RDY & P4RDY & P3RDY & P2RDY & P1RDY & P0RDY \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\(C=\) Clearable bit & \(H S=\) Hardware Settable bit & \\
\hline
\end{tabular}
bit 15-13 Unimplemented: Read as '0'
bit \(6 \quad\) P12RDY: Conversion Data for Pair 12 Ready bit
Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit \(5 \quad\) P11RDY: Conversion Data for Pair 11 Ready bit Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit 4 P10RDY: Conversion Data for Pair 10 Ready bit
Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit \(3 \quad\) P9RDY: Conversion Data for Pair 9 Ready bit Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit 2 P8RDY: Conversion Data for Pair 8 Ready bit Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit 1 P7RDY: Conversion Data for Pair 7 Ready bit
Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit 6 P6RDY: Conversion Data for Pair 6 Ready bit Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 5 P5RDY: Conversion Data for Pair 5 Ready bit Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit 4 P4RDY: Conversion Data for Pair 4 Ready bit
Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit 3 P3RDY: Conversion Data for Pair 3 Ready bit
Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit 2 P2RDY: Conversion Data for Pair 2 Ready bit Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit \(1 \quad\) P1RDY: Conversion Data for Pair 1 Ready bit
Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.
bit \(0 \quad\) PORDY: Conversion Data for Pair 0 Ready bit
Bit is set when data is ready in buffer, cleared when a ' 0 ' is written to this bit.

Note: \(\quad\) Not all PxRDY bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3, and Figure 22-4 for the available analog inputs.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{ADBASE<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & U-0 \\
\hline \multicolumn{7}{|c|}{ADBASE<7:1>} & - \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-1 ADBASE<15:1>: This register contains the base address of the user's ADC Interrupt Service Routine jump table. This register, when read, contains the sum of the ADBASE register contents and the encoded value of the PxRDY Status bits.
The encoder logic provides the bit number of the highest priority PxRDY bits where PORDY is the highest priority, and P6RDY is the lowest priority.
bit \(0 \quad\) Unimplemented: Read as ' 0 '

Note 1: The encoding results are shifted left two bits so bits 1-0 of the result are always zero.
2: As an alternative to using the ADBASE Register, the ADCP0-ADCP12 ADC Pair Conversion Complete Interrupts can be used to invoke A to D conversion completion routines for individual ADC input pairs.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ R/W-0 } & R/W-0 \\
\hline PCFG15 & PCFG14 & PCFG13 & PCFG12 & PCFG11 & PCFG10 & PCFG9 & PCFG8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ R/W-0 } & R/W-0 \\
\hline PCFG7 & PCFG6 & PCFG5 & PCFG4 & PCFG3 & PCFG2 & PCFG1 & PCFG0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 PCFG<15:0>: A/D Port Configuration Control bits
1 = Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVss
0 = Port pin in Analog mode, port read input disabled, A/D samples pin voltage

Note: \(\quad\) Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3, and Figure 22-4 for the available analog inputs (PCFGx = ANx, where \(x=0-15\) ).

\section*{REGISTER 22-5: ADPCFG2: AID PORT CONFIGURATION REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline PCFG23 & PCFG22 & PCFG21 & PCFG20 & PCFG19 & PCFG18 & PCFG17 & PCFG16 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{ll} 
bit 15-8 & Unimplemented: Read as ' 0 ' \\
bit 7-0 & PCFG<23:16>: A/D Port Configuration Control bits \\
& \(1=\) Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVsS \\
& \(0=\) Port pin in Analog mode, port read input disabled, A/D samples pin voltage
\end{tabular}

Note: \(\quad\) Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3, and Figure 22-4 for the available analog inputs (PCFGx = ANx, where \(x\) can be 0 through 15).

\begin{tabular}{|c|c|c|ccccc|}
\hline R/W-0 & R/W-0 \\
\hline IRQEN1 & PEND1 & SWTRG1 & & & TRGSRC1<4:0> & & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|ccccc|}
\hline \multicolumn{1}{|c}{ R/W-0 } & R/W-0 \\
\hline IRQEN0 & PEND0 & SWTRG0 & & & TRGSRC0<4:0> & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & IRQEN1: Interrupt Request Enable 1 bit \\
\hline & 1 = Enable IRQ generation when requested conversion of channels AN3 and AN2 is completed \(0=I R Q\) is not generated \\
\hline \multirow[t]{2}{*}{bit 14} & PEND1: Pending Conversion Status 1 bit \\
\hline & 1 = Conversion of channels AN3 and AN2 is pending. Set when selected trigger is asserted 0 = Conversion is complete \\
\hline \multirow[t]{4}{*}{bit 13} & SWTRG1: Software Trigger 1 bit \\
\hline & 1 = Start conversion of AN3 and AN2 (if selected in TRGSRC bits) \({ }^{(\mathbf{1})}\) \\
\hline & This bit is automatically cleared by hardware when the PEND1 bit is set. \\
\hline & \(0=\) Conversion is not started \\
\hline
\end{tabular}
bit 12-8 TRGSRC1<4:0>: Trigger 1 Source Selection bits
Selects trigger source for conversion of analog channels AN3 and AN2.
00000 = No conversion enabled
00001 = Individual software trigger selected
\(00010=\) Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
01001 = PWM Generator 6 primary trigger selected
01010 = PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = PWM secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
10000 = PWM Generator 3 secondary trigger selected
10001 = PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
10100 = PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
10110 = PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
\(11010=\) PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
\(11100=\) PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
\(11110=\) PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\section*{询REISTBRR R226:S6ADCRY带AID CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)}
bit \(7 \quad\) IRQENO: Interrupt Request Enable 0 bit
1 = Enable IRQ generation when requested conversion of channels AN1 and ANO is completed
\(0=I R Q\) is not generated
bit 6 PENDO: Pending Conversion Status 0 bit
1 = Conversion of channels AN1 and ANO is pending; set when selected trigger is asserted
\(0=\) Conversion is complete
bit 5 SWTRG0: Software Trigger 0 bit
1 = Start conversion of AN1 and ANO (if selected by TRGSRC bits) \({ }^{(\mathbf{1 )}}\)
This bit is automatically cleared by hardware when the PENDO bit is set.
\(0=\) Conversion is not started.
bit 4-0 TRGSRC0<4:0>: Trigger 0 Source Selection bits
Selects trigger source for conversion of analog channels AN1 and ANO.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
\(01001=\) PWM Generator 6 primary trigger selected
01010 = PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = PWM secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
\(01111=\) PWM Generator 2 secondary trigger selected
\(10000=\) PWM Generator 3 secondary trigger selected
\(10001=\) PWM Generator 4 secondary trigger selected
\(10010=\) PWM Generator 5 secondary trigger selected
\(10011=\) PWM Generator 6 secondary trigger selected
\(10100=\) PWM Generator 7 secondary trigger selected
\(10101=\) PWM Generator 8 secondary trigger selected
\(10110=\) PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
\(11010=\) PWM Generator 4 current-limit ADC trigger
\(11011=\) PWM Generator 5 current-limit ADC trigger
\(11100=\) PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
\(11110=\) PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\begin{tabular}{|c|c|c|ccccc|}
\hline R/W-0 & R/W-0 \\
\hline IRQEN3 & PEND3 & SWTRG3 & & & TRGSRC3<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline IRQEN2 & PEND2 & SWTRG2 & \multicolumn{5}{|c|}{TRGSRC2<4:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit \(15 \quad\) IRQEN3: Interrupt Request Enable 3 bit
1 = Enable IRQ generation when requested conversion of channels AN7 and AN6 is completed
\(0=I R Q\) is not generated
bit 14 PEND3: Pending Conversion Status 3 bit
1 = Conversion of channels AN7 and AN6 is pending. Set when selected trigger is asserted
\(0=\) Conversion is complete
bit 13
SWTRG3: Software Trigger 3 bit
1 = Start conversion of AN7 and AN6 (if selected in TRGSRC bits) \({ }^{(\mathbf{1})}\)
This bit is automatically cleared by hardware when the PEND3 bit is set.
\(0=\) Conversion is not started.
bit 12-8
TRGSRC3<4:0>: Trigger 3 Source Selection bits \({ }^{(1)}\)
Selects trigger source for conversion of analog channels AN7 and AN6.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
01001 = PWM Generator 6 primary trigger selected
01010 = PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = PWM secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
10000 = PWM Generator 3 secondary trigger selected
10001 = PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
10100 = PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
10110 = PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
11010 = PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
11110 = PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

bit \(7 \quad\) IRQEN2: Interrupt Request Enable 2 bit
1 = Enable IRQ generation when requested conversion of channels AN5 and AN4 is completed
\(0=I R Q\) is not generated
bit 6 PEND2: Pending Conversion Status 2 bit
1 = Conversion of channels AN5 and AN4 is pending; set when selected trigger is asserted.
\(0=\) Conversion is complete
bit 5 SWTRG2: Software Trigger 2 bit
1 = Start conversion of AN5 and AN4 (if selected by TRGSRC bits) \({ }^{(\mathbf{1})}\)
This bit is automatically cleared by hardware when the PEND2 bit is set.
\(0=\) Conversion is not started
bit 4-0 TRGSRC2<4:0>: Trigger 2 Source Selection bits
Selects trigger source for conversion of analog channels AN5 and AN4.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
\(00111=\) PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
01001 = PWM Generator 6 primary trigger selected
\(01010=\) PWM Generator 7 primary trigger selected
\(01011=\) PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = PWM secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
\(10000=\) PWM Generator 3 secondary trigger selected
10001 = PWM Generator 4 secondary trigger selected
\(10010=\) PWM Generator 5 secondary trigger selected
\(10011=\) PWM Generator 6 secondary trigger selected
\(10100=\) PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
10110 = PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
11010 = PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
11110 = PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\begin{tabular}{|c|c|c|ccccc|}
\hline R/W-0 & R/W-0 \\
\hline IRQEN5 & PEND5 & SWTRG5 & & & TRGSRC5<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|cccc|}
\hline \multicolumn{1}{|c}{ R/W-0 } & R/W-0 & \multicolumn{1}{c}{ R/W-0 } & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{l} 
IRQEN4 \\
\hline PEND4 \\
\hline SWTRG4 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit \(15 \quad\) IRQEN5: Interrupt Request Enable 5 bit
1 = Enable IRQ generation when requested conversion of channels AN11 and AN10 is completed
\(0=I R Q\) is not generated
bit 14 PEND5: Pending Conversion Status 5 bit
1 = Conversion of channels AN11 and AN10 is pending; set when selected trigger is asserted
\(0=\) Conversion is complete
bit 13 SWTRG5: Software Trigger 5 bit
1 = Start conversion of AN11 and AN10 (if selected in TRGSRC bits) \({ }^{(\mathbf{1 )}}\)
This bit is automatically cleared by hardware when the PEND5 bit is set.
\(0=\) Conversion is not started
bit 12-8
TRGSRC5<4:0>: Trigger 5 Source Selection bits
Selects trigger source for conversion of analog channels AN11 and AN10.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
01001 = PWM Generator 6 primary trigger selected
01010 = PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = PWM secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
10000 = PWM Generator 3 secondary trigger selected
10001 = PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
10100 = PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
10110 = PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
\(11010=\) PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
11110 = PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\section*{询REGISTBR R228:S6ADR㵝 AID CONVERT PAIR CONTROL REGISTER 2 (CONTINUED)}
bit \(7 \quad\) IRQEN4: Interrupt Request Enable 4 bit
1 = Enable IRQ generation when requested conversion of channels AN9 and AN8 is completed
\(0=I R Q\) is not generated
bit 6 PEND4: Pending Conversion Status 4 bit
1 = Conversion of channels AN9 and AN8 is pending; set when selected trigger is asserted
0 = Conversion is complete
bit 5 SWTRG4: Software Trigger4 bit
1 = Start conversion of AN9 and AN8 (if selected by TRGSRC bits) \({ }^{(\mathbf{1})}\)
This bit is automatically cleared by hardware when the PEND4 bit is set.
\(0=\) Conversion is not started
bit 4-0 TRGSRC4<4:0>: Trigger 4 Source Selection bits
Selects trigger source for conversion of analog channels AN9 and AN8.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
\(01001=\) PWM Generator 6 primary trigger selected
01010 = PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = Secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
\(01111=\) PWM Generator 2 secondary trigger selected
\(10000=\) PWM Generator 3 secondary trigger selected
\(10001=\) PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
10100 = PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
\(10110=\) PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
11010 = PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
\(11110=\) PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\begin{tabular}{|l|c|c|ccccc|}
\hline R/W-0 & R/W-0 \\
\hline IRQEN7 & PEND7 & SWTRG7 & & & TRGSRC7<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|cccc|}
\hline \multicolumn{1}{|c}{ R/W-0 } & R/W-0 & \multicolumn{1}{c}{ R/W-0 } & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{l} 
IRQEN6 \\
\hline PEND6 \\
\hline SWTRG6 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit \(15 \quad\) IRQEN7: Interrupt Request Enable 7 bit
1 = Enable IRQ generation when requested conversion of channels AN15 and AN14 is completed
\(0=I R Q\) is not generated
bit 14 PEND7: Pending Conversion Status 7 bit
1 = Conversion of channels AN15 and AN14 is pending; set when selected trigger is asserted
\(0=\) Conversion is complete
bit 13 SWTRG7: Software Trigger 7 bit
1 = Start conversion of AN15 and AN14 (if selected in TRGSRC bits) \({ }^{(\mathbf{1 )}}\)
This bit is automatically cleared by hardware when the PEND7 bit is set.
\(0=\) Conversion is not started
bit 12-8
TRGSRC7<4:0>: Trigger 7 Source Selection bits
Selects trigger source for conversion of analog channels AN15 and 14.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
01001 = PWM Generator 6 primary trigger selected
\(01010=\) PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = Secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
\(01111=\) PWM Generator 2 secondary trigger selected
10000 = PWM Generator 3 secondary trigger selected
10001 = PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
10100 = PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
10110 = PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
\(11010=\) PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
11110 = PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\section*{}
bit \(7 \quad\) IRQEN6: Interrupt Request Enable 6 bit
1 = Enable IRQ generation when requested conversion of channels AN13 and AN12 is completed
\(0=I R Q\) is not generated
bit 6 PEND6: Pending Conversion Status 6 bit
1 = Conversion of channels AN13 and AN12 is pending; set when selected trigger is asserted
0 = Conversion is complete
bit 5 SWTRG6: Software Trigger 6 bit
1 = Start conversion of AN13 and AN12 (if selected by TRGSRC bits) \({ }^{(\mathbf{1})}\)
This bit is automatically cleared by hardware when the PEND6 bit is set.
\(0=\) Conversion is not started
bit 4-0 TRGSRC6<4:0>: Trigger 6 Source Selection bits
Selects trigger source for conversion of analog channels AN13 and AN12.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
\(01001=\) PWM Generator 6 primary trigger selected
01010 = PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = Secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
10000 = PWM Generator 3 secondary trigger selected
\(10001=\) PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
10100 = PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
10110 = PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
11010 = PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
11110 = PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\begin{tabular}{|c|c|c|ccccc|}
\hline R/W-0 & R/W-0 \\
\hline IRQEN9 & PEND9 & SWTRG9 & & & TRGSRC9<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|cccc|}
\hline \multicolumn{1}{|c}{ R/W-0 } & R/W-0 & \multicolumn{1}{c}{ R/W-0 } & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{l} 
IRQEN8 \\
\hline PEND8 \\
\hline SWTRG8 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit \(15 \quad\) IRQEN9: Interrupt Request Enable 9 bit
1 = Enable IRQ generation when requested conversion of channels AN19 and AN18 is completed
\(0=I R Q\) is not generated
bit 14 PEND9: Pending Conversion Status 9 bit
1 = Conversion of channels AN19 and AN18 is pending; set when selected trigger is asserted
0 = Conversion is complete
bit 13 SWTRG9: Software Trigger 9 bit
1 = Start conversion of AN19 and AN18 (if selected in TRGSRC bits) \({ }^{(\mathbf{1 )}}\)
This bit is automatically cleared by hardware when the PEND9 bit is set.
\(0=\) Conversion is not started
bit 12-8
TRGSRC9<4:0>: Trigger 9 Source Selection bits
Selects trigger source for conversion of analog channels AN19 and AN18.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
01001 = PWM Generator 6 primary trigger selected
\(01010=\) PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = PWM secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
10000 = PWM Generator 3 secondary trigger selected
10001 = PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
10100 = PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
10110 = PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
\(11010=\) PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
11110 = PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\section*{询REGISTBR R2ZIE: 6 RC鸾 AID CONVERT PAIR CONTROL REGISTER 4 (CONTINUED)}
bit \(7 \quad\) IRQEN8: Interrupt Request Enable 8 bit
1 = Enable IRQ generation when requested conversion of channels AN17 and AN16 is completed
\(0=I R Q\) is not generated
bit \(6 \quad\) PEND8: Pending Conversion Status 8 bit
1 = Conversion of channels AN17 and AN16 is pending; set when selected trigger is asserted
\(0=\) Conversion is complete
bit 5 SWTRG8: Software Trigger 8 bit
1 = Start conversion of AN17 and AN16 (if selected by TRGSRC bits) \({ }^{(\mathbf{1})}\)
This bit is automatically cleared by hardware when the PEND8 bit is set.
\(0=\) Conversion is not started
bit 4-0
TRGSRC8<4:0>: Trigger 8 Source Selection bits
Selects trigger source for conversion of analog channels AN17 and AN16.
00000 = No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
01000 = PWM Generator 5 primary trigger selected
\(01001=\) PWM Generator 6 primary trigger selected
01010 = PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = PWM secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
10000 = PWM Generator 3 secondary trigger selected
\(10001=\) PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
10100 = PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
\(10110=\) PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
11010 = PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
11110 = PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\begin{tabular}{|c|c|c|ccccc|}
\hline \multicolumn{1}{|c}{ R/W-0 } & R/W-0 \\
\hline IRQEN11 & PEND11 & SWTRG11 & & & TRGSRC11<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|cccc|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{l} 
IRQEN10 \\
PEND10 \\
\hline
\end{tabular} SWTRG10
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & \begin{tabular}{l}
IRQEN11: Interrupt Request Enable 11 bit \\
1 = Enable IRQ generation when requested conversion of channels AN23 and AN22 is completed \\
\(0=I R Q\) is not generated
\end{tabular} \\
\hline bit 14 & \begin{tabular}{l}
PEND11: Pending Conversion Status 11 bit \\
1 = Conversion of channels AN23 and AN22 is pending; set when selected trigger is asserted \\
\(0=\) Conversion is complete
\end{tabular} \\
\hline bit 13 & \begin{tabular}{l}
SWTRG11: Software Trigger 11 bit \\
1 = Start conversion of AN23 and AN22 (if selected in TRGSRC bits) \({ }^{(\mathbf{1})}\). This bit is automatically cleared by hardware when the PEND11 bit is set. \\
\(0=\) Conversion is not started
\end{tabular} \\
\hline \multirow[t]{34}{*}{bit 12-8} & TRGSRC11<4:0>: Trigger 11 Source Selection bits \\
\hline & Selects trigger source for conversion of analog channels AN23 and AN22. \\
\hline & 00000 = No conversion enabled \\
\hline & 00001 = Individual software trigger selected \\
\hline & 00010 = Global software trigger selected \\
\hline & 00011 = PWM Special Event Trigger selected \\
\hline & 00100 = PWM Generator 1 primary trigger selected \\
\hline & 00101 = PWM Generator 2 primary trigger selected \\
\hline & 00110 = PWM Generator 3 primary trigger selected \\
\hline & 00111 = PWM Generator 4 primary trigger selected \\
\hline & 01000 = PWM Generator 5 primary trigger selected \\
\hline & 01001 = PWM Generator 6 primary trigger selected \\
\hline & 01010 = PWM Generator 7 primary trigger selected \\
\hline & 01011 = PWM Generator 8 primary trigger selected \\
\hline & 01100 = Timer1 period match \\
\hline & 01101 = PWM secondary special event trigger selected \\
\hline & 01110 = PWM Generator 1 secondary trigger selected \\
\hline & 01111 = PWM Generator 2 secondary trigger selected \\
\hline & 10000 = PWM Generator 3 secondary trigger selected \\
\hline & 10001 = PWM Generator 4 secondary trigger selected \\
\hline & 10010 = PWM Generator 5 secondary trigger selected \\
\hline & 10011 = PWM Generator 6 secondary trigger selected \\
\hline & 10100 = PWM Generator 7 secondary trigger selected \\
\hline & 10101 = PWM Generator 8 secondary trigger selected \\
\hline & 10110 = PWM Generator 9 secondary trigger selected \\
\hline & 10111 = PWM Generator 1 current-limit ADC trigger \\
\hline & 11000 = PWM Generator 2 current-limit ADC trigger \\
\hline & 11001 = PWM Generator 3 current-limit ADC trigger \\
\hline & 11010 = PWM Generator 4 current-limit ADC trigger \\
\hline & 11011 = PWM Generator 5 current-limit ADC trigger \\
\hline & 11100 = PWM Generator 6 current-limit ADC trigger \\
\hline & 11101 = PWM Generator 7 current-limit ADC trigger \\
\hline & 11110 = PWM Generator 8 current-limit ADC trigger \\
\hline & 11111 = Timer2 period match \\
\hline
\end{tabular}

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\section*{}
bit \(7 \quad\) IRQEN10: Interrupt Request Enable 10 bit
1 = Enable IRQ generation when requested conversion of channels AN21 and AN20 is completed
\(0=I R Q\) is not generated
bit 6 PEND10: Pending Conversion Status 10 bit
1 = Conversion of channels AN21 and AN20 is pending; set when selected trigger is asserted
\(0=\) Conversion is complete
bit 5 SWTRG10: Software Trigger 10 bit
1 = Start conversion of AN21 and AN20 (if selected by TRGSRC bits) \({ }^{(\mathbf{1})}\). This bit is automatically cleared by hardware when the PEND10 bit is set.
\(0=\) Conversion is not started
bit 4-0 TRGSRC10<4:0>: Trigger 10 Source Selection bits
Selects trigger source for conversion of analog channels AN21 and AN2O.
\(00000=\) No conversion enabled
00001 = Individual software trigger selected
00010 = Global software trigger selected
00011 = PWM Special Event Trigger selected
00100 = PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
00110 = PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
\(01000=\) PWM Generator 5 primary trigger selected
01001 = PWM Generator 6 primary trigger selected
01010 = PWM Generator 7 primary trigger selected
\(01011=\) PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
01101 = PWM secondary special event trigger selected
01110 = PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
\(10000=\) PWM Generator 3 secondary trigger selected
10001 = PWM Generator 4 secondary trigger selected
10010 = PWM Generator 5 secondary trigger selected
\(10011=\) PWM Generator 6 secondary trigger selected
\(10100=\) PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
10110 = PWM Generator 9 secondary trigger selected
10111 = PWM Generator 1 current-limit ADC trigger
11000 = PWM Generator 2 current-limit ADC trigger
11001 = PWM Generator 3 current-limit ADC trigger
11010 = PWM Generator 4 current-limit ADC trigger
11011 = PWM Generator 5 current-limit ADC trigger
11100 = PWM Generator 6 current-limit ADC trigger
11101 = PWM Generator 7 current-limit ADC trigger
11110 = PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline R/W-0 & \multirow[t]{2}{*}{R/W-0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline IRQEN12 & & SWTRG12 & \multicolumn{5}{|r|}{TRGSRC12<4:0>} \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable & & W = Writable & & \(\mathrm{U}=\) Unimp & ed bit, r & '0' & \\
\hline -n = Value at & & ' 1 ' = Bit is se & & ' 0 ' = Bit is & d & \(=\mathrm{Bit}\) is u & \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as '0'
bit \(7 \quad\) IRQEN12: Interrupt Request Enable 12 bit
1 = Enable IRQ generation when requested conversion of channels AN25 and AN24 is completed
\(0=I R Q\) is not generated
bit \(6 \quad\) PEND12: Pending Conversion Status 12 bit
1 = Conversion of channels AN25 and AN24 is pending; set when selected trigger is asserted \(0=\) Conversion is complete
bit 5 SWTRG12: Software Trigger 12 bit
1 = Start conversion of AN25 (INTREF) and AN24 (EXTREF) if selected by TRGSRC bits \({ }^{(1)}\)
This bit is automatically cleared by hardware when the PEND12 bit is set.
\(0=\) Conversion is not started.
bit 4-0 TRGSRC12<4:0>: Trigger 12 Source Selection bits
Selects trigger source for conversion of analog channels AN25 and AN24.
\(00000=\) No conversion enabled
00001 = Individual software trigger selected
\(00010=\) Global software trigger selected
\(00011=\) PWM Special Event Trigger selected
\(00100=\) PWM Generator 1 primary trigger selected
00101 = PWM Generator 2 primary trigger selected
\(00110=\) PWM Generator 3 primary trigger selected
00111 = PWM Generator 4 primary trigger selected
\(01000=\) PWM Generator 5 primary trigger selected
\(01001=\) PWM Generator 6 primary trigger selected
\(01010=\) PWM Generator 7 primary trigger selected
01011 = PWM Generator 8 primary trigger selected
\(01100=\) Timer1 period match
\(01101=\) PWM secondary special event trigger selected
\(01110=\) PWM Generator 1 secondary trigger selected
01111 = PWM Generator 2 secondary trigger selected
\(10000=\) PWM Generator 3 secondary trigger selected
10001 = PWM Generator 4 secondary trigger selected
\(10010=\) PWM Generator 5 secondary trigger selected
10011 = PWM Generator 6 secondary trigger selected
\(10100=\) PWM Generator 7 secondary trigger selected
10101 = PWM Generator 8 secondary trigger selected
\(10110=\) PWM Generator 9 secondary trigger selected
\(10111=\) PWM Generator 1 current-limit ADC trigger
\(11000=\) PWM Generator 2 current-limit ADC trigger
\(11001=\) PWM Generator 3 current-limit ADC trigger
\(11010=\) PWM Generator 4 current-limit ADC trigger
\(11011=\) PWM Generator 5 current-limit ADC trigger
\(11100=\) PWM Generator 6 current-limit ADC trigger
\(11101=\) PWM Generator 7 current-limit ADC trigger
\(11110=\) PWM Generator 8 current-limit ADC trigger
11111 = Timer2 period match
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ' 1 '. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

\section*{23.OICHIGBESPEEED 底湖ALOG COMPARATOR}

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 45. "High-Speed Analog Comparator" (DS70296) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33F SMPS Comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

\subsection*{23.1 Features Overview}

The SMPS comparator module offers the following major features:
- 16 selectable comparator inputs
- Up to four analog comparators
- 10-bit DAC for each analog comparator
- Programmable output polarity
- Interrupt generation capability
- DACOUT pin to provide DAC output
- DAC has three ranges of operation:
- AVDd/2
- Internal Reference 1.2V, 1\%
- External Reference < (AVDD - 1.6V)
- ADC sample and convert trigger capability
- Disable capability reduces power consumption
- Functional support for PWM module:
- PWM duty cycle control
- PWM period control
- PWM Fault detect

\subsection*{23.2 Module Description}

Figure 23-1 shows a functional block diagram of one analog comparator from the SMPS comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns . The comparator has a typical offset voltage of \(\pm 5 \mathrm{mV}\). The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.
The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

FIGURE 23-1: COMPARATOR MODULE BLOCK DIAGRAM


\section*{}

This module provides a means for the SMPS dsPIC DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 10-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:
- Generate an Interrupt
- Trigger an ADC Sample and Convert Process
- Truncate the PWM Signal (current limit)
- Truncate the PWM Period (current minimum)
- Disable the PWM Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: (1) generate an interrupt, (2) have the ADC take a sample and convert it, and (3) truncate the PWM output in response to a voltage being detected beyond its expected value.
The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

\subsection*{23.4 DAC}

The range of the DAC is controlled via an analog multiplexer that selects either \(\mathrm{AVDD} / 2\), internal 1.2 V , \(1 \%\) reference, or an external reference source, EXTREF. The full range of the DAC (AVDD/2) will typically be used when the chosen input source pin is shared with the ADC. The reduced range option (INTREF) will likely be used when monitoring current levels using a current sense resistor. Usually, the measured voltages in such applications are small ( \(<1.25 \mathrm{~V}\) ); therefore the option of using a reduced reference range for the comparator extends the available DAC resolution in these applications. The use of an external reference enables the user to connect to a reference that better suits their application.
DACOUT, shown in Figure 23-1, can only be associated with a single comparator at a given time.
Note: It should be ensured in software that multiple DACOE bits are not set. The output on the DACOUT pin will be indeterminate if multiple comparators enable the DAC output.

\subsection*{23.5 Interaction with I/O Buffers}

If the comparator module is enabled and a pin has been selected as the source for the comparator, then the chosen I/O pad must disable the digital input buffer associated with the pad to prevent excessive currents in the digital buffer due to analog input voltages.

\subsection*{23.6 Digital Logic}

The CMPCONx register (see Register 23-1) provides the control logic that configures the comparator module. The digital logic provides a glitch filter for the comparator output to mask transient signals in less than two instruction cycles. In Sleep or Idle mode, the glitch filter is bypassed to enable an asynchronous path from the comparator to the interrupt controller. This asynchronous path can be used to wake-up the processor from Sleep or Idle mode.
The comparator can be disabled while in Idle mode if the CMPSIDL bit is set. If a device has multiple comparators, if any CMPSIDL bit is set, then the entire group of comparators will be disabled while in Idle mode. This behavior reduces complexity in the design of the clock control logic for this module.
The digital logic also provides a one Tcy width pulse generator for triggering the ADC and generating interrupt requests.
The CMPDACx (see Register 23-2) register provides the digital input value to the reference DAC.
If the module is disabled, the DAC and comparator are disabled to reduce power consumption.

\subsection*{23.7 Comparator Input Range}

The comparator has a limitation for the input Common Mode Range (CMR) of (AVDD - 1.5 V ), typical. This means that both inputs should not exceed this range. As long as one of the inputs is within the Common Mode Range, the comparator output will be correct. However, any input exceeding the CMR limitation will cause the comparator input to be saturated.
If both inputs exceed the CMR, the comparator output will be indeterminate.

\subsection*{23.8 DAC Output Range}

The DAC has a limitation for the maximum reference voltage input of (AVDD - 1.6) volts. An external reference voltage input should not exceed this value or the reference DAC output will become indeterminate.

\subsection*{23.9 Comparator Registers}

The comparator module is controlled by the following registers:
- CMPCONx: Comparator Control Register
- CMPDACx: Comparator DAC Control Register

\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 \\
\hline CMPON & - & CMPSIDL & - & - & - & - & DACOE \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & U-0 & \multicolumn{2}{c|}{ R/W-0 } \\
\hline INSEL<1:0> & EXTREF & - & CMPSTAT & - & CMPPOL & RANGE \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15 CMPON: Comparator Operating Mode bit
\(1=\) Comparator module is enabled
\(0=\) Comparator module is disabled (reduces power consumption)
bit 14 Unimplemented: Read as ' 0 '
bit 13 CMPSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode.
\(0=\) Continue module operation in Idle mode
If a device has multiple comparators, any CMPSIDL bit set to ' 1 ' disables ALL comparators while in Idle mode.
bit 12-9 Reserved: Read as ' 0 '
bit 8 DACOE: DAC Output Enable
1 = DAC analog voltage is output to DACOUT pin \({ }^{(1)}\)
\(0=\) DAC analog voltage is not connected to DACOUT pin
bit 7-6 INSEL<1:0>: Input Source Select for Comparator bits
\(00=\) Select CMPxA input pin
\(01=\) Select CMPxB input pin
\(10=\) Select CMPxC input pin
11 = Select CMPxD input pin
bit 5 EXTREF: Enable External Reference bit
1 = External source provides reference to DAC (maximum DAC voltage determined by external voltage source)
\(0=\) Internal reference sources provide reference to DAC (maximum DAC voltage determined by RANGE bit setting)
bit 4 Reserved: Read as ' 0 '
bit 3 CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit
bit 2 Reserved: Read as ' 0 '
bit 1 CMPPOL: Comparator Output Polarity Control bit
1 = Output is inverted
0 = Output is non-inverted
bit \(0 \quad\) RANGE: Selects DAC Output Voltage Range bit
1 = High Range: Max DAC Value \(=A V D D / 2,1.65 \mathrm{~V}\) at 3.3 V AVDD
0 = Low Range: Max DAC Value \(=\operatorname{INTREF}, 1.2 \mathrm{~V}, \pm 1 \%\)
Note 1: DACOUT can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DAC output by setting their respective DACOE bit.



\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(\prime 0\) = Bit is cleared
\end{tabular}
bit 15-10 Reserved: Read as ' 0 '
bit 9-0 CMREF<9:0>: Comparator Reference Voltage Select bits
```

1111111111 = (CMREF * INTREF/1024) or (CMREF * (AVDD/2)/1024) volts depending on RANGE
bit or (CMREF * EXTREF/1024) if EXTREF is set
\bullet
•
-
0000000000 = 0.0 volts

```

\section*{旬dsPIC33FJ32GS606供应商}

\section*{24．0 SPECIAL FEATURES}

Note 1：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices．It is not intended to be a compre－ hensive reference source．To comple－ ment the information in this data sheet， refer to the＂dsPIC33F／PIC24H Family Reference Manual＂．Please see the Microchip web site（www．microchip．com） for the latest＂dsPIC33F／PIC24H Family Reference Manual＂sections．

2：Some registers and associated bits described in this section may not be avail－ able on all devices．Refer to Section 4.0 ＂Memory Organization＂in this data sheet for device－specific register and bit information．

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices include several features intended to maximize application flexibility and reliability，and minimize cost through elimination of external components．These are：
－Flexible Configuration
－Watchdog Timer（WDT）
－Code Protection and CodeGuard \({ }^{\text {TM }}\) Security
－JTAG Boundary Scan Interface
－In－Circuit Serial Programming \({ }^{\text {TM }}\)（ICSP \({ }^{\text {TM }}\) ）
－In－Circuit Emulation
－Brown－out Reset（BOR）

\section*{24．1 Configuration Bits}

The Configuration bits can be programmed（read as＇ 0 ＇），or left unprogrammed（read as＇ 1 ＇），to select various device configurations．These bits are mapped starting at program memory location 0xF80000．
The individual Configuration bit descriptions for the Configuration registers are shown in Table 24－2．
Note that address，0xF80000，is beyond the user pro－ gram memory space．It belongs to the configuration memory space（0x800000－0xFFFFFF），which can only be accessed using table reads and table writes．
The device Configuration register map is shown in Table 24－1．

TABLE 24－1：DEVICE CONFIGURATION REGISTER MAP
\begin{tabular}{|l|l|c|c|c|c|c|c|c|c|c|}
\hline Address & Name & Bit 7 & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 \\
\hline \hline 0xF80000 & FBS & - & - & - & - & & \multicolumn{2}{|c|}{ BSS＜2：0＞} & BWRP \\
\hline 0xF80002 & RESERVED & - & - & - & - & - & - & - & - \\
\hline 0xF80004 & FGS & - & - & - & - & - & GSS＜1：0＞ & GWRP \\
\hline 0xF80006 & FOSCSEL & IESO & - & - & & - & \multicolumn{2}{|c|}{ FNOSC＜2：0＞} \\
\hline 0xF80008 & FOSC & FCKSM＜1：0＞ & - & - & - & \multicolumn{2}{|c|}{ OSCIOFNC } & POSCMD＜1：0＞ \\
\hline 0xF8000A & FWDT & FWDTEN & WINDIS & - & WDTPRE & \multicolumn{2}{|c|}{ WDTPOST＜3：0＞} \\
\hline 0xF8000C & FPOR & - & ALTQIO & ALTSS1 & - & - & \multicolumn{2}{|c|}{ FPWRT＜2：0＞} \\
\hline 0xF8000E & FICD & Reserved \\
\hline 0xF80010 & Reserved & （1） & JTAGEN & - & - & - & ICS＜1：0＞ \\
\hline
\end{tabular}

Legend：－＝unimplemented bit，read as＇ 0 ＇．
Note 1：These bits are reserved for use by development tools and must be programmed as＇ 1 ＇．
2：These bits are reserved on dsPIC33FJXXXGS406 devices and always read as＇ 1 ＇．

查询dsPIC33FJ32GS606供应商
TABLE 24－2：dSPIC33F CONFIGURATION BITS DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Bit Field & Register & Description \\
\hline BWRP & FBS & \begin{tabular}{l}
Boot Segment Program Flash Write Protection bit 1 ＝Boot segment can be written \\
\(0=\) Boot segment is write－protected
\end{tabular} \\
\hline BSS＜2：0＞ & FBS & \begin{tabular}{l}
Boot Segment Program Flash Code Protection Size bits \\
X11＝No boot program Flash segment \\
Boot space is 256 instruction words（except interrupt vectors） \\
110 ＝Standard security；boot program Flash segment ends at 0x0003FE \\
\(010=\) High security；boot program Flash segment ends at 0x0003FE \\
Boot space is 768 instruction words（except interrupt vectors） \\
101 ＝Standard security；boot program Flash segment ends at 0x0007FE \\
\(001=\) High security；boot program Flash segment ends at 0x0007FE \\
Boot space is 1792 instruction words（except interrupt vectors） \\
100 ＝Standard security；boot program Flash segment ends at 0x000FFE \\
\(000=\) High security；boot program Flash segment ends at 0x000FFE
\end{tabular} \\
\hline GSS＜1：0＞ & FGS & \begin{tabular}{l}
General Segment Code－Protect bits \\
11 ＝User program memory is not code－protected \\
10 ＝Standard security \\
\(0 x=\) High security
\end{tabular} \\
\hline GWRP & FGS & \begin{tabular}{l}
General Segment Write－Protect bit \\
1 ＝User program memory is not write－protected \\
\(0=\) User program memory is write－protected
\end{tabular} \\
\hline IESO & FOSCSEL & \begin{tabular}{l}
Two－speed Oscillator Start－up Enable bit \\
1 ＝Start－up device with FRC，then automatically switch to the user－selected oscillator source when ready \\
\(0=\) Start－up device with user－selected oscillator source
\end{tabular} \\
\hline FNOSC＜2：0＞ & FOSCSEL & ```
Initial Oscillator Source Selection bits
111 = Internal Fast RC (FRC) oscillator with postscaler
\(110=\) Internal Fast RC (FRC) oscillator with divide-by-16
101 = LPRC oscillator
100 = Secondary (LP) oscillator
011 = Primary (XT, HS, EC) oscillator with PLL
010 = Primary (XT, HS, EC) oscillator
001 = Internal Fast RC (FRC) oscillator with PLL
000 = FRC oscillator
``` \\
\hline FCKSM＜1：0＞ & FOSC & \begin{tabular}{l}
Clock Switching Mode bits \\
\(1 x=\) Clock switching is disabled，Fail－Safe Clock Monitor is disabled \\
\(01=\) Clock switching is enabled，Fail－Safe Clock Monitor is disabled \\
\(00=\) Clock switching is enabled，Fail－Safe Clock Monitor is enabled
\end{tabular} \\
\hline OSCIOFNC & FOSC & \begin{tabular}{l}
OSC2 Pin Function bit（except in XT and HS modes） 1 ＝OSC2 is clock output \\
\(0=\) OSC2 is general purpose digital I／O pin
\end{tabular} \\
\hline POSCMD＜1：0＞ & FOSC & \begin{tabular}{l}
Primary Oscillator Mode Select bits \\
11 ＝Primary oscillator disabled \\
10 ＝HS Crystal Oscillator mode \\
01 ＝XT Crystal Oscillator mode \\
00 ＝EC（External Clock）mode
\end{tabular} \\
\hline
\end{tabular}

询dsPIC33FJ32GS606供应商
TABLE 24－2：dsPIC33F CONFIGURATION BITS DESCRIPTION（CONTINUED）
\begin{tabular}{|c|c|c|}
\hline Bit Field & Register & Description \\
\hline FWDTEN & FWDT & \begin{tabular}{l}
Watchdog Timer Enable bit \\
1 ＝Watchdog Timer always enabled（LPRC oscillator cannot be disabled； clearing the SWDTEN bit in the RCON register will have no effect） \\
\(0=\) Watchdog Timer enabled／disabled by user software（LPRC can be disabled by clearing the SWDTEN bit in the RCON register）
\end{tabular} \\
\hline WINDIS & FWDT & \begin{tabular}{l}
Watchdog Timer Window Enable bit \\
1 ＝Watchdog Timer in Non－Window mode \\
0 ＝Watchdog Timer in Window mode
\end{tabular} \\
\hline WDTPRE & FWDT & Watchdog Timer Prescaler bit
\[
\begin{aligned}
& 1=1: 128 \\
& 0=1: 32
\end{aligned}
\] \\
\hline WDTPOST＜3：0＞ & FWDT & Watchdog Timer Postscaler bits
\[
\begin{aligned}
& 1111=1: 32,768 \\
& 1110=1: 16,384
\end{aligned}
\] \\
\hline FPWRT＜2：0＞ & FPOR & \begin{tabular}{l}
Power－on Reset Timer Value Select bits \\
111 ＝PWRT \(=128 \mathrm{~ms}\) \\
\(110=\) PWRT \(=64 \mathrm{~ms}\) \\
\(101=\) PWRT \(=32 \mathrm{~ms}\) \\
\(100=\) PWRT \(=16 \mathrm{~ms}\) \\
\(011=\) PWRT \(=8 \mathrm{~ms}\) \\
\(010=\) PWRT \(=4 \mathrm{~ms}\) \\
\(001=\) PWRT \(=2 \mathrm{~ms}\) \\
\(000=\) PWRT \(=\) Disabled
\end{tabular} \\
\hline JTAGEN & FICD & JTAG Enable bit 1 ＝JTAG is enabled \(0=\) JTAG is disabled \\
\hline ICS＜1：0＞ & FICD & \begin{tabular}{l}
ICD Communication Channel Select Enable bits \\
11 ＝Communicate on PGEC1 and PGED1 \\
\(10=\) Communicate on PGEC2 and PGED2 \\
01 ＝Communicate on PGEC3 and PGED3 \\
00 ＝Reserved，do not use．
\end{tabular} \\
\hline ALTQIO & FPOR & \begin{tabular}{l}
Enable Alternate QEI1 pin bit 1 ＝QEA1，QEB1 and INDX1 are selected as inputs to QEI1 \\
0 ＝AQEA1，AQEB1 and AINDX1 are selected as inputs to QEI1
\end{tabular} \\
\hline ALTSS1 & FPOR & \begin{tabular}{l}
Enable Alternate \(\overline{\mathrm{SS1}}\) pin bit \\
\(1=\overline{\text { ASS } 1}\) is selected as the I／O pin for SPI1 \\
\(0=\overline{\text { SS1 }}\) is selected as the I／O pin for SPI1
\end{tabular} \\
\hline CMPPOLO & FCMP & \begin{tabular}{l}
Comparator Hysteresis Polarity（for even numbered comparators） \(1=\) Hysteresis is applied to falling edge \\
\(0=\) Hysteresis is applied to rising edge
\end{tabular} \\
\hline HYST0＜1：0＞ & FCMP & \begin{tabular}{l}
Comparator Hysteresis Select \\
\(11=45 \mathrm{mV}\) Hysteresis \\
\(10=30 \mathrm{mV}\) Hysteresis \\
\(01=15 \mathrm{mV}\) Hysteresis \\
\(00=\) No Hysteresis
\end{tabular} \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

TABLE 24－2：dsPIC33F CONFIGURATION BITS DESCRIPTION（CONTINUED）
\begin{tabular}{|c|c|c|}
\hline Bit Field & Register & Description \\
\hline CMPPOL1 & FCMP & Comparator Hysteresis Polarity（for odd numbered comparators） \(1=\) Hysteresis is applied to falling edge \(0=\) Hysteresis is applied to rising edge \\
\hline HYST1＜1：0＞ & FCMP & \begin{tabular}{l}
Comparator Hysteresis Select \\
11 ＝ 45 mV Hysteresis \\
\(10=30 \mathrm{mV}\) Hysteresis \\
\(01=15 \mathrm{mV}\) Hysteresis \\
\(00=\) No Hysteresis
\end{tabular} \\
\hline
\end{tabular}

\section*{24．2 On－Chip Voltage Regulator}

The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices power their core digital logic at a nominal 2.5 V ．This can create a con－ flict for designs that are required to operate at a higher typical voltage，such as 3.3 V ．To simplify system design， all devices in the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families incorporate an on－chip regulator that allows the device to run its core logic from VDD．
The regulator provides power to the core from the other VDD pins．When the regulator is enabled，a low－ESR （less than 5 ohms）capacitor（such as tantalum or ceramic）must be connected to the Vcap／Vddcore pin （Figure 24－1）．This helps to maintain the stability of the regulator．The recommended value for the filter capacitor is provided in Table 27－13 located in Section 27.1 ＂DC Characteristics＂．

Note：It is important for the low－ESR capacitor to be placed as close as possible to the VCAP／VDDCORE pin．

On a POR，it takes approximately \(20 \mu\) s for the on－chip voltage regulator to generate an output voltage．During this time，designated as Tstartup，code execution is disabled．Tstartup is applied every time the device resumes operation after any power－down．

FIGURE 24－1：CONNECTIONS FOR THE ON－CHIP VOLTAGE REGULATOR \({ }^{(1,2)}\)

\section*{ \\ \(24.3-30 R\) : Brown out Reset}

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).
A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).
If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON \(<5>\)) is ' 1 '.
Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.
The BOR Status bit (\(\mathrm{RCON}<1>\)) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

\subsection*{24.4 Watchdog Timer (WDT)}

For dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

\subsection*{24.4.1 PRESCALER/POSTSCALER}

The nominal WDT clock source from LPRC is 32.767 kHz . This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32.767 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.
A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:
- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

\subsection*{24.4.2 SLEEP AND IDLE MODES}

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the WDT will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (\(\mathrm{RCON}<3: 2>\)) will need to be cleared in software after the device wakes up.

\subsection*{24.4.3 ENABLING WDT}

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.
The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to ' 0 '. The WDT is enabled in software by setting the SWDTEN control bit (\(\mathrm{RCON}<5>\)). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.
\begin{tabular}{|ll|}
\hline Note: & \begin{tabular}{l}
If the WINDIS bit (FWDT<6>) is cleared, the \\
\\
\\
CLRWDT instruction should be executed by \\
the application software only during the last \\
\\
\\
\\
\\
\\
\\
window of the WDT period. This CLRWDT \\
\\
\\
\\
If a CLRWDT instruction is by executed before \\
this window, a WDT Reset occurs.
\end{tabular} \\
\hline
\end{tabular}

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

\section*{龺询賏：24－2：－}

\section*{24．5 JTAG Interface}
dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices implement a JTAG interface，which supports boundary scan device testing，as well as in－circuit programming． Detailed information on this interface will be provided in future revisions of the document．

\section*{24．6 In－Circuit Serial Programming}
dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 family digital signal controllers can be serially programmed while in the end application circuit．This is done with two lines for clock and data and three other lines for power，ground and the programming sequence．Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product．Serial programming also allows the most recent firmware or a custom firmware to be programmed．Refer to the ＂dsPIC33F／PIC24H Flash Programming Specification＂ （DS70152）for details about In－Circuit Serial Programming（ICSP）．
Any of the three pairs of programming clock／data pins can be used：
－PGEC1 and PGED1
－PGEC2 and PGED2
－PGEC3 and PGED3

\section*{24．7 In－Circuit Debugger}

When MPLAB \({ }^{\circledR}\) ICD 2 is selected as a debugger，the in－ circuit debugging functionality is enabled．This function allows simple debugging functions when used with MPLAB IDE．Debugging functionality is controlled through the EMUCx（Emulation／Debug Clock）and EMUDx（Emulation／Debug Data）pin functions．
Any of the three pairs of debugging clock／data pins can be used：
－PGEC1 and PGED1
－PGEC2 and PGED2
－PGEC3 and PGED3
To use the in－circuit debugger function of the device， the design must implement ICSP connections to \(\overline{M C L R}\) ，VDD，Vss，PGC，PGD and the EMUDx／EMUCx pin pair．In addition，when the feature is enabled，some of the resources are not available for general use． These resources include the first 80 bytes of data RAM and two I／O pins．

\section*{询dsPIC33FJ32GS606供应商}
24.8 Code Protection and CodeGuard \({ }^{\text {TM }}\) Security
The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices offer the intermediate implementation of CodeGuard \({ }^{\text {TM }}\) Security． CodeGuard Security enables multiple parties to securely share resources（memory，interrupts and peripherals）on a single chip．This feature helps protect individual Intellectual Property in collaborative system designs．

When coupled with software encryption libraries， CodeGuard \({ }^{\text {TM }}\) Security can be used to securely update Flash even when multiple IPs reside on a single chip．
The code protection features are controlled by the Configuration registers：FBS and FGS．
Secure segment and RAM protection is not implemented in dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices．
Note：Refer to the＂CodeGuard Security Reference Manual＂（DS70180）for further information on usage，configuration and operation of CodeGuard Security．

TABLE 24－3：CODE FLASH SECURITY SEGMENT SIZES FOR 64K BYTE DEVICES

TABLE 24－4：CODE FLASH SECURITY SEGMENT SIZES FOR 32K BYTE DEVICES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{BSS＜2：0＞＝x11 0K} & \multicolumn{2}{|l|}{BSS \(<2: 0>=x 10\) 1K} & \multicolumn{2}{|l|}{BSS \(<2: 0>=x 014 \mathrm{~K}\)} & \multicolumn{2}{|l|}{BSS \(\langle 2: 0\rangle=x 008 \mathrm{~K}\)} \\
\hline VS＝ 256 IW & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 000000h } \\
& \text { 0001FEh } \\
& 00200 \mathrm{~h}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{VS}=256 \mathrm{IW} \\
& \hline \mathrm{BS}=768 \mathrm{IW}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 000000h } \\
& \text { 0001FEh } \\
& 000200 \mathrm{~h} \\
& \text { 0007FEh } \\
& 000800 \mathrm{~h}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{VS}=256 \mathrm{IW} \\
& \mathrm{BS}=3840 \mathrm{IW}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 000000h } \\
& \text { 0001FEh } \\
& 000200 \mathrm{~h}
\end{aligned}
\]} & VS＝ 256 IW & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 000000h } \\
& \text { 0001FEh } \\
& \text { 000200h }
\end{aligned}
\]} \\
\hline \multirow[b]{3}{*}{GS＝ 11008 IW} & & & & & & BS＝ 7936 IW & \\
\hline & \multirow[b]{2}{*}{0057FEh} & \multirow[b]{2}{*}{GS＝ 10240 IW} & \multirow[b]{2}{*}{0057FEh} & \multirow[b]{2}{*}{GS＝ 7168 IW} & \multirow[t]{2}{*}{\begin{tabular}{l}
001FFEh \\
002000h \\
0057FEh
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{GS＝3072 IW \({ }^{\text {a }}\) O03FFEh \({ }^{\text {004000h }}\) 0057FEh}} \\
\hline & & & & & & & \\
\hline & 00ABFEh & & 00ABFEh & & 00ABFEh & & 00ABFEh \\
\hline
\end{tabular}

\section*{旬dsPIC33FJ32GS606供应商}

\subsection*{25.0 INSTRUCTION SET SUMMARY}

Note：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to the＂dsPIC33F／PIC24H Family Reference Manual＂．Please see the Microchip web site （www．microchip．com）for the latest ＂dsPIC33F／PIC24H Family Reference Manual＂sections．

The dsPIC33F instruction set is identical to that of the dsPIC30F．

Most instructions are a single program memory word （24 bits）．Only three instructions require two program memory locations．
Each single－word instruction is a 24－bit word，divided into an 8－bit opcode，which specifies the instruction type and one or more operands，which further specify the operation of the instruction．
The instruction set is highly orthogonal and is grouped into five basic categories：
－Word or byte－oriented operations
－Bit－oriented operations
－Literal operations
－DSP operations
－Control operations
Table 25－1 shows the general symbols used in describing the instructions．
The dsPIC33F instruction set summary in Table 25－2 lists all the instructions，along with the status flags affected by each instruction．
Most word or byte－oriented W register instructions （including barrel shift instructions）have three operands：
－The first source operand，which is typically a register＇Wb＇without any address modifier
－The second source operand，which is typically a register＇Ws＇with or without an address modifier
－The destination of the result，which is typically a register＇Wd＇with or without an address modifier
However，word or byte－oriented file register instructions have two operands：
－The file register specified by the value，＇\(f\)＇
－The destination，which could be either the file register，＇ f ＇，or the W0 register，which is denoted as＇WREG＇

Most bit－oriented instructions（including simple rotate／shift instructions）have two operands：
－The W register（with or without an address modifier）or file register（specified by the value of ＇Ws＇or＇\(f\)＇）
－The bit in the W register or file register （specified by a literal value or indirectly by the contents of register＇Wb＇）

The literal instructions that involve data movement can use some of the following operands：
－A literal value to be loaded into a W register or file register（specified by＇k＇）
－The W register or file register where the literal value is to be loaded（specified by＇Wb＇or＇f＇）
However，literal instructions that involve arithmetic or logical operations use some of the following operands：
－The first source operand，which is a register＇Wb＇ without any address modifier
－The second source operand，which is a literal value
－The destination of the result（only if not the same as the first source operand），which is typically a register＇Wd＇with or without an address modifier
The MAC class of DSP instructions can use some of the following operands：
－The accumulator（A or B）to be used（required operand）
－The W registers to be used as the two operands
－The \(X\) and \(Y\) address space prefetch operations
－The \(X\) and \(Y\) address space prefetch destinations
－The accumulator write－back destination
The other DSP instructions do not involve any multiplication and can include：
－The accumulator to be used（required）
－The source or destination operand（designated as Wso or Wdo，respectively）with or without an address modifier
－The amount of shift specified by a \(W\) register， ＇Wn＇，or a literal value
The control instructions can use some of the following operands：
－A program memory address
－The mode of the table read and table write instructions

查询dsPIC33FJ32GS606供应商
Nost instructions are a single－word．Certain double－word instructions are designed to provide all the required information in these 48 bits．In the second word，the 8 MSbs are＇ 0 ＇s．If this second word is executed as an instruction（by itself），it will execute as a NOP．

The double－word instructions execute in two instruction cycles．
Most single－word instructions are executed in a single instruction cycle，unless a conditional test is true，or the program counter is changed as a result of the instruction．In these cases，the execution takes two instruction cycles with the additional instruction cycle（s） executed as a NOP．Notable exceptions are the BRA
（unconditional／computed branch），indirect CALL／GOTO， all table reads and writes and RETURN／RETFIE instructions，which are single－word instructions but take two or three cycles．Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed，depending on whether the instruction being skipped is a single－word or two－word instruction．Moreover，double－word moves require two cycles．

TABLE 25－1：SYMBOLS USED IN OPCODE DESCRIPTIONS
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline \＃text & Means literal defined by＂text＂ \\
\hline （text） & Means＂content of text＂ \\
\hline ［text］ & Means＂the location addressed by text＂ \\
\hline \｛ \} & Optional field or operation \\
\hline ＜n：m＞ & Register bit field \\
\hline ．b & Byte mode selection \\
\hline ．d & Double－Word mode selection \\
\hline ． 5 & Shadow register select \\
\hline ．w & Word mode selection（default） \\
\hline Acc & One of two accumulators \｛A，B\} \\
\hline AWB & Accumulator Write－Back Destination Address register \(\in\{\) W13，［W13］＋＝ 2\(\}\) \\
\hline bit4 & 4－bit bit selection field（used in word－addressed instructions）\(\in\{0 . . .15\}\) \\
\hline C，DC，N，OV，Z & MCU Status bits：Carry，Digit Carry，Negative，Overflow，Sticky Zero \\
\hline Expr & Absolute address，label or expression（resolved by the linker） \\
\hline f & File register address \(\in\{0 \times 0000 \ldots 0 \times 1 \mathrm{FFF}\}\) \\
\hline lit1 & 1－bit unsigned literal \(\in\{0,1\}\) \\
\hline lit4 & 4－bit unsigned literal \(\in\{0 . .15\}\) \\
\hline lit5 & 5 －bit unsigned literal \(\in\{0 . .31\}\) \\
\hline lit8 & 8 －bit unsigned literal \(\in\{0 . . .255\}\) \\
\hline lit10 & 10 －bit unsigned literal \(\in\{0 . .255\}\) for Byte mode，\(\{0: 1023\}\) for Word mode \\
\hline lit14 & 14 －bit unsigned literal \(\in\{0 . .16384\}\) \\
\hline lit16 & 16 －bit unsigned literal \(\in\{0 \ldots . .65535\}\) \\
\hline lit23 & 23 －bit unsigned literal \(\in\{0 . . .8388608\}\) ；LSb must be＇ 0 ＇ \\
\hline None & Field does not require an entry，can be blank \\
\hline OA，OB，SA，SB & DSP Status bits：ACCA Overflow，ACCB Overflow，ACCA Saturate，ACCB Saturate \\
\hline PC & Program Counter \\
\hline Slit10 & 10 －bit signed literal \(\in\{-512 . . .511\}\) \\
\hline Slit16 & 16 －bit signed literal \(\in\{-32768 . . .32767\}\) \\
\hline Slit6 & 6 －bit signed literal \(\in\{-16 . .16\}\) \\
\hline Wb & Base W register \(\in\left\{\begin{array}{l}\text { W0．．W15 }\end{array}\right.\) \\
\hline Wd & \\
\hline Wdo & \begin{tabular}{l}
Destination W register \(\in\) \\
\｛ Wnd，［Wnd］，［Wnd＋＋］，［Wnd－－］，［＋＋Wnd］，［－－Wnd］，［Wnd＋Wb］\}
\end{tabular} \\
\hline Wm，Wn & Dividend，Divisor Working register pair（Direct Addressing） \\
\hline
\end{tabular}

旬dsPIC33FJ32GS606供应商
TABLE 25－1：SYMBOLSUSED IN OPCODE DESCRIPTIONS（CONTINUED）
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Wm＊Wm & Multiplicand and Multiplier Working register pair for Square instructions \(\in\) \｛W4＊W4，W5＊W5，W6＊W6，W7＊W7\} \\
\hline Wm＊Wn & Multiplicand and Multiplier Working register pair for DSP instructions \(\in\) \｛W4＊W5，W4＊W6，W4＊W7，W5＊W6，W5＊W7，W6＊W7\} \\
\hline Wn & One of 16 Working registers \(\in\{\) W0．．W15\} \\
\hline Wnd & One of 16 Destination Working registers \(\in\{\) W0．．．W15\} \\
\hline Wns & One of 16 Source Working registers \(\in\{\) W0．．．W15\} \\
\hline WREG & W0（Working register used in file register instructions） \\
\hline Ws & Source W register \(\in\) \｛ Ws，［Ws］，［Ws＋＋］，［Ws－－］，［＋＋Ws］，［－－Ws］\} \\
\hline Wso & \begin{tabular}{l}
Source W register \(\in\) \\
\｛ Wns，［Wns］，［Wns＋＋］，［Wns－－］，［＋＋Wns］，［－－Wns］，［Wns＋Wb］\}
\end{tabular} \\
\hline Wx & X Data Space Prefetch Address register for DSP instructions
\[
\begin{aligned}
& \in \quad[\mathrm{FW} 8]+=6,[\mathrm{~W} 8]+=4,[\mathrm{~W} 8]+=2,[\mathrm{~W} 8],[\mathrm{W} 8]-=6,[\mathrm{~W} 8]-=4,[\mathrm{~W} 8]-=2, \\
& \\
& \\
& \\
& \\
& \\
& [\mathrm{~W} 9]+=6,[\mathrm{~W} 9]+\mathrm{W} 12], \text { none }\}
\end{aligned}
\] \\
\hline Wxd & X Data Space Prefetch Destination register for DSP instructions \(\in\{\) W44．．．W7\} \\
\hline Wy & ```
Y Data Space Prefetch Address register for DSP instructions
\in{[W10] + = 6,[W10] + = 4,[W10] + = 2,[W10],[W10] - = 6,[W10] - = 4,[W10] - = 2,
 [W11] + = 6,[W11] + = 4,[W11] + = 2,[W11],[W11] - = 6,[W11] - = 4,[W11] - = 2,
 [W11 + W12], none}
``` \\
\hline Wyd & Y Data Space Prefetch Destination register for DSP instructions \(\in\{\) W44．．．W7\} \\
\hline
\end{tabular}

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \# of Cycles & Status Flags Affected \\
\hline \multirow[t]{7}{*}{1} & \multirow[t]{7}{*}{ADD} & ADD & Acc & Add Accumulators & 1 & 1 & OA,OB,SA,SB \\
\hline & & ADD & \(f\) & \(\mathrm{f}=\mathrm{f}+\) WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & f, WREG & WREG = f + WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & \#lit10, Wn & Wd \(=\) lit10 + Wd & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{Ws}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit5}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wso,\#Slit4, Acc & 16-Bit Signed Add to Accumulator & 1 & 1 & OA,OB,SA,SB \\
\hline \multirow[t]{5}{*}{2} & \multirow[t]{5}{*}{ADDC} & ADDC & f & \(f=f+\) WREG + (C) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & f, WREG & WREG \(=\mathrm{f}+\mathrm{WREG}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & \#lit10,Wn & \(W \mathrm{~d}=\mathrm{lit} 10+\mathrm{Wd}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{Ws}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit5}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{5}{*}{3} & \multirow[t]{5}{*}{AND} & AND & f & \(\mathrm{f}=\mathrm{f}\). AND. WREG & 1 & 1 & N,Z \\
\hline & & AND & f,WREG & WREG = f .AND. WREG & 1 & 1 & N,Z \\
\hline & & AND & \#lit10,Wn & Wd = lit10.AND. Wd & 1 & 1 & N,Z \\
\hline & & AND & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}\). AND. Ws & 1 & 1 & N,Z \\
\hline & & AND & Wb,\#lit5, Wd & Wd = Wb .AND. lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{5}{*}{4} & \multirow[t]{5}{*}{ASR} & ASR & \(f\) & \(\mathrm{f}=\) Arithmetic Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & ASR & f, WREG & WREG = Arithmetic Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & ASR & Ws, Wd & Wd = Arithmetic Right Shift Ws & 1 & 1 & C, \(\mathrm{N}, \mathrm{OV}, \mathrm{Z}\) \\
\hline & & ASR & Wb, Wns, Wnd & Wnd = Arithmetic Right Shift Wb by Wns & 1 & 1 & N,Z \\
\hline & & ASR & Wb, \#lit5, Wnd & Wnd = Arithmetic Right Shift Wb by lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{BCLR} & BCLR & f,\#bit4 & Bit Clear f & 1 & 1 & None \\
\hline & & BCLR & Ws, \#bit4 & Bit Clear Ws & 1 & 1 & None \\
\hline \multirow[t]{22}{*}{6} & \multirow[t]{22}{*}{BRA} & BRA & C, Expr & Branch if Carry & 1 & 1 (2) & None \\
\hline & & BRA & GE, Expr & Branch if Greater Than or Equal & 1 & 1 (2) & None \\
\hline & & BRA & GEU, Expr & Branch if Unsigned Greater Than or Equal & 1 & 1 (2) & None \\
\hline & & BRA & GT, Expr & Branch if Greater Than & 1 & 1 (2) & None \\
\hline & & BRA & GTU, Expr & Branch if Unsigned Greater Than & 1 & 1 (2) & None \\
\hline & & BRA & LE, Expr & Branch if Less Than or Equal & 1 & 1 (2) & None \\
\hline & & BRA & LEU, Expr & Branch if Unsigned Less Than or Equal & 1 & 1 (2) & None \\
\hline & & BRA & LT, Expr & Branch if Less Than & 1 & 1 (2) & None \\
\hline & & BRA & LTU, Expr & Branch if Unsigned Less Than & 1 & 1 (2) & None \\
\hline & & BRA & N, Expr & Branch if Negative & 1 & 1 (2) & None \\
\hline & & BRA & NC, Expr & Branch if Not Carry & 1 & 1 (2) & None \\
\hline & & BRA & NN, Expr & Branch if Not Negative & 1 & 1 (2) & None \\
\hline & & BRA & NOV, Expr & Branch if Not Overflow & 1 & 1 (2) & None \\
\hline & & BRA & NZ, Expr & Branch if Not Zero & 1 & 1 (2) & None \\
\hline & & BRA & OA, Expr & Branch if Accumulator A Overflow & 1 & 1 (2) & None \\
\hline & & BRA & OB, Expr & Branch if Accumulator B Overflow & 1 & 1 (2) & None \\
\hline & & BRA & OV, Expr & Branch if Overflow & 1 & 1 (2) & None \\
\hline & & BRA & SA, Expr & Branch if Accumulator A Saturated & 1 & 1 (2) & None \\
\hline & & BRA & SB, Expr & Branch if Accumulator B Saturated & 1 & 1 (2) & None \\
\hline & & BRA & Expr & Branch Unconditionally & 1 & 2 & None \\
\hline & & BRA & Z, Expr & Branch if Zero & 1 & 1 (2) & None \\
\hline & & BRA & Wn & Computed Branch & 1 & 2 & None \\
\hline \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{BSET} & BSET & f,\#bit4 & Bit Set f & 1 & 1 & None \\
\hline & & BSET & Ws, \#bit4 & Bit Set Ws & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{BSW} & BSW.C & Ws, Wb & Write C bit to Ws<Wb> & 1 & 1 & None \\
\hline & & BSW.Z & Ws, Wb & Write Z bit to Ws<Wb> & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{BTG} & BTG & f, \#bit4 & Bit Toggle f & 1 & 1 & None \\
\hline & & BTG & Ws, \#bit4 & Bit Toggle Ws & 1 & 1 & None \\
\hline
\end{tabular}

旬dsPIC33FJ32GS606供应商
TABLE 25－2：INSTRUCTION SET OVERVIEW（CONTINUED）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \＃ & Assembly Mnemonic & & Assembly Syntax & Description & \＃of Words & \＃of Cycles & Status Flags Affected \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{BTSC} & BTSC & f，\＃bit4 & Bit Test f，Skip if Clear & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & & BTSC & Ws，\＃bit4 & Bit Test Ws，Skip if Clear & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{BTSS} & BTSS & f，\＃bit4 & Bit Test f，Skip if Set & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & & BTSS & Ws，\＃bit4 & Bit Test Ws，Skip if Set & 1 & \[
\begin{array}{c|}
\hline 1 \\
(2 \text { or } 3) \\
\hline
\end{array}
\] & None \\
\hline \multirow[t]{5}{*}{12} & \multirow[t]{5}{*}{BTST} & BTST & f，\＃bit4 & Bit Test f & 1 & 1 & Z \\
\hline & & BTST．C & Ws，\＃bit4 & Bit Test Ws to C & 1 & 1 & C \\
\hline & & BTST．Z & Ws，\＃bit4 & Bit Test Ws to Z & 1 & 1 & Z \\
\hline & & BTST．C & Ws，Wb & Bit Test Ws＜Wb＞to C & 1 & 1 & C \\
\hline & & BTST．Z & Ws，Wb & Bit Test Ws＜Wb＞to Z & 1 & 1 & Z \\
\hline \multirow[t]{3}{*}{13} & \multirow[t]{3}{*}{BTSTS} & BTSTS & f，\＃bit4 & Bit Test then Set f & 1 & 1 & Z \\
\hline & & BTSTS．C & Ws，\＃bit4 & Bit Test Ws to C，then Set & 1 & 1 & C \\
\hline & & BTSTS．Z & Ws，\＃bit4 & Bit Test Ws to Z，then Set & 1 & 1 & Z \\
\hline \multirow[t]{2}{*}{14} & \multirow[t]{2}{*}{CALL} & CALL & lit23 & Call Subroutine & 2 & 2 & None \\
\hline & & CALL & Wn & Call Indirect Subroutine & 1 & 2 & None \\
\hline \multirow[t]{4}{*}{15} & \multirow[t]{4}{*}{CLR} & CLR & f & \(\mathrm{f}=0 \times 0000\) & 1 & 1 & None \\
\hline & & CLR & WREG & WREG \(=0 \times 0000\) & 1 & 1 & None \\
\hline & & CLR & Ws & Ws＝0x0000 & 1 & 1 & None \\
\hline & & CLR & Acc，Wx，Wxd，Wy，Wyd，AWB & Clear Accumulator & 1 & 1 & OA，OB，SA，SB \\
\hline 16 & CLRWDT & CLRWDT & & Clear Watchdog Timer & 1 & 1 & WDTO，Sleep \\
\hline \multirow[t]{3}{*}{17} & \multirow[t]{3}{*}{COM} & COM & \(f\) & \(\mathrm{f}=\overline{\mathrm{f}}\) & 1 & 1 & N，Z \\
\hline & & COM & f，WREG & WREG＝ \(\bar{f}\) & 1 & 1 & N，Z \\
\hline & & COM & Ws，Wd & \(\mathrm{Wd}=\overline{\mathrm{Ws}}\) & 1 & 1 & N，Z \\
\hline \multirow[t]{3}{*}{18} & \multirow[t]{3}{*}{CP} & CP & \(f\) & Compare f with WREG & 1 & 1 & C，DC，N，OV，Z \\
\hline & & CP & Wb，\＃lit5 & Compare Wb with lit5 & 1 & 1 & C，DC，N，OV，Z \\
\hline & & CP & Wb，Ws & Compare Wb with Ws（Wb－Ws） & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{2}{*}{19} & \multirow[t]{2}{*}{CP0} & CP0 & f & Compare f with 0x0000 & 1 & 1 & C，DC，N，OV，Z \\
\hline & & CP0 & Ws & Compare Ws with 0x0000 & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{3}{*}{20} & \multirow[t]{3}{*}{CPB} & CPB & f & Compare f with WREG，with Borrow & 1 & 1 & C，DC，N，OV，Z \\
\hline & & CPB & Wb，\＃lit5 & Compare Wb with lit5，with Borrow & 1 & 1 & C，DC，N，OV，Z \\
\hline & & CPB & Wb，Ws & Compare Wb with Ws，with Borrow
\[
(\mathrm{Wb}-\mathrm{Ws}-\overline{\mathrm{C}})
\] & 1 & 1 & C，DC，N，OV，Z \\
\hline 21 & CPSEQ & CPSEQ & Wb，Wn & Compare Wb with Wn，Skip if＝ & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3 \text { ) } \\
\hline
\end{gathered}
\] & None \\
\hline 22 & CPSGT & CPSGT & Wb，Wn & Compare Wb with Wn，Skip if＞ & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3 \text { ) } \\
\hline
\end{gathered}
\] & None \\
\hline 23 & CPSLT & CPSLT & Wb，Wn & Compare Wb with Wn，Skip if＜ & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3) \\
\hline
\end{gathered}
\] & None \\
\hline 24 & CPSNE & CPSNE & Wb，Wn & Compare Wb with Wn，Skip if \(\neq\) & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3 \text { ) } \\
\hline
\end{gathered}
\] & None \\
\hline 25 & DAW & DAW & Wn & Wn＝Decimal Adjust Wn & 1 & 1 & C \\
\hline \multirow[t]{3}{*}{26} & \multirow[t]{3}{*}{DEC} & DEC & \(f\) & \(\mathrm{f}=\mathrm{f}-1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & DEC & f，WREG & WREG \(=\mathrm{f}-1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & DEC & Ws，Wd & \(\mathrm{Wd}=\mathrm{Ws}-1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{3}{*}{27} & \multirow[t]{3}{*}{DEC2} & DEC2 & \(f\) & \(\mathrm{f}=\mathrm{f}-2\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & DEC2 & f，WREG & WREG \(=\mathrm{f}-2\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & DEC2 & Ws，Wd & \(\mathrm{Wd}=\mathrm{Ws}-2\) & 1 & 1 & C，DC，N，OV，Z \\
\hline 28 & DISI & DISI & \＃lit14 & Disable Interrupts for k Instruction Cycles & 1 & 1 & None \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

TABLE 25－2：INSTRUCTION SET OVERVIEW（CONTINUED）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \＃ & Assembly Mnemonic & & Assembly Syntax & Description & \＃of Words & \＃of Cycles & Status Flags Affected \\
\hline \multirow[t]{4}{*}{29} & \multirow[t]{4}{*}{DIV} & DIV．S & Wm，Wn & Signed 16／16－bit Integer Divide & 1 & 18 & N，Z，C，OV \\
\hline & & DIV．SD & Wm，Wn & Signed 32／16－bit Integer Divide & 1 & 18 & N，Z，C，OV \\
\hline & & DIV．U & Wm，Wn & Unsigned 16／16－bit Integer Divide & 1 & 18 & N，Z，C，OV \\
\hline & & DIV．UD & Wm，Wn & Unsigned 32／16－bit Integer Divide & 1 & 18 & N，Z，C，OV \\
\hline 30 & DIVF & DIVF & Wm，Wn & Signed 16／16－bit Fractional Divide & 1 & 18 & N，Z，C，OV \\
\hline \multirow[t]{2}{*}{31} & \multirow[t]{2}{*}{DO} & DO & \＃lit14，Expr & Do code to PC＋Expr，lit14＋ 1 times & 2 & 2 & None \\
\hline & & DO & Wn，Expr & Do code to PC＋Expr，（Wn）＋ 1 times & 2 & 2 & None \\
\hline 32 & ED & ED & Wm＊Wm，Acc，Wx，Wy，Wxd & Euclidean Distance（no accumulate） & 1 & 1 & OA，OB，OAB， SA，SB，SAB \\
\hline 33 & EDAC & EDAC & Wm＊Wm，Acc，Wx，Wy，Wxd & Euclidean Distance & 1 & 1 & \[
\begin{aligned}
& \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB} \\
& \mathrm{SA}, \mathrm{SB}, \mathrm{SAB}
\end{aligned}
\] \\
\hline 34 & EXCH & EXCH & Wns，Wnd & Swap Wns with Wnd & 1 & 1 & None \\
\hline 35 & FBCL & FBCL & Ws，Wnd & Find Bit Change from Left（MSb）Side & 1 & 1 & C \\
\hline 36 & FF1L & FF1L & Ws，Wnd & Find First One from Left（MSb）Side & 1 & 1 & C \\
\hline 37 & FF1R & FF1R & Ws，Wnd & Find First One from Right（LSb）Side & 1 & 1 & C \\
\hline \multirow[t]{2}{*}{38} & \multirow[t]{2}{*}{GOTO} & GOTO & Expr & Go to Address & 2 & 2 & None \\
\hline & & GOTO & Wn & Go to Indirect & 1 & 2 & None \\
\hline \multirow[t]{3}{*}{39} & \multirow[t]{3}{*}{INC} & INC & f & \(\mathrm{f}=\mathrm{f}+1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & INC & f，WREG & WREG＝ \(\mathrm{f}+1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & INC & Ws，Wd & \(\mathrm{Wd}=\mathrm{Ws}+1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{3}{*}{40} & \multirow[t]{3}{*}{INC2} & INC2 & f & \(\mathrm{f}=\mathrm{f}+2\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & INC2 & f，WREG & WREG＝ \(\mathrm{f}+2\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & INC2 & Ws，Wd & \(\mathrm{Wd}=\mathrm{Ws}+2\) & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{5}{*}{41} & \multirow[t]{5}{*}{IOR} & IOR & f & \(\mathrm{f}=\mathrm{f}\). IOR．WREG & 1 & 1 & N，Z \\
\hline & & IOR & f，WREG & WREG＝f．IOR．WREG & 1 & 1 & N，Z \\
\hline & & IOR & \＃lit10，Wn & Wd＝lit10 ．IOR．Wd & 1 & 1 & N，Z \\
\hline & & IOR & Wb，Ws，Wd & Wd＝Wb ．IOR．Ws & 1 & 1 & N，Z \\
\hline & & IOR & Wb，\＃lit5，Wd & Wd＝Wb ．IOR．lit5 & 1 & 1 & N，Z \\
\hline 42 & LAC & LAC & Wso，\＃Slit4，Acc & Load Accumulator & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline 43 & LNK & LNK & \＃lit14 & Link Frame Pointer & 1 & 1 & None \\
\hline \multirow[t]{5}{*}{44} & \multirow[t]{5}{*}{LSR} & LSR & f & \(\mathrm{f}=\) Logical Right Shift f & 1 & 1 & C，N，OV，Z \\
\hline & & LSR & f，WREG & WREG＝Logical Right Shift f & 1 & 1 & C，N，OV，Z \\
\hline & & LSR & Ws，Wd & Wd＝Logical Right Shift Ws & 1 & 1 & C， \(\mathrm{N}, \mathrm{OV}, \mathrm{Z}\) \\
\hline & & LSR & Wb，Wns，Wnd & Wnd＝Logical Right Shift Wb by Wns & 1 & 1 & N，Z \\
\hline & & LSR & Wb，\＃lit5，Wnd & Wnd＝Logical Right Shift Wb by lit5 & 1 & 1 & N，Z \\
\hline \multirow[t]{2}{*}{45} & \multirow[t]{2}{*}{MAC} & MAC & Wm＊Wn，Acc，Wx，Wxd，Wy，Wyd AWB & Multiply and Accumulate & 1 & 1 & OA，OB，OAB， SA，SB，SAB \\
\hline & & MAC & Wm＊Wm，Acc，Wx，Wxd，Wy，Wyd & Square and Accumulate & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline \multirow[t]{10}{*}{46} & \multirow[t]{10}{*}{MOV} & MOV & f，Wn & Move f to Wn & 1 & 1 & None \\
\hline & & MOV & \(f\) & Move f to f & 1 & 1 & N，Z \\
\hline & & MOV & f，WREG & Move f to WREG & 1 & 1 & N，Z \\
\hline & & MOV & \＃lit16，Wn & Move 16－Bit Literal to Wn & 1 & 1 & None \\
\hline & & MOV．b & \＃lit8，Wn & Move 8－Bit Literal to Wn & 1 & 1 & None \\
\hline & & MOV & Wn，f & Move Wn to f & 1 & 1 & None \\
\hline & & MOV & Wso，Wdo & Move Ws to Wd & 1 & 1 & None \\
\hline & & MOV & WREG，f & Move WREG to f & 1 & 1 & N，Z \\
\hline & & MOV．D & Wns，Wd & Move Double from W（ns）：W（ns＋1）to Wd & 1 & 2 & None \\
\hline & & MOV．D & Ws，Wnd & Move Double from Ws to W（nd＋1）：W（nd） & 1 & 2 & None \\
\hline 47 & MOVSAC & MOVSAC & Acc，Wx，Wxd，Wy，Wyd，AWB & Prefetch and Store Accumulator & 1 & 1 & None \\
\hline
\end{tabular}

询dsPIC33FJ32GS606供应商
TABLE 25－2：INSTRUCTION SET OVERVIEW（CONTINUED）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Base Instr \＃ & Assembly Mnemonic & Assembly Syntax & Description & \＃of Words & \＃of Cycles & Status Flags Affected \\
\hline \multirow[t]{2}{*}{48} & \multirow[t]{2}{*}{MPY} & \begin{tabular}{l}
MPY \\
Wm＊Wn，Acc，Wx，Wxd，Wy，Wyd
\end{tabular} & Multiply Wm by Wn to Accumulator & 1 & 1 & \[
\begin{aligned}
& \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB} \\
& \mathrm{SA}, \mathrm{SB}, \mathrm{SAB}
\end{aligned}
\] \\
\hline & & \begin{tabular}{l}
MPY \\
Wm＊Wm，Acc，Wx，Wxd，Wy，Wyd
\end{tabular} & Square Wm to Accumulator & 1 & 1 & \[
\begin{aligned}
& \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB} \\
& \mathrm{SA}, \mathrm{SB}, \mathrm{SAB}
\end{aligned}
\] \\
\hline 49 & MPY．N & \begin{tabular}{l}
MPY．N \\
Wm＊Wn，Acc，Wx，Wxd，Wy，Wyd
\end{tabular} & －（Multiply Wm by Wn）to Accumulator & 1 & 1 & None \\
\hline 50 & MSC & \[
\begin{array}{ll}
\text { MSC } & \text { Wm*Wm, Acc, } W x, W x d, W y, \text { Wyd } \\
& \prime \\
& \text { AWB }
\end{array}
\] & Multiply and Subtract from Accumulator & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline \multirow[t]{7}{*}{51} & \multirow[t]{7}{*}{MUL} & MUL．SS Wb，Ws，Wnd & \(\{\mathrm{Wnd}+1, \mathrm{Wrd}\}=\operatorname{signed}(\mathrm{Wb}) * \operatorname{signed}(\mathrm{Ws})\) & 1 & 1 & None \\
\hline & & MUL．SU Wb，Ws，Wnd & \(\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\operatorname{signed}(\mathrm{Wb})\)＊unsigned（Ws） & 1 & 1 & None \\
\hline & & MUL．US Wb，Ws，Wnd & \(\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\) unsigned（Wb）＊signed（Ws） & 1 & 1 & None \\
\hline & & MUL．UU Wb，Ws，Wnd & \(\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\) unsigned \((\mathrm{Wb})\)＊ unsigned（Ws） & 1 & 1 & None \\
\hline & & MUL．SU Wb，\＃lit5，Wnd & \(\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\operatorname{signed}(\mathrm{Wb})\)＊unsigned（lit5） & 1 & 1 & None \\
\hline & & MUL．UU Wb，\＃lit5，Wnd & \(\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\) unsigned \((\mathrm{Wb})\)＊ unsigned（lit5） & 1 & 1 & None \\
\hline & & MUL f & W3：W2＝f＊WREG & 1 & 1 & None \\
\hline \multirow[t]{4}{*}{52} & \multirow[t]{4}{*}{NEG} & NEG Acc & Negate Accumulator & 1 & 1 & \[
\begin{aligned}
& \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB} \\
& \mathrm{SA}, \mathrm{SB}, \mathrm{SAB}
\end{aligned}
\] \\
\hline & & NEG f & \(f=\bar{f}+1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & NEG f，WREG & WREG \(=\overline{\mathrm{f}}+1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & NEG Ws，Wd & \(\mathrm{Wd}=\overline{\mathrm{Ws}}+1\) & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{2}{*}{53} & \multirow[t]{2}{*}{NOP} & NOP & No Operation & 1 & 1 & None \\
\hline & & NOPR & No Operation & 1 & 1 & None \\
\hline \multirow[t]{4}{*}{54} & \multirow[t]{4}{*}{POP} & POP f & Pop f from Top－of－Stack（TOS） & 1 & 1 & None \\
\hline & & POP Wdo & Pop from Top－of－Stack（TOS）to Wdo & 1 & 1 & None \\
\hline & & POP．D Wnd & Pop from Top－of－Stack（TOS）to W（nd）：W（nd＋1） & 1 & 2 & None \\
\hline & & POP．S & Pop Shadow Registers & 1 & 1 & All \\
\hline \multirow[t]{4}{*}{55} & \multirow[t]{4}{*}{PUSH} & PUSH f & Push f to Top－of－Stack（TOS） & 1 & 1 & None \\
\hline & & PUSH Wso & Push Wso to Top－of－Stack（TOS） & 1 & 1 & None \\
\hline & & PUSH．D Wns & Push W（ns）：W（ns＋1）to Top－of－Stack（TOS） & 1 & 2 & None \\
\hline & & PUSH．S & Push Shadow Registers & 1 & 1 & None \\
\hline 56 & PWRSAV & PWRSAV \＃lit1 & Go into Sleep or Idle mode & 1 & 1 & WDTO，Sleep \\
\hline \multirow[t]{2}{*}{57} & \multirow[t]{2}{*}{RCALL} & RCALL Expr & Relative Call & 1 & 2 & None \\
\hline & & RCALL Wn & Computed Call & 1 & 2 & None \\
\hline \multirow[t]{2}{*}{58} & \multirow[t]{2}{*}{REPEAT} & REPEAT \＃lit14 & Repeat Next Instruction lit14＋ 1 times & 1 & 1 & None \\
\hline & & REPEAT Wn & Repeat Next Instruction（Wn）＋ 1 times & 1 & 1 & None \\
\hline 59 & RESET & RESET & Software Device Reset & 1 & 1 & None \\
\hline 60 & RETFIE & RETFIE & Return from interrupt & 1 & 3 （2） & None \\
\hline 61 & RETLW & RETLW \＃lit10，Wn & Return with Literal in Wn & 1 & 3 （2） & None \\
\hline 62 & RETURN & RETURN & Return from Subroutine & 1 & 3 （2） & None \\
\hline \multirow[t]{3}{*}{63} & \multirow[t]{3}{*}{RLC} & RLC f & \(\mathrm{f}=\) Rotate Left through Carry f & 1 & 1 & C，N，Z \\
\hline & & RLC f，WREG & WREG＝Rotate Left through Carry f & 1 & 1 & C，N，Z \\
\hline & & RLC Ws，Wd & Wd＝Rotate Left through Carry Ws & 1 & 1 & C，N，Z \\
\hline \multirow[t]{3}{*}{64} & \multirow[t]{3}{*}{RLNC} & RLNC f & \(\mathrm{f}=\) Rotate Left（No Carry）f & 1 & 1 & N，Z \\
\hline & & RLNC f，WREG & WREG＝Rotate Left（No Carry）f & 1 & 1 & N，Z \\
\hline & & RLNC Ws，Wd & Wd＝Rotate Left（No Carry）Ws & 1 & 1 & N，Z \\
\hline \multirow[t]{3}{*}{65} & \multirow[t]{3}{*}{RRC} & RRC f & \(\mathrm{f}=\) Rotate Right through Carry f & 1 & 1 & C，N，Z \\
\hline & & RRC f，WREG & WREG＝Rotate Right through Carry f & 1 & 1 & C，N，Z \\
\hline & & RRC Ws，Wd & Wd＝Rotate Right through Carry Ws & 1 & 1 & C，N，Z \\
\hline
\end{tabular}

查询dsPIC33FJ32GS606供应商
TABLE 25－2：INSTRUCTIONSET OVERVIEW（CONTINUED）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \＃ & Assembly Mnemonic & & Assembly Syntax & Description & \＃of Words & \＃of Cycles & Status Flags Affected \\
\hline \multirow[t]{3}{*}{66} & \multirow[t]{3}{*}{RRNC} & RRNC & f & \(\mathrm{f}=\) Rotate Right（No Carry）f & 1 & 1 & N，Z \\
\hline & & RRNC & f，WREG & WREG＝Rotate Right（No Carry）f & 1 & 1 & N，Z \\
\hline & & RRNC & Ws，Wd & Wd＝Rotate Right（No Carry）Ws & 1 & 1 & N，Z \\
\hline \multirow[t]{2}{*}{67} & \multirow[t]{2}{*}{SAC} & SAC & Acc，\＃Slit4，Wdo & Store Accumulator & 1 & 1 & None \\
\hline & & SAC．R & Acc，\＃Slit4，Wdo & Store Rounded Accumulator & 1 & 1 & None \\
\hline 68 & SE & SE & Ws，Wnd & Wnd＝Sign－Extended Ws & 1 & 1 & C，N，Z \\
\hline \multirow[t]{3}{*}{69} & \multirow[t]{3}{*}{SETM} & SETM & f & \(\mathrm{f}=0 \times \mathrm{FFFF}\) & 1 & 1 & None \\
\hline & & SETM & WREG & WREG \(=0 \times \mathrm{FFFFF}\) & 1 & 1 & None \\
\hline & & SETM & Ws & Ws＝0xFFFFF & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{70} & \multirow[t]{2}{*}{SFTAC} & SFTAC & Acc，Wn & Arithmetic Shift Accumulator by（Wn） & 1 & 1 & OA，OB，OAB， SA，SB，SAB \\
\hline & & SFTAC & Acc，\＃Slit6 & Arithmetic Shift Accumulator by Slit6 & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{71} & \multirow[t]{5}{*}{SL} & SL & f & \(\mathrm{f}=\) Left Shift f & 1 & 1 & C，N，OV，Z \\
\hline & & SL & f，WREG & WREG＝Left Shift f & 1 & 1 & C，N，OV，Z \\
\hline & & SL & Ws，Wd & Wd＝Left Shift Ws & 1 & 1 & C，N，OV，Z \\
\hline & & SL & Wb，Wns，Wnd & Wnd＝Left Shift Wb by Wns & 1 & 1 & N，Z \\
\hline & & SL & Wb，\＃lit5，Wnd & Whd＝Left Shift Wb by lit5 & 1 & 1 & N，Z \\
\hline \multirow[t]{6}{*}{72} & \multirow[t]{6}{*}{SUB} & SUB & Acc & Subtract Accumulators & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline & & SUB & f & \(\mathrm{f}=\mathrm{f}-\) WREG & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUB & f，WREG & WREG \(=\mathrm{f}-\mathrm{WREG}\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUB & \＃lit10，Wn & \(W \mathrm{n}=\mathrm{W} \mathrm{n}-\) lit10 & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUB & Wb，Ws，Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUB & Wb，\＃lit5，Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit} 5\) & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{5}{*}{73} & \multirow[t]{5}{*}{SUBB} & SUBB & f & \(\mathrm{f}=\mathrm{f}-\) WREG \(-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBB & f，WREG & WREG \(=\mathrm{f}-\mathrm{WREG}-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBB & \＃lit10，Wn & \(W \mathrm{n}=\mathrm{Wn}-\mathrm{lit} 10-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBB & Wb，Ws，Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBB & Wb，\＃lit5，Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit5}-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{4}{*}{74} & \multirow[t]{4}{*}{SUBR} & SUBR & \(f\) & \(\mathrm{f}=\) WREG－ f & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBR & f，WREG & WREG＝WREG－\(f\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBR & Wb，Ws，Wd & \(\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBR & Wb，\＃lit5，Wd & \(\mathrm{Wd}=\) lit5 -Wb & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{4}{*}{75} & \multirow[t]{4}{*}{SUBBR} & SUBBR & \(f\) & \(f=\) WREG \(-\mathrm{f}-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBBR & f，WREG & WREG＝WREG－ \(\mathrm{f}-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBBR & Wb，Ws，Wd & \(\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline & & SUBBR & Wb，\＃lit5，Wd & \(\mathrm{Wd}=\) lit5 \(-\mathrm{Wb}-(\overline{\mathrm{C}})\) & 1 & 1 & C，DC，N，OV，Z \\
\hline \multirow[t]{2}{*}{76} & \multirow[t]{2}{*}{SWAP} & SWAP．b & Wn & Wn＝Nibble Swap Wn & 1 & 1 & None \\
\hline & & SWAP & Wn & Wn＝Byte Swap Wn & 1 & 1 & None \\
\hline 77 & TBLRDH & TBLRDH & Ws，Wd & Read Prog＜23：16＞to Wd＜7：0＞ & 1 & 2 & None \\
\hline 78 & TBLRDL & TBLRDL & Ws，Wd & Read Prog＜15：0＞to Wd & 1 & 2 & None \\
\hline 79 & TBLWTH & TBLWTH & Ws，Wd & Write Ws＜7：0＞to Prog＜23：16＞ & 1 & 2 & None \\
\hline 80 & TBLWTL & TBLWTL & Ws，Wd & Write Ws to Prog＜15：0＞ & 1 & 2 & None \\
\hline 81 & ULNK & ULNK & & Unlink Frame Pointer & 1 & 1 & None \\
\hline \multirow[t]{5}{*}{82} & \multirow[t]{5}{*}{XOR} & XOR & f & \(\mathrm{f}=\mathrm{f} . \mathrm{XOR}\) ．WREG & 1 & 1 & N，Z \\
\hline & & XOR & f，WREG & WREG＝f．XOR．WREG & 1 & 1 & N，Z \\
\hline & & XOR & \＃lit10，Wn & \(\mathrm{Wd}=\) lit10． \(\mathrm{XOR} . \mathrm{Wd}\) & 1 & 1 & N，Z \\
\hline & & XOR & Wb，Ws，Wd & \(\mathrm{Wd}=\mathrm{Wb} . \mathrm{XOR} . \mathrm{Ws}\) & 1 & 1 & N，Z \\
\hline & & XOR & Wb，\＃lit5，Wd & Wd＝Wb ．XOR．lit5 & 1 & 1 & N，Z \\
\hline 83 & ZE & ZE & Ws，Wnd & Wnd＝Zero－Extend Ws & 1 & 1 & C，Z，N \\
\hline
\end{tabular}

\section*{}

The \(\mathrm{PIC}^{\circledR}\) microcontrollers and dsPIC \({ }^{\circledR}\) digital signal controllers are supported with a full range of software and hardware development tools:
- Integrated Development Environment
- MPLAB \({ }^{\circledR}\) IDE Software
- Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device Families
- HI-TECH C for Various Device Families
- MPASM \({ }^{\text {TM }}\) Assembler
- MPLINK \({ }^{\text {TM }}\) Object Linker/ MPLIB \({ }^{\text {TM }}\) Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
- MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE \({ }^{\text {TM }}\) In-Circuit Emulator
- In-Circuit Debuggers
- MPLAB ICD 3
- PICkit \({ }^{\text {TM }} 3\) Debug Express
- Device Programmers
- PICkit \({ }^{\text {TM }} 2\) Programmer
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

\subsection*{26.1 MPLAB Integrated Development Environment Software}

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows \({ }^{\circledR}\) operating system-based application that contains:
- A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third-party tools, such as IAR C Compilers
The MPLAB IDE allows you to:
- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

\section*{ Device Families}

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.
For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

\subsection*{26.3 HI-TECH C for Various Device Families}

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.
For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.
The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

\subsection*{26.4 MPASM Assembler}

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel \({ }^{\circledR}\) standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.
The MPASM Assembler features include:
- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

\subsection*{26.5 MPLINK Object LinkerI MPLIB Object Librarian}

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.
The object linker/library features include:
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

\subsection*{26.6 MPLAB Assembler, Linker and Librarian for Various Device Families}

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:
- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

\section*{}

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC \({ }^{\circledR}\) DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

\subsection*{26.8 MPLAB REAL ICE In-Circuit Emulator System}

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC \({ }^{\circledR}\) Flash MCUs and dsPIC \({ }^{\circledR}\) Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

\subsection*{26.9 MPLAB ICD 3 In-Circuit Debugger System}

MPLAB ICD 3 In -Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs \(\mathrm{PIC}^{\circledR}\) Flash microcontrollers and dsPIC \({ }^{\circledR}\) DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

\subsection*{26.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express}

The MPLAB PICkit 3 allows debugging and programming of \(\mathrm{PIC}^{\circledR}\) and dsPIC \({ }^{\circledR}\) Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming \({ }^{\text {TM }}\).
The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

\section*{ \\ Programmer/Debugger and \\ PICkit 2 Debug Express}

The PICkit \({ }^{\text {TM }} 2\) Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows \({ }^{\circledR}\) programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit \({ }^{\top \mathrm{M}} 2\) enables in-circuit debugging on most \(\mathrm{PIC}^{\circledR}\) microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.
The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

\subsection*{26.12 MPLAB PM3 Device Programmer}

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display ( \(128 \times 64\) ) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP \({ }^{\text {TM }}\) cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

\subsection*{26.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits}

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.
In addition to the PICDEM \({ }^{\text {M }}\) and dsPICDEM \({ }^{\text {™ }}\) demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ \({ }^{\circledR}\) security ICs, CAN, IrDA \({ }^{\circledR}\), PowerSmart battery management, SEEVAL \({ }^{\circledR}\) evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

\section*{}

This section provides an overview of dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.
Absolute Maximum Ratings \({ }^{(1)}\)
Ambient temperature under bias ..... \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage temperature ..... \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Voltage on VDD with respect to Vss ..... -0.3 V to +4.0 V
Voltage on any pin that is not 5 V tolerant, with respect to \(\mathrm{Vss}{ }^{(4)}\) ..... -0.3 V to \((\mathrm{VDD}+0.3 \mathrm{~V})\)
Voltage on any 5 V tolerant pin with respect to Vss , when \(\mathrm{Vdd} \geq 3.0 \mathrm{~V}^{(4)}\) -0.3 V to +5.6 V
Voltage on any 5 V tolerant pin with respect to Vss, when VDD \(<3.0 \mathrm{~V}^{(4)}\) ..... -0.3 V to (VDD +0.3 V )
Voltage on Vcap/Vddcore with respect to Vss ..... 2.25 V to 2.75 V
Maximum current out of Vss pin ..... 300 mA
Maximum current into VDD pin \({ }^{(2)}\) ..... 250 mA
Maximum output current sunk by any I/O pin \({ }^{(3)}\) ..... 4 mA
Maximum output current sourced by any I/O pin \({ }^{(3)}\) ..... 4 mA
Maximum current sunk by all ports ..... 200 mA
Maximum current sourced by all ports \({ }^{(2)}\) ..... 200 mA
Maximum output current sunk by non-remappable PWM pins ..... 16 mA
Maximum output current sourced by non-remappable PWM pins ..... 16 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 27-2).
3: Exceptions are PWMxL, and PWMxH, which are able to sink/source 16 mA , and digital pins, which are able to sink/source 8 mA .
4: See the "Pin Diagrams" section for 5 V tolerant pins.

\section*{查询dsPIC33FJ32GS606供应商}

\section*{27．1 DC Characteristics}

TABLE 27－1：OPERATING MIPS VS．VOLTAGE
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristic } & \begin{tabular}{c} 
Vdd Range \\
（in Volts）
\end{tabular} & \multirow{2}{*}{\begin{tabular}{c} 
Temp Range \\
（in \({ }^{\circ} \mathrm{C}\) ）
\end{tabular}} & \begin{tabular}{c} 
Max MIPS
\end{tabular} \\
\cline { 4 - 4 } & & \begin{tabular}{c} 
dsPIC33FJ32GS406／606／608／610 and \\
dsPIC33FJ64GS406／606／608／610
\end{tabular} \\
\hline \hline & \(3.0-3.6 \mathrm{~V}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 40 \\
\hline & \(3.0-3.6 \mathrm{~V}\) & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 40 \\
\hline
\end{tabular}

TABLE 27－2：THERMAL OPERATING CONDITIONS


TABLE 27－3：THERMAL PACKAGING CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Typ & Max & Unit & Notes \\
\hline \hline Package Thermal Resistance，64－Pin QFN \((9 \times 9 \times 0.9 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 28 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance，64－Pin TQFP \((10 \times 10 \times 1 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 39 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance，80－Pin TQFP \((12 \times 12 \times 1 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 53.1 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance，100－Pin TQFP \((12 \times 12 \times 1 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 43 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance， \(100-\) Pin TQFP \((14 \times 14 \times 1 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 43 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline
\end{tabular}

Note 1：Junction to ambient thermal resistance，Theta－JA（ \(\theta \mathrm{JA}\) ）numbers are achieved by package simulations．

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \multicolumn{8}{|l|}{Operating Voltage} \\
\hline & \multicolumn{7}{|l|}{Supply Voltage} \\
\hline DC10 & VDD & & 3.0 & - & 3.6 & V & Industrial and extended \\
\hline DC12 & VDR & RAM Data Retention Voltage \({ }^{(2)}\) & 1.8 & - & - & V & \\
\hline DC16 & VPOR & \[
\begin{array}{|l|}
\hline \text { Vdd Start Voltage }{ }^{(4)} \\
\text { to Ensure Internal } \\
\text { Power-on Reset Signal } \\
\hline
\end{array}
\] & - & - & Vss & V & \\
\hline DC17 & SVDD & VdD Rise Rate \({ }^{(3)}\) to Ensure Internal Power-on Reset Signal & 0.03 & - & - & \(\mathrm{V} / \mathrm{ms}\) & \(0-3.0 \mathrm{~V}\) in 0.1 s \\
\hline DC18 & VCore & Vdd Core Internal Regulator Voltage & 2.25 & - & 2.75 & V & Voltage is dependent on load, temperature and VDD \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated.
2: This is the limit to which VDD may be lowered without losing RAM data.
3: These parameters are characterized but not tested in manufacturing.
4: VDD voltage must remain at Vss for a minimum of \(200 \mu\) s to ensure POR.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\
\(\begin{array}{ll}\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for } \mathrm{Fxtende}\end{array}\) \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No. & Typical \({ }^{(1)}\) & Max & Units & & & ditions \\
\hline \multicolumn{7}{|l|}{Operating Current (IDD) \({ }^{(2)}\)} \\
\hline DC20d & 21 & 30 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{10 MIPS See Note 2} \\
\hline DC20a & 21 & 30 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC20b & 21 & 30 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC20c & 22 & 30 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC21d & 28 & 40 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{\begin{tabular}{l}
16 MIPS \\
See Note 2 and Note 3
\end{tabular}} \\
\hline DC21a & 28 & 40 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC21b & 28 & 40 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC21c & 29 & 40 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC22d & 35 & 45 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{\begin{tabular}{l}
20 MIPS \\
See Note 2 and Note 3
\end{tabular}} \\
\hline DC22a & 35 & 45 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC22b & 35 & 45 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC22c & 36 & 45 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC23d & 49 & 60 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{\begin{tabular}{l}
30 MIPS \\
See Note 2 and Note 3
\end{tabular}} \\
\hline DC23a & 49 & 60 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC23b & 49 & 60 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC23c & 50 & 60 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC24d & 66 & 75 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{\begin{tabular}{l}
40 MIPS \\
See Note 2
\end{tabular}} \\
\hline DC24a & 66 & 75 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC24b & 66 & 75 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC24c & 67 & 75 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC25d & 153 & 170 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow[t]{4}{*}{\begin{tabular}{l}
40 MIPS \\
See Note 2, except PWM is operating at maximum speed \((\) PTCON2 \(=0 \times 0000)\)
\end{tabular}} \\
\hline DC25a & 154 & 170 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC25b & 155 & 170 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC25c & 156 & 170 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC26d & 122 & 135 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow[t]{4}{*}{\begin{tabular}{l}
40 MIPS \\
See Note 2, except PWM is operating at \(1 / 2\) speed (PTCON2 = 0x0001)
\end{tabular}} \\
\hline DC26a & 123 & 135 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC26b & 124 & 135 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC26c & 125 & 135 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC27d & 107 & 120 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow[t]{4}{*}{\begin{tabular}{l}
40 MIPS \\
See Note 2, except PWM is operating at \(1 / 4\) speed ( \(\mathrm{PTCON} 2=0 \times 0002\) )
\end{tabular}} \\
\hline DC27a & 108 & 120 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC27b & 109 & 120 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC27c & 110 & 120 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC28d & 88 & 100 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow[t]{4}{*}{\begin{tabular}{l}
40 MIPS \\
See Note 2, except PWM is operating at \(1 / 8\) speed (PTCON2 = 0x0003)
\end{tabular}} \\
\hline DC28a & 89 & 100 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC28b & 89 & 100 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC28c & 89 & 100 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1: Data in "Typical" column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. \(\overline{M C L R}=\) VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating (PMD bits are all set).
3: These parameters are characterized but not tested in manufacturing.

\section*{询dsPIC33FJ32GS606供应商}

TABLE 27－6：DC CHARACTERISTICS：IDLE CURRENT（IIDLE）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No． & Typical \({ }^{(1)}\) & Max & Units & & Conditio & \\
\hline \multicolumn{7}{|l|}{Idle Current（IIDLE）：Core Off Clock On Base Current \({ }^{(2)}\)} \\
\hline DC40d & 8 & 15 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{10 MIPS} \\
\hline DC40a & 9 & 15 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC40b & 9 & 15 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC40c & 10 & 15 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC41d & 11 & 20 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{\(16 \mathrm{MIPS}^{(3)}\)} \\
\hline DC41a & 11 & 20 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC41b & 11 & 20 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC41c & 12 & 20 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC42d & 14 & 25 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{\(20 \mathrm{MIPS}^{(3)}\)} \\
\hline DC42a & 14 & 25 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC42b & 14 & 25 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC42c & 15 & 25 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC43d & 20 & 30 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{\(30 \mathrm{MIPS}^{(3)}\)} \\
\hline DC43a & 20 & 30 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC43b & 21 & 30 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC43c & 22 & 30 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC44d & 29 & 40 & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{40 MIPS} \\
\hline DC44a & 29 & 40 & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC44b & 30 & 40 & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC44c & 31 & 40 & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1：Data in＂Typical＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
2：Base lidLE current is measured with core off，clock on and all modules turned off．Peripheral module Disable SFR registers are zeroed．All I／O pins are configured as inputs and pulled to Vss．
3：These parameters are characterized but not tested in manufacturing．

\section*{查询dsPIC33FJ32GS606供应商}

TABLE 27－7：DC CHARACTERISTICS：POWER－DOWN CURRENT（IPD）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No． & Typical \({ }^{(1)}\) & Max & Units & & & Conditions \\
\hline \multicolumn{7}{|l|}{Power－Down Current（IPD）\({ }^{(2,4)}\)} \\
\hline DC60d & 50 & 200 & \(\mu \mathrm{A}\) & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{Base Power－Down Current} \\
\hline DC60a & 50 & 200 & \(\mu \mathrm{A}\) & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC60b & 200 & 500 & \(\mu \mathrm{A}\) & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC60c & 600 & 1000 & \(\mu \mathrm{A}\) & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC61d & 8 & 13 & \(\mu \mathrm{A}\) & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{Watchdog Timer Current：\(\Delta I W D T^{(3)}\)} \\
\hline DC61a & 10 & 15 & \(\mu \mathrm{A}\) & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC61b & 12 & 20 & \(\mu \mathrm{A}\) & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC61c & 13 & 25 & \(\mu \mathrm{A}\) & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1：Data in the Typical column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
2：Base IPD is measured with all peripherals and clocks shut down．All I／Os are configured as inputs and pulled to Vss．WDT，etc．，are all switched off，and VREGS（RCON＜8＞）\(=1\) ．
3：The \(\Delta\) current is the additional current consumed when the WDT module is enabled．This current should be added to the base IPD current．
4：These currents are measured on the device containing the most memory in this family．

\section*{TABLE 27－8：DC CHARACTERISTICS：DOZE CURRENT（Idoze）}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No． & Typical \({ }^{(1)}\) & Max & \begin{tabular}{l}
Doze \\
Ratio
\end{tabular} & Units & \multicolumn{3}{|c|}{Conditions} \\
\hline DC73a & 105 & 120 & 1：2 & mA & \multirow{3}{*}{\(-40^{\circ} \mathrm{C}\)} & \multirow{3}{*}{3.3 V} & \multirow{3}{*}{40 MIPS} \\
\hline DC73f & 82 & 100 & 1：64 & mA & & & \\
\hline DC73g & 82 & 100 & 1：128 & mA & & & \\
\hline DC70a & 105 & 120 & 1：2 & mA & \multirow{3}{*}{\(+25^{\circ} \mathrm{C}\)} & \multirow{3}{*}{3.3 V} & \multirow{3}{*}{40 MIPS} \\
\hline DC70f & 80 & 100 & 1：64 & mA & & & \\
\hline DC70g & 79 & 100 & 1：128 & mA & & & \\
\hline DC71a & 105 & 120 & 1：2 & mA & \multirow{3}{*}{\(+85^{\circ} \mathrm{C}\)} & \multirow{3}{*}{3.3 V} & \multirow{3}{*}{40 MIPS} \\
\hline DC71f & 77 & 100 & 1：64 & mA & & & \\
\hline DC71g & 77 & 100 & 1：128 & mA & & & \\
\hline DC72a & 105 & 120 & 1：2 & mA & \multirow{3}{*}{\(+125^{\circ} \mathrm{C}\)} & \multirow{3}{*}{3.3 V} & \multirow{3}{*}{40 MIPS} \\
\hline DC72f & 76 & 100 & 1：64 & mA & & & \\
\hline DC72g & 76 & 100 & 1：128 & mA & & & \\
\hline
\end{tabular}

Note 1：Data in the Typical column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \[
\begin{aligned}
& \text { DI10 } \\
& \text { DI15 } \\
& \text { DI16 } \\
& \text { DI18 } \\
& \text { DI19 }
\end{aligned}
\] & VIL & \begin{tabular}{l}
Input Low Voltage \\
I/O Pins \\
\(\overline{\mathrm{MCLR}}\) \\
I/O Pins with OSC1 or SOSCI \\
I/O Pins with SDAx, SCLx, U2RX, U2TX \\
I/O Pins with SDAx, SCLx, U2RX, U2TX
\end{tabular} & \begin{tabular}{l}
Vss \\
Vss \\
Vss \\
Vss \\
Vss
\end{tabular} & -
-
-
- & 0.2 VDD
0.2 VDD
0.2 VDD
0.3 VDD
0.2 VDD & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\]
v
v
V & \begin{tabular}{l}
SMBus disabled \\
SMBus enabled
\end{tabular} \\
\hline \[
\begin{array}{|l|l|}
\text { DI20 } \\
\text { DI21 }
\end{array}
\] & VIH & Input High Voltage I/O Pins Not 5V Tolerant \({ }^{(4)}\) I/O Pins 5V Tolerant \({ }^{(4)}\) & \[
\begin{aligned}
& 0.7 \mathrm{VDD} \\
& 0.7 \mathrm{VDD}
\end{aligned}
\] & - & \[
\begin{gathered}
\text { VDD } \\
5.5
\end{gathered}
\] & \[
\begin{aligned}
& \text { V } \\
& \mathrm{V}
\end{aligned}
\] & \\
\hline DI30 & ICNPU & CNx Pull-up Current & - & 250 & - & \(\mu \mathrm{A}\) & VDD \(=3.3 \mathrm{~V}, \mathrm{VPIN}=\mathrm{Vss}\) \\
\hline \[
\begin{aligned}
& \text { DI50 } \\
& \\
& \text { DI55 } \\
& \text { DI56 }
\end{aligned}
\] & IIL & Input Leakage Current \({ }^{(2,3,4)}\)
I/O Pins with:
4 mA Source/Sink Capability
8 mA Source/Sink Capability
16 mA Source/Sink Capability
\(\overline{\text { MCLR }}\)
OSC1 & -
-
-
-
- & -
-
-
-
- & \[
\begin{aligned}
& \pm 2 \\
& \pm 4 \\
& \pm 8
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \(\mu \mathrm{A}\)
\end{tabular} & Vss \(\leq\) VPIN \(\leq\) VDD, Pin at high-impedance Vss \(\leq\) VPIN \(\leq\) VDD, Pin at high-impedance Vss \(\leq\) VPIN \(\leq\) VDD, Pin at high-impedance Vss \(\leq\) VPIN \(\leq\) VDD Vss \(\leq\) VPIN \(\leq\) VDD, XT and HS modes \\
\hline DI57 & ISINK & \begin{tabular}{l}
Sink Current \\
Pins: \\
RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13 \\
Pins: \\
RC15 \\
Pins: \\
RA0-RA7, RA14, RA15, RB0RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6RG9, RG14, RG15 \\
Pins: \\
\(\overline{\text { MCLR }}\)
\end{tabular} &  &  & \begin{tabular}{l}
16 \\
8 \\
4 \\
2
\end{tabular} & \begin{tabular}{l}
mA \\
mA \\
mA \\
mA
\end{tabular} & \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The leakage current on the \(\overline{M C L R}\) pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: See "Pin Diagrams" for the list of 5 V tolerant \(\mathrm{I} / \mathrm{O}\) pins.

\section*{查询dsPIC33FJ32GS606供应商}

TABLE 27－10：DC CHARACTERISTICS：I／O PIN OUTPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \text { (unless otherwise stated) } \\
& \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& \\
& \hline-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline Param No． & Symbol & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline \begin{tabular}{l}
DO10 \\
DO16
\end{tabular} & VoL & ```
Output Low Voltage
I/O Ports:
    4 mA Source/Sink Capability
    8 mA Source/Sink Capability
    16 mA Source/Sink Capability
OSC2/CLKO
``` & - & － & \[
\begin{aligned}
& 0.4 \\
& 0.4 \\
& 0.4 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V \\
& V \\
& V
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IOL}=4 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{IOL}=8 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{IOL}=16 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{lOL}=2 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DO20 \\
DO26
\end{tabular} & VOH & ```
Output High Voltage
I/O Ports:
 4 mA Source/Sink Capability
 8 mA Source/Sink Capability
 16 mA Source/Sink Capability
OSC2/CLKO
``` & \[
\begin{aligned}
& 2.40 \\
& 2.40 \\
& 2.40 \\
& 2.41
\end{aligned}
\] & － & — & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IOH}=-4 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{IOH}=-8 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{IOH}=-16 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{IOH}=-1.3 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline DO27 & ISOURCE & \begin{tabular}{l}
Source Current \\
Pins： \\
RA9，RA10，RD3－RD7，RD13， RE0－RE7，RG12，RG13 \\
Pins： \\
RC15 \\
Pins： \\
RA0－RA7，RA14，RA15，RB0－ RB15，RC1－RC4，RC12－RC14， RD0－RD2，RD8－RD12，RD14， RD15，RE8，RE9，RF0－RF8， RF12，RF13，RG0－RG3，RG6－ RG9，RG14，RG15 \\
Pins： \\
\(\overline{\text { MCLR }}\)
\end{tabular} &  &  & \begin{tabular}{l}
16 \\
8 \\
4 \\
2
\end{tabular} & \begin{tabular}{l}
mA \\
mA \\
mA \\
mA
\end{tabular} & \\
\hline
\end{tabular}

TABLE 27－11：ELECTRICAL CHARACTERISTICS：BOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic & \(\mathbf{M i n}{ }^{(1)}\) & Typ & Max & Units & Conditions \\
\hline BO10 & VBor & BOR Event on VDD Transition High－to－Low BOR Event is Tied to VDd Core Voltage Decrease & 2.6 & － & 2.95 & V & \\
\hline
\end{tabular}

Note 1：Parameters are for design guidance only and are not tested in manufacturing．

\section*{查询dsPIC33FJ32GS606供应商}

TABLE 27－12：DC CHARACTERISTICS：PROGRAM MEMORY


Note 1：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
2：Other conditions：\(F R C=7.37 \mathrm{MHz}, \mathrm{TUN}\left\langle 5: 0>=\mathrm{b}^{\prime} 011111\right.\)（for Min）， \(\mathrm{TUN}<5: 0>=\mathrm{b}^{\prime} 100000\)（for Max）． This parameter depends on the FRC accuracy（see Table 27－20）and the value of the FRC Oscillator Tuning register（see Register 9－4）．For complete details on calculating the Minimum and Maximum time see Section 5.3 ＂Programming Operations＂．

TABLE 27－13：INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Operating Conditions： \begin{tabular}{l}
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{c} 
Param \\
No．
\end{tabular} & Symbol & \multicolumn{1}{|c|}{ Characteristics } & Min & Typ & Max & Units & Comments \\
\hline \hline & CEFC & \begin{tabular}{l} 
External Filter Capacitor \\
Value
\end{tabular} & 22 & - & - & \(\mu \mathrm{F}\) & \begin{tabular}{l} 
Capacitor must be low \\
series resistance \\
\((<0.5\) Ohms）
\end{tabular} \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

27．2 AC Characteristics and Timing Parameters
This section defines dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 AC characteristics and timing parameters．

TABLE 27－14：TEMPERATURE AND VOLTAGE SPECIFICATIONS－AC
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated）
\end{tabular} \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
& \begin{tabular}{l} 
Operating voltage VDD range as described in Section 27.0 ＂Electrical \\
Characteristics＂．
\end{tabular} \\
\hline
\end{tabular}

FIGURE 27－1：LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS


TABLE 27－15：CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
\begin{tabular}{|l|l|l|c|c|c|c|l|}
\hline \begin{tabular}{c} 
Param \\
No．
\end{tabular} & Symbol & \multicolumn{1}{|c|}{ Characteristic } & Min & Typ & Max & Units & \multicolumn{1}{c|}{ Conditions } \\
\hline \hline DO50 & Cosco & OSC2 Pin & - & - & 15 & pF & \begin{tabular}{l} 
In XT and HS modes when \\
external clock is used to drive
\end{tabular} \\
DO56 & CIO & All I／O Pins and OSC2 & - & - & 50 & pF & \begin{tabular}{l} 
OSC1 \\
EC mode \\
DO58
\end{tabular} \\
CB & SCLx，SDAx & - & - & 400 & pF & \(\mathrm{In} \mathrm{I}^{2} \mathrm{C}^{T M}\) mode \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

FIGURE 27－2：EXTERNAL CLOCK TIMING


TABLE 27－16：EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symb & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \multirow[t]{2}{*}{OS10} & \multirow[t]{2}{*}{FIN} & External CLKI Frequency （External clocks allowed only in EC and ECPLL modes） & DC & － & 40 & MHz & EC \\
\hline & & Oscillator Crystal Frequency & \[
\begin{aligned}
& 3.5 \\
& 10
\end{aligned}
\] & — & \[
\begin{aligned}
& 10 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{XT} \\
& \mathrm{HS}
\end{aligned}
\] \\
\hline OS20 & Tosc & Tosc \(=1 /\) Fosc & 12.5 & － & DC & ns & \\
\hline OS25 & Tcy & Instruction Cycle Time \({ }^{(\mathbf{2})}\) & 25 & － & DC & ns & \\
\hline OS30 & TosL， TosH & External Clock in（OSC1） High or Low Time & \(0.375 \times\) Tosc & － & \(0.625 \times\) Tosc & ns & EC \\
\hline OS31 & TosR， TosF & External Clock in（OSC1） Rise or Fall Time & － & － & 20 & ns & EC \\
\hline OS40 & TckR & CLKO Rise Time \({ }^{(3)}\) & － & 5.2 & － & ns & \\
\hline OS41 & TckF & CLKO Fall Time \({ }^{(3)}\) & － & 5.2 & － & ns & \\
\hline
\end{tabular}

Note 1：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
2：Instruction cycle period（Tcy）equals two times the input oscillator time－base period．All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code．Exceeding these specified limits may result in an unstable oscillator operation and／or higher than expected current consumption．All devices are tested to operate at＂min．＂ values with an external clock applied to the OSC1／CLKI pin．When an external clock input is used，the ＂max．＂cycle time limit is＂DC＂（no clock）for all devices．
3：Measurements are taken in EC mode．The CLKO signal is measured on the OSC2 pin．

\section*{查询dsPIC33FJ32GS606供应商}

TABLE 27－17：PLL CLOCK TIMING SPECIFICATIONS（VdD＝3．0V TO 3．6V）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3．6V（unless otherwise stated） \\
\(\begin{array}{ll}\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }\end{array}\)
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline OS50 & FPLLI & PLL Voltage Controlled Oscillator（VCO）Input Frequency Range & 0.8 & － & 8 & MHz & ECPLL，XTPLL modes \\
\hline OS51 & Fsys & On－Chip VCO System Frequency & 100 & － & 200 & MHz & \\
\hline OS52 & TLOCK & PLL Start－up Time（Lock Time） & 0.9 & 1.5 & 3.1 & mS & \\
\hline OS53 & DCLK & CLKO Stability（Jitter） & －3 & 0.5 & 3 & \％ & Measured over 100 ms period \\
\hline
\end{tabular}

Note 1：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．Parameters are for design guidance only and are not tested in manufacturing．

TABLE 27－18：AUXILIARY PLL CLOCK TIMING SPECIFICATIONS（VDD＝3．0V TO 3．6V）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V （unless otherwise stated） \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline OS56 & FhPout & On－Chip 16x PLL CCO Frequency & 112 & 118 & 120 & MHz & \\
\hline OS57 & FHPIN & On－Chip 16x PLL Phase Detector Input Frequency & 7.0 & 7.37 & 7.5 & MHz & \\
\hline OS58 & Tsu & Frequency Generator Lock Time & － & － & 10 & \(\mu \mathrm{s}\) & \\
\hline
\end{tabular}

Note 1：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．Parameters are for design guidance only and are not tested in manufacturing．

TABLE 27－19：AC CHARACTERISTICS：INTERNAL RC ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC CHARACTERISTICS} & \multicolumn{6}{|l|}{Standard Operating Conditions：3．0V to 3．6V（unless otherwise stated） Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param No． & Characteristic & Min & Typ & Max & Units & Cond & \\
\hline & \multicolumn{7}{|l|}{Internal FRC Accuracy＠FRC Frequency＝7．37 MHz \({ }^{(1,2)}\)} \\
\hline F20a & FRC & －1 & － & ＋1 & \％ & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) & VDD \(=3.0-3.6 \mathrm{~V}\) \\
\hline F20b & FRC & －2 & － & ＋2 & \％ & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) & VDD \(=3.0-3.6 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1：Frequency calibrated at \(+25^{\circ} \mathrm{C}\) and 3.3 V ．The \(\mathrm{TUN}<5: 0>\) bits can be used to compensate for temperature drift．
2：\(\quad \mathrm{FRC}\) is set to initial frequency of \(7.37 \mathrm{MHz}( \pm 2 \%)\) at \(+25^{\circ} \mathrm{C}\) ．

旬dsPIC33FJ32GS606供应商
TABLE 27－20：INTERNAL RC ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AC CHA & ARACTERISTICS & \multicolumn{5}{|l|}{Standard Operating Conditions：3．0V to 3．6V（unless otherwise stated） Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline \[
\begin{gathered}
\text { Param } \\
\text { No. }
\end{gathered}
\] & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline & \multicolumn{6}{|l|}{LPRC＠32．768 kHz \({ }^{(1)}\)} \\
\hline F21a & LPRC & －40 & － & ＋40 & \％ & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) \\
\hline F21b & LPRC & －70 & － & ＋70 & \％ & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1：Change of LPRC frequency as VDD changes．

FIGURE 27－3：I／O TIMING CHARACTERISTICS


TABLE 27－21：I／O TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline DO31 & TIOR & Port Output Rise Time & － & 10 & 25 & ns & Refer to Figure 27－1 for test conditions \\
\hline DO32 & TIOF & Port Output Fall Time & － & 10 & 25 & ns & Refer to Figure 27－1 for test conditions \\
\hline DI35 & TINP & INTx Pin High or Low Time（output） & 20 & － & － & ns & \\
\hline DI40 & TRBP & CNx High or Low Time（input） & 2 & － & － & Tcy & \\
\hline
\end{tabular}

Note 1：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
 TIMER TIMING CHARACTERISTICS


\section*{询dsPIC33FJ32GS606供应商}

TABLE 27－22：RESET，WATCHDOG TIMER，OSCILLATOR START－UP TIMER，POWER－UP TIMER TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions： 3.0 V to 3.6 V （unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SY10 & TMCL & \(\overline{\text { MCLR }}\) Pulse Width（low） & 2 & － & － & \(\mu \mathrm{S}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline SY11 & TPWRT & Power－up Timer Period & － & \[
\begin{gathered}
\hline 2 \\
4 \\
8 \\
16 \\
32 \\
64 \\
128
\end{gathered}
\] & － & ms & \begin{tabular}{l}
\[
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\] \\
User programmable
\end{tabular} \\
\hline SY12 & TPOR & Power－on Reset Delay & 3 & 10 & 30 & \(\mu \mathrm{S}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline SY13 & TIOZ & I／O High－Impedance from \(\overline{M C L R}\) Low or Watchdog Timer Reset & 0.68 & 0.72 & 1.2 & \(\mu \mathrm{S}\) & \\
\hline SY20 & TWDT1 & Watchdog Timer Time－out Period & － & － & － & ms & See Section 24.4 ＂Watch－ dog Timer（WDT）＂and LPRC parameter F21a （Table 27－20）． \\
\hline SY30 & Tost & Oscillator Start－up Time & － & \[
\begin{aligned}
& \hline 1024 \\
& \text { Tosc }
\end{aligned}
\] & － & － & Tosc＝OSC1 period \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．
2：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．

FIGURE 27－5：TIMER1， 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS


Note：Refer to Figure 27－1 for load conditions．

TABLE 27－23：TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V （unless otherwise stated） \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & \multicolumn{2}{|l|}{Characteristic} & Min & Typ & Max & Units & Conditions \\
\hline \multirow[t]{3}{*}{TA10} & \multirow[t]{3}{*}{TTXH} & \multirow[t]{3}{*}{TxCK High Time} & Synchronous， no prescaler & \(0.5 \mathrm{TcY}+20\) & － & － & ns & \multirow[t]{3}{*}{Must also meet parameter TA15} \\
\hline & & & Synchronous， with prescaler & 10 & － & － & ns & \\
\hline & & & Asynchronous & 10 & － & － & ns & \\
\hline \multirow[t]{3}{*}{TA11} & \multirow[t]{3}{*}{TTXL} & \multirow[t]{3}{*}{TxCK Low Time} & Synchronous， no prescaler & \(0.5 \mathrm{TCY}+20\) & － & － & ns & \multirow[t]{3}{*}{Must also meet parameter TA15} \\
\hline & & & Synchronous， with prescaler & 10 & － & － & ns & \\
\hline & & & Asynchronous & 10 & － & － & ns & \\
\hline \multirow[t]{3}{*}{TA15} & \multirow[t]{3}{*}{TTXP} & \multirow[t]{3}{*}{TxCK Input Period} & Synchronous， no prescaler & TCY＋ 40 & － & － & ns & \\
\hline & & & Synchronous， with prescaler & \[
\begin{aligned}
& \text { Greater of: } \\
& 20 \text { ns or } \\
& (\mathrm{TcY}+40) / \mathrm{N} \\
& \hline
\end{aligned}
\] & － & － & － & \[
\begin{array}{|l|}
\hline N=\text { prescale } \\
\text { value } \\
(1,8,64,256) \\
\hline
\end{array}
\] \\
\hline & & & Asynchronous & 20 & － & － & ns & \\
\hline OS60 & Ft1 & \multicolumn{2}{|l|}{T1CK Oscillator Input Frequency Range（oscillator enabled by setting bit，TCS（T1CON＜1＞））} & DC & － & 50 & kHz & \\
\hline TA20 & TCKEXTMRL & \multicolumn{2}{|l|}{Delay from External TxCK Clock Edge to Timer Increment} & 0．5 Tcy & & 1．5 TcY & － & \\
\hline
\end{tabular}

Note 1：Timer1 is a Type A．

\section*{询dsPIC33FJ32GS606供应商}

TABLE 27－24：TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3．6V （unless otherwise stated） \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No．
\end{tabular} & Symbol & \multicolumn{2}{|c|}{Characteristic} & Min & Typ & Max & Units & Conditions \\
\hline \multirow[t]{2}{*}{TB10} & \multirow[t]{2}{*}{TTXH} & \multirow[t]{2}{*}{TxCK High Time} & Synchronous， no prescaler & 0．5 TCY＋ 20 & － & － & ns & \multirow[t]{2}{*}{Must also meet parameter TB15} \\
\hline & & & Synchronous， with prescaler & 10 & － & － & ns & \\
\hline \multirow[t]{2}{*}{TB11} & \multirow[t]{2}{*}{TtxL} & \multirow[t]{2}{*}{TxCK Low Time} & Synchronous， no prescaler & 0．5 TCY＋ 20 & － & － & ns & \multirow[t]{2}{*}{Must also meet parameter TB15} \\
\hline & & & Synchronous， with prescaler & 10 & － & － & ns & \\
\hline \multirow[t]{2}{*}{TB15} & \multirow[t]{2}{*}{TTXP} & \multirow[t]{2}{*}{TxCK Input Period} & \multirow[t]{2}{*}{Synchronous， no prescaler Synchronous， with prescaler} & TCY＋ 40 & \multirow[t]{2}{*}{－} & \multirow[t]{2}{*}{－} & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
N=\text { prescale } \\
\text { value } \\
(1,8,64,256)
\end{array}
\]} \\
\hline & & & & \[
\begin{gathered}
\text { Greater of: } \\
20 \mathrm{~ns} \text { or } \\
(\mathrm{Tcy}+40) / \mathrm{N} \\
\hline
\end{gathered}
\] & & & & \\
\hline TB20 & TCKEXTMRL & Delay from Extern Edge to Timer In & I TxCK Clock ment & 0．5 Tcy & － & 1．5 TCY & － & \\
\hline
\end{tabular}

TABLE 27－25：TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & \multicolumn{2}{|l|}{Characteristic} & Min & Typ & Max & Units & Conditions \\
\hline TC10 & TtxH & TxCK High Time & Synchronous & \(0.5 \mathrm{TcY}+20\) & － & － & ns & Must also meet parameter TC15 \\
\hline TC11 & TTXL & TxCK Low Time & Synchronous & 0．5 TCY＋ 20 & － & － & ns & Must also meet parameter TC15 \\
\hline \multirow[t]{2}{*}{TC15} & \multirow[t]{2}{*}{TTXP} & \multirow[t]{2}{*}{TxCK Input Period} & \multirow[t]{2}{*}{Synchronous， no prescaler Synchronous， with prescaler} & TCY＋ 40 & \multirow[t]{2}{*}{－} & \multirow[t]{2}{*}{－} & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline N=\text { prescale } \\
& \text { value } \\
& (1,8,64,256)
\end{aligned}
\]} \\
\hline & & & & \[
\begin{gathered}
\text { Greater of: } \\
20 \mathrm{~ns} \text { or } \\
(\mathrm{TcY}+40) / \mathrm{N} \\
\hline
\end{gathered}
\] & & & & \\
\hline TC20 & TCKEXTMRL & \multicolumn{2}{|l|}{Delay from External TxCK Clock Edge to Timer Increment} & 0．5 Tcy & － & \[
\begin{aligned}
& 1.5 \\
& \text { TCY }
\end{aligned}
\] & － & \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

FIGURE 27－6：INPUT CAPTURE（CAPx）TIMING CHARACTERISTICS


Note：Refer to Figure 27－1 for load conditions．

TABLE 27－26：INPUT CAPTURE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3．6V （unless otherwise stated） \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No．
\end{tabular} & Symbol & \multicolumn{2}{|l|}{Characteristic \({ }^{(1)}\)} & Min & Max & Units & Conditions \\
\hline \multirow[t]{2}{*}{IC10} & \multirow[t]{2}{*}{TccL} & \multirow[t]{2}{*}{ICx Input Low Time} & No prescaler & 0．5 Tcy＋ 20 & － & ns & \\
\hline & & & With prescaler & 10 & － & ns & \\
\hline \multirow[t]{2}{*}{IC11} & \multirow[t]{2}{*}{TccH} & \multirow[t]{2}{*}{ICx Input High Time} & No prescaler & \(0.5 \mathrm{TcY}+20\) & － & ns & \\
\hline & & & With prescaler & 10 & － & ns & \\
\hline IC15 & TccP & ICx Input Period & & \((\mathrm{TCY}+40) / \mathrm{N}\) & － & ns & \[
\begin{array}{|l}
\hline N=\text { prescale } \\
\text { value }(1,4,16)
\end{array}
\] \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．

FIGURE 27－7：OUTPUT COMPARE MODULE（OCx）TIMING CHARACTERISTICS


Note：Refer to Figure 27－1 for load conditions．

TABLE 27－27：OUTPUT COMPARE MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{} & \multicolumn{3}{|c|}{\begin{tabular}{l} 
Standard Operating Conditions：3．0V to 3．6V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{c} 
Param \\
No．
\end{tabular} & Symbol & Characteristic \({ }^{(\mathbf{1})}\) & Min & Typ & Max & Units & Conditions \\
\hline \hline OC10 & TccF & OCx Output Fall Time & - & - & - & ns & See parameter D032 \\
\hline OC11 & TccR & OCx Output Rise Time & - & - & - & ns & See parameter D031 \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．

\section*{询dsPIC33FJ32GS606供应商}

FIGURE 27－8：OCIPWM MODULE TIMING CHARACTERISTICS


TABLE 27－28：SIMPLE OCIPWM MODE TIMING REQUIREMENTS
\begin{tabular}{|l|l|l|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{} & \multicolumn{4}{|c|}{\begin{tabular}{l} 
Standard Operating Conditions：3．0V to 3．6V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{c} 
Param \\
No．
\end{tabular} & Symbol & \multicolumn{7}{|c|}{ Characteristic \({ }^{(1)}\)} & Min & Typ & Max & Units & Conditions \\
\hline \hline OC15 & TFD & \begin{tabular}{l} 
Fault Input to PWM I／O \\
Change
\end{tabular} & - & - & 50 & ns & \\
\hline OC20 & TFLT & Fault Input Pulse Width & 50 & - & - & ns & \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．

FIGURE 27－9：HIGH－SPEED PWM MODULE FAULT TIMING CHARACTERISTICS


FIGURE 27－10：HIGH－SPEED PWM MODULE TIMING CHARACTERISTICS


TABLE 27－29：HIGH－SPEED PWM MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3．6V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline MP10 & TFPWM & PWM Output Fall Time & － & 2.5 & － & ns & \\
\hline MP11 & TRPWM & PWM Output Rise Time & － & 2.5 & － & ns & \\
\hline MP20 & Tfd & Fault Input \(\downarrow\) to PWM I／O Change & － & － & 15 & ns & DTC＜10＞＝ 10 \\
\hline MP30 & TFH & Minimum PWM Fault Pulse Width & 8 & － & － & ns & \\
\hline MP31 & TPDLY & Tap Delay & 1.04 & － & － & ns & ACLK \(=120 \mathrm{MHz}\) \\
\hline MP32 & ACLK & PWM Input Clock & － & － & 120 & MHz & See Note 2 \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．
2：This parameter is a maximum allowed input clock for the PWM module．

FIGURE 27－11：SPIX MODULE MASTER MODE（CKE＝0）TIMING CHARACTERISTICS


Note：Refer to Figure 27－1 for load conditions．

TABLE 27－30：SPIx MASTER MODE（CKE＝0）TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3．6V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\circ} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP10 & TscL & SCKx Output Low Time & TCY／2 & － & － & ns & See Note 3 \\
\hline SP11 & TscH & SCKx Output High Time & Tcy／2 & － & － & ns & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & － & － & － & ns & See parameter D032 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & － & － & － & ns & See parameter D031 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & － & － & － & ns & See parameter D032 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & － & － & － & ns & See parameter D031 and Note 4 \\
\hline SP35 & TscH2doV， TscL2doV & SDOx Data Output Valid after SCKx Edge & － & 6 & 20 & ns & \\
\hline SP40 & TdiV2scH， TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 23 & － & － & ns & \\
\hline SP41 & TscH2diL， TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & － & － & ns & \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．
2：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
3：The minimum clock period for SCKx is 100 ns ．Therefore，the clock generated in Master mode must not violate this specification．
4：Assumes 50 pF load on all SPIx pins．

\section*{查询dsPIC33FJ32GS606供应商}

FIGURE 27－12：SPIX MODULE MASTER MODE（CKE＝1）TIMING CHARACTERISTICS


Note：Refer to Figure 27－1 for load conditions．

\section*{TABLE 27－31：SPIx MODULE MASTER MODE（CKE＝1）TIMING REQUIREMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No．
\end{tabular} & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP10 & TscL & SCKx Output Low Time & TCY／2 & － & － & ns & See Note 3 \\
\hline SP11 & TscH & SCKx Output High Time & TCY／2 & － & － & ns & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & － & － & － & ns & See parameter D032 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & － & － & － & ns & See parameter D031 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & － & － & － & ns & See parameter D032 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & － & － & － & ns & See parameter D031 and Note 4 \\
\hline SP35 & TscH2doV， TscL2doV & SDOx Data Output Valid after SCKx Edge & － & 6 & 20 & ns & \\
\hline SP36 & \[
\begin{aligned}
& \text { TdoV2sc, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & － & － & ns & \\
\hline SP40 & TdiV2scH， TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 23 & － & － & ns & \\
\hline SP41 & TscH2diL， TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & － & － & ns & \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．
2：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
3：The minimum clock period for SCKx is 100 ns ．The clock generated in Master mode must not violate this specification．
4：Assumes 50 pF load on all SPIx pins．

\section*{询dsPIC33FJ32GS606供应商}

FIGURE 27－13：SPIX MODULE SLAVE MODE（CKE＝0）TIMING CHARACTERISTICS


Note：Refer to Figure 27－1 for load conditions．

TABLE 27－32：SPIx MODULE SLAVE MODE（CKE＝0）TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscL & SCKx Input Low Time & 30 & － & － & ns & \\
\hline SP71 & TscH & SCKx Input High Time & 30 & － & － & ns & \\
\hline SP72 & TscF & SCKx Input Fall Time & － & 10 & 25 & ns & See Note 3 \\
\hline SP73 & TscR & SCKx Input Rise Time & － & 10 & 25 & ns & See Note 3 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & － & － & － & ns & See parameter D032 and Note 3 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & － & － & － & ns & See parameter D031 and Note 3 \\
\hline SP35 & TscH2doV， TscL2doV & SDOx Data Output Valid after SCKx Edge & － & － & 30 & ns & \\
\hline SP40 & TdiV2sch， TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 20 & － & － & ns & \\
\hline SP41 & TscH2diL， TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 20 & － & － & ns & \\
\hline SP50 & TssL2scH， TssL2scL & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx Input & 120 & － & － & ns & \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High－Impedance & 10 & － & 50 & ns & See Note 3 \\
\hline SP52 & \begin{tabular}{l}
TscH2ssH \\
TscL2ssH
\end{tabular} & \(\overline{\text { SSx }}\) after SCKx Edge & 1．5 TCY＋40 & － & － & ns & \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．
2：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
3：Assumes 50 pF load on all SPIx pins．

查询dsPIC33FJ32GS606供应商
FIGURE 27－14：SPIX MODULE SLAVE MODE（CKE＝1）TIMING CHARACTERISTICS


旬dsPIC33FJ32GS606供应商
TABLE 27－33：SPIX MODULE SLAVE MODE（CKE＝1）TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V （unless otherwise stated） \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscL & SCKx Input Low Time & 30 & － & － & ns & \\
\hline SP71 & TscH & SCKx Input High Time & 30 & － & － & ns & \\
\hline SP72 & TscF & SCKx Input Fall Time & － & 10 & 25 & ns & See Note 3 \\
\hline SP73 & TscR & SCKx Input Rise Time & － & 10 & 25 & ns & See Note 3 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & － & － & － & ns & See parameter D032 and Note 3 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & － & － & － & ns & See parameter D031 and Note 3 \\
\hline SP35 & TscH2doV， TscL2doV & SDOx Data Output Valid after SCKx Edge & － & － & 30 & ns & \\
\hline SP40 & TdiV2scH， TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 20 & － & － & ns & \\
\hline SP41 & TscH2diL， TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 20 & － & － & ns & \\
\hline SP50 & TssL2scH， TssL2scL & \(\overline{\mathrm{SSx}} \downarrow\) to SCKx \(\downarrow\) or SCKx \(\uparrow\) Input & 120 & － & － & ns & \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High－Impedance & 10 & － & 50 & ns & See Note 4 \\
\hline SP52 & \[
\begin{aligned}
& \text { TscH2ssH } \\
& \text { TscL2ssH }
\end{aligned}
\] & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1．5 TcY＋ 40 & － & － & ns & \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & － & － & 50 & ns & \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．
2：Data in＂Typ＂column is at \(3.3 \mathrm{~V},+25^{\circ} \mathrm{C}\) unless otherwise stated．
3：The minimum clock period for SCKx is 100 ns．The clock generated in Master mode must not violate this specification．
4：Assumes 50 pF load on all SPIx pins．



Note: Refer to Figure 27-1 for load conditions.

FIGURE 27-16: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)


Note: Refer to Figure 27-1 for load conditions.

\section*{询dsPIC33FJ32GS606供应商}

TABLE 27－34：I2Cx BUS DATA TIMING REQUIREMENTS（MASTER MODE）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3．6V （unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & \multicolumn{2}{|c|}{Characteristic} & \(\mathrm{Min}^{(1)}\) & Max & Units & Conditions \\
\hline \multirow[t]{3}{*}{IM10} & \multirow[t]{3}{*}{TLo：SCL} & \multirow[t]{3}{*}{Clock Low Time} & 100 kHz mode & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline & & & 400 kHz mode & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & Tcy／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM11} & \multirow[t]{3}{*}{Thi：SCL} & \multirow[t]{3}{*}{Clock High Time} & 100 kHz mode & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline & & & 400 kHz mode & TcY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM20} & \multirow[t]{3}{*}{TF：SCL} & \multirow[t]{3}{*}{\begin{tabular}{l}
SDAx and SCLx \\
Fall Time
\end{tabular}} & 100 kHz mode & － & 300 & ns & \multirow[t]{3}{*}{Св is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cв & 300 & ns & \\
\hline & & & 1 MHz mode \(^{(2)}\) & － & 100 & ns & \\
\hline \multirow[t]{3}{*}{IM21} & \multirow[t]{3}{*}{TR：SCL} & \multirow[t]{3}{*}{SDAx and SCLx Rise Time} & 100 kHz mode & － & 1000 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cb & 300 & ns & \\
\hline & & & 1 MHz mode \(^{(2)}\) & － & 300 & ns & \\
\hline \multirow[t]{3}{*}{IM25} & \multirow[t]{3}{*}{Tsu：DAT} & \multirow[t]{3}{*}{Data Input Setup Time} & 100 kHz mode & 250 & － & ns & \\
\hline & & & 400 kHz mode & 100 & － & ns & \\
\hline & & & 1 MHz mode \(^{(2)}\) & 40 & － & ns & \\
\hline \multirow[t]{3}{*}{IM26} & \multirow[t]{3}{*}{Thd：DAT} & \multirow[t]{3}{*}{Data Input Hold Time} & 100 kHz mode & 0 & － & \(\mu \mathrm{s}\) & \\
\hline & & & 400 kHz mode & 0 & 0.9 & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & 0.2 & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM30} & \multirow[t]{3}{*}{Tsu：STA} & \multirow[t]{3}{*}{Start Condition Setup Time} & 100 kHz mode & TcY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{Only relevant for Repeated Start condition} \\
\hline & & & 400 kHz mode & Tcy／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TcY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM31} & \multirow[t]{3}{*}{THD：STA} & \multirow[t]{3}{*}{Start Condition Hold Time} & 100 kHz mode & TCY／2（BRG＋1） & － & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{After this period the first clock pulse is generated} \\
\hline & & & 400 kHz mode & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \(^{(2)}\) & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM33} & \multirow[t]{3}{*}{Tsu：Sto} & \multirow[t]{3}{*}{Stop Condition Setup Time} & 100 kHz mode & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline & & & 400 kHz mode & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \(^{(2)}\) & TCY／2（BRG＋1） & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM34} & \multirow[t]{3}{*}{Thd：Sto} & \multirow[t]{3}{*}{Stop Condition Hold Time} & 100 kHz mode & TCY／2（BRG＋1） & － & ns & \\
\hline & & & 400 kHz mode & TCY／2（BRG＋1） & － & ns & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & Tcy／2（BRG＋1） & － & ns & \\
\hline \multirow[t]{3}{*}{IM40} & \multirow[t]{3}{*}{TAA：SCL} & \multirow[t]{3}{*}{Output Valid From Clock} & 100 kHz mode & － & 3500 & ns & \\
\hline & & & 400 kHz mode & － & 1000 & ns & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & － & 400 & ns & \\
\hline \multirow[t]{3}{*}{IM45} & \multirow[t]{3}{*}{TbF：SDA} & \multirow[t]{3}{*}{Bus Free Time} & 100 kHz mode & 4.7 & － & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{Time the bus must be free before a new transmission can start} \\
\hline & & & 400 kHz mode & 1.3 & － & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & 0.5 & － & \(\mu \mathrm{S}\) & \\
\hline IM50 & Св & \multicolumn{2}{|l|}{Bus Capacitive Loading} & － & 400 & pF & \\
\hline IM51 & TPGD & \multicolumn{2}{|l|}{Pulse Gobbler Delay} & 65 & 390 & ns & See Note 3 \\
\hline
\end{tabular}

Note 1：\(\quad \mathrm{BRG}\) is the value of the \(I^{2} C^{\top M}\) Baud Rate Generator．Refer to Section 19．＂Inter－Integrated Circuit \(\left(I^{2} \mathbf{C}^{\text {M }}\right)\)＂（DS70195）in the＂dsPIC33F／PIC24F Family Reference Manual＂．
2：Maximum pin capacitance \(=10 \mathrm{pF}\) for all I2Cx pins（for 1 MHz mode only）．
3：Typical value for this parameter is 130 ns．

查询dsPIC33FJ32GS606供应商
FIGURE 27－17：I2Cx BUS START／STOP BITS TIMING CHARACTERISTICS（SLAVE MODE）


FIGURE 27－18：I2Cx BUS DATA TIMING CHARACTERISTICS（SLAVE MODE）


\section*{查询dsPIC33FJ32GS606供应商}

TABLE 27－35： 12 © \(\times\) BUSDATA TIMING REQUIREMENTS（SLAVE MODE）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param． & Symbol & \multicolumn{2}{|c|}{Characteristic} & Min & Max & Units & Conditions \\
\hline \multirow[t]{3}{*}{IS10} & \multirow[t]{3}{*}{Tlo：scl} & \multirow[t]{3}{*}{Clock Low Time} & 100 kHz mode & 4.7 & － & \(\mu \mathrm{S}\) & Device must operate at a minimum of 1.5 MHz \\
\hline & & & 400 kHz mode & 1.3 & － & \(\mu \mathrm{S}\) & Device must operate at a minimum of 10 MHz \\
\hline & & & \(1 \mathrm{MHz} \mathrm{mode}^{(1)}\) & 0.5 & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IS11} & \multirow[t]{3}{*}{Thi：SCL} & \multirow[t]{3}{*}{Clock High Time} & 100 kHz mode & 4.0 & － & \(\mu \mathrm{S}\) & Device must operate at a minimum of 1.5 MHz \\
\hline & & & 400 kHz mode & 0.6 & － & \(\mu \mathrm{S}\) & Device must operate at a minimum of 10 MHz \\
\hline & & & 1 MHz mode \(^{(1)}\) & 0.5 & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IS20} & \multirow[t]{3}{*}{TF：SCL} & \multirow[t]{3}{*}{SDAx and SCLx Fall Time} & 100 kHz mode & － & 300 & ns & \multirow[t]{3}{*}{Св is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Св & 300 & ns & \\
\hline & & & 1 MHz mode \(^{(1)}\) & － & 100 & ns & \\
\hline \multirow[t]{3}{*}{IS21} & \multirow[t]{3}{*}{TR：SCL} & \multirow[t]{3}{*}{SDAx and SCLX Rise Time} & 100 kHz mode & － & 1000 & ns & \multirow[t]{3}{*}{Св is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Св & 300 & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & － & 300 & ns & \\
\hline \multirow[t]{3}{*}{IS25} & \multirow[t]{3}{*}{Tsu：DAT} & \multirow[t]{3}{*}{Data Input Setup Time} & 100 kHz mode & 250 & － & ns & \\
\hline & & & 400 kHz mode & 100 & － & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 100 & － & ns & \\
\hline \multirow[t]{3}{*}{IS26} & \multirow[t]{3}{*}{THD：DAT} & \multirow[t]{3}{*}{Data Input Hold Time} & 100 kHz mode & 0 & － & \(\mu \mathrm{S}\) & \\
\hline & & & 400 kHz mode & 0 & 0.9 & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0 & 0.3 & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IS30} & \multirow[t]{3}{*}{Tsu：sta} & \multirow[t]{3}{*}{Start Condition Setup Time} & 100 kHz mode & 4.7 & － & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{Only relevant for Repeated Start condition} \\
\hline & & & 400 kHz mode & 0.6 & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \(^{(1)}\) & 0.25 & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IS31} & \multirow[t]{3}{*}{THD：STA} & \multirow[t]{3}{*}{Start Condition Hold Time} & 100 kHz mode & 4.0 & － & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{After this period，the first clock pulse is generated} \\
\hline & & & 400 kHz mode & 0.6 & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \(^{(1)}\) & 0.25 & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IS33} & \multirow[t]{3}{*}{Tsu：sto} & \multirow[t]{3}{*}{Stop Condition Setup Time} & 100 kHz mode & 4.7 & － & \(\mu \mathrm{S}\) & \\
\hline & & & 400 kHz mode & 0.6 & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \(^{(1)}\) & 0.6 & － & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IS34} & \multirow[t]{3}{*}{Thd：sto} & \multirow[t]{3}{*}{Stop Condition Hold Time} & 100 kHz mode & 4000 & － & ns & \\
\hline & & & 400 kHz mode & 600 & － & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 250 & & ns & \\
\hline \multirow[t]{3}{*}{IS40} & \multirow[t]{3}{*}{TAA：SCL} & \multirow[t]{3}{*}{Output Valid From Clock} & 100 kHz mode & 0 & 3500 & ns & \\
\hline & & & 400 kHz mode & 0 & 1000 & ns & \\
\hline & & & 1 MHz mode \(^{(1)}\) & 0 & 350 & ns & \\
\hline \multirow[t]{3}{*}{IS45} & \multirow[t]{3}{*}{TbF：SDA} & \multirow[t]{3}{*}{Bus Free Time} & 100 kHz mode & 4.7 & － & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{Time the bus must be free before a new transmission can start} \\
\hline & & & 400 kHz mode & 1.3 & － & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \(^{(1)}\) & 0.5 & － & \(\mu \mathrm{S}\) & \\
\hline IS50 & Св & \multicolumn{2}{|l|}{Bus Capacitive Loading} & － & 400 & pF & \\
\hline
\end{tabular}

Note 1：Maximum pin capacitance \(=10 \mathrm{pF}\) for all I 2 Cx pins（for 1 MHz mode only）．

\section*{查询dsPIC33FJ32GS606供应商}

TABLE 27－36：10－BIT HIGH－SPEED AID MODULE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V and 3．6V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline \multicolumn{8}{|c|}{Device Supply} \\
\hline AD01 & AVDD & Module VDD Supply & Greater of VDD－ 0.3 or 3.0 & & Lesser of VdD +0.3 or 3.6 & V & \\
\hline AD02 & AVss & Module Vss Supply & Vss－ 0.3 & & Vss＋ 0.3 & V & \\
\hline \multicolumn{8}{|c|}{Analog Input} \\
\hline AD10 & VINH－VINL & Full－Scale Input Span & Vss & & VDD & V & \\
\hline AD11 & VIN & Absolute Input Voltage & AVss & & AVDD & V & \\
\hline AD12 & IAD & Operating Current & － & 8 & － & mA & \\
\hline AD13 & － & Leakage Current & － & \(\pm 0.6\) & － & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \text { VINL = AVsS }=0 \mathrm{~V}, \\
& \text { AVDD }=3.3 \mathrm{~V} \\
& \text { Source Impedance }=100 \Omega
\end{aligned}
\] \\
\hline AD17 & RIN & Recommended Impedance Of Analog Voltage Source & － & & 100 & \(\Omega\) & \\
\hline \multicolumn{8}{|c|}{DC Accuracy} \\
\hline AD20 & Nr & Resolution & \multicolumn{3}{|c|}{10 data bits} & bits & \\
\hline AD21A & INL & Integral Nonlinearity & ＞－2 & \(\pm 0.5\) & \(<2\) & LSb & \[
\begin{aligned}
& \text { VINL }=\text { AVSS }=0 \mathrm{~V}, \\
& \text { AVDD }=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline AD22A & DNL & Differential Nonlinearity & ＞－1 & \(\pm 0.5\) & \(<1\) & LSb & \[
\begin{aligned}
& \mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \\
& \text { AVDD }=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline AD23A & Gerr & Gain Error & ＞－5 & \(\pm 2.0\) & ＜ 5 & LSb & \[
\begin{aligned}
& \text { VINL = AVSS }=0 \mathrm{~V}, \\
& \text { AVDD }=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline AD24A & Eoff & Offset Error & ＞－3 & \(\pm 0.75\) & ＜ 3 & LSb & \[
\begin{aligned}
& \mathrm{VINL}=\mathrm{AVSS}=\mathrm{VSS}=0 \mathrm{~V}, \\
& \mathrm{AVDD}=\mathrm{VDD}=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline AD25 & － & Monotonicity \({ }^{(\mathbf{1})}\) & － & － & － & － & Guaranteed \\
\hline \multicolumn{8}{|c|}{Dynamic Performance} \\
\hline AD30 & THD & Total Harmonic Distortion & － & －73 & － & dB & \\
\hline AD31 & SINAD & Signal to Noise and Distortion & － & 58 & － & dB & \\
\hline AD32 & SFDR & Spurious Free Dynamic Range & － & －73 & － & dB & \\
\hline AD33 & FNYQ & Input Signal Bandwidth & － & － & 1 & MHz & \\
\hline AD34 & ENOB & Effective Number of Bits & － & 9.4 & － & bits & \\
\hline
\end{tabular}

Note 1：The A／D conversion result never decreases with an increase in the input voltage，and has no missing codes．

\section*{询dsPIC33FJ32GS606供应商}

TABLE 27－37：10－BIT HIGH－SPEED AID MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions： 3.0 V to 3.6 V （unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \multicolumn{8}{|c|}{Clock Parameters} \\
\hline AD50b & TAD & ADC Clock Period & 35.8 & － & － & ns & \\
\hline \multicolumn{8}{|c|}{Conversion Rate} \\
\hline AD55b & tconv & Conversion Time & － & 14 TAD & － & － & \\
\hline \multirow[t]{3}{*}{AD56b} & FCNV & Throughput Rate & & & & & \\
\hline & & Devices with Single SAR & － & － & 2.0 & Msps & \\
\hline & & Devices with Dual SARs & － & － & 4.0 & Msps & \\
\hline \multicolumn{8}{|c|}{Timing Parameters} \\
\hline AD63b & tDPU & Time to Stabilize Analog Stage from ADC Off to ADC On \({ }^{(1)}\) & 1.0 & － & 10 & \(\mu \mathrm{s}\) & \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．

FIGURE 27－19：A／D CONVERSION TIMING PER INPUT
\(\square\)

\section*{查询dsPLC33FJ32GS606供应商 27 －38：COMPARE SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC and & DC CHAR & ACTERISTICS & \multicolumn{5}{|l|}{Standard Operating Conditions（unless otherwise stated） Operating temperature：\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param． No． & Symbol & Characteristic & Min & Typ & Max & Units & Comments \\
\hline CM10 & VIoff & Input Offset Voltage & & \(\pm 5\) & \(\pm 15\) & mV & \\
\hline CM11 & VICM & Input Common Mode Voltage Range \({ }^{(1)}\) & 0 & － & AVDD－ 1.5 & V & \\
\hline CM12 & VGAIN & Open Loop Gain \({ }^{(\mathbf{1})}\) & 90 & － & － & db & \\
\hline CM13 & CMRR & Common Mode Rejection Ratio \({ }^{(1)}\) & 70 & － & － & db & \\
\hline CM14 & TRESP & Large Signal Response & & 20 & 30 & ns & V＋input step of 100 mv while V －input held at AVDD／2．Delay measured from analog input pin to PWM output pin． \\
\hline
\end{tabular}

Note 1：Parameters are for design guidance only and are not tested in manufacturing．

TABLE 27－39：DAC MODULE SPECIFICATIONS
\begin{tabular}{|l|l|l|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{l} 
AC and DC CHARACTERISTICS
\end{tabular}} & \multicolumn{4}{|c|}{\begin{tabular}{l} 
Standard Operating Conditions（unless otherwise stated） \\
Operating temperature：\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{c} 
Param． \\
No．
\end{tabular} & Symbol & Characteristic & Min & Typ & Max & Units & Comments
\end{tabular}

Note 1：Parameters are for design guidance only and are not tested in manufacturing．

\section*{询dsPIC33FJ32GS606供应商}

TABLE 27－40：DAC OUTPU BUFFER SPECIFICATIONS
\begin{tabular}{|l|l|l|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ DC CHARACTERISTICS }
\end{tabular}

FIGURE 27－20：QEA／QEB INPUT CHARACTERISTICS


\section*{查询dsPIC33FJ32GS606供应商}

TABLE 27－41：QUADRATURE DECODER TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3．6V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic \({ }^{(1)}\) & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline TQ30 & TQuL & Quadrature Input Low Time & 6 Tcy & － & ns & － \\
\hline TQ31 & TQuH & Quadrature Input High Time & 6 Tcy & － & ns & － \\
\hline TQ35 & TQuIN & Quadrature Input Period & 12 Tcy & － & ns & － \\
\hline TQ36 & TQuP & Quadrature Phase Period & 3 Tcy & － & ns & － \\
\hline TQ40 & TQUFL & Filter Time to Recognize Low， with Digital Filter & 3 ＊N TCY & － & ns & \[
\begin{array}{|l|}
\hline N=1,2,4,16,32,64, \\
128 \text { and } 256 \text { (Note 3) }
\end{array}
\] \\
\hline TQ41 & TQuFH & Filter Time to Recognize High， with Digital Filter & 3 ＊N TCY & － & ns & \[
\begin{aligned}
& \mathrm{N}=1,2,4,16,32,64, \\
& 128 \text { and } 256 \text { (Note 3) }
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．
2：Data in＂Typ＂column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated．
3： \(\mathrm{N}=\) Index Channel Digital Filter Clock Divide Select bits．Refer to Section 15．＂Quadrature Encoder Interface（QEI）＂in the＂dsPIC33F／PIC24H Family Reference Manual＂．

FIGURE 27－21：QEI MODULE INDEX PULSE TIMING CHARACTERISTICS


\section*{查询dsPIC33FJ32GS606供应商}

\section*{TABLE 27－42：QEI INDEX PULSE TIMING REQUIREMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic \({ }^{(1)}\) & Min & Max & Units & Conditions \\
\hline TQ50 & TqIL & Filter Time to Recognize Low， with Digital Filter & 3 ＊＊Tcy & － & ns & \[
\begin{aligned}
& \mathrm{N}=1,2,4,16,32,64, \\
& 128 \text { and } 256 \text { (Note 2) }
\end{aligned}
\] \\
\hline TQ51 & TqiH & Filter Time to Recognize High， with Digital Filter & 3 ＊＊Tcy & － & ns & \[
\mathrm{N}=1,2,4,16,32,64,
\]
\[
128 \text { and } 256 \text { (Note 2) }
\] \\
\hline TQ55 & Tqidxr & Index Pulse Recognized to Position Counter Reset（ungated index） & 3 Tcy & － & ns & － \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．
2：Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only．Shown for forward direction only（QEA leads QEB）．Same timing applies for reverse direction（QEA lags QEB）but index pulse recognition occurs on falling edge．

FIGURE 27－22：TIMERQ（QEI MODULE）EXTERNAL CLOCK TIMING CHARACTERISTICS


TABLE 27－43：QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{```
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40 C }\leq\textrm{TA}\leq+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Industrial
-40}\mp@subsup{}{}{\circ}\textrm{C}\leqT\textrm{TA}\leq+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Extended
```} \\
\hline Param No． & Symbol & Characte & istic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline TQ10 & TtQH & TQCK High Time & Synchronous， with prescaler & TCY＋ 20 & － & － & ns & Must also meet parameter TQ15 \\
\hline TQ11 & TtQL & TQCK Low Time & Synchronous， with prescaler & TCY＋ 20 & － & － & ns & Must also meet parameter TQ15 \\
\hline TQ15 & TtQP & TQCP Input Period & Synchronous， with prescaler & 2 ＊TCY＋ 40 & － & － & ns & － \\
\hline TQ20 & TCKEXTMRL & Delay from Extern Edge to Timer Inc & TxCK Clock ment & 0．5 Tcy & － & 1．5 Tcy & － & － \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．

查询dsPIC33FJ32GS606供应商
FIGURE 27－23：CANMODULE I／O TIMING CHARACTERISTICS

TABLE 27－44：ECAN \({ }^{\text {TM }}\) MODULE I／O TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions：3．0V to 3.6 V \\
（unless otherwise stated） \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No． & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline CA10 & TioF & Port Output Fall Time & － & － & － & ns & See parameter D032 \\
\hline CA11 & TioR & Port Output Rise Time & － & － & － & ns & See parameter D031 \\
\hline CA20 & Tcwf & Pulse Width to Trigger CAN Wake－up Filter & 120 & － & － & ns & － \\
\hline
\end{tabular}

Note 1：These parameters are characterized but not tested in manufacturing．

Example

Example

\section*{Example}

\begin{tabular}{|lll}
\hline Legend: & XX...X & Customer-specific information \\
& Y & Year code (last digit of calendar year) \\
& YY & Year code (last 2 digits of calendar year) \\
& WW & Week code (week of January 1 is week '01') \\
& NNN & Alphanumeric traceability code
\end{tabular}

100－Lead TQFP（ \(12 \times 12 \times 1 \mathrm{~mm}\) ）

Example

100－Lead TQFP（ \(14 \times 14 \times 1 \mathrm{~mm}\) ）

Example

Legend：XX．．．X Customer－specific information
\(Y \quad\) Year code（last digit of calendar year）
YY Year code（last 2 digits of calendar year）
WW Week code（week of January 1 is week＇ 01 ＇）
NNN Alphanumeric traceability code
e3 Pb－free JEDEC designator for Matte Tin（Sn）
＊This package is Pb －free．The Pb －free JEDEC designator（e3） can be found on the outer packaging for this package．

Note：If the full Microchip part number cannot be marked on one line，it is carried over to the next line，thus limiting the number of available characters for customer－specific information．

\section*{查询dsPIC33FJ32GS606供应商}

\subsection*{28.1 Package Details}

\section*{64－Lead Plastic Quad Flat，No Lead Package（MR）－9x9x0．9 mm Body［QFN］}

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

Microchip Technology Drawing C04－149B Sheet 1 of 2

\section*{查询dsPIC33FJ32GS606供应商}

\section*{64－Lead Plastic Quad Flat，No Lead Package（MR）－9x9x0．9 mm Body［QFN］}

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{6}{|c|}{ Dimension Limits } & \multicolumn{3}{|c|}{ MIN } & NOM & MAX \\
\hline Number of Pins & N & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Pitch & e & \multicolumn{3}{|c|}{0.20 REF} \\
\hline Overall Height & A & 0.80 & 0.90 & 1.00 \\
\hline Standoff & A 1 & 0.00 & 0.05 \\
\hline Contact Thickness & A 3 & \multicolumn{3}{|c|}{9.00 BSC} \\
\hline Overall Width & E & \multicolumn{3}{|c|}{7.15} \\
\hline Exposed Pad Width & E2 & 7.05 & 7.50 \\
\hline Overall Length & D & \multicolumn{3}{|c|}{9.00 BSC} \\
\hline Exposed Pad Length & D 2 & 7.05 & 7.15 & 7.50 \\
\hline Contact Width & b & 0.18 & 0.25 & 0.30 \\
\hline Contact Length & L & 0.30 & 0.40 & 0.50 \\
\hline Contact－to－Exposed Pad & K & 0.20 & - & - \\
\hline
\end{tabular}

Notes：
1．Pin 1 visual index feature may vary，but must be located within the hatched area．
2．Package is saw singulated．
3．Dimensioning and tolerancing per ASME Y14．5M．
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
REF：Reference Dimension，usually without tolerance，for information purposes only
Microchip Technology Drawing C04－149B Sheet 2 of 2

\section*{查询dsPIC33FJ32GS606供应商}

64－Lead Plastic Quad Flat，No Lead Package（MR）－ \(9 \times 9 \times 0.9 \mathrm{~mm}\) Body［QFN］ With 0.40 mm Contact Length

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Units } & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Optional Center Pad Width & W2 & & & 7.35 \\
\hline Optional Center Pad Length & T2 & & & 7.35 \\
\hline Contact Pad Spacing & C1 & & 8.90 & \\
\hline Contact Pad Spacing & C2 & & 8.90 & \\
\hline Contact Pad Width（X64） & X1 & & & 0.30 \\
\hline Contact Pad Length（X64） & Y1 & & & 0.85 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes：
1．Dimensioning and tolerancing per ASME Y14．5M
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
Microchip Technology Drawing No．C04－2149A

\section*{查询dsPIC33FJ32GS606供应商}

\section*{64－Lead Plastic Thin Quad Flatpack（PT）－10x10x1 mm Body， 2.00 mm［TQFP］}

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & \multicolumn{3}{|c|}{64} \\
\hline Lead Pitch & e & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Overall Height & A & － & － & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & － & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1．00 REF} \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(3.5^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & \multicolumn{3}{|c|}{12．00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Molded Package Width & E1 & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Molded Package Length & D1 & \multicolumn{3}{|c|}{10．00 BSC} \\
\hline Lead Thickness & c & 0.09 & － & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes：}

1．Pin 1 visual index feature may vary，but must be located within the hatched area．
2．Chamfers at corners are optional；size may vary．
3．Dimensions D1 and E1 do not include mold flash or protrusions．Mold flash or protrusions shall not exceed 0.25 mm per side．
4．Dimensioning and tolerancing per ASME Y14．5M．
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
REF：Reference Dimension，usually without tolerance，for information purposes only．
Microchip Technology Drawing C04－085B

\section*{查询dsPIC33FJ32GS606供应商}

64－Lead Plastic Thin Quad Flatpack（PT）－10x10x1 mm Body， 2.00 mm［TQFP］
Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{3}{|c|}{ Dimension Limits } & \multicolumn{2}{|c|}{ MIN } \\
\hline \multicolumn{3}{|c|}{0.50 BSC} & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{} \\
\hline Contact Pad Spacing & C1 & & 11.40 & \\
\hline Contact Pad Spacing & C2 & & 11.40 & \\
\hline Contact Pad Width（X64） & X1 & & & 0.30 \\
\hline Contact Pad Length（X64） & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes：
1．Dimensioning and tolerancing per ASME Y14．5M
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
Microchip Technology Drawing No．C04－2085A

\section*{查询dsPIC33FJ32GS606供应商}

\section*{80－Lead Plastic Thin Quad Flatpack（PT）－12x12x1 mm Body， 2.00 mm［TQFP］}

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

Notes：
1．Pin 1 visual index feature may vary，but must be located within the hatched area．
2．Chamfers at corners are optional；size may vary．
3．Dimensions D1 and E1 do not include mold flash or protrusions．Mold flash or protrusions shall not exceed 0.25 mm per side．
4．Dimensioning and tolerancing per ASME Y14．5M．
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
REF：Reference Dimension，usually without tolerance，for information purposes only．
Microchip Technology Drawing C04－092B

\section*{查询dsPIC33FJ32GS606供应商}

\section*{80－Lead Plastic Thin Quad Flatpack（PT）－12x12x1 mm Body， 2.00 mm［TQFP］}

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

\section*{RECOMMENDED LAND PATTERN}
\begin{tabular}{|c|c|c|c|c|}
\hline & Units & \multicolumn{3}{|l|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Contact Pitch & E & & ． 50 BS & \\
\hline Contact Pad Spacing & C1 & & 13.40 & \\
\hline Contact Pad Spacing & C2 & & 13.40 & \\
\hline Contact Pad Width（X80） & X1 & & & 0.30 \\
\hline Contact Pad Length（X80） & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

\section*{Notes：}

1．Dimensioning and tolerancing per ASME Y14．5M
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
Microchip Technology Drawing No．C04－2092A

\section*{查询dsPIC33FJ32GS606供应商}

\section*{100－Lead Plastic Thin Quad Flatpack（PT）－12x12x1 mm Body， 2.00 mm［TQFP］}

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & \multicolumn{3}{|c|}{100} \\
\hline Lead Pitch & e & \multicolumn{3}{|c|}{0．40 BSC} \\
\hline Overall Height & A & － & － & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & － & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1．00 REF} \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(3.5^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & \multicolumn{3}{|c|}{14.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{14.00 BSC} \\
\hline Molded Package Width & E1 & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Molded Package Length & D1 & \multicolumn{3}{|c|}{12．00 BSC} \\
\hline Lead Thickness & c & 0.09 & － & 0.20 \\
\hline Lead Width & b & 0.13 & 0.18 & 0.23 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes：}

1．Pin 1 visual index feature may vary，but must be located within the hatched area．
2．Chamfers at corners are optional；size may vary．
3．Dimensions D1 and E1 do not include mold flash or protrusions．Mold flash or protrusions shall not exceed 0.25 mm per side．
4．Dimensioning and tolerancing per ASME Y14．5M．
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
REF：Reference Dimension，usually without tolerance，for information purposes only．
Microchip Technology Drawing C04－100B

\section*{查询dsPIC33FJ32GS606供应商}

100－Lead Plastic Thin Quad Flatpack（PT）－12x12x1 mm Body， 2.00 mm ［TQFP］
Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Units } & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.40 BSC } \\
\hline Contact Pad Spacing & C1 & & 13.40 & \\
\hline Contact Pad Spacing & C2 & & 13.40 & \\
\hline Contact Pad Width（X100） & X1 & & & 0.20 \\
\hline Contact Pad Length（X100） & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes：
1．Dimensioning and tolerancing per ASME Y14．5M
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
Microchip Technology Drawing No．C04－2100A

\section*{查询dsPIC33FJ32GS606供应商}

\section*{100－Lead Plastic Thin Quad Flatpack（PF）－14×14×1 mm Body， 2.00 mm［TQFP］}

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & & 100 & \\
\hline Lead Pitch & e & & 50 BS & \\
\hline Overall Height & A & － & － & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & － & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & & 00 RE & \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(3.5{ }^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & & ． 00 BS & \\
\hline Overall Length & D & & ． 00 BS & \\
\hline Molded Package Width & E1 & & ． 00 BS & \\
\hline Molded Package Length & D1 & & ． 00 BS & \\
\hline Lead Thickness & c & 0.09 & － & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes：}

1．Pin 1 visual index feature may vary，but must be located within the hatched area．
2．Chamfers at corners are optional；size may vary．
3．Dimensions D1 and E1 do not include mold flash or protrusions．Mold flash or protrusions shall not exceed 0.25 mm per side．
4．Dimensioning and tolerancing per ASME Y14．5M．
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
REF：Reference Dimension，usually without tolerance，for information purposes only．
Microchip Technology Drawing C04－110B

\section*{查询dsPIC33FJ32GS606供应商}

\section*{100－Lead Plastic Thin Quad Flatpack（PF）－14x14x1 mm Body， 2.00 mm［TQFP］}

Note：For the most current package drawings，please see the Microchip Packaging Specification located at http：／／www．microchip．com／packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{3}{|c|}{ Dimension Limits } & MIN & NOM \\
MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Contact Pad Spacing & C1 & & 15.40 & \\
\hline Contact Pad Spacing & C2 & & 15.40 & \\
\hline Contact Pad Width（X100） & X1 & & & 0.30 \\
\hline Contact Pad Length（X100） & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes：
1．Dimensioning and tolerancing per ASME Y14．5M
BSC：Basic Dimension．Theoretically exact value shown without tolerances．
Microchip Technology Drawing No．C04－2110A

\section*{旬dsPIC33FJ32GS606供应商 \\ APPENDIX A：MIGRATING FROM dsPIC33FJ06GS101／X02 AND dsPIC33FJ16GSX02／X04 TO dsPIC33FJ32GS406／606／608／610 AND dsPIC33FJ64GS406／606／608／610 DEVICES}

This appendix provides an overview of considerations for migrating from the dsPIC33FJ06GS101／X02 and dsPIC33FJ16GSX02／X04 family of devices to the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 family of devices． The code developed for the dsPIC33FJ06GS101／X02 and dsPIC33FJ16GSX02／X04 devices can be ported to the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices after making the appropriate changes outlined below．

\section*{A． 1 Device Pins and Peripheral Pin Select（PPS）}

On dsPIC33FJ06GS101／X02 and dsPIC33FJ16GSX02／X04 devices，some peripherals such as the Timer，Input Capture，Output Compare， UART，SPI，External Interrupts，Analog Comparator Output，as well as the PWM4 pin pair，were mapped to physical pins via Peripheral Pin Select（PPS） functionality．On dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices，these peripherals are hard－coded to dedicated pins．Because of this，as well as pinout differences between the two devices families，software must be updated to utilize peripherals on the desired pin locations．

\section*{A． 2 High－Speed PWM}

\section*{A．2．1 FAULT AND CURRENT－LIMIT CONTROL SIGNAL SOURCE SELECTION}

Fault and Current－Limit Control Signal Source selec－ tion has changed between the two families of devices． On dsPIC33FJ06GS101／X02 and dsPIC33FJ16GSX02／X04 devices，Fault1 through Fault8 were assigned to Fault and Current－Limit Controls with the following values：
－ 00000 ＝Fault 1
－ 00001 ＝Fault 2
－ 00010 ＝Fault 3
－ 00011 ＝Fault 4
－ 00100 ＝Fault 5
－ 00101 ＝Fault 6
－ 00110 ＝Fault 7
－ 00111 ＝Fault 8

On dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices，Fault1 through Fault8 were assigned to Fault and Current－ Limit Controls with the following values：
－ 01000 ＝Fault 1
－ 01001 ＝Fault 2
－ 01010 ＝Fault 3
－ 01011 ＝Fault 4
－ 01100 ＝Fault 5
－ 01101 ＝Fault 6
－ 01110 ＝Fault 7
－ 01111 ＝Fault 8

\section*{A．2．2 ANALOG COMPARATORS CONNECTION}

Connection of analog comparators to the PWM Fault and Current－Limit Control Signal Sources on dsPIC33FJ06GS101／X02 and dsPIC33FJ16GSX02／ X04 devices is performed by assigning a comparator to one of the Fault sources via the virtual PPS pins，and then selecting the desired Fault as the source for Fault and Current－Limit Control．On dsPIC33FJ32GS406／ 606／608／610 and dsPIC33FJ64GS406／606／608／610 devices，analog comparators have a direct connection to Fault and Current－Limit Control，and can be selected with the following values for the CLSRC or FLTSRC bits：
－ 00000 ＝Analog Comparator 1
－ 00001 ＝Analog Comparator 2
－ 00010 ＝Analog Comparator 3
－ 00011 ＝Analog Comparator 4

\section*{A．2．3 LEADING－EDGE BLANKING（LEB）}

The Leading－Edge Blanking Delay（LEB）bits have been moved from the LEBCOx register on dsPIC33FJ06GS101／X02 and dsPIC33FJ16GSX02／ X04 devices to the LEBDLYx register on dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices．

\section*{查询dsPIC33FJ32GS606供应商}

\section*{APPENDIX B：REVISIONHISTORY}

\section*{Revision A（March 2009）}

This is the initial release of this document．

\section*{Revision B（November 2009）}

The revision includes the following global update：
－Added Note 2 to the shaded table that appears at the beginning of each chapter．This new note provides information regarding the availability of registers and their associated bits
This revision also includes minor typographical and formatting changes throughout the data sheet text．
All other major changes are referenced by their respective section in Table B－1．

TABLE B－1：MAJOR SECTION UPDATES
\begin{tabular}{|c|c|}
\hline Section Name & Update Description \\
\hline ＂High－Performance，16－Bit Digital Signal Controllers＂ & \begin{tabular}{l}
Added＂DMA Channels＂column and updated the RAM size to 9K for the dsPIC33FJ64GS406 devices in the controller families table（see Table 1）． \\
Updated the pin diagrams as follows： \\
－64－pin TQFP and QFN \\
－Removed FLT8 from pin 51 \\
－Added FLT8 to pin 60 \\
－Added FLT17 to pin 31 \\
－Added FLT18 to pin32 \\
－80－pin TQFP \\
－Removed FLT8 from pin 63 \\
－Added FLT8 to pin 76 \\
－Added FLT19 to pin 53 \\
－Added FLT20 to pin 52 \\
－100－pin TQFP \\
－Removed FLT8 from pin 78 \\
－Added FLT8 to pin 93 \\
－Added SYNCO1 to pin 95
\end{tabular} \\
\hline Section 4.0 ＂Memory Organization＂ & \begin{tabular}{l}
Added Data Memory Map for Devices with 8 KB RAM（see Figure 4－4）． \\
Removed SFRs IPC25 and IPC26 from the Interrupt Controller Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices（see Table 4－7）． \\
The following bits in the Interrupt Controller Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices were changed to unimplemented（see Table 4－7）： \\
－Bit 2 of IFS1 \\
－Bits 9－7 of IFS6 \\
－Bit 2 of IEC1 \\
－Bits 9－7 of IEC6 \\
－Bits 10－8 of IPC4 \\
Removed OSCTUN2 and LFSR，updated OSCCON and OSCTUN， renamed bit 13 of the REFOCON SFR in the System Control Register Map from ROSIDL to ROSSLP and changed the All Resets value from ＇0000＇to＇2300＇for the ACLKCON SFR（see Table 4－56）． \\
Updated bit 1 of the PMD Register Map for dsPIC33FJ64GS608 devices from unimplemented to C1MD（see Table 4－60）．
\end{tabular} \\
\hline
\end{tabular}

\section*{询dsPIC33FJ32GS606供应商}

TABLE B－1：MAJOR SECTION UPDATES（CONTINUED）
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c}{ Update Description } \\
\hline \hline Section 9．0＂Oscillator Configuration＂ & \begin{tabular}{l}
Removed Section 9．2＂FRC Tuning＂． \\
Removed the PRCDEN，TSEQEN，and LPOSCEN bits from the Oscillator \\
Control Register（see Register 9－1）． \\
Updated the Oscillator Tuning Register（see Register 9－4）．
\end{tabular} \\
\hline Section 10．0＂Power－Saving Features＂ & \begin{tabular}{l}
Removed the Oscillator Tuning Register 2 and the Linear Feedback Shift \\
Register． \\
Updated the default reset values from R／W－0 to R／W－1 for the SELACLK \\
and APSTSCLR＜2：0＞bits in the ACLKCON register（see Register 9－5）． \\
Register 9－6）．
\end{tabular} \\
\hline instruction execution begins． \\
\hline Section 11．0＂I／O Ports＂ & Added Note 1 to the PMD1 register（see Register 10－1）．
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商}

TABLE B－1：MAJOR SECTION UPDATES（CONTINUED）
\begin{tabular}{|c|c|}
\hline Section Name & Update Description \\
\hline Section 27.0 ＂Electrical Characteristics＂ & \begin{tabular}{l}
Updated the Absolute Maximum Ratings for high temperature and added Note 4. \\
Updated all Operating Current（IDD）Typical and Max values in Table 27－5． Updated all Idle Current（IIDLE）Typical and Max values in Table 27－6． \\
Updated all Power－Down Current（IPD）Typical and Max values in Table 27－7． \\
Updated all Doze Current（IDOzE）Typical and Max values in Table 27－8． \\
Updated the Typ and Max values for parameter D150 and removed parameters DI26，DI28，and DI29 from the I／O Pin Input Specifications （see Table 27－9）． \\
Updated the Typ and Max values for parameter DO10 and DO27 and the Min and Typ values for parameter DO20 in the I／O Pin Output Specifications（see Table 27－10）． \\
Added parameter numbers to the Auxiliary PLL Clock Timing Specifications（see Table 27－18）． \\
Added parameters numbers and updated the Internal RC Accuracy Min， Typ，and Max values（see Table 27－19 and Table 27－20）． \\
Added parameter numbers，Note 2，updated the Min and Typ parameter values for MP31 and MP32，and removed the conditions for MP10 and MP11 in the High－Speed PWM Module Timing Requirements（see Table 27－29）． \\
Updated the SPIx Module Slave Mode（CKE＝1）Timing Characteristics （see Figure 27－14）． \\
Added parameter IM51 to the I2Cx Bus Data Timing Requirements （Master Mode）（see Table 27－34）． \\
Updated the Max value for parameter AD33 in the 10－bit High－Speed A／D Module Specifications（see Table 27－36）． \\
Updated the titles and added parameter numbers to the Comparator and DAC Module Specifications（see Table 27－38 and Table 27－39）and the DAC Output Buffer Specifications（see Table 27－40）．
\end{tabular} \\
\hline
\end{tabular}

\section*{询dsPIC33FJ32GS606供应商}

Revision C（February 2010）
This revision includes minor typographical and formatting changes throughout the data sheet text．
All other changes are referenced by their respective section in Table B－2．

\section*{TABLE B－2：MAJOR SECTION UPDATES}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{ Update Description } \\
\hline \hline Section 16．0＂High－Speed PWM＂ & Added Note 2 to PTPER（Register 16－3）． \\
& Added Note 1 to SEVTCMP（Register 16－4）． \\
& Updated Note 1 in MDC（Register 16－10）． \\
& Updated Note 5 and added Note 6 to PWMCONx（Register 16－11）． \\
& Updated Note 1 in PDCx（Register 16－12）． \\
& Updated Note 1 in SDCx（Register 16－13）． \\
& Updated Note 1 and Note 2 in PHASEx（Register 16－14）． \\
& Updated Note 2 in SPHASEx（Register 16－15）． \\
& \begin{tabular}{l}
Added Note 1 to STRIGx（Register 16－22）． \\
Updated Leading－Edge Blanking Delay increment value from 8．4 ns to 1 in FCLCONx（Register 16－21）． \\
8.32 ns and added a shaded note in LEBDLYx（Register 16－24）． \\
Added Note 3 and Note 4 to PWMCAPx（Register 16－26）．
\end{tabular} \\
\hline Section 27．0＂Electrical & \begin{tabular}{l}
Updated the Min and Typ values for the Internal Voltage Regulator \\
specifications in Table 27－13．
\end{tabular} \\
\hline
\end{tabular}

\section*{查询dsPIC33FJ32GS606供应商 INDEX}
A
AC Characteristics 362
Internal RC Accuracy 364
Load Conditions 362
Alternate Vector Table（AIVT） 123
Arithmetic Logic Unit（ALU） 41
Assembler
MPASM Assembler 350
B
Barrel Shifter 45
Bit－Reversed Addressing 103
Example 104
Implementation 103
Sequence Table（16－Entry） 104
Block Diagrams
16－bit Timer1 Module 211
Comparator 329
Connections for On－Chip Voltage Regulator． 336
Device Clock 191
DSP Engine 42
dsPIC33FJ32GS406／606／608／610 and
dsPIC33FJ64GS406／606／608／610． 20
dsPIC33FJ32GS406／606／608／610 anddsPIC33FJ64GS406／606／608／610 CPU Core ．．．． 36
ECAN Module 280
\(1^{2} \mathrm{C}\) 266
Input Capture 219
Oscillator System 188
Output Compare 221
PLL 191
Quadrature Encoder Interface 255
Reset System 115
Shared Port Structure 209
Simplified Conceptual High－Speed PWM 226
SP 259
Timer2／3（32－bit） 215
Type B Timer 213
Type C Timer 213
UART 273
Watchdog Timer（WDT） 338
Brown－out Reset（BOR） 333
C
C Compilers
Hi－Tech C 350
MPLAB C 350
Clock Switching 198
Enabling 198
Sequence 198
Code Examples
Erasing a Program Memory Page 113
Initiating a Programming Sequence 114
Loading Write Buffers 114
Port Write／Read 210
PWRSAV Instruction Syntax 199
Code Protection 333， 339
CodeGuard Security 333
Configuration Bits 333
Configuration Register Map 333
Configuring Analog Port Pins 210
CPU
Control Registers 38
CPU Clocking System 189
PLL Configuration 190
Selection． 189
Sources 189
Customer Change Notification Service 415
Customer Notification Service 415
Customer Support 415
D
DAC 330
Output Range 330
Data Accumulators and Adder／Subtracter 43
Data Space Write Saturation 45
Overflow and Saturation 43
Round Logic 44
Write Back 44
Data Address Space 49
Alignment． 49
Memory Map for dsPIC33FJ32GS406／606／608／610 De－ vices with 4 KB RAM 50
Memory Map for dsPIC33FJ64GS406／606／608／610 De－vices with 8 KB RAM51
Memory Map for dsPIC33FJ64GS406／606／608／610 De－vices with 9 KB RAM ．．． 52
Near Data Space 49
Software Stack 100
Width 49
DC Characteristics 354
Doze Current（IDoze） 358
I／O Pin Input Specifications 359
I／O Pin Output Specifications． 360
Idle Current（IIDLE） 357
Operating Current（IDD） 356
Power－Down Current（IPD） 358
Program Memory 361
Temperature and Voltage Specifications 355
Demonstration／Development Boards，Evaluation Kits，and
Starter Kits 352
Development Support 349
DMAC Registers 178
DMAxCNT 178
DMAxCON 178
DMAxPAD 178
DMAxREQ 178
DMAxSTA． 178
DMAxSTB 178
Doze Mode 200
DSP Engine 41
Multiplier 43
E
ECAN Module
CiBUFPNT1 register 291
CiBUFPNT2 register 292
CiBUFPNT3 register 292
CiBUFPNT4 register 293
CiCFG1 register． 289
CiCFG2 register． 290
CiCTRL1 register 282
CiCTRL2 register 283
CiEC register 289
CiFCTRL register 285
CiFEN1 register 291
CiFIFO register 286
 295
CiFMSKSEL2 register 296
CiINTE register 288
CilNTF register 287
CiRXFnEID register 295
CiRXFnSID register 294
CiRXFUL1 register 298
CiRXFUL2 register 298
CiRXMnEID register 297
CiRXMnSID register 297
CiRXOVF1 register 299
CiRXOVF2 register 299
CiTRmnCON register 300
CiVEC register 284
Frame Types 279
Modes of Operation 281
Overview 279
ECAN Registers
Acceptance Filter Enable Register (CiFEN1) 291
Acceptance Filter Extended Identifier Register n (CiRXF-nEID)295
Acceptance Filter Mask Extended Identifier Register n
(CiRXMnEID) 297
Acceptance Filter Mask Standard Identifier Register n (CiRXMnSID) 297
Acceptance Filter Standard Identifier Register n (CiRXF-nSID)... 294
Baud Rate Configuration Register 1 (CiCFG1) 289
Baud Rate Configuration Register 2 (CiCFG2) 290
Control Register 1 (CiCTRL1) 282
Control Register 2 (CiCTRL2) 283
FIFO Control Register (CiFCTRL) 285
FIFO Status Register (CiFIFO) 286
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) 291
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) ... 293
Filter 15-8 Mask Selection Register (CiFMSKSEL2). 296
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) 292
Filter 7-0 Mask Selection Register (CiFMSKSEL1)... 295
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) 292
Interrupt Code Register (CiVEC) 284
Interrupt Enable Register (CiINTE) 288
Interrupt Flag Register (CiINTF) 287
Receive Buffer Full Register 1 (CiRXFUL1) 298
Receive Buffer Full Register 2 (CiRXFUL2) 298
Receive Buffer Overflow Register 2 (CiRXOVF2). 299
Receive Overflow Register (CiRXOVF1) 299
ECAN Transmit/Receive Error Count Register (CiEC) 289
ECAN TX/RX Buffer m Control Register (CiTRmnCON) .. 300
Electrical Characteristics 353
AC Characteristics and Timing Parameters 362
BOR 360
Enhanced CAN Module 279
Equations
Device Operating Frequency 189
Fosc Calculation 190
XT with PLL Mode Example 190
Errata 18
F
Fail-Safe Clock Monitor (FSCM) 198
Flash Program Memory 109
Control Registers 110
Operations 110
Programming Algorithm 113
RTSP Operation. 110
Table Instructions 109
Flexible Configuration 333
H
High-Speed Analog Comparator 329
High-Speed PWM 225
I
I/O Ports. 209
Parallel I/O (PIO) 209
Write/Read Timing 210
\(1^{2} \mathrm{C}\) Operating Modes 265
Registers 265
In-Circuit Debugger 338
In-Circuit Emulation 333
In-Circuit Serial Programming (ICSP) 333, 338
Input Capture 219
Registers 220
Input Change Notification 210
Instruction Addressing Modes 100
File Register Instructions 100
Fundamental Modes Supported 101
MAC Instructions 101
MCU Instructions 100
Move and Accumulator Instructions. 101
Other Instructions 101
Instruction Set
Overview. 344
Summary 341
Instruction-Based Power-Saving Modes 199
Idle. 200
Sleep 199
Interfacing Program and Data Memory Spaces 105
Internal RC Oscillator
Use with WDT 337
Internet Address 415
Interrupt Control and Status Registers 127
IECx 127
IFSx 127
INTCON1 127
INTCON2 127
INTTREG 127
IPCx 127
Interrupt Setup Procedures 176
Initialization 176
Interrupt Disable 176
Interrupt Service Routine 176
Trap Service Routine 176
Interrupt Vector Table (IVT) 123
Interrupts Coincident with Power Save Instructions 200
J
JTAG Boundary Scan Interface 333
JTAG Interface 338
L
Leading-Edge Blanking (LEB) 225
M
Memory Organization 47
Microchip Internet Web Site. 415
Migrating from dsPIC33FJ06GS101/X02 anddsPIC33FJ16GSX02/X04 to dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Devices403
Migration
Analog Comparators Connection 403
询dsPIC33FJ32GS606供应商
Device Pins and Peripheral Pin Select（PPS）．．．．．．．．．．． 403
Fault and Current－Limit Control Signal Source Selection403
Leading－Edge Blanking（LEB） 403
Modes of Operation
Disable 281
Initialization 281
Listen All Messages 281
Listen Only 281
Loopback 281
Normal Operation 281
Modulo Addressing 102
Applicability 103
Operation Example 102
Start and End Address 102
W Address Register Selection 102
MPLAB ASM30 Assembler，Linker，Librarian 350
MPLAB ICD 3 In－Circuit Debugger System 351
MPLAB Integrated Development Environment Software 349
MPLAB PM3 Device Programmer 352
MPLAB REAL ICE In－Circuit Emulator System 351
MPLINK Object Linker／MPLIB Object Librarian 350
0
Open－Drain Configuration 210
Oscillator Configuration 187
Oscillator Tuning Register（OSCTUN） 195
Output Compare 221
P
Packaging 389
100－Lead TQFP 398
100－Lead TQFP Land Pattern 399
64－Lead QFN 391，392， 395
64－Lead QFN Land Pattern． 395
64－Lead TQFP 394
64－Lead TQFP Land Pattern． 395
80－Lead TQFP 396
80－Lead TQFP Land Pattern 397
Marking 389
Peripheral Module Disable（PMD） 201
PICkit 2 Development Programmer／Debugger and PICkit 2
Debug Express 352
PICkit 3 In－Circuit Debugger／Programmer and PICkit 3 DebugExpress．351
Pinout I／O Descriptions（table） 21
Power－on Reset（POR） 119
Power－Saving Features 199
Clock Frequency and Switching 199
Program Address Space 47
Construction 105
Data Access from Program Memory Using ProgramSpace Visibility．． 108Data Access from Program Memory Using Table Instruc－tions ．．． 107
Data Access from，Address Generation 106
Memory Map 47
Table Read Instructions TBLRDH 107
TBLRDL 107
Visibility Operation 108
Program Memory
Interrupt Vector 48
Organization 48
Reset Vector 48
Q
Quadrature Encoder Interface（QEI）． 255
R
Reader Response 416
Register Maps
Analog Comparator 92
Change Notification（dsPIC33FJ32GS608／610 and dsPIC33FJ64GS608／601 Devices）．．．．．．．．．．．．．．．．．．．． 56Change Notification（dsPIC33FJ64GS406／606 Devices）56
CPU Core 54
DMA 88
ECAN1（C1CTRL1．WIN＝ 0 or 1） 89
ECAN1（C1CTRL1．WIN＝0） 89
ECAN1（C1CTRL1．WIN＝1） 90
High－Speed 10－bit ADC Module（dsPIC33FJ32GS608and dsPIC33FJ64GS608 Devices）86
High－Speed 10－bit ADC Module（dsPIC33FJ32GS610and dsPIC33FJ64GS610 Devices）．．．．．．．．．．．．．．．．．．．． 84
High－Speed 10－bit ADC Module（fordsPIC33FJ32GS406／606 and
dsPIC33FJ64GS406／606 Devices） 87
High－Speed PWM 73
High－Speed PWM Generator 1 73
High－Speed PWM Generator 2 74
High－Speed PWM Generator 3 75
High－Speed PWM Generator 4 76
High－Speed PWM Generator 5 77
High－Speed PWM Generator 6 78
High－Speed PWM Generator 7 （All devices exceptdsPIC33FJ32GS406 and dsPIC33FJ64GS406） 79
High－Speed PWM Generator 8 （All devices exceptdsPIC33FJ32GS406 and dsPIC33FJ64GS406） 80
High－Speed PWM Generator 9 （dsPIC33FJ32GS610and dsPIC33FJ64GS610 Devices）81
I2C1． 81
I2C2 82
Input Capture 71
Interrupt Controller（dsPIC33FJ32GS406 anddsPIC33FJ64GS406 Devices）．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 63
Interrupt Controller（dsPIC33FJ32GS606 Devices）．．． 69Interrupt Controller（dsPIC33FJ32GS608 Devices）．．． 67Interrupt Controller（dsPIC33FJ32GS610 Devices）．．． 65Interrupt Controller（dsPIC33FJ64GS606 Devices）．．． 61Interrupt Controller（dsPIC33FJ64GS608 Devices）．．． 59
Interrupt Controller（dsPIC33FJ64GS610 Devices） 57
NVM． 97
Output Compare 72
PMD（dsIPC33FJ64GS606 Devices） 98
PMD（dsPIC33FJ32GS406 and dsPIC33FJ64GS406Devices）．99
PMD（dsPIC33FJ32GS606 Devices） 99
PMD（dsPIC33FJ32GS608 Devices） 98
PMD（dsPIC33FJ32GS610 Devices） 97
PMD（dsPIC33FJ64GS608 Devices） 98
PMD（dsPIC33FJ64GS610 Devices） 97
PORTA（dsPIC33FJ32GS608 and dsPIC33FJ64GS608 Devices）． 92
PORTA（dsPIC33FJ32GS610 and dsPIC33FJ64GS610Devices）．92
PORTB 93
PORTC （dsPIC33FJ32GS406／606 and
dsPIC33FJ64GS406／606 Devices） 93
PORTC（dsPIC33FJ32GS608 and dsPIC33FJ64GS608Devices）．93
查询dsPIC33FJ32GS606供应商
PORIC（dsPIC33FJ32GS610 and dsPIC33FJ64GS610Devices）93
PORTD（dsPIC33FJ32GS406／606 and
dsPIC33FJ64GS406／606 Devices） ． 94
PORTD（dsPIC33FJ32GS608／610 and
dsPIC33FJ64GS608／610 Devices）．．．．．．．．．．．．．．．．．．．．．． 94
PORTE（dsPIC33FJ32GS406／606 anddsPIC33FJ64GS406／606 Devices）．．．．．．．．．．．．．．．．．．．．．． 94
PORTE（dsPIC33FJ32GS608／610 anddsPIC33FJ64GS608／610 Devices）．．．．．．．．．．．．．．．．．．．．．． 94
PORTF（dsPIC33FJ32GS406／606 anddsPIC33FJ64GS406／606 Devices）．．．．．．．．．．．．．．．．．．．．． 95
PORTF（dsPIC33FJ32GS608 and dsPIC33FJ64GS608Devices）95
PORTF（dsPIC33FJ32GS610 and dsPIC33FJ64GS610Devices）．．． 95
PORTG（dsPIC33FJ32GS406／606 anddsPIC33FJ64GS406／606 Devices）．．．．．．．．．．．．．．．．．．．．． 96
PORTG（dsPIC33FJ32GS608 and dsPIC33FJ64GS608Devices）．．． 96
PORTG（dsPIC33FJ32GS610 and dsPIC33FJ64GS610
Devices） 95
Quadrature Encoder Interface（QEI） 1 72
Quadrature Encoder Interface（QEI） 2 72
SPI1 83
SPI2 83
System Control 96
Timers 71
UART1 82
UART2 82
Registers
A／D Control Register（ADCON） 311
A／D Convert Pair Control Register 0 （ADCPC0） 316
A／D Convert Pair Control Register 1 （ADCPC1） 318
A／D Convert Pair Control Register 2 （ADCPC2） 320
A／D Convert Pair Control Register 3 （ADCPC3） 322
A／D Convert Pair Control Register 4 （ADCPC4） 324
A／D Convert Pair Control Register 5 （ADCPC5） 326
A／D Convert Pair Control Register 6 （ADCPC6） 328
A／D Port Configuration Register（ADPCFG） 315
A／D Status Register（ADSTAT） 313
ACLKCON（Auxiliary Clock Divisor Control） 196
ADBASE（A／D Base） 314
ADCON（A／D Control） 311
ADCPC0（A／D Convert Pair Control 0） 316
ADCPC1（A／D Convert Pair Control 1） 318
ADCPC2（A／D Convert Pair Control 2） 320
ADCPC3（A／D Convert Pair Control 3） 322
ADCPC4（A／D Convert Pair Control 4） 324
ADCPC5（A／D Convert Pair Control 5） 326
ADCPC6（A／D Convert Pair Control 6） 328
ADPCFG（A／D Port Configuration） 315
ADPCFG2（A／D Port Configuration） 315
ADSTAT（A／D Status） 313
ALTDTRx（PWM Alternate Dead Time） 242
AUXCONx（PWM Auxiliary Control） 253
CHOP（PWM Chop Clock Generator） 235
CiBUFPNT1（ECAN Filter 0－3 Buffer Pointer）． 291
CiBUFPNT2（ECAN Filter 4－7 Buffer Pointer） 292
CiBUFPNT3（ECAN Filter 8－11 Buffer Pointer） 292
CiBUFPNT4（ECAN Filter 12－15 Buffer Pointer） 293
CiCFG1（ECAN Baud Rate Configuration 1） 289
CiCFG2（ECAN Baud Rate Configuration 2） 290
CiCTRL1（ECAN Control 1） 282
CiCTRL2（ECAN Control 2） 283
CiEC（ECAN Transmit／Receive Error Count） 289
CiFCTRL（ECAN FIFO Control）． 285
CiFEN1（ECAN Acceptance Filter Enable） 291
CiFIFO（ECAN FIFO Status） 286
CiFMSKSEL1（ECAN Filter 7－0 Mask Selection）． 295
CiFMSKSEL2（ECAN Filter 15－8 Mask Selection）． 296
CilNTE（ECAN Interrupt Enable） 288
CilNTF（ECAN Interrupt Flag） 287
CiRXFnEID（ECAN Acceptance Filter \(n\) Extended Identifier）295
CiRXFnSID（ECAN Acceptance Filter n Standard Identi－fier）294
CiRXFUL1（ECAN Receive Buffer Full 1） 298
CiRXFUL2（ECAN Receive Buffer Full 2）． 298
CiRXMnEID（ECAN Acceptance Filter Mask n Extended Identifier）297
CiRXMnSID（ECAN Acceptance Filter Mask n StandardIdentifier）．297
CiRXOVF1（ECAN Receive Buffer Overflow 1）．．．．．．．． 299
CiRXOVF2（ECAN Receive Buffer Overflow 2）．．．．．．．． 299
CiTRBnSID（ECAN Buffer n Standard Identifier）．．．．．301，302， 304
CiTRmnCON（ECAN TX／RX Buffer m Control） 300
CiVEC（ECAN Interrupt Code） 284
CLKDIV（Clock Divisor） 193
CMPCONx（Comparator Control） 331
CMPCPNx（Comparator Control） 331
CMPDACx（Comparator DAC Control） 332
CORCON（Core Control） 40， 128
DFLTCON（QEI Control） 258
DFLTxCON（Digital Filter Control） 258
DMACS0（DMA Controller Status 0）． 183
DMACS1（DMA Controller Status 1） 184
DMAxCNT（DMA Channel x Transfer Count） 182
DMAxCON（DMA Channel x Control） 179
DMAxPAD（DMA Channel x Peripheral Address）． 182
DMAxREQ（DMA Channel x IRQ Select） 180
DMAxSTA（DMA Channel x RAM Start Address A）． 181
DMAxSTB（DMA Channel x RAM Start Address B）． 181
DSADR（Most Recent DMA RAM Address）．．．．．．．．．．．．． 185
DTRx（PWM Dead Time） 242
FCLCONx（PWM Fault Current－Limit Control） 247
I2CxCON（I2Cx Control） 267
I2CxMSK（I2Cx Slave Mode Address Mask） 271
I2CxSTAT（I2Cx Status） 269
ICxCON（Input Capture x Control，\(x=1,2\) ） 220
ICxCON（Input Capture x Control） 220
IECO（Interrupt Enable Control 0） 141
IEC1（Interrupt Enable Control 1） 143
IEC2（Interrupt Enable Control 2） 144
IEC3（Interrupt Enable Control 3） 145
IEC4（Interrupt Enable Control 4） 146
IEC5（Interrupt Enable Control 5） 147
IEC6（Interrupt Enable Control 6） 148
IEC7（Interrupt Enable Control 7） 149
IFS0（Interrupt Flag Status 0） 132
IFS1（Interrupt Flag Status 1） 134
IFS2（Interrupt Flag Status 2） 135
IFS3（Interrupt Flag Status 3） 136
IFS4（Interrupt Flag Status 4） 137
IFS5（Interrupt Flag Status 5） 138
IFS6（Interrupt Flag Status 6） 139
IFS7（Interrupt Flag Status 7） 140
INTCON1（Interrupt Control 1）． 129
INTCON1（Interrupt Control Register 1） 129
INTCON2（Interrupt Control Register 2） 131
INTTREG（Interrupt Control and Status） 175
查询dsPIC33FJ32GS606供应商
INTIREG Interrupt Control and Status 175
IOCONx（PWM I／O Control） 244
IPC0（Interrupt Priority Control 0） 150
IPC1（Interrupt Priority Control 1） 151
IPC12（Interrupt Priority Control 12） 160
IPC13（Interrupt Priority Control 13） 161
PC14（Interrupt Priority Control 14） 162
IPC16（Interrupt Priority Control 16） 163
IPC17（Interrupt Priority Control 17） 164
IPC18（Interrupt Priority Control 18） 165
IPC2（Interrupt Priority Control 2） 152
IPC20（Interrupt Priority Control 20） 166
IPC21（Interrupt Priority Control 21） 167
IPC23（Interrupt Priority Control 23） 168
IPC24（Interrupt Priority Control 24） 169
IPC25（Interrupt Priority Control 25） 170
IPC26（Interrupt Priority Control 26） 171
IPC27（Interrupt Priority Control 27） 172
IPC28（Interrupt Priority Control 28） 173
IPC29（Interrupt Priority Control 29） 174
IPC3（Interrupt Priority Control 3） 153
IPC4（Interrupt Priority Control 4） 154
IPC5（Interrupt Priority Control 5） 155
IPC6（Interrupt Priority Control 6） 156
IPC7（Interrupt Priority Control 7） 157
IPC8（Interrupt Priority Control 8） 158
IPC9（Interrupt Priority Control 9） 159
LEBCONx（Leading－Edge Blanking Control） 251
LEBDLYx（Leading－Edge Blanking Delay） 252
MDC（PWM Master Duty Cycle） 236
NVMCON（Flash Memory Control） 111
NVMKEY（Non－Volatile Memory Key） 112
NVMKEY（Nonvolatile Memory Key） 112
OCxCON（Output Compare x Control，\(x=1,2\) ） 223
OSCCON（Oscillator Control） 192
OSCTUN（Oscillator Tuning） 195
PDCx（PWM Generator Duty Cycle） 239
PHASEx（PWM Primary Phase Shift） 240
PLLFBD（PLL Feedback Divisor） 194
PMD1（Peripheral Module Disable Control 1 202
PMD1（Peripheral Module Disable Control 1） 202
PMD2（Peripheral Module Disable Control 2） 204
PMD3（Peripheral Module Disable Control 3 205
PMD4（Peripheral Module Disable Control 4） 205
PMD6（Peripheral Module Disable Control 6 206
PMD7（Peripheral Module Disable Control 7） 207
PTCON（PWM Time Base Control） 229
PTCON2（PWM Clock Divider Select） 231
PTPER（Primary Master Time Base Period） 231
PWMCAPx（Primary PWM Time Base Capture） 254
PWMCONx（PWM Control） 237
QEICON（QEI Control） 256
QEIxCON（QElx Control，x＝ 1 or 2 ）． 256
RCON（Reset Control） 116
REFOCON（Reference Oscillator Control） 197
SDCx（PWM Secondary Duty Cycle） 239
SEVTCMP 235
SEVTCMP（Special Event Compare） 232
SPHASEx（PWM Secondary Phase Shift） 241
SPIxCON1（SPIx Control 1） 261
SPIxCON2（SPIx Control 2） 263
SPIxSTAT（SPIx Status and Control） 260
SR（CPU STATUS） 128
SR（CPU Status） 38
SSEVTCMP（PWM Secondary Special Event Compare）
235
STCON（PWM Secondary Master Time Base Control）．．233
STCON2（PWM Secondary Clock Divider Select）． 234
STPER（Secondary Master Time Base Period） 234
STRIGx（PWM Secondary Trigger Compare Value） 250T1CON（Timer1 Control）212
TRGCONx（PWM Trigger Control） 243
TRIGx（PWM Primary Trigger Compare Value） 246
TxCON（Timer Control，\(x=2\) ）． 216
TyCON（Timer Control，\(y=3\) ）． 217
UxMODE（UARTx Mode） 274
UxSTA（UARTx Status and Control） 276
Reset
Illegal Opcode 115， 120
Trap Conflict 120
Uninitialized W Register 115， 120
Reset Sequence 123
Resets 115
Resources Required for Digital PFC． 29， 32
Resources Required for Digital Phase－Shift ZVT Converter34
S
Serial Peripheral Interface（SPI） 259
Software RESET Instruction（SWR） 120
Software Simulator（MPLAB SIM） 351
Software Stack Pointer，Frame Pointer CALL Stack Frame 100
Special Event Compare Register（SEVTCMP） 232， 235
Special Features of the CPU 333
Symbols Used in Opcode Descriptions 342
T
Temperature and Voltage Specifications
AC． 362
Timer1 211
Timer2／3 213
Timing Diagrams
A／D Conversion per Input 383
Brown－out Situations 119
CAN I／O 388
External Clock 363
High－Speed PWM． 372
High－Speed PWM Fault 372
I／O 365
I2Cx Bus Data（Master Mode） 378
I2Cx Bus Data（Slave Mode） 380
I2Cx Bus Start／Stop Bits（Master Mode） 378
I2Cx Bus Start／Stop Bits（Slave Mode） 380
Input Capture（CAPx） 370
OC／PWM 371
Output Compare（OCx） 370
QEA／QEB Input 385
QEI Module Index Pulse 386
Reset，Watchdog Timer，Oscillator Start－up Timer andPower－up Timer．366
SPIx Master Mode（CKE＝0） 373
SPIx Master Mode（CKE＝1） 374
SPIx Slave Mode（CKE＝0） 375
SPIx Slave Mode（CKE＝1） 376
Timer1，2， 3 External Clock 368
TimerQ（QEI Module）External Clock 387
Timing Requirements External Clock 363
I／O 365
Input Capture 370
查询dsPIC33FJ32GS606供应商
Timing Specifications
10－bit A／D Conversion Requirements 383
CAN I／O Requirements 388
High－Speed PWM Requirements 372
I2Cx Bus Data Requirements（Master Mode） 379
2Cx Bus Data Requirements（Slave Mode） 381
Output Compare Requirements 370
PLL Clock 364
QEI External Clock Requirements 387
QEI Index Pulse Requirements 387
Quadrature Decoder Requirements 386
Reset，Watchdog Timer，Oscillator Start－up Timer，Pow－ er－up Timer and Brown－out Reset Requirements ．． 367
Simple OC／PWM Mode Requirements 371
SPIx Master Mode（CKE＝0）Requirements 373
SPIx Master Mode（CKE＝1）Requirements 374
SPIx Slave Mode（CKE＝0）Requirements 375
SPIx Slave Mode（CKE＝1）Requirements 377
Timer1 External Clock Requirements 368
Timer2 External Clock Requirements 369
Timer3 External Clock Requirements 369
\(\mathbf{U}\)
Universal Asynchronous Receiver Transmitter（UART）．． 273
Using the RCON Status Bits 121
V
Voltage Regulator（On－Chip） 336
W
Watchdog Time－out Reset（WDTO） 120
Watchdog Timer（WDT） 333， 337
Programming Considerations 337
WWW Address 415
WWW，On－Line Support 18

\section*{询dsPIC33FJ32GS606供应商}

\section*{THE MICROCHIP WEB SITE}

Microchip provides online support via our WWW site at www．microchip．com．This web site is used as a means to make files and information easily available to customers．Accessible by using your favorite Internet browser，the web site contains the following information：
－Product Support－Data sheets and errata， application notes and sample programs，design resources，user＇s guides and hardware support documents，latest software releases and archived software．
－General Technical Support－Frequently Asked Questions（FAQ），technical support requests， online discussion groups，Microchip consultant program member listing．
－Business of Microchip－Product selector and ordering guides，latest Microchip press releases， listing of seminars and events，listings of Microchip sales offices，distributors and factory representatives．

\section*{CUSTOMER CHANGE NOTIFICATION SERVICE}

Microchip＇s customer notification service helps keep customers current on Microchip products．Subscribers will receive e－mail notification whenever there are changes，updates，revisions or errata related to a specified product family or development tool of interest．
To register，access the Microchip web site at www．microchip．com，click on Customer Change Notification and follow the registration instructions．

\section*{CUSTOMER SUPPORT}

Users of Microchip products can receive assistance through several channels：
－Distributor or Representative
－Local Sales Office
－Field Application Engineer（FAE）
－Technical Support
Customers should contact their distributor， representative or field application engineer（FAE）for support．Local sales offices are also available to help customers．A listing of sales offices and locations is included in the back of this document．
Technical support is available through the web site at：http：／／support．microchip．com

\section*{查询dsPIC33FJ32GS606供应商}

\section*{READER RESPONSE}

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product．If you wish to provide your comments on organization，clarity，subject matter，and ways in which our documentation can better serve you，please FAX your comments to the Technical Publications Manager at（480）792－4150．
Please list the following information，and use this outline to provide us with your comments about this document．
\begin{tabular}{|c|c|}
\hline To：Technical Publications Manager & Total Pages Sent \\
\hline RE：Reader Response & \\
\hline From：Name & \\
\hline Company & \\
\hline Address & \\
\hline City／State／ZIP／Country & \\
\hline Telephone：（ \(\quad\) ）－ & FAX：（ \\
\hline Application（optional）： & \\
\hline Would you like a reply？＿＿＿Y＿＿N & \\
\hline Device：dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 & Literature Number：DS70591C \\
\hline Questions： & \\
\hline 1．What are the best features of this document？ & \\
\hline
\end{tabular}

2．How does this document meet your hardware and software development needs？
\(\qquad\)

3．Do you find the organization of this document easy to follow？If not，why？
\(\qquad\)

4．What additions to the document do you think would enhance the structure and subject？
\(\qquad\)

5．What deletions from the document could be made without affecting the overall usefulness？
\(\qquad\)

6．Is there any incorrect or misleading information（what and where）？
\(\qquad\)
\(\qquad\)
7．How would you improve this document？
\(\qquad\)
\(\qquad\)

\section*{询dsPIC33FJ32GS606供应商}

PRODUCT IDENTIFICATION SYSTEM
To order or obtain information，e．g．，on pricing or delivery，refer to the factory or the listed sales office．

Microchip

\section*{Worldwide Sales and Service}
\begin{tabular}{|c|c|c|c|}
\hline AMERICAS & ASIA／PACIFIC & ASIA／PACIFIC & EUROPE \\
\hline Corporate Office & Asia Pacific Office & India－Bangalore & Austria－Wels \\
\hline 2355 West Chandler Blvd． & Suites 3707－14，37th Floor & Tel：91－80－3090－4444 & Tel：43－7242－2244－39 \\
\hline Chandler，AZ 85224－6199 & Tower 6，The Gateway & Fax：91－80－3090－4123 & Fax：43－7242－2244－393 \\
\hline Tel：480－792－7200 & Harbour City，Kowloon & India－New Delhi & Denmark－Copenhagen \\
\hline Fax：480－792－7277 & Hong Kong & Tel：91－11－4160－8631 & Tel：45－4450－2828 \\
\hline Technical Support： & Tel：852－2401－1200 & Fax：91－11－4160－8632 & Fax：45－4485－2829 \\
\hline http：／／support．microchip．com
Web Address： & Fax：852－2401－3431 & India－Pune & France－Paris \\
\hline www．microchip．com & \begin{tabular}{l}
Australia－Sydney \\
Tel：61－2－9868－6733
\end{tabular} & Tel：91－20－2566－1512
Fax：91－20－2566－1513 & \[
\begin{aligned}
& \text { Tel: 33-1-69-53-63-20 } \\
& \text { Fax: 33-1-69-30-90-79 }
\end{aligned}
\] \\
\hline Atlanta Duluth，GA & Fax：61－2－9868－6755 & Japan－Yokohama & Germany－Munich \\
\hline Tel：678－957－9614 & China－Beijing & Tel：81－45－471－6166 & Tel：49－89－627－144－0 \\
\hline Fax：678－957－1455 & Tel： \(86-10-8528-2100\)
Fax：86－10－8528－2104 & Fax：81－45－471－6122 & Fax：49－89－627－144－44
Italy－Milan \\
\hline \begin{tabular}{l}
Boston \\
Westborough，MA \\
Tel：774－760－0087 \\
Fax：774－760－0088
\end{tabular} & \begin{tabular}{l}
China－Chengdu \\
Tel：86－28－8665－5511 \\
Fax：86－28－8665－7889
\end{tabular} & \begin{tabular}{l}
Korea－Daegu \\
Tel：82－53－744－4301 \\
Fax：82－53－744－4302 \\
Korea－Seoul
\end{tabular} & \begin{tabular}{l}
Tel：39－0331－742611 \\
Fax：39－0331－466781 \\
Netherlands－Drunen
\end{tabular} \\
\hline Chicago Itasca，IL & China－Chongqing
Tel： \(86-23-8980-9588\) & Tel：82－2－554－7200
Fax：82－2－558－5932 or & \begin{tabular}{l}
Tel：31－416－690399 \\
Fax：31－416－690340
\end{tabular} \\
\hline Tel：630－285－0071 & Fax：86－23－8980－9500 & 82－2－558－5934 & Spain－Madrid \\
\hline Fax：630－285－0075 & China－Hong Kong SAR Tel：852－2401－1200 & Malaysia－Kuala Lumpur & Tel：34－91－708－08－90
Fax：34－91－708－08－91 \\
\hline Cleveland Independence，OH & Fax：852－2401－3431 & Fax：60－3－6201－9859 & UK－Wokingham \\
\hline \begin{tabular}{l}
Tel：216－447－0464 \\
Fax：216－447－0643
\end{tabular} & \begin{tabular}{l}
China－Nanjing \\
Tel：86－25－8473－2460
\end{tabular} & \begin{tabular}{l}
Malaysia－Penang \\
Tel：60－4－227－8870
\end{tabular} & Tel：44－118－921－5869
Fax：44－118－921－5820 \\
\hline Dallas & Fax：86－25－8473－2470 & Fax：60－4－227－4068 & \\
\hline \begin{tabular}{l}
Addison，TX \\
Tel：972－818－7423 \\
Fax：972－818－2924
\end{tabular} & \begin{tabular}{l}
China－Qingdao \\
Tel：86－532－8502－7355 \\
Fax：86－532－8502－7205
\end{tabular} & \begin{tabular}{l}
Philippines－Manila \\
Tel：63－2－634－9065 \\
Fax：63－2－634－9069
\end{tabular} & \\
\hline \begin{tabular}{l}
Detroit \\
Farmington Hills，MI \\
Tel：248－538－2250 \\
Fax：248－538－2260
\end{tabular} & \begin{tabular}{l}
China－Shanghai \\
Tel：86－21－5407－5533 \\
Fax：86－21－5407－5066
\end{tabular} & \begin{tabular}{l}
Singapore \\
Tel：65－6334－8870 \\
Fax：65－6334－8850
\end{tabular} & \\
\hline \begin{tabular}{l}
Kokomo \\
Kokomo，IN \\
Tel：765－864－8360
\end{tabular} & \begin{tabular}{l}
China－Shenyang \\
Tel：86－24－2334－2829 \\
Fax：86－24－2334－2393
\end{tabular} & \begin{tabular}{l}
Taiwan－Hsin Chu \\
Tel：886－3－6578－300 \\
Fax：886－3－6578－370
\end{tabular} & \\
\hline Fax：765－864－8387 & \begin{tabular}{l}
China－Shenzhen \\
Tel：86－755－8203－2660
\end{tabular} & Taiwan－Kaohsiung Tel：886－7－536－4818 & \\
\hline \begin{tabular}{l}
Los Angeles \\
Mission Viejo，CA
\end{tabular} & Fax：86－755－8203－1760 & Fax：886－7－536－4803 & \\
\hline Tel：949－462－9523 & China－Wuhan & Taiwan－Taipei & \\
\hline Fax：949－462－9608 & Tel：86－27－5980－5300 & Tel：886－2－2500－6610 & \\
\hline Santa Clara & Fax：86－27－5980－5118 & Fax：886－2－2508－0102 & \\
\hline Santa Clara，CA & China－Xian & Thailand－Bangkok & \\
\hline Tel：408－961－6444 & Tel：86－29－8833－7252 & Tel：66－2－694－1351 & \\
\hline Fax：408－961－6445 & Fax：86－29－8833－7256 & Fax：66－2－694－1350 & \\
\hline Toronto & China－Xiamen & & \\
\hline Mississauga，Ontario， & Tel：86－592－2388138 & & \\
\hline Canada & Fax：86－592－2388130 & & \\
\hline Tel：905－673－0699 & China－Zhuhai & & \\
\hline Fax：905－673－6509 & Tel：86－756－3210040 & & \\
\hline & Fax：86－756－3210049 & & \\
\hline
\end{tabular}```

[^0]: TABLE 4－12

 | SFR
 Name | SFR Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | IC1BUF | 0140 | Input 1 Capture Register | | | | | | | | | | | | | | | | xxxx |
 | IC1CON | 0142 | － | － | ICSIDL | － | － | － | － | － | ICTMR | $\mathrm{ICl}<1$ | | ICOV | ICBNE | | ICM＜2：0＞ | | 0000 |
 | IC2BUF | 0144 | Input 2 Capture Register | | | | | | | | | | | | | | | | xxxx |
 | IC2CON | 0146 | － | － | ICSIDL | － | － | － | － | － | ICTMR | $\mathrm{ICl}<1$ | | ICOV | ICBNE | | ICM＜2：0＞ | | 0000 |
 | IC3BUF | 0148 | Input 3 Capture Register | | | | | | | | | | | | | | | | xxxx |
 | IC3CON | 014A | － | － | ICSIDL | － | － | － | － | － | ICTMR | $\mathrm{ICl}<1$ | | ICOV | ICBNE | | ICM＜2：0＞ | | 0000 |
 | IC4BUF | 014C | Input 4 Capture Register | | | | | | | | | | | | | | | | xxxx |
 | IC4CON | 014E | － | － | ICSIDL | － | － | － | － | － | ICTMR | $\mathrm{ICl}<1$ | | ICOV | ICBNE | ICM＜2：0＞ | | | 0000 |
 | Legend： | $x=$ unknown value on Reset，－＝unimplemented，read as＇0＇．Reset values are shown in hexadecimal． | | | | | | | | | | | | | | | | | |

 TABLE 4－13：OUTPUT COMPARE REGISTER MAP
 查询dsPIC33FJ32GS606供应商

 | $\begin{gathered} \text { SFR } \\ \text { Name } \end{gathered}$ | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | OC1RS | 0180 | Output Compare 1 Secondary Register | | | | | | | | | | | | | | | | xxxx |
 | OC1R | 0182 | Output Compare 1 Register | | | | | | | | | | | | | | | | xxxx |
 | OC1CON | 0184 | － | － | OCSIDL | － | － | － | － | － | － | － | － | OCFLT | OCTSEL | | OCM＜2：0＞ | | 0000 |
 | OC2RS | 0186 | Output Compare 2 Secondary Register | | | | | | | | | | | | | | | | xxxx |
 | OC2R | 0188 | Output Compare 2 Register | | | | | | | | | | | | | | | | xxxx |
 | OC2CON | 018A | － | － | OCSIDL | － | － | － | － | － | － | － | － | OCFLT | OCTSEL | | OCM＜2：0＞ | | 0000 |
 | OC3RS | 018C | Output Compare 3 Secondary Register | | | | | | | | | | | | | | | | xxxx |
 | OC3R | 018E | Output Compare 3 Register | | | | | | | | | | | | | | | | xxxx |
 | OC3CON | 0190 | － | － | OCSIDL | － | － | － | － | － | － | － | － | OCFLT | OCTSEL | | OCM＜2：0＞ | | 0000 |
 | OC4RS | 0192 | Output Compare 4 Secondary Register | | | | | | | | | | | | | | | | xxxx |
 | OC4R | 0194 | Output Compare 4 Register | | | | | | | | | | | | | | | | xxxx |
 | OC4CON | 0196 | － | － | OCSIDL | － | － | － | － | － | － | － | － | OCFLT | OCTSEL | | OCM＜2：0＞ | | 0000 |

 TABLE 4－16：HIGH－SPEED PWM REGISTER MAP

 | File Name | Addr Offset | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PTCON | 0400 | PTEN | － | PTSIDL | SESTAT | SEIEN | EIPU | SYNCPOL | SYNCOEN | SYNCEN | SYNCSRC＜2：0＞ | | | SEVTPS＜3：0＞ | | | | 0000 |
 | PTCON2 | 0402 | － | － | － | － | － | － | － | － | － | － | － | － | － | PCLKDIV＜2：0＞ | | | 0000 |
 | PTPER | 0404 | PTPER＜15：0＞ | | | | | | | | | | | | | | | | FFF8 |
 | SEVTCMP | 0406 | SEVTCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | MDC | 040A | MDC＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | STCON | 040E | － | － | － | SESTAT | SEIEN | EIPU | SYNCPOL | SYNCOEN | SYNCEN | SYNCSRC＜2：0＞ | | | SEVTPS＜3：0＞ | | | | 0000 |
 | STCON2 | 0410 | － | － | － | － | － | － | － | － | － | － | － | － | － | PCLKDIV＜2：0＞ | | | 0000 |
 | STPER | 0412 | PTPER＜15：0＞ | | | | | | | | | | | | | | | | FFF8 |
 | SSEVTCMP | 0414 | SSEVTCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | CHOP | 041A | CHPCLKEN | － | － | － | － | － | CHOP＜9：3＞ | | | | | | | － | － | － | 0000 |

 TABLE 4－17：HIGH－SPEED PWM GENERATOR 1 REGISTER MAP

 | File Name | Addr Offset | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PWMCON1 | 0420 | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN | CLIEN | TRGIEN | ITB | MDCS | DTC | 1：0＞ | DTCP | － | MTBS | CAM | XPRES | IUE | 0000 |
 | IOCON1 | 0422 | PENH | PENL | POLH | POLL | PMOD | ＜1：0＞ | OVRENH | OVRENL | OVRD | ＜1：0＞ | FLTDA | ＜1：0＞ | CLDA | ＜1：0＞ | SWAP | OSYNC | 0000 |
 | FCLCON1 | 0424 | IFLTMOD | CLSRC＜4：0＞ | | | | | CLPOL | CLMOD | FLTSRC＜4：0＞ | | | | | FLTPOL | FLTMOD＜1：0＞ | | 0000 |
 | PDC1 | 0426 | PDC1＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | PHASE1 | 0428 | PHASE1＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DTR1 | 042A | － | － | DTR1＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | ALTDTR1 | 042C | － | － | ALTDTR1＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | SDC1 | 042E | SDC1＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | SPHASE1 | 0430 | SPHASE1＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | TRIG1 | 0432 | TRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | TRGCON1 | 0434 | TRGDIV＜3：0＞ | | | | － | － | － | － | DTM | － | TRGSTRT＜5：0＞ | | | | | | 0000 |
 | STRIG1 | 0436 | STRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | PWMCAP1 | 0438 | PWMCAP1＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | LEBCON1 | 043A | PHR | PHF | PLR | PLF | FLTLEBEN | CLLEBEN | － | － | － | － | BCH | BCL | BPHH | BPHL | BPLH | BPLL | 0000 |
 | LEBDLY1 | 043C | － | － | － | － | LEB＜11：3＞ | | | | | | | | | － | － | － | 0000 |
 | AUXCON1 | 043E | HRPDIS | HRDDIS | － | － | BLANKSEL＜3：0＞ | | | | － | － | CHOPSEL＜3：0＞ | | | | CHOPHEN | CHOPLEN | 0000 |
 | Legend： | x＝unk | known value | on Reset， | －＝unimpl | emented， | read as＇0＇．R | eset values | are shown in | in hexadecim | | | | | | | | | |

 查询dsPIC33FJ32GS606供应商

 | File Name | $\begin{aligned} & \text { Addr } \\ & \text { Offset } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PWMCON2 | 0440 | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN | CLIEN | TRGIEN | ITB | MDCs | DTC | | DTCP | － | MTBS | CAM | XPRES | IUE | 0000 |
 | 10CON2 | 0442 | PENH | PENL | POLH | POLL | PMOD | ＜1：0＞ | OVRENH | OVRENL | OVRDA | 1＜1：0＞ | FLTD | ＜1：0＞ | CLDA | T＜1：0＞ | SWAP | OSYNC | 0000 |
 | FCLCON2 | 0444 | IFLTMOD | CLSRC＜4：0＞ | | | | | CLPOL | CLMOD | | FLTSRC＜4：0＞ | | | | FLTPOL | FLTMOD＜1：0＞ | | 0000 |
 | PDC2 | 0446 | PDC2＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | PHASE2 | 0448 | PHASE2＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DTR2 | 044A | － | － | DTR2＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | ALTDTR2 | 044C | － | － | ALTDTR2＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | SDC2 | 044E | SDC2＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | SPHASE2 | 0450 | SPHASE2＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | TRIG2 | 0452 | TRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | TRGCON2 | 0454 | TRGDIV＜3：0＞ | | | | － | － | － | － | DTM | － | | | | STRT＜5： | | | 0000 |
 | STRIG2 | 0456 | STRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | PWMCAP2 | 0458 | PWMCAP2＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | LEBCON2 | 045A | PHR | PHF | PLR | PLF | FLTLEBEN | clleben | － | － | － | － | вСН | BCL | BPHH | BPHL | BPLH | BPLL | 0000 |
 | LEBDLY2 | 045C | － | － | － | － | LEB＜11：3＞ | | | | | | | | | － | － | － | 0000 |
 | AUXCON2 | 045E | HRPDIS | HRDDIS | － | － | BLANKSEL＜3：0＞ | | | | － | － | CHOPSEL＜3：0＞ | | | | CHOPHEN | CHOPLEN | 0000 |

 查询dsPIC33FJ32GS606供应商

 查询dsPIC33FJ32GS606供应商

 | File Name | Addr Offset | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \end{array}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PWMCON4 | 0480 | FLTSTAT | CLSTAT | TRGStAT | FLTIEN | CLIEN | TRGIEN | ITB | MDCs | DTC | 1：0＞ | DTCP | － | MTBS | CAM | XPRES | IUE | 0000 |
 | IOCON4 | 0482 | PENH | PENL | POLH | POLL | PMOD | ＜1：0＞ | OVRENH | OVRENL | OVRD | T＜1：0＞ | FLTD | ＜1：0＞ | CLDA | T＜1：0＞ | SWAP | OSYNC | 0000 |
 | FCLCON4 | 0484 | IFLTMOD | CLSRC＜4：0＞ | | | | | CLPOL | CLMOD | FLTSRC＜4：0＞ | | | | | FLTPOL | FLTMOD＜1：0＞ | | 0000 |
 | PDC4 | 0486 | PDC4＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | PHASE4 | 0488 | PHASE4＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DTR4 | 048A | － | － | DTR4＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | ALTDTR4 | 048A | － | － | ALTDTR4＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | SDC4 | 048E | SDC4＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | SPHASE4 | 0490 | SPHASE4＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | TRIG4 | 0492 | TRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | TRGCON4 | 0494 | TRGDIV＜3：0＞ | | | | － | － | － | － | DTM | － | TRGSTRT＜5：0＞ | | | | | | 0000 |
 | STRIG4 | 0496 | STRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | PWMCAP4 | 0498 | PWMCAP4＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | LEBCON4 | 049A | PHR | PHF | PLR | PLF | FLTLEBEN | CLLEBEN | － | － | － | － | вСН | BCL | BPHH | BPHL | BPLH | BPLL | 0000 |
 | LEBDLY4 | 049C | － | － | － | － | LEB＜11：3＞ | | | | | | | | | － | － | － | 0000 |
 | AUXCON4 | 049E | HRPDIS | HRDDIS | － | － | BLANKSEL＜3：0＞ | | | | － | － | CHOPSEL＜3：0＞ | | | | CHOPHEN | CHOPLEN | 0000 |

 查询dsPIC33FJ32GS606供应商

 | File Name | $\left\|\begin{array}{c} \text { Addr } \\ \text { Offset } \end{array}\right\|$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c} \text { All } \\ \text { Resets } \end{array}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PWMCON5 | 04A0 | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN | CLIEN | TRGIEN | ITB | MDCs | | | DTCP | － | MTBS | CAM | XPRES | IUE | 0000 |
 | IOCON5 | 04A2 | PENH | PENL | POLH | POLL | PMOD | ＜1：0＞ | OVRENH | OVRENL | OVRD | ＜1：0＞ | FLTD | ＜＜1：0＞ | CLDA | T＜1：0＞ | SWAP | OSYNC | 0000 |
 | FCLCON5 | 04A4 | IFLTMOD | CLSRC＜4：0＞ | | | | | CLPOL | CLMOD | FLTSRC＜4：0＞ | | | | | FLTPOL | FLTMOD＜1：0＞ | | 0000 |
 | PDC5 | 04A6 | PDC5＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | PHASE5 | 04A8 | PHASE5＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DTR5 | 04AA | － | － | DTR5＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | ALTDTR5 | 04AA | － | － | ALTDTR5＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | SDC5 | 04AE | SDC5＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | SPHASE5 | 04B0 | SPHASE5＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | TRIG5 | 04B2 | TRGCMP $<15: 3$ | | | | | | | | | | | | | － | － | － | 0000 |
 | TRGCON5 | 04B4 | TRGDIV＜3：0＞ | | | | － | － | － | － | DTM | － | TRGSTRT＜5：0＞ | | | | | | 0000 |
 | STRIG5 | 04B6 | STRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | PWMCAP5 | 04B8 | PWMCAP5＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | LEBCON5 | 04BA | PHR | PHF | PLR | PLF | FLTLEBEN | CLLEBEN | － | － | － | － | BCH | BCL | ｜ BPHH | BPHL | BPLH | BPLL | 0000 |
 | LEBDLY5 | 04BC | － | － | － | － | LEB＜11：3＞ | | | | | | | | | － | － | － | 0000 |
 | AUXCON5 | O4BE | HRPDIS | HRDDIS | － | － | BLANKSEL＜3：0＞ | | | | － | － | CHOPSEL＜3：0＞ | | | | CHOPHEN | CHOPLEN | 0000 |
 | egend： | | nown value | on Reset， | －＝unim | emented， | ＇0 | set values | e shown in | hexadeci | | | | | | | | | |

 查询dsPIC33FJ32GS606供应商
 TABLE 4－22：HIGH－SPEED PWM GENERATOR 6 REGISTER MAP

 | File Name | Addr Offset | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PWMCON6 | 04C0 | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN | CLIEN | TRGIEN | ITB | MDCS | DTC | 1：0＞ | DTCP | － | MTBS | CAM | XPRES | IUE | 0000 |
 | IOCON6 | 04C2 | PENH | PENL | POLH | POLL | PMOD | ＜1：0＞ | OVRENH | OVRENL | OVRD | ＜1：0＞ | FLTDA | ＜1：0＞ | CLD | T＜1：0＞ | SWAP | OSYNC | 0000 |
 | FCLCON6 | 04C4 | IFLTMOD | CLSRC＜4：0＞ | | | | | CLPOL | CLMOD | FLTSRC＜4：0＞ | | | | | FLTPOL | FLTMOD＜1：0＞ | | 0000 |
 | PDC6 | 04C6 | PDC6＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | PHASE6 | 04C8 | PHASE6＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DTR6 | 04CA | － | － | DTR6＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | ALTDTR6 | 04CA | － | － | ALTDTR6＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | SDC6 | 04CE | SDC6＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | SPHASE6 | 04D0 | SPHASE6＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | TRIG6 | 04D2 | TRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | TRGCON6 | 04D4 | TRGDIV＜3：0＞ | | | | － | － | － | － | DTM | － | TRGSTRT＜5：0＞ | | | | | | 0000 |
 | STRIG6 | 04D6 | STRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | PWMCAP6 | 04D8 | PWMCAP6＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | LEBCON6 | 04DA | PHR | PHF | PLR | PLF | FLTLEBEN | CLLEBEN | － | － | － | － | BCH | BCL | BPHH | BPHL | BPLH | BPLL | 0000 |
 | LEBDLY6 | 04DC | － | － | － | － | LEB＜11：3＞ | | | | | | | | | － | － | － | 0000 |
 | AUXCON6 | 04DE | HRPDIS | HRDDIS | － | － | BLANKSEL＜3：0＞ | | | | － | － | CHOPSEL＜3：0＞ | | | | CHOPHEN | CHOPLEN | 0000 |

 Legend：$\quad x=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal．

 查询dsPIC33FJ32GS606供应商

 | File Name | Addr Offset | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PWMCON7 | 04E0 | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN | CLIEN | TRGIEN | ITB | MDCS | | | DTCP | － | MTBS | CAM | XPRES | IUE | 0000 |
 | IOCON7 | 04E2 | PENH | PENL | POLH | POLL | PMOD | ＜1：0＞ | OVRENH | OVRENL | OVR | ＜1：0＞ | FLTDA | ＜1：0＞ | CLDA | T＜1：0＞ | SWAP | OSYNC | 0000 |
 | FCLCON7 | 04E4 | IFLTMOD | CLSRC＜4：0＞ | | | | | CLPOL | CLMOD | FLTSRC＜4：0＞ | | | | | FLTPOL | FLTMOD＜1：0＞ | | 0000 |
 | PDC7 | 04E6 | PDC7＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | PHASE7 | 04E8 | PHASE7＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DTR7 | 04EA | － | － | DTR7＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | ALTDTR7 | 04EA | － | － | ALTDTR7＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | SDC7 | 04EE | SDC7＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | SPHASE7 | 04F0 | SPHASE7＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | TRIG7 | 04F2 | TRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | TRGCON7 | 04F4 | TRGDIV＜3：0＞ | | | | － | － | － | － | DTM | － | TRGSTRT＜5：0＞ | | | | | | 0000 |
 | STRIG7 | 04F6 | STRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | PWMCAP7 | 04F8 | PWMCAP7＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | LEBCON7 | 04FA | PHR | PHF | PLR | PLF | FLTLEBEN | CLLEBEN | － | － | － | － | BCH | BCL | BPHH | BPHL | BPLH | BPLL | 0000 |
 | LEBDLY7 | 04FC | － | － | － | － | LEB＜11：3＞ | | | | | | | | | － | － | － | 0000 |
 | AUXCON7 | 04FE | HRPDIS | HRDDIS | － | － | BLANKSEL＜3：0＞ | | | | － | － | CHOPSEL＜3：0＞ | | | | CHOPHEN | CHOPLEN | 0000 |
 | Legend： | x $=$ | own val | Res | uni | ted | as＇0＇． | values | hown | xade | | | | | | | | | |

 查询dsPIC33FJ32GS606供应商

 查询dsPIC33FJ32GS606供应商
 TABLE 4－25：HIGH－SPEED PWM GENERATOR 9 REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

 | File Name | Addr Offset | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PWMCON9 | 0520 | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN | CLIEN | TRGIEN | ITB | MDCS | DTC | 1：0＞ | DTCP | － | MTBS | CAM | XPRES | IUE | 0000 |
 | IOCON9 | 0522 | PENH | PENL | POLH | POLL | PMOD | ＜1：0＞ | OVRENH | OVRENL | OVRD | ＜1：0＞ | FLTD | ＜1：0＞ | CLDA | T＜1：0＞ | SWAP | OSYNC | 0000 |
 | FCLCON9 | 0524 | IFLTMOD | CLSRC＜4：0＞ | | | | | CLPOL | CLMOD | FLTSRC＜4：0＞ | | | | | FLTPOL | FLTMOD＜1：0＞ | | 0000 |
 | PDC9 | 0526 | PDC9＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | PHASE9 | 0528 | PHASE9＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DTR9 | 052A | － | － | DTR9＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | ALTDTR9 | 052A | － | － | ALTDTR9＜13：0＞ | | | | | | | | | | | | | | 0000 |
 | SDC9 | 052E | SDC9＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | SPHASE9 | 0530 | SPHASE9＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | TRIG9 | 0532 | TRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | TRGCON9 | 0534 | TRGDIV＜3：0＞ | | | | － | － | － | － | DTM | － | TRGSTRT＜5：0＞ | | | | | | 0000 |
 | STRIG9 | 0536 | STRGCMP＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | PWMCAP9 | 0538 | PWMCAP9＜15：3＞ | | | | | | | | | | | | | － | － | － | 0000 |
 | LEBCON9 | 053A | PHR | PHF | PLR | PLF | FLTLEBEN | CLLEBEN | － | － | － | － | BCH | BCL | BPHH | BPHL | BPLH | BPLL | 0000 |
 | LEBDLY9 | 053C | － | － | － | － | LEB＜11：3＞ | | | | | | | | | － | － | － | 0000 |
 | AUXCON9 | 053E | HRPDIS | HRDDIS | － | － | BLANKSEL＜3：0＞ | | | | － | － | CHOPSEL＜3：0＞ | | | | CHOPHEN | CHOPLEN | 0000 |
 | Legend： | $x=$ | val | | Un | | ， | 促 | shown in h | hexadeci | | | | | | | | | |

 TABLE 4－26：I2C1 REGISTER MAP

 | SFR Name | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 12C1RCV | 0200 | － | － | － | － | － | － | － | － | Receive Register | | | | | | | | 0000 |
 | I2C1TRN | 0202 | － | － | － | － | － | － | － | － | Transmit Register | | | | | | | | 00FF |
 | I2C1BRG | 0204 | － | － | － | － | － | － | － | Baud Rate Generator Register | | | | | | | | | 0000 |
 | I2C1CON | 0206 | I2CEN | － | I2CSIDL | SCLREL | IPMIEN | A10M | DISSLW | SMEN | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 1000 |
 | I2C1STAT | 0208 | ACKSTAT | TRSTAT | － | － | － | BCL | GCSTAT | ADD10 | IWCOL | I2COV | D＿A | P | S | R＿W | RBF | TBF | 0000 |
 | I2C1ADD | 020A | － | － | － | － | － | － | Address Register | | | | | | | | | | 0000 |
 | I2C1MSK | 020C | － | － | － | － | － | － | Address Mask Register | | | | | | | | | | 0000 |

 查询dsPIC33FJ32GS606供应商

 查询dsPIC33FJ32GS606供应商
 TABLE 4－30：SPI1 REGISTER MAP

 TABLE 4－31：SPI2 REGISTER MAP

 | 22: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY | | | | | | | | | | | | | | | | | | | \|ry |
 | :---: |
 | SFR Name | SFR
 Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ | |
 | ADCON | 0300 | ADON | - | ADSIDL | SLOWCLK | - | GSWTRG | - | FORM | EIE | ORDER | SEQSAMP | ASYNCSAMP | - | ADCS<2:0> | | | 0003 | $\stackrel{-}{ }$ |
 | ADPCFG | 0302 | PCFG15 | PCFG14 | PCFG13 | PCFG12 | PCFG11 | PCFG10 | PCFG9 | PCFG8 | PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFGO | 0000 | ${ }^{\circ}$ |
 | ADPCFG2 | 0304 | - | - | - | - | - | - | - | - | PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 | 0000 | ${ }^{1}$ |
 | ADSTAT | 0306 | - | - | - | P12RDY | P11RDY | P10RDY | P9RDY | P8RDY | P7RDY | P6RDY | P5RDY | P4RDY | P3RDY | P2RDY | P1RDY | PORDY | 0000 | co |
 | ADBASE | 0308 | ADBASE<15:1> | | | | | | | | | | | | | | | - | 0000 | R |
 | ADCPC0 | 030A | IRQEN1 | PEND1 | SWTRG1 | TRGSRC1<4:0> | | | | | IRQENO | PENDO | SWTRG0 | TRGSRC0<4:0> | | | | | 0000 | 8 |
 | ADCPC1 | 030C | IRQEN3 | PEND3 | SWTRG3 | TRGSRC3<4:0> | | | | | IRQEN2 | PEND2 | SWTRG2 | TRGSRC2<4:0> | | | | | 0000 | 8 |
 | ADCPC2 | 030E | IRQEN5 | PEND5 | SWTRG5 | TRGSRC5<4:0> | | | | | IRQEN4 | PEND4 | SWTRG4 | TRGSRC4<4:0> | | | | | 0000 | 7 |
 | ADCPC3 | 0310 | IRQEN7 | PEND7 | SWTRG7 | TRGSRC7<4:0> | | | | | IRQEN6 | PEND6 | SWTRG6 | TRGSRC6<4:0> | | | | | 0000 | - |
 | ADCPC4 | 0312 | IRQEN9 | PEND9 | SWTRG9 | TRGSRC9<4:0> | | | | | IRQEN8 | PEND8 | SWTRG8 | TRGSRC8<4:0> | | | | | 0000 | + |
 | ADCPC5 | 0314 | IRQEN11 | PEND11 | SWTRG11 | TRGSRC11<4:0> | | | | | IRQEN10 | PEND10 | SWTRG10 | TRGSRC10<4:0> | | | | | 0000 | |
 | ADCPC6 | 0316 | - | - | - | - | - | - | - | - | IRQEN12 | PEND12 | SWTRG12 | | TRGS | RC12<4:0> | | | 0000 | |
 | ADCBUFO | 0340 | ADC Data Buffer 0 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF1 | 0342 | ADC Data Buffer 1 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF2 | 0344 | ADC Data Buffer 2 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF3 | 0346 | ADC Data Buffer 3 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF4 | 0348 | ADC Data Buffer 4 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF5 | 034A | ADC Data Buffer 5 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF6 | 034C | ADC Data Buffer 6 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF7 | 034E | ADC Data Buffer 7 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF8 | 0350 | ADC Data Buffer 8 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF9 | 0352 | ADC Data Buffer 9 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF10 | 0354 | ADC Data Buffer 10 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF11 | 0356 | ADC Data Buffer 11 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF12 | 0358 | ADC Data Buffer 12 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF13 | 035A | ADC Data Buffer 13 | | | | | | | | | | | | | | | | $x \times x x$ | |
 | ADCBUF14 | 035C | ADC Data Buffer 14 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF15 | 035E | ADC Data Buffer 15 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF16 | 0360 | ADC Data Buffer 16 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF17 | 0362 | ADC Data Buffer 17 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF18 | 0364 | ADC Data Buffer 18 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF19 | 0366 | ADC Data Buffer 19 | | | | | | | | | | | | | | | | $x \times x x$ | |
 | ADCBUF20 | 0368 | ADC Data Buffer 20 | | | | | | | | | | | | | | | | xxxx | |
 | ADCBUF21 | 036A | ADC Data Buffer 21 | | | | | | | | | | | | | | | | xxxx | |

 查询dsPIC33FJ32GS606供应商

 查询dsPIC33FJ32GS606供应商

 | SFR Name | SFR
 Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | ADCON | 0300 | ADON | － | ADSIDL | SLOWCLK | － | GSWTRG | － | FORM | EIE | ORDER | SEQSAMP | ASYNCSAMP | － | ADCS＜2：0＞ | | | 0003 |
 | ADPCFG | 0302 | PCFG15 | PCFG14 | PCFG13 | PCFG12 | PCFG11 | PCFG10 | PCFG9 | PCFG8 | PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFGO | 0000 |
 | ADPCFG2 | 0304 | － | － | － | － | － | － | － | － | － | － | － | － | － | － | PCFG17 | PCFG16 | 0000 |
 | ADSTAT | 0306 | － | － | － | P12RDY | － | － | － | P8RDY | P7RDY | P6RDY | P5RDY | P4RDY | P3RDY | P2RDY | P1RDY | PORDY | 0000 |
 | ADBASE | 0308 | ADBASE＜15：1＞ | | | | | | | | | | | | | | | － | 0000 |
 | ADCPC0 | 030A | IRQEN1 | PEND1 | SWTRG1 | TRGSRC1＜4：0＞ | | | | | IRQENO | PENDO | SWTRG0 | | TRGSRC0＜4：0＞ | | | | 0000 |
 | ADCPC1 | 030С | IRQEN3 | PEND3 | SWTRG3 | TRGSRC3＜4：0＞ | | | | | IRQEN2 | PEND2 | SWTRG2 | | TRGSRC2＜4：0＞ | | | | 0000 |
 | ADCPC2 | 030E | IRQEN5 | PEND5 | SWTRG5 | TRGSRC5＜4：0＞ | | | | | IRQEN4 | PEND4 | SWTRG4 | | TRGSRC4＜4：0＞ | | | | 0000 |
 | ADCPC3 | 0310 | IRQEN7 | PEND7 | SWTRG7 | TRGSRC7＜4：0＞ | | | | | IRQEN6 | PEND6 | SWTRG6 | | TRGSRC6＜4：0＞ | | | | 0000 |
 | ADCPC4 | 0312 | － | － | － | － | － | － | － | － | IRQEN8 | PEND8 | SWTRG8 | | TRGSRC8＜4：0＞ | | | | 0000 |
 | ADCPC6 | 0316 | － | － | － | － | － | － | － | － | IRQEN12 | PEND12 | SWTRG12 | | TRGSRC12＜4：0＞ | | | | 0000 |
 | ADCBUFO | 0340 | ADC Data Buffer 0 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF1 | 0342 | ADC Data Buffer 1 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF2 | 0344 | ADC Data Buffer 2 | | | | | | | | | | | | | | | | $x \times x x$ |
 | ADCBUF3 | 0346 | ADC Data Buffer 3 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF4 | 0348 | ADC Data Buffer 4 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF5 | 034A | ADC Data Buffer 5 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF6 | 034C | ADC Data Buffer 6 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF7 | 034E | ADC Data Buffer 7 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF8 | 0350 | ADC Data Buffer 8 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF9 | 0352 | ADC Data Buffer 9 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF10 | 0354 | ADC Data Buffer 10 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF11 | 0356 | ADC Data Buffer 11 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF12 | 0358 | ADC Data Buffer 12 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF13 | 035A | ADC Data Buffer 13 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF14 | 035C | ADC Data Buffer 14 | | | | | | | | | | | | | | | | $x \times x x$ |
 | ADCBUF15 | 035E | ADC Data Buffer 15 | | | | | | | | | | | | | | | | $x \times x x$ |
 | ADCBUF16 | 0360 | ADC Data Buffer 16 | | | | | | | | | | | | | | | | $x \times x x$ |
 | ADCBUF17 | 0362 | ADC Data Buffer 17 | | | | | | | | | | | | | | | | $x \times x x$ |
 | ADCBUF24 | 0370 | ADC Data Buffer 24 | | | | | | | | | | | | | | | | $x \times x x$ |
 | ADCBUF25 | 0372 | ADC Data Buffer 25 | | | | | | | | | | | | | | | | xxxx |
 | Legend： | $x=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal． | | | | | | | | | | | | | | | | | |

 查询dsPIC33FJ32GS606供应商

 | SFR Name | $\left\lvert\, \begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}\right.$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\left\lvert\, \begin{gathered} \text { All } \\ \text { Resets } \end{gathered}\right.$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | ADCON | 0300 | ADON | － | ADSIDL | SLOWCLK | － | GSWTRG | － | FORM | EIE | ORDER | SEQSAMP | ASYNCSAMP | － | ADCS＜2：0＞ | | | 0003 |
 | ADPCFG | 0302 | PCFG15 | PCFG14 | PCFG13 | PCFG12 | PCFG11 | PCFG10 | PCFG9 | PCFG8 | PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFGO | 0000 |
 | ADSTAT | 0306 | － | － | － | P12RDY | － | － | － | － | P7RDY | P6RDY | P5RDY | P4RDY | P3RDY | PRRDY | PIRDY | PORDY | 0000 |
 | ADBASE | 0308 | ADBASE＜15：1＞ | | | | | | | | | | | | | | | － | 0000 |
 | ADCPCO | 030A | IRQEN1 | PEND1 | SWTRG1 | TRGSRC1＜4：0＞ | | | | | IRQENO | PENDO | SWTRGO | | TRGSRC0＜4：0＞ | | | | 0000 |
 | ADCPC1 | 030С | IRQEN3 | PEND3 | SWTRG3 | TRGSRC3＜4：0＞ | | | | | IRQEN2 | PEND2 | SWTRG2 | | | SRC2＜4：0） | | | 0000 |
 | ADCPC2 | 030E | IRQEN5 | PEND5 | SWTRG5 | TRGSRC5＜4：0＞ | | | | | IRQEN4 | PEND4 | SWTRG4 | | TRGSRC4＜4：0＞ | | | | 0000 |
 | ADCPC3 | 0310 | IRQEN7 | PEND7 | SWTRG7 | TRGSRC7＜4：0＞ | | | | | IRQEN6 | PEND6 | SWTRG6 | | TRGSRC6＜4：0＞ | | | | 0000 |
 | ADCPC6 | 0316 | － | － | － | － | － | － | － | － | | PEND12 | SWTRG12 | | TRG | RC12＜4：0 | | | 0000 |
 | ADCBUFO | 0340 | ADC Data Buffer 0 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF1 | 0342 | ADC Data Buffer 1 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF2 | 0344 | ADC Data Buffer 2 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF3 | 0346 | ADC Data Buffer 3 | | | | | | | | | | | | | | | | x \times xx |
 | ADCBUF4 | 0348 | ADC Data Buffer 4 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF5 | 034A | ADC Data Buffer 5 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF6 | 034C | ADC Data Buffer 6 | | | | | | | | | | | | | | | | x \times xx \times |
 | ADCBUF7 | 034E | ADC Data Buffer 7 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF8 | 0350 | ADC Data Buffer 8 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF9 | 0352 | ADC Data Buffer 9 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF10 | 0354 | ADC Data Buffer 10 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF11 | 0356 | ADC Data Buffer 11 | | | | | | | | | | | | | | | | x \times xx |
 | ADCBUF12 | 0358 | ADC Data Buffer 12 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF13 | 035A | ADC Data Buffer 13 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF14 | 0350 | ADC Data Buffer 14 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF15 | 035E | ADC Data Buffer 15 | | | | | | | | | | | | | | | | xxxx |
 | ADCBUF24 | 0370 | ADC Data Buffer 24 | | | | | | | | | | | | | | | | xxx ${ }^{\text {x }}$ |
 | ADCBUF25 | 0372 | | | | | | | | | | | | | | | | | \qquad |
 | Legend： | ＝u | | | | | | | | | | | | | | | | | |

 查询dsPIC33FJ32GS606供应商

 | File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | DMAOCON | 0380 | CHEN | SIZE | DIR | HALF | NULLW | － | － | － | － | － | | ：0＞ | － | － | MODE | ＜1：0＞ | 0000 |
 | DMAOREQ | 0382 | FORCE | － | － | － | － | － | － | － | － | IRQSEL＜6：0＞ | | | | | | | 007F |
 | DMAOSTA | 0384 | STA＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMAOSTB | 0386 | STB＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMAOPAD | 0388 | PAD＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMAOCNT | 038A | － | － | － | － | － | － | CNT＜9：0＞ | | | | | | | | | | 0000 |
 | DMA1CON | 038C | CHEN | SIZE | DIR | HALF | NULLW | － | － | － | － | － | | ：0＞ | － | － | MODE | ＜1：0＞ | 0000 |
 | DMA1REQ | 038E | FORCE | － | － | － | － | － | － | － | － | IRQSEL＜6：0＞ | | | | | | | 007F |
 | DMA1STA | 0390 | STA＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA1STB | 0392 | STB＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA1PAD | 0394 | PAD＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA1CNT | 0396 | － | － | － | － | － | － | CNT＜9：0＞ | | | | | | | | | | 0000 |
 | DMA2CON | 0398 | CHEN | SIZE | DIR | HALF | NULLW | － | － | － | － | － | | ：0＞ | － | － | MODE | ＜1：0＞ | 0000 |
 | DMA2REQ | 039A | FORCE | － | － | － | － | － | － | － | － | IRQSEL＜6：0＞ | | | | | | | 007F |
 | DMA2STA | 039C | STA＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA2STB | 039E | STB＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA2PAD | 03A0 | PAD＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA2CNT | 03A2 | － | － | － | － | － | － | CNT＜9：0＞ | | | | | | | | | | 0000 |
 | DMA3CON | 03A4 | CHEN | SIZE | DIR | HALF | NULLW | － | － | － | － | － | | ：0＞ | － | － | MODE | ＜1：0＞ | 0000 |
 | DMA3REQ | 03A6 | FORCE | － | － | － | － | － | － | － | － | IRQSEL＜6：0＞ | | | | | | | 007F |
 | DMA3STA | 03A8 | STA＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA3STB | 03AA | STB＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA3PAD | 03AC | PAD＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | DMA3CNT | 03AE | － | － | － | － | － | － | CNT＜9：0＞ | | | | | | | | | | 0000 |
 | DMACS0 | 03E0 | － | － | － | － | PWCOL3 | PWCOL2 | PWCOL1 | PWCOLO | － | － | － | － | XWCOL3 | XWCOL2 | XWCOL1 | XWCOLO | 0000 |
 | DMACS1 | 03E2 | － | － | － | － | | LSTCH | H＜3：0＞ | | － | － | － | － | PPST3 | PPST2 | PPST1 | PPST0 | 0F00 |
 | DSADR | 03E4 | DSADR＜15：0＞ | | | | | | | | | | | | | | | | 0000 |
 | Legend： | －＝u | nimpleme | d，read | 0＇．Re | lues | hown in | xadecima | | | | | | | | | | | |

 查询dsPIC33FJ32GS606供应商

 | File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | C1CTRL1 | 0600 | － | － | CSIDL | ABAT | － | REQOP＜2：0＞ | | | OPMODE＜2：0＞ | | | － | CANCAP | － | － | WIN | 0480 |
 | C1CTRL2 | 0602 | － | － | － | － | － | － | － | － | － | － | － | DNCNT＜4：0＞ | | | | | 0000 |
 | C1VEC | 0604 | － | － | － | FILHIT＜4：0＞ | | | | | － | ICODE＜6：0＞ | | | | | | | 0000 |
 | C1FCTRL | 0606 | DMABS＜2：0＞ | | | － | － | － | － | － | － | － | － | FSA＜4：0＞ | | | | | 0000 |
 | C1FIFO | 0608 | － | － | FBP＜5：0＞ | | | | | | － | － | FNRB＜5：0＞ | | | | | | 0000 |
 | C1INTF | 060A | － | － | TXBO | TXBP | RXBP | TXWAR | RXWAR | EWARN | IVRIF | WAKIF | ERRIF | － | FIFOIF | RBOVIF | RBIF | TBIF | 0000 |
 | CIINTE | 060C | － | － | － | － | － | － | － | － | IVRIE | WAKIE | ERRIE | － | FIFOIE | RBOVIE | RBIE | TBIE | 0000 |
 | C1EC | 060E | TERRCNT＜7：0＞ | | | | | | | | RERRCNT＜7：0＞ | | | | | | | | 0000 |
 | C1CFG1 | 0610 | － | － | － | － | － | － | － | － | SJW＜1：0＞ | | BRP＜5：0＞ | | | | | | 0000 |
 | C1CFG2 | 0612 | － | WAKFIL | － | － | － | SEG2PH＜2：0＞ | | | SEG2PHTS | SAM | SEG1PH＜2：0＞ | | | PRSEG＜2：0＞ | | | 0000 |
 | C1FEN1 | 0614 | FLTEN15 | FLTEN14 | FLTEN13 | FLTEN12 | FLTEN11 | FLTEN10 | FLTEN9 | FLTEN8 | FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTENO | FFFF |
 | C1FMSKSEL1 | 0618 | F7MSK＜1：0＞ | | F6MSK＜1：0＞ | | F5MSK＜1：0＞ | | F4MSK＜1：0＞ | | F3MSK＜1：0＞ | | F2MSK＜1：0＞ | | F1MSK＜1：0＞ | | FOMSK＜1：0＞ | | 0000 |
 | C1FMSKSEL2 | 061A | F15MSK＜1：0＞ | | F14MSK＜1：0＞ | | F13MSK＜1：0＞ | | F12MSK＜1：0＞ | | F11MSK＜1：0＞ | | F10MSK＜1：0＞ | | F9MSK＜1：0＞ | | F8MSK＜1：0＞ | | 0000 |
 | Legend：－＝unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal． | | | | | | | | | | | | | | | | | | |

 ## TABLE 4－37：ECAN1 REGISTER MAP WHEN C1CTRL1．WIN＝ 0

 TABLE 4-38: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1

 查询dsPIC33FJ32GS606供应商

 | File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | C1RXF11EID | 066E | EID＜15：8＞ | | | | | | | | EID＜7：0＞ | | | | | | | | xxxx |
 | C1RXF12SID | 0670 | SID＜10：3＞ | | | | | | | | SID＜2：0＞ | | | － | EXIDE | － | EID＜ | | xxxx |
 | C1RXF12EID | 0672 | EID＜15：8＞ | | | | | | | | EID＜7：0＞ | | | | | | | | xxxx |
 | C1RXF13SID | 0674 | SID＜10：3＞ | | | | | | | | SID＜2：0＞ | | | － | EXIDE | － | EID＜ | 16＞ | xxxx |
 | C1RXF13EID | 0676 | EID＜15：8＞ | | | | | | | | EID＜7：0＞ | | | | | | | | xxxx |
 | C1RXF14SID | 0678 | SID＜10：3＞ | | | | | | | | SID＜2：0＞ | | | － | EXIDE | － | EID＜ | ：16＞ | xxxx |
 | C1RXF14EID | 067A | EID＜15：8＞ | | | | | | | | EID＜7：0＞ | | | | | | | | xxxx |
 | C1RXF15SID | 067C | SID＜10：3＞ | | | | | | | | SID＜2：0＞ | | | － | EXIDE | － | EID＜ | 16＞ | xxxx |
 | C1RXF15EID | 067E | EID＜15：8＞ | | | | | | | | EID＜7：0＞ | | | | | | | | xxxx |

 TABLE 4－39：ANALOG COMPARATOR CONTROL REGISTER MAP
 查询dsPIC33FJ32GS606供应商

 | File Name | ADR | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CMPCON1 | 0540 | CMPON | － | CMPSIDL | － | － | － | － | DACOE | INSE | ＜1：0＞ | EXTREF | － | CMPSTAT | － | CMPPOL | RANGE | 0000 |
 | CMPDAC1 | 0542 | － | － | － | － | － | － | CMREF＜9：0＞ | | | | | | | | | | 0000 |
 | CMPCON2 | 0544 | CMPON | － | CMPSIDL | － | － | － | － | DACOE | INSE | ＜1：0＞ | EXTREF | － | CMPSTAT | － | CMPPOL | RANGE | 0000 |
 | CMPDAC2 | 0546 | － | － | － | － | － | － | CMREF＜9：0＞ | | | | | | | | | | 0000 |
 | CMPCON3 | 0548 | CMPON | － | CMPSIDL | － | － | － | － | DACOE | INSE | ＜1：0＞ | EXTREF | － | CMPSTAT | － | CMPPOL | RANGE | 0000 |
 | CMPDAC3 | 054A | － | － | － | － | － | － | CMREF＜9：0＞ | | | | | | | | | | 0000 |
 | CMPCON4 | 054C | CMPON | － | CMPSIDL | － | － | － | － | DACOE | INSE | ＜1：0＞ | EXTREF | － | CMPSTAT | － | CMPPOL | RANGE | 0000 |
 | CMPDAC4 | 054E | － | － | － | － | － | － | CMREF＜9：0＞ | | | | | | | | | | 0000 |

 TABLE 4－40：PORTA REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

 | SFR Name | $\begin{array}{\|l} \text { SFR } \\ \text { Addr } \end{array}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TRISA | 02C0 | TRISA15 | TRISA14 | － | － | － | TRISA10 | TRISA9 | － | TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISAO | C6FF |
 | PORTA | 02 C 2 | RA15 | RA14 | － | － | － | RA10 | RA9 | － | RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RAO | xxxx |
 | LATA | 02C4 | LATA15 | LATA14 | － | － | － | LATA10 | LATA9 | － | LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATAO | 0000 |
 | ODCA | 02C6 | ODCA15 | ODCA14 | － | － | － | ODCA10 | ODCA9 | － | － | － | ODCA5 | ODCA4 | － | － | ODCA1 | ODCAO | 0000 |

 TABLE 4－41：PORTA REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

 | SFR
 Name | $\begin{array}{\|l} \text { SFR } \\ \text { Addr } \end{array}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TRISA | 02C0 | TRISA15 | TRISA14 | － | － | － | TRISA10 | TRISA9 | － | － | － | － | － | － | － | － | － | C600 |
 | PORTA | 02C2 | RA15 | RA14 | － | － | － | RA10 | RA9 | － | － | － | － | － | － | － | － | － | xxxx |
 | LATA | 02 C 4 | LATA15 | LATA14 | － | － | － | LATA10 | LATA9 | － | － | － | － | － | － | － | － | － | 0000 |
 | ODCA | 02C6 | ODCA15 | ODCA14 | － | － | － | ODCA10 | ODCA9 | － | － | － | － | － | － | － | － | － | 0000 |

 查询dsPIC33FJ32GS606供应商
 TABLE 4－42：PORTB REGISTER MAP

 | SFR
 Name | $\begin{array}{\|l\|l\|} \hline \text { SFR } \\ \text { Addr } \end{array}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TRISB | 02 C 8 | TRISB15 | TRISB14 | TRISB13 | TRISB12 | TRISB11 | TRISB10 | TRISB9 | TRISB8 | TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 | FFFF |
 | PORTB | 02CA | RB15 | RB14 | RB13 | RB12 | RB11 | RB10 | RB9 | RB8 | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | xxxx |
 | LATB | 02cc | LATB15 | LATB14 | LATB13 | LATB12 | LATB11 | LATB10 | LATB9 | LATB8 | LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | Latbo | 0000 |
 | Legend：$\quad \mathrm{x}=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset v | | | | | | | | | | | | | | | | | | |
 | TABLE 4－43：PORTC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES | | | | | | | | | | | | | | | | | | |
 | $\begin{gathered} \substack{\text { SFR } \\ \text { Name }} \end{gathered}$ | $\begin{aligned} & \hline \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \hline \text { All } \\ \text { Resets } \end{array}$ |
 | TRISC | 02D0 | TRISC15 | TRISC14 | TRISC13 | TRISC12 | － | － | － | － | － | － | － | TRISC4 | TRISC3 | TRISC2 | TRISC1 | － | F01E |
 | PORTC | 02 D 2 | RC15 | RC14 | RC13 | RC12 | － | － | － | － | － | － | － | RC4 | RC3 | RC2 | RC1 | － | x \times xx |
 | LATC | 02D4 | LATC15 | LATC14 | LATC13 | LATC12 | － | － | － | － | － | － | － | LATC4 | LATC3 | LATC2 | LATC1 | － | 0000 |

 ## TABLE 4－44：PORTC REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

 | SFR
 Name | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TRISC | 02D0 | TRISC15 | TRISC14 | TRISC13 | TRISC12 | － | － | － | － | － | － | － | － | － | TRISC2 | TRISC1 | － | F006 |
 | PORTC | 02D2 | RC15 | RC14 | RC13 | RC12 | － | － | － | － | － | － | － | － | － | RC2 | RC1 | － | xxxx |
 | LATC | 02D4 | LATC15 | LATC14 | LATC13 | LATC12 | － | － | － | － | － | － | － | － | － | LATC2 | LATC1 | － | 0000 |

 | SFR
 Name | SFR
 Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TRISC | 02D0 | TRISC15 | TRISC14 | TRISC13 | TRISC12 | － | － | － | － | － | － | － | － | － | － | － | － | F000 |
 | PORTC | 02D2 | RC15 | RC14 | RC13 | RC12 | － | － | － | － | － | － | － | － | － | － | － | － | xxxx |
 | LATC | 02D4 | LATC15 | LATC14 | LATC13 | LATC12 | － | － | － | － | － | － | － | － | － | － | － | － | 0000 |

 查询dsPIC33FJ32GS606供应商

 | SFR
 Name | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TRISD | 02D8 | TRISD15 | TRISD14 | TRISD13 | TRISD12 | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISDO | FFFF |
 | PORTD | 02DA | RD15 | RD14 | RD13 | RD12 | RD11 | RD10 | RD9 | RD8 | RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 | xxxx |
 | LATD | 02DC | LATD15 | LATD14 | LATD13 | LATD12 | LATD11 | LATD10 | LATD9 | LATD8 | LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 | 0000 |
 | ODCD | 02DE | ODCD15 | ODCD14 | ODCD13 | ODCD12 | ODCD11 | ODCD10 | ODCD9 | ODCD8 | ODCD7 | ODCD6 | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCDO | 0000 |
 | Legend：$\quad \mathrm{x}=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecima | | | | | | | | | | | | | | | | | | |
 | TABLE 4－47：PORTD REGISTER MAP FOR dsPIC33FJ32GS406／606 AND dsPIC33FJ64GS406／606 DEVICES | | | | | | | | | | | | | | | | | | |
 | SFR Name | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
 | TRISD | 02D8 | － | － | － | － | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISDO | 0FFF |
 | PORTD | 02DA | － | － | － | － | RD11 | RD10 | RD9 | RD8 | RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RDO | xxxx |
 | LATD | 02DC | － | － | － | － | LATD11 | LATD10 | LATD9 | LATD8 | LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 | 0000 |
 | ODCD | 02DE | － | － | － | － | ODCD11 | ODCD10 | ODCD9 | ODCD8 | ODCD7 | ODCD6 | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCDO | 0000 |
 | Legend：$\quad x=$ unknown value on Reset，$-=$ unimplemented，read as＇0＇．Reset values are shown in hexadecimal． | | | | | | | | | | | | | | | | | | |
 | TABLE 4－48： | | | | | | | | | | | | | | | | | | |
 | SFR | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
 | TRISE | 02E0 | － | － | － | － | － | － | TRISE9 | TRISE8 | TRISE7 | TRISE6 | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISEO | 03FF |
 | PORTE | 02E2 | － | － | － | － | － | － | RE9 | RE8 | RE7 | RE6 | RE5 | RE4 | RE3 | RE2 | RE1 | REO | xxxx |
 | LATE | 02E4 | － | － | － | － | － | － | LATE9 | LATE8 | LATE7 | LATE6 | LATE5 | LATE4 | LATE3 | LATE2 | LATE1 | LATEO | 0000 |
 | ODCE | 02E6 | － | － | － | － | － | － | － | － | ODCE7 | ODCE6 | ODCE5 | ODCE4 | ODCE3 | ODCE2 | ODCE1 | ODCEO | 0000 |
 | Legend：$\quad \mathrm{x}=$ unknown value on Reset，$-=$ unimplemented，read as＇0＇．Reset values are shown in hexadecimal． | | | | | | | | | | | | | | | | | | |
 | TABLE 4－49：PORTE REGISTER MAP FOR dsPIC33FJ32GS406／606 AND dsPIC33FJ64GS406／606 DEVICES | | | | | | | | | | | | | | | | | | |
 | SFR
 Name | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
 | TRISE | 02E0 | － | － | － | － | － | － | － | － | TRISE7 | TRISE6 | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISEO | 00FF |
 | PORTE | 02E2 | － | － | － | － | － | － | － | － | RE7 | RE6 | RE5 | RE4 | RE3 | RE2 | RE1 | REO | xxxx |
 | LATE | 02E4 | － | － | － | － | － | － | － | － | LATE7 | LATE6 | LATE5 | LATE4 | LATE3 | LATE2 | LATE1 | LATEO | 0000 |
 | ODCE | 02E6 | － | － | － | － | － | － | － | － | ODCE7 | ODCE6 | ODCE5 | ODCE4 | ODCE3 | ODCE2 | ODCE1 | ODCEO | 0000 |

 查询dsPIC33FJ32GS606供应商

 | SFR | $\begin{array}{\|c\|c\|} \hline \text { SFR } \\ \text { Addr } \end{array}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c} \text { All } \\ \text { Resets } \end{array}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TRISF | 02E8 | － | － | TRISF13 | TRISF12 | － | － | － | TRISF8 | TRISF7 | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 30FF |
 | PORTF | 02EA | － | － | RF13 | RF12 | － | － | － | RF8 | RF7 | RF6 | RF5 | RF4 | RF3 | RF2 | RF1 | RFO | x×× |
 | LATF | 02EC | － | － | LATF13 | LATF12 | － | － | － | LATF8 | LATF7 | LATF6 | LATF5 | LATF4 | LATF3 | LATF2 | LATF1 | LATFO | 0000 |
 | ODCF | 02EE | － | － | ODCF13 | ODCF12 | － | － | － | ODCF8 | ODCF7 | ODCF6 | － | － | ODCF3 | ODCF2 | ODCF1 | － | 0000 |
 | Legend：$\quad x=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal． | | | | | | | | | | | | | | | | | | |
 | TABLE 4－51：PORTF REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES | | | | | | | | | | | | | | | | | | |
 | $\begin{gathered} \hline \text { SFR } \\ \text { Name } \end{gathered}$ | $\begin{array}{\|c\|c\|} \hline \text { SFR } \\ \text { Addr } \end{array}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c} \hline \text { All } \\ \text { Resets } \end{array}$ |
 | TRISF | 02E8 | － | － | － | － | － | － | － | TRISF8 | TRISF7 | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 01FF |
 | PORTF | 02EA | － | － | － | － | － | － | － | RF8 | RF7 | RF6 | RF5 | RF4 | RF3 | RF2 | RF1 | RFO | xxxx |
 | LATF | 02EC | － | － | － | － | － | － | － | LATF8 | LATF7 | Latf6 | LATF5 | LATF4 | LATF3 | LATF2 | LATF1 | LATFO | 0000 |
 | ODCF | 02EE | － | － | － | － | － | － | － | ODCF8 | ODCF7 | ODCF6 | － | － | ODCF3 | ODCF2 | ODCF1 | － | 0000 |
 | Legend： $\mathrm{x}=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal． | | | | | | | | | | | | | | | | | | |
 |
 | TABLE 4－52：PORTF REGISTER MAP FOR dsPIC33FJ32GS406／606 AND dsPIC33FJ64GS406／606 DEVICES | | | | | | | | | | | | | | | | | | |
 | SFR Name | $\begin{array}{\|l\|l\|} \hline \text { SFR } \\ \text { Addr } \end{array}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c} \text { All } \\ \text { Resets } \end{array}$ |
 | TRISF | 02E8 | － | － | － | － | － | － | － | － | － | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 007F |
 | PORTF | 02EA | － | － | － | － | － | － | － | － | － | RF6 | RF5 | RF4 | RF3 | RF2 | RF1 | RFO | xxxx |
 | LATF | 02EC | － | － | － | － | － | － | － | － | － | LATF6 | LATF5 | LATF4 | LATF3 | LATF2 | LATF1 | LATFO | 0000 |
 | ODCF | 02EE | － | － | － | － | － | － | － | － | － | ODCF6 | － | － | ODCF3 | ODCF2 | ODCF1 | － | 0000 |
 | Legend： | | | | | | | | | | | | | | | | | | |

 ## TABLE 4－54：PORTG REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

 查询dsPIC33FJ32GS606供应商

 查询dsPIC33FJ32GS606供应商
 TABLE 4－57：NVM REGISTER MAP

 | $\begin{gathered} \text { SFR } \\ \text { Name } \end{gathered}$ | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | NVMCON | 0760 | WR | WREN | WRERR | － | － | － | － | － | － | ERASE | － | － | NVMOP＜3：0＞ | | | | 0000 ${ }^{(1)}$ |
 | NVMKEY | 0766 | － | － | － | － | － | － | － | － | NVMKEY＜7：0＞ | | | | | | | | 0000 |
 | Legend：$\quad x=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal．
 Note 1：Reset value shown is for POR only．Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset． | | | | | | | | | | | | | | | | | | |
 | TABLE 4－58：PMD REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES | | | | | | | | | | | | | | | | | | |
 | SFR Name | $\begin{gathered} \text { SFR } \\ \text { Addr } \end{gathered}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | PMD1 | 0770 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | － | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | － | C1MD | ADCMD | 0000 |
 | PMD2 | 0772 | － | － | － | － | IC4MD | IC3MD | IC2MD | IC1MD | － | － | － | － | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
 | PMD3 | 0774 | － | － | － | － | － | CMPMD | － | － | － | － | QEI2MD | － | － | － | 12C2MD | － | 0000 |
 | PMD4 | 0776 | － | － | － | － | － | － | － | － | － | － | － | － | REFOMD | － | － | － | 0000 |
 | PMD6 | 077A | PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | － | － | － | － | － | － | － | － | 0000 |
 | PMD7 | 077C | － | － | － | － | CMP4MD | CMP3MD | CMP2MD | CMP1MD | － | － | － | － | － | － | － | PWM9MD | 0000 |

 | $\begin{gathered} \text { SFR } \\ \text { Name } \end{gathered}$ | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PMD1 | 0770 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | － | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | － | － | ADCMD | 0000 |
 | PMD2 | 0772 | － | － | － | － | IC4MD | IC3MD | IC2MD | IC1MD | － | － | － | － | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
 | PMD3 | 0774 | － | － | － | － | － | CMPMD | － | － | － | － | QEI2MD | － | － | － | 12C2MD | － | 0000 |
 | PMD4 | 0776 | － | － | － | － | － | － | － | － | － | － | － | － | REFOMD | － | － | － | 0000 |
 | PMD6 | 077A | PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | － | － | － | － | － | － | － | － | 0000 |
 | PMD7 | 077C | － | － | － | － | CMP4MD | CMP3MD | CMP2MD | CMP1MD | － | － | － | － | － | － | － | PWM9MD | 0000 |

 TABLE 4－60：PMD REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES
 查询dsPIC33FJ32GS606供应商

 | SFR Name | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PMD1 | 0770 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | － | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | － | C1MD | ADCMD | 0000 |
 | PMD2 | 0772 | － | － | － | － | IC4MD | IC3MD | IC2MD | IC1MD | － | － | － | － | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
 | PMD3 | 0774 | － | － | － | － | － | CMPMD | － | － | － | － | QEI2MD | － | － | － | I2C2MD | － | 0000 |
 | PMD4 | 0776 | － | － | － | － | － | － | － | － | － | － | － | － | REFOMD | － | － | － | 0000 |
 | PMD6 | 077A | PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | － | － | － | － | － | － | － | － | 0000 |
 | PMD7 | 077C | － | － | － | － | CMP4MD | CMP3MD | CMP2MD | CMP1MD | － | － | － | － | － | － | － | － | 0000 |
 | Legend：$\quad \mathrm{x}=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal． | | | | | | | | | | | | | | | | | | |
 | TABLE 4－61：PMD REGISTER MAP FOR dsPIC33FJ32GS608 DEVICES | | | | | | | | | | | | | | | | | | |
 | SFR
 Name | $\begin{aligned} & \text { SFR } \\ & \text { Addr } \end{aligned}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | PMD1 | 0770 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | － | 12C1MD | U2MD | U1MD | SPI2MD | SPI1MD | － | － | ADCMD | 0000 |
 | PMD2 | 0772 | － | － | － | － | IC4MD | IC3MD | IC2MD | IC1MD | － | － | － | － | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
 | PMD3 | 0774 | － | － | － | － | － | CMPMD | － | － | － | － | QEI2MD | － | － | － | I2C2MD | － | 0000 |
 | PMD4 | 0776 | － | － | － | － | － | － | － | － | － | － | － | － | REFOMD | － | － | － | 0000 |
 | PMD6 | 077A | PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | － | － | － | － | － | － | － | － | 0000 |
 | PMD7 | 077C | － | － | － | － | CMP4MD | CMP3MD | CMP2MD | CMP1MD | － | － | － | － | － | － | － | － | 0000 |

 | SFR
 Name | SFR
 Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PMD1 | 0770 | T5MD | T4MD | T3MD | T2MD | T1MD | QEIIMD | PWMMD | － | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | － | C1MD | ADCMD | 0000 |
 | PMD2 | 0772 | － | － | － | － | IC4MD | IC3MD | IC2MD | IC1MD | － | － | － | － | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
 | PMD3 | 0774 | － | － | － | － | － | CMPMD | － | － | － | － | QEI2MD | － | － | － | I2C2MD | － | 0000 |
 | PMD4 | 0776 | － | － | － | － | － | － | － | － | － | － | － | － | REFOMD | － | － | － | 0000 |
 | PMD6 | 077A | － | － | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | － | － | － | － | － | － | － | － | 0000 |
 | PMD7 | 077C | － | － | － | － | CMP4MD | CMP3MD | CMP2MD | CMP1MD | － | － | － | － | － | － | － | － | 0000 |

 查询dsPIC33FJ32GS606供应商

 | SFR Name | $\begin{array}{\|l\|l\|} \hline \text { SFR } \\ \text { Addr } \end{array}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c} \text { All } \\ \text { Resets } \end{array}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PMD1 | 0770 | T5MD | T4MD | T3MD | T2MD | T1MD | QEIIMD | PWMMD | － | 12C1MD | U2MD | U1MD | SPI2MD | SPIIMD | － | － | ADCMD | 0000 |
 | PMD2 | 0772 | － | － | － | － | IC4MD | IC3MD | IC2MD | IC1MD | － | － | － | － | OC4MD | осзмD | OC2MD | OC1MD | 0000 |
 | PMD3 | 0774 | － | － | － | － | － | CMPMD | － | － | － | － | QEI2MD | － | － | － | 12C2MD | － | 0000 |
 | PMD4 | 0776 | － | － | － | － | － | － | － | － | － | － | － | － | REFOMD | － | － | － | 0000 |
 | PMD6 | 077A | － | － | PWM6MD | PWM5MD | PWM4MD | РWмзмD | PWM2MD | PWM1MD | － | － | － | － | － | － | － | － | 0000 |
 | PMD7 | 077C | － | － | － | － | CMP4MD | CMP3MD | CMP2MD | CMP1MD | － | － | － | － | － | － | － | － | 0000 |
 | Legend：$\quad \mathrm{x}=$ unknown value on Reset，$-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecim | | | | | | | | | | | | | | | | | | |
 |
 | TABLE 4－64：PMD REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES | | | | | | | | | | | | | | | | | | |
 | SFR Name | $\begin{array}{\|l\|l\|} \hline \text { SFR } \\ \text { Addr } \end{array}$ | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
 | PMD1 | 0770 | T5MD | T4MD | T3MD | T2MD | T1MD | QEIIMD | PWMMD | － | 12C1MD | U2MD | U1MD | SPI2MD | SPIIMD | － | － | ADCMD | 0000 |
 | PMD2 | 0772 | － | － | － | － | IC4MD | IC3MD | IC2MD | IC1MD | － | － | － | － | OC4MD | OСЗМD | OC2MD | OC1MD | 0000 |
 | PMD3 | 0774 | － | － | － | － | － | － | － | － | － | － | QEI2MD | － | － | － | 12C2MD | － | 0000 |
 | PMD4 | 0776 | － | － | － | － | － | － | － | － | － | － | － | － | REFOMD | － | － | － | 0000 |
 | PMD6 | 077A | － | － | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | － | － | － | － | － | － | － | － | 0000 |

 ## 查询dsPIC33FJ32GS606供应商

 4．2．7 SOFTWARE STACK
 In addition to its use as a working register，the W15 register in the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices is also used as a software Stack Pointer．The Stack Pointer always points to the first available free word and grows from lower to higher addresses．It predecrements for stack pops and post－increments for stack pushes，as shown in Figure 4－6．For a PC push during any CALL instruc－ tion，the MSb of the PC is zero－extended before the push，ensuring that the MSb is always clear．

 ## Note：A PC push during exception processing

 concatenates the SRL register to the MSb of the PC prior to the push．The Stack Pointer Limit register（SPLIM）associated with the Stack Pointer sets an upper address boundary for the stack．SPLIM is uninitialized at Reset．As is the case for the Stack Pointer，SPLIM＜0＞is forced to＇ 0 ＇ because all stack operations must be word－aligned．
 Whenever an EA is generated using W15 as a source or destination pointer，the resulting address is compared with the value in SPLIM．If the contents of the Stack Pointer（W15）and the SPLIM register are equal and a push operation is performed，a stack error trap will not occur．The stack error trap will occur on a subsequent push operation．For example，to cause a stack error trap when the stack grows beyond address 0×1800 in RAM，initialize the SPLIM with the value 0x17FE．
 Similarly，a Stack Pointer underflow（stack error）trap is generated when the Stack Pointer address is found to be less than 0x0800．This prevents the stack from interfering with the Special Function Register（SFR） space．

 A write to the SPLIM register should not be immediately followed by an indirect read operation using W15．

 FIGURE 4－6：CALL STACK FRAME

 ## 4．3 Instruction Addressing Modes

 The addressing modes shown in Table 4－65 form the basis of the addressing modes optimized to support the specific features of individual instructions．The addressing modes provided in the MAC class of instructions differ from those in the other instruction types．

 ## 4．3．1 FILE REGISTER INSTRUCTIONS

 Most file register instructions use a 13－bit address field （f）to directly address data present in the first 8192 bytes of data memory（near data space）．Most file register instructions employ a working register，W0， which is denoted as WREG in these instructions．The destination is typically either the same file register or WREG（with the exception of the MUL instruction）， which writes the result to a register or register pair．The MOV instruction allows additional flexibility and can access the entire data space．

 ## 4．3．2 MCU INSTRUCTIONS

 The three－operand MCU instructions are of the form：

 ## Operand 3 ＝Operand 1 ＜function＞Operand 2

 where Operand 1 is always a working register（that is， the addressing mode can only be register direct），which is referred to as Wb ．Operand 2 can be a W register， fetched from data memory，or a 5－bit literal．The result location can be either a W register or a data memory location．The following addressing modes are supported by MCU instructions：
 －Register Direct
 －Register Indirect
 －Register Indirect Post－Modified
 －Register Indirect Pre－Modified
 －5－bit or 10－bit Literal
 Note：Not all instructions support all the addressing modes given above．Individual instructions can support different subsets of these addressing modes．

 旬dsPIC33FJ32GS606供应商
 TABLE 4－65：FUNDAMENTAL ADDRESSING MODES SUPPORTED

 | Addressing Mode | Description |
 | :--- | :--- |
 | File Register Direct | The address of the file register is specified explicitly． |
 | Register Direct | The contents of a register are accessed directly． |
 | Register Indirect | The contents of Wn forms the Effective Address（EA）． |
 | Register Indirect Post－Modified | The contents of Wn forms the EA．Wn is post－modified（incremented or
 decremented）by a constant value． |
 | Register Indirect Pre－Modified | Wn is pre－modified（incremented or decremented）by a signed constant value
 to form the EA． |
 | Register Indirect with Register Offset
 （Register Indexed） | The sum of Wn and Wb forms the EA． |
 | Register Indirect with Literal Offset | The sum of Wn and a literal forms the EA． |

 ## 4．3．3 MOVE AND ACCUMULATOR INSTRUCTIONS

 Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions．In addition to the addressing modes supported by most MCU instructions，move and accumulator instructions also support Register Indirect with Register Offset Addressing mode，also referred to as Register Indexed mode．

 Note：For the MOV instructions，the addressing mode specified in the instruction can differ for the source and destination EA． However，the 4－bit Wb（Register Offset） field is shared by both source and destination（but typically only used by one）．
 In summary，the following addressing modes are supported by move and accumulator instructions：
 －Register Direct
 －Register Indirect
 －Register Indirect Post－modified
 －Register Indirect Pre－modified
 －Register Indirect with Register Offset（Indexed）
 －Register Indirect with Literal Offset
 －8－bit Literal
 －16－bit Literal
 Note：Not all instructions support all the addressing modes given above．Individual instructions may support different subsets of these addressing modes．

 ## 4．3．4 MAC INSTRUCTIONS

 The dual source operand DSP instructions（CLR，ED， EDAC，MAC，MPY，MPY ．N，MOVSAC and MSC），also referred to as MAC instructions，use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables．
 The two－source operand prefetch registers must be members of the set $\{\mathrm{W} 8, \mathrm{~W} 9, \mathrm{~W} 10, \mathrm{~W} 11\}$ ．For data reads， W 8 and $W 9$ are always directed to the X RAGU， and W10 and W11 are always directed to the Y AGU． The effective addresses generated（before and after modification）must，therefore，be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11．

 Note：Register Indirect with Register Offset Addressing mode is available only for W9 （in X space）and W11（in Y space）．

 In summary，the following addressing modes are supported by the MAC class of instructions：
 －Register Indirect
 －Register Indirect Post－Modified by 2
 －Register Indirect Post－Modified by 4
 －Register Indirect Post－Modified by 6
 －Register Indirect with Register Offset（Indexed）

 ## 4．3．5 OTHER INSTRUCTIONS

 Besides the addressing modes outlined previously，some instructions use literal constants of various sizes．For example，BRA（branch）instructions use 16－bit signed literals to specify the branch destination directly，whereas the DISI instruction uses a 14－bit unsigned literal field．In some instructions，such as ADD Acc，the source of an operand or result is implied by the opcode itself．Certain operations，such as NOP，do not have any operands．

 ## 查询dsPIC33FJ32GS606供应商

 ## 4．4 Modulo Addressing

 Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware．The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code，as is typical in many DSP algorithms．
 Modulo Addressing can operate in either data or program space（since the data pointer mechanism is essentially the same for both）．One circular buffer can be supported in each of the X（which also provides the pointers into program space）and Y data spaces．Modulo Addressing can operate on any W register pointer．However，it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer，respectively．
 In general，any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address（for incrementing buffers），or end address（for decrementing buffers），based upon the direction of the buffer．
 The only exception to the usage restrictions is for buffers that have a power－of－two length．As these buffers satisfy the start and end address criteria，they can operate in a bidirectional mode（that is，address boundary checks are performed on both the lower and upper address boundaries）．

 ## 4．4．1 START AND END ADDRESS

 The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16 －bit Modulo Buffer Address registers： XMODSRT，XMODEND，YMODSRT and YMODEND （see Table 4－1）．

 | Note： | Y space Modulo Addressing EA
 calculations assume word－sized data（LSb
 of every EA is always clear）． |
 | :--- | :--- | :--- |

 The length of a circular buffer is not directly specified．It is determined by the difference between the corresponding start and end addresses．The maximum possible length of the circular buffer is 32 K words （64 Kbytes）．

 ## 4．4．2 W ADDRESS REGISTER SELECTION

 The Modulo and Bit－Reversed Addressing Control register，MODCON＜15：0＞，contains enable flags as well as a W register field to specify the W Address registers．The XWM and YWM fields select the registers that will operate with Modulo Addressing：
 －If $X W M=15, X$ RAGU and X WAGU Modulo Addressing is disabled．
 －If YWM＝15，Y AGU Modulo Addressing is disabled．
 The X Address Space Pointer W register（XWM），to which Modulo Addressing is to be applied，is stored in MODCON＜3：0＞（see Table 4－1）．Modulo Addressing is enabled for X data space when $X W M$ is set to any value other than＇ 15 ＇and the XMODEN bit is set at MODCON＜15＞．
 The Y Address Space Pointer W register（YWM）to which Modulo Addressing is to be applied is stored in MODCON＜7：4＞．Modulo Addressing is enabled for Y data space when YWM is set to any value other than ＇ 15 ＇and the YMODEN bit is set at MODCON＜14＞．

 FIGURE 4－7：MODULO ADDRESSING OPERATION EXAMPLE
 Byte
 Address
 0×1100

 ## 询dsPIC33FJ32GS606供应商

 4．4．3 MODULO ADDRESSING
 APPLICABILITY
 Modulo Addressing can be applied to the Effective Address（EA）calculation associated with any W register．Address boundaries check for addresses equal to：
 －The upper boundary addresses for incrementing buffers
 －The lower boundary addresses for decrementing buffers
 It is important to realize that the address boundaries check for addresses less than or greater than the upper （for incrementing buffers）and lower（for decrementing buffers）boundary addresses（not just equal to）． Address changes can，therefore，jump beyond boundaries and still be adjusted correctly．

 Note：The modulo corrected effective address is written back to the register only when Pre－Modify or Post－Modify Addressing mode is used to compute the effective address．When an address offset（such as ［W7＋W2］）is used，Modulo Address correction is performed but the contents of the register remain unchanged．

 ## 4．5 Bit－Reversed Addressing

 Bit－Reversed Addressing mode is intended to simplify data re－ordering for radix－2 FFT algorithms．It is supported by the X AGU for data writes only．
 The modifier，which can be a constant value or register contents，is regarded as having its bit order reversed．The address source and destination are kept in normal order． Thus，the only operand requiring reversal is the modifier．

 ## 4．5．1 BIT－REVERSED ADDRESSING IMPLEMENTATION

 Bit－Reversed Addressing mode is enabled in any of these situations：
 －BWM bits（W register selection）in the MODCON register are any value other than＇ 15 ＇（the stack cannot be accessed using Bit－Reversed Addressing）
 －The BREN bit is set in the XBREV register
 －The addressing mode used is Register Indirect with Pre－Increment or Post－Increment

 If the length of a bit－reversed buffer is $\mathrm{M}=2^{\mathrm{N}}$ bytes， the last＇ N ＇bits of the data buffer start address must be zeros．
 $X B<14: 0>$ is the Bit－Reversed Address modifier，or ＇pivot point，＇which is typically a constant．In the case of an FFT computation，its value is equal to half of the FFT data buffer size．

 ## Note：All bit－reversed EA calculations assume word－sized data（LSb of every EA is always clear）．The XB value is scaled accordingly to generate compatible（byte） addresses．

 When enabled，Bit－Reversed Addressing is executed only for Register Indirect with Pre－Increment or Post－Increment Addressing and word－sized data writes．It will not function for any other addressing mode or for byte－sized data，and normal addresses are generated instead．When Bit－Reversed Addressing is active，the W Address Pointer is always added to the address modifier（XB），and the offset associated with the Register Indirect Addressing mode is ignored．In addition，as word－sized data is a requirement，the LSb of the EA is ignored（and always clear）．
 Note：Modulo Addressing and Bit－Reversed Addressing should not be enabled together．If an application attempts to do so， Bit－Reversed Addressing will assume priority when active for the X WAGU and X WAGU，Modulo Addressing will be dis－ abled．However，Modulo Addressing will continue to function in the X RAGU．
 If Bit－Reversed Addressing has already been enabled by setting the BREN（XBREV＜15＞）bit，a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit－reversed pointer．

 查询dsPIC33FJ32GS606供应商
 FIGURE 4－8：BIT－REVERSED ADDRESS EXAMPLE
 Sequential Address

 $X B=0 \times 0008$ for a 16－Word Bit－Reversed Buffer

 TABLE 4－66：BIT－REVERSED ADDRESS SEQUENCE（16－ENTRY）

 | Normal Address | | | | Bit－Reversed Address | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | A3 | A2 | A1 | A0 | Decimal | A3 | A2 | A1 | A0 | Decimal |
 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 8 |
 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 4 |
 | 0 | 0 | 1 | 1 | 3 | 1 | 1 | 0 | 0 | 12 |
 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 2 |
 | 0 | 1 | 0 | 1 | 5 | 1 | 0 | 1 | 0 | 10 |
 | 0 | 1 | 1 | 0 | 6 | 0 | 1 | 1 | 0 | 6 |
 | 0 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 0 | 14 |
 | 1 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 1 | 1 |
 | 1 | 0 | 0 | 1 | 9 | 1 | 0 | 0 | 1 | 9 |
 | 1 | 0 | 1 | 0 | 10 | 0 | 1 | 0 | 1 | 5 |
 | 1 | 0 | 1 | 1 | 11 | 1 | 1 | 0 | 1 | 13 |
 | 1 | 1 | 0 | 0 | 12 | 0 | 0 | 1 | 1 | 3 |
 | 1 | 1 | 0 | 1 | 13 | 1 | 0 | 1 | 1 | 11 |
 | 1 | 1 | 1 | 0 | 14 | 0 | 1 | 1 | 1 | 7 |
 | 1 | 1 | 1 | 1 | 15 | 1 | 1 | 1 | 1 | 15 |

 ## 询dsPIC33FJ32GS606供应商

 ### 4.6 Interfacing Program and Data Memory Spaces

 The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 architecture uses a 24－bit－wide program space and a 16－bit－wide data space． The architecture is also a modified Harvard scheme， meaning that data can also be present in the program space．To use this data successfully，it must be accessed in a way that preserves the alignment of information in both spaces．
 Aside from normal execution，the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 architecture provides two methods by which program space can be accessed during operation：
 －Using table instructions to access individual bytes or words anywhere in the program space
 －Remapping a portion of the program space into the data space（Program Space Visibility）

 Table instructions allow an application to read or write to small areas of the program memory．This capability makes the method ideal for accessing data tables that need to be updated periodically．It also allows access to all bytes of the program word．The remapping method allows an application to access a large block of data on a read－only basis，which is ideal for look－ups from a large table of static data．The application can only access the least significant word of the program word．

 ## 4．6．1 ADDRESSING PROGRAM SPACE

 Since the address ranges for the data and program spaces are 16 and 24 bits，respectively，a method is needed to create a 23 －bit or 24 －bit program address from 16－bit data registers．The solution depends on the interface method to be used．

 For table operations，the 8 －bit Table Page register （TBLPAG）is used to define a 32 K word region within the program space．This is concatenated with a 16－bit EA to arrive at a full 24 －bit program space address．In this format，the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory （TBLPAG＜7＞$=0$ ）or the configuration memory （TBLPAG＜7＞＝1）．
 For remapping operations，the 8－bit Program Space Visibility Register（PSVPAG）is used to define a 16 K word page in the program space．When the Most Significant bit of the EA is＇ 1 ＇，PSVPAG is concatenated with the lower 15 bits of the EA to form a 23－bit program space address．Unlike table operations，this limits remapping operations strictly to the user memory area．
 Table 4－67 and Figure $4-9$ show how the program EA is created for table operations and remapping accesses from the data EA．Here， $\mathrm{P}<23: 0>$ refers to a program space word，and $D<15: 0>$ refers to a data space word．

 TABLE 4－67：PROGRAM SPACE ADDRESS CONSTRUCTION

 | Access Type | Access Space | Program Space Address | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | ＜23＞ | ＜22：16＞ | ＜15＞ | ＜14：1＞ | ＜0＞ |
 | Instruction Access （Code Execution） | User | 0 | $\mathrm{PC}<22: 1>$ | | | 0 |
 | | | 0xx xxxx | | xxxx x | xxxx xxxx xxx0 | |
 | TBLRD／TBLWT （Byte／Word Read／Write） | User | TBLPAG＜7：0＞ | | Data EA＜15：0＞ | | |
 | | | 0xxx xxxx | | xxxx xxxx xxxx xxxx | | |
 | | Configuration | TBLPAG＜7：0＞ | | Data EA＜15：0＞ | | |
 | | | 1xxx xxxx | | xxxx xxxx xxxx xxxx | | |
 | Program Space Visibility （Block Remap／Read） | User | 0 | PSVPAG＜7：0＞ | | Data EA＜14：0＞${ }^{(1)}$ | |
 | | | 0 | xxxx xxxx | | xxx xxxx xxxx xxxx | |

 Note 1：Data $E A<15>$ is always＇ 1 ＇in this case，but is not used in calculating the program space address．Bit 15 of the address is PSVPAG＜0＞．

 Note 1：The Least Significant bit（LSb）of program space addresses is always fixed as＇0’ to maintain word alignment of data in the program and data spaces．

 2：Table operations are not required to be word－aligned．Table read operations are permitted in the configuration memory space．

 ## 询dsPIC33FJ32GS606供应商

 ## 4．6．2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

 The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space．The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data．

 The PC is incremented by two for each successive 24－bit program word．This allows program memory addresses to directly map to data space addresses． Program memory can thus be regarded as two 16－bit－wide word address spaces，residing side by side， each with the same address range．TBLRDL and TBLWTL access the space that contains the least significant data word．TBLRDH and TBLWTH access the space that contains the upper data byte．
 Two table instructions are provided to move byte or word－sized（16－bit）data to and from program space． Both function as either byte or word operations．
 －TBLRDL（Table Read Low）：
 －In Word mode，this instruction maps the lower word of the program space location （ $\mathrm{P}<15: 0>$ ）to a data address（ $\mathrm{D}<15: 0>$ ）．
 －In Byte mode，either the upper or lower byte of the lower program word is mapped to the lower byte of a data address．The upper byte is selected when Byte Select is＇ 1 ＇；the lower byte is selected when it is＇ 0 ＇．
 －TBLRDH（Table Read High）：
 －In Word mode，this instruction maps the entire upper word of a program address（ $\mathrm{P}<23: 16>$ ） to a data address．Note that $\mathrm{D}<15: 8>$ ，the ＇phantom byte＇，will always be＇ 0 ＇．
 －In Byte mode，this instruction maps the upper or lower byte of the program word to $\mathrm{D}<7: 0>$ of the data address，in the TBLRDL instruction．The data is always＇ 0 ＇when the upper＇phantom＇byte is selected（Byte Select＝1）．
 Similarly，two table instructions，TBLWTH and TBLWTL， are used to write individual bytes or words to a program space address．The details of their operation are explained in Section 5.0 ＂Flash Program Memory＂．
 For all table operations，the area of program memory space to be accessed is determined by the Table Page register（TBLPAG）．TBLPAG covers the entire program memory space of the device，including user and configuration spaces．When TBLPAG＜7＞＝0，the table page is located in the user memory space．When TBLPAG＜7＞＝1，the page is located in configuration space．

 FIGURE 4－10：ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

 ## 查询dsPIC33FJ32GS606供应商

 4．6．3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

 The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space． This option provides transparent access to stored constant data from the data space without the need to use special instructions（such as TBLRDL／H）．
 Program space access through the data space occurs if the Most Significant bit of the data space EA is＇ 1 ＇and program space visibility is enabled by setting the PSV bit in the Core Control register（ $\mathrm{CORCON}<2>$ ）．The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register（PSVPAG）．This 8－bit register defines any one of 256 possible pages of 16 K words in program space．In effect，PSVPAG functions as the upper 8 bits of the program memory address，with the 15 bits of the EA functioning as the lower bits．By incrementing the PC by 2 for each program memory word，the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses．

 Data reads to this area add a cycle to the instruction being executed，since two program memory fetches are required．
 Although each data space address 8000h and higher maps directly into a corresponding program memory address（see Figure 4－11），only the lower 16 bits of the

 24 －bit program word are used to contain the data．The upper 8 bits of any program space location used as data should be programmed with＇1111 1111＇or ＇0000 0000＇to force a NOP．This prevents possible issues should the area of code ever be accidentally executed．

 ## Note：PSV access is temporarily disabled during table reads／writes．

 For operations that use PSV and are executed outside a REPEAT loop，the MOV and MOV．D instructions require one instruction cycle in addition to the specified execution time．All other instructions require two instruction cycles in addition to the specified execution time．
 For operations that use PSV，and are executed inside a REPEAT loop，these instances require two instruction cycles in addition to the specified execution time of the instruction：
 －Execution in the first iteration
 －Execution in the last iteration
 －Execution prior to exiting the loop due to an interrupt
 －Execution upon re－entering the loop after an interrupt is serviced
 Any other iteration of the REPEAT loop will allow the instruction using PSV to access data，to execute in a single cycle．

 FIGURE 4－11：PROGRAM SPACE VISIBILITY OPERATION

 ## 9.O IC3EEASASGROUER商M MEMORY

 Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

 The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.
 Flash memory can be programmed in two ways:

 - In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) programming capability
 - Run-Time Self-Programming (RTSP)

 ICSP allows a dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGC1/PGD1, PGC2/PGD2 or PGC3/PGD3),
 and three other lines for power (VDD), ground (VSS) and Master Clear ($\overline{\mathrm{MCLR}})$. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.
 RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data, either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

 ### 5.1 Table Instructions and Flash Programming

 Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.
 The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.
 The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

 FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

 ## 查询dsPIC33FJ32GS606供应商

 ### 5.2 RTSP Operation

 The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 Flash program mem－ ory array is organized into rows of 64 instructions or 192 bytes．RTSP allows the user application to erase a page of memory，which consists of eight rows（ 512 instruc－ tions）at a time，and to program one row or one word at a time．Table 27－12 shows typical erase and programming times．The 8 －row erase pages and single row write rows are edge－aligned from the beginning of program memory， on boundaries of 1536 bytes and 192 bytes，respectively．
 The program memory implements holding buffers that can contain 64 instructions of programming data．Prior to the actual programming operation，the write data must be loaded into the buffers sequentially．The instruction words loaded must always be from a group of 64 boundary．
 The basic sequence for RTSP programming is to set up a Table Pointer，then do a series of TBLWT instructions to load the buffers．Programming is performed by setting the control bits in the NVMCON register．A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions．

 All of the table write operations are single－word writes （two instruction cycles）because only the buffers are written．A programming cycle is required for programming each row．

 ## 5．3 Programming Operations

 A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode．The processor stalls（waits）until the programming operation is finished．
 The programming time depends on the FRC accuracy （see Table 27－20）and the value of the FRC Oscillator Tuning register（see Register 9－4）．Use the following formula to calculate the minimum and maximum values for the Row Write Time，Page Erase Time，and Word Write Cycle Time parameters（see Table 27－12）．

 EQUATION 5－1：PROGRAMMING TIME

 $$
 \frac{T}{7.37 \mathrm{MHz} \times(\text { FRC Accuracy }) \% \times(\text { FRC Tuning }) \%}
 $$

 For example，if the device is operating at $+125^{\circ} \mathrm{C}$ ， the FRC accuracy will be $\pm 5 \%$ ．If the TUN $<5: 0>$ bits （see Register 9－4）are set to＇b000000，the Minimum Row Write Time is：

 $$
 T_{R W}=\frac{11064 \text { Cycles }}{7.37 \mathrm{MHz} \times(1+0.05) \times(1-0)}=1.43 \mathrm{~ms}
 $$

 and，the Maximum Row Write Time is：
 $T_{R W}=\frac{11064 \text { Cycles }}{7.37 \mathrm{MHz} \times(1-0.05) \times(1-0)}=1.58 \mathrm{~ms}$
 Setting the WR bit（NVMCON＜15＞）starts the opera－ tion，and the WR bit is automatically cleared when the operation is finished．

 ## 5．4 Control Registers

 Two SFRs are used to read and write the program Flash memory：NVMCON and NVMKEY．
 The NVMCON register（Register 5－1）controls which blocks are to be erased，which memory type is to be programmed and the start of the programming cycle．
 NVMKEY is a write－only register that is used for write protection．To start a programming or erase sequence， the user application must consecutively write 0×55 and OxAA to the NVMKEY register．Refer to Section 5.3 ＂Programming Operations＂for further details．

 ## dSPC33F T32GS606供应商

 REGISTER 5－1：NVMCON：FLASH MEMORY CONTROL REGISTER

 | R／SO－0 $0^{(\mathbf{1})}$ | R／W－0 ${ }^{(\mathbf{1})}$ | R／W－0 $0^{(\mathbf{1})}$ | U－0 | U－0 | U－0 | U－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | WR | WREN | WRERR | - | - | - | - | - |
 | bit 15 | | | | | | | |

 | U－0 | R／W－0 ${ }^{(1)}$ | U－0 | U－0 | R／W－0 ${ }^{(1)}$ | R／W－0 ${ }^{(1)}$ | R／W－0 ${ }^{(1)}$ | R／W－0 ${ }^{(1)}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | － | ERASE | － | － | NVMOP＜3：0＞${ }^{(2)}$ | | | |
 | bit 7 | | | | | | | bit 0 |

 | Legend： | SO＝Settable Only bit | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-\mathrm{n}=$ Value at POR | $' 1$＇＝Bit is set | $' 0$＇＝Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

 bit 15 WR：Write Control bit
 1 ＝Initiates a Flash memory program or erase operation．The operation is self－timed and the bit is cleared by hardware once operation is complete．
 $0=$ Program or erase operation is complete and inactive
 bit 14 WREN：Write Enable bit
 1 ＝Enable Flash program／erase operations
 0 ＝Inhibit Flash program／erase operations
 bit 13 WRERR：Write Sequence Error Flag bit
 $1=$ An improper program or erase sequence attempt or termination has occurred（bit is set automatically on any set attempt of the WR bit）
 $0=$ The program or erase operation completed normally
 bit 12－7 Unimplemented：Read as＇ 0 ＇
 bit 6 ERASE：Erase／Program Enable bit
 1 ＝Perform the erase operation specified by NVMOP＜3：0＞on the next WR command
 $0=$ Perform the program operation specified by NVMOP＜3：0＞on the next WR command
 bit 5－4 Unimplemented：Read as＇ 0 ＇
 bit 3－0 NVMOP＜3：0＞：NVM Operation Select bits ${ }^{(2)}$
 If ERASE＝1：
 1111 ＝Memory bulk erase operation
 1101 ＝Erase general segment
 0011 ＝No operation
 0010 ＝Memory page erase operation
 0001 ＝No operation
 0000 ＝Erase a single Configuration register byte
 If $E R A S E=0$ ：
 1111 ＝No operation
 $1101=$ No operation
 0011 ＝Memory word program operation
 $0010=$ No operation
 0001 ＝Memory row program operation
 0000 ＝Program a single Configuration register byte
 Note 1：These bits can only be Reset on POR．
 2：All other combinations of $\mathrm{NVMOP}<3: 0>$ are unimplemented．

 | 查询dsPIC33FJ32GS606供应商 | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | REGISTE | NVMKEY：NON－VOLATILE MEMORY KEY REGISTER | | | | | | |
 | U－0 |
 | － | － | － | － | － | － | － | － |
 | bit 15 bit 8 | | | | | | | |
 | W－0 |
 | NVMKEY＜7：0＞ | | | | | | | |
 | bit 7 | | | | | | | bit 0 |

 | Legend： | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-n=$ Value at POR | $' 1$＇＝Bit is set | $' 0$＇＝Bit is cleared |$\quad x=$ Bit is unknown 8

 | bit 15－8 | Unimplemented：Read as＇ 0 ＇ |
 | :--- | :--- |
 | bit 7－0 | NVMKEY＜7：0＞：Key Register bits（write－only） |

 ## FLASH PROGRAM MEMORY

 One row of program Flash memory can be programmed at a time. To achieve this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

 1. Read eight rows of program memory (512 instructions) and store in data RAM.
 2. Update the program data in RAM with the desired new data.
 3. Erase the block (see Example 5-1):
 a) Set the NVMOP bits (NVMCON<3:0>) to ' 0010 ' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 c) Write 0×55 to NVMKEY.
 d) Write OXAA to NVMKEY.
 e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
 5. Write the program block to Flash memory:
 a) Set the NVMOP bits to ' 0001 ' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 b) Write 0×55 to NVMKEY.
 c) Write OXAA to NVMKEY.
 d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
 6. Repeat steps 4 and 5 , using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.
 For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 5-3.

 ## EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

    ```
    ; Set up NVMCON for block erase operation
    MOV #0x4042, W0 ;
    MOV W0, NVMCON ; Initialize NVMCON
    ; Init pointer to row to be ERASED
    MOV #tblpage(PROG_ADDR), W0 ;
    MOV W0, TBLPAG ; Initialize PM Page Boundary SFR
    MOV #tbloffset(PROG_ADDR), w0 ; Initialize in-page EA[15:0] pointer
    TBLWTL W0, [W0] ; Set base address of erase block
    DISI #5 ; Block all interrupts with priority <7
    ; for next 5 instructions
    MOV #0x55, W0
    MOV W0, NVMKEY ; Write the 55 key
    MOV #0xAA, W1
    MOV W1, NVMKEY
    BSET NVMCON, #WR
    ; Write the AA key
    ; Start the erase sequence
    NOP ; Insert two NOPs after the erase
    NOP ; command is asserted
    ```


 ## 查询dsPIC33FJ32GS606供应商
 EXAMPLE 5－2：LOADTNG－HE WRITE BUFFERS

    ```
    ; Set up NVMCON for row programming operations
    MOV \#0x4001, W0 ;
    MOV W0, NVMCON ; Initialize NVMCON
    ```

 ; Set up a pointer to the first program memory location to be written
 ; program memory selected, and writes enabled
 MOV \#0x0000, W0 ;
 MOV W0, TBLPAG ; Initialize PM Page Boundary SFR
 MOV \#0x6000, W0 ; An example program memory address

 - Perform the TBLWT instructions to write the latches
 ; 0th_program_word
 MOV \#LOW_WORD_0, W2 ;
 MOV \#HIGH_BYTE_0, W3 ;
 TBLWTL W2, [W0] ; Write PM low word into program latch
 TBLWTH W3, [W0++] ; Write PM high byte into program latch
 ; 1st_program_word
 MOV \#LOW_WORD_1, W2 ;
 MOV \#HIGH_BYTE_1, W3
 TBLWTL W2, [W0] ; Write PM low word into program latch
 TBLWTH W3, [W0++] ; Write PM high byte into program latch
 ; 2nd_program_word
 MOV \#LOW_WORD_2, W2 ;
 MOV \#HIGH_BYTE_2, W3 ;
 TBLWTL W2, [W0] ; Write PM low word into program latch
 TBLWTH W3, [W0++] ; Write PM high byte into program latch
 -
 -
 -
 ; 63rd_program_word

 | MOV | \＃LOW＿WORD＿31，W2 | $;$ |
 | :--- | :--- | :--- |
 | MOV | \＃HIGH＿BYTE＿31，W3 | $;$ |
 | TBLWTL | W2，［W0］ | ；Write PM low word into program latch |
 | TBLWTH | W3，［W0＋＋］ | ；Write PM high byte into program latch |

 EXAMPLE 5－3：INITIATING A PROGRAMMING SEQUENCE

 | DISI | \＃5 | ；Block all interrupts with priority <7 |
 | :--- | :--- | :--- |
 | MOV | \＃0x55，W0 | for next 5 instructions |
 | MOV W0，NVMKEY | ；Write the 55 key | |
 | MOV \＃0xAA，W1 | ；Write the AA key | |
 | MOV W1，NVMKEY | ；Start the erase sequence | |
 | BSET | NVMCON，\＃WR | Insert two NOPs after the |
 | NOP | | erase command is asserted |
 | NOP | | |

 ## 6．0 PIC33EI32GS606供应商

 Note 1：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to Section 8．＂Reset＂ （DS70192）in the＂dsPIC33F／PIC24H Family Reference Manual＂，which is avail－ able from the Microchip web site （www．microchip．com）．
 2：Some registers and associated bits described in this section may not be avail－ able on all devices．Refer to Section 4.0 ＂Memory Organization＂in this data sheet for device－specific register and bit information．

 The Reset module combines all Reset sources and controls the device Master Reset Signal，SYSRST．The following is a list of device Reset sources：
 －POR：Power－on Reset
 －BOR：Brown－out Reset
 －MCLR：Master Clear Pin Reset
 －SWR：Software RESET Instruction
 －WDTO：Watchdog Timer Reset
 －TRAPR：Trap Conflict Reset
 －IOPUWR：Illegal Condition Device Reset
 －Illegal Opcode Reset
 －Uninitialized W Register Reset
 －Security Reset

 A simplified block diagram of the Reset module is shown in Figure 6－1．
 Any active source of reset will make the $\overline{\text { SYSRST }}$ signal active．On system Reset，some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected．

 ## Note：Refer to the specific peripheral section or Section 3.0 ＂CPU＂of this data sheet for register Reset states．

 All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset （see Register 6－1）．
 A POR clears all the bits，except for the POR bit （ $\mathrm{RCON}<0>$ ），that are set．The user application can set or clear any bit at any time during code execution．The RCON bits only serve as status bits．Setting a particular Reset status bit in software does not cause a device Reset to occur．
 The RCON register also has other bits associated with the Watchdog Timer and device power－saving states． The function of these bits is discussed in other sections of this manual．

 Note：The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful．

 ## FIGURE 6－1：RESET SYSTEM BLOCK DIAGRAM

 龺䳐dSPIC33FJ32GS606供应商T CONTROL REGISTER ${ }^{(1)}$

 | R／W－0 | R／W－0 | U－0 | U－0 | U－0 | U－0 | U－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TRAPR | IOPUWR | － | － | － | － | － | VREGS |
 | bit 15 | | | | | | | bit 8 |
 | R／W－0 | R／W－0 | R／W－0 | R／W－0 | R／W－0 | R／W－0 | R／W－1 | R／W－1 |
 | EXTR | SWR | SWDTEN ${ }^{(2)}$ | WDTO | SLEEP | IDLE | BOR | POR |
 | bit 7 | | | | | | | bit 0 |
 | Legend： | | | | | | | |
 | $\mathrm{R}=$ Readable bit | | W＝Writable bit | | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ | | | |
 | －n＝Value at POR | | ＇ 1 ＇＝Bit is set | | ＇ 0 ＇＝Bit is cleared | | $x=$ Bit is unknown | |

 bit 15 TRAPR：Trap Reset Flag bit
 1 ＝A Trap Conflict Reset has occurred
 0 ＝A Trap Conflict Reset has not occurred
 bit 14 IOPUWR：Illegal Opcode or Uninitialized W Access Reset Flag bit
 $1=$ An illegal opcode detection，an illegal address mode or uninitialized W register used as an Address Pointer caused a Reset
 $0=$ An illegal opcode or uninitialized W Reset has not occurred
 bit 13－9 Unimplemented：Read as＇ 0 ＇
 bit $8 \quad$ VREGS：Voltage Regulator Standby During Sleep bit
 1 ＝Voltage regulator is active during Sleep
 0 ＝Voltage regulator goes into Standby mode during Sleep
 bit 7 EXTR：External Reset Pin（ $\overline{\mathrm{MCLR}})$ bit
 1 ＝A Master Clear（pin）Reset has occurred
 0 ＝A Master Clear（pin）Reset has not occurred
 bit 6 SWR：Software Reset Flag（Instruction）bit
 1 ＝A RESET instruction has been executed
 0 ＝A RESET instruction has not been executed
 bit 5 SWDTEN：Software Enable／Disable of WDT bit ${ }^{(2)}$
 1 ＝WDT is enabled
 $0=$ WDT is disabled
 bit 4 WDTO：Watchdog Timer Time－out Flag bit
 1 ＝WDT time－out has occurred
 0 ＝WDT time－out has not occurred
 bit 3 SLEEP：Wake－up from Sleep Flag bit
 1 ＝Device has been in Sleep mode
 0 ＝Device has not been in Sleep mode
 bit 2 IDLE：Wake－up from Idle Flag bit
 1 ＝Device was in Idle mode
 0 ＝Device was not in Idle mode
 bit 1
 BOR：Brown－out Reset Flag bit
 1 ＝A Brown－out Reset has occurred
 $0=$ A Brown－out Reset has not occurred
 bit $0 \quad$ POR：Power－on Reset Flag bit
 1 ＝A Power－up Reset has occurred
 0 ＝A Power－up Reset has not occurred
 Note 1：All of the Reset status bits can be set or cleared in software．Setting one of these bits in software does not cause a device Reset．

 2：If the FWDTEN Configuration bit is＇1＇（unprogrammed），the WDT is always enabled，regardless of the SWDTEN bit setting．

 ## 6．${ }^{2}$ PIC33FJ32GS606供应商

 The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices have two types of Reset：
 －Cold Reset
 －Warm Reset
 A cold Reset is the result of a Power－on Reset（POR） or a Brown－out Reset（BOR）．On a cold Reset，the FNOSC Configuration bits in the FOSC Configuration register select the device clock source．
 A warm Reset is the result of all the other Reset sources，including the RESET instruction．On warm Reset，the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection（COSC＜2：0＞）bits in the Oscillator Control（OSCCON＜14：12＞）register．
 The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready．The sequence in which this occurs is detailed below and is shown in Figure 6－2．

 1．POR Reset：A POR circuit holds the device in Reset when the power supply is turned on．The POR circuit is active until VDD crosses the VPOR threshold and the delay，TPOR，has elapsed．

 2．BOR Reset：The on－chip voltage regulator has a BOR circuit that keeps the device in Reset until Vdd crosses the Vbor threshold and the delay，Tbor，has elapsed．The delay，Tbor， ensures that the voltage regulator output becomes stable．
 3．PWRT Timer：The programmable power－up timer continues to hold the processor in Reset for a specific period of time（TPWRT）after a BOR．The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full－speed operation．After the delay，TPWRT，has elapsed，the SYSRST becomes inactive，which in turn enables the selected oscillator to start generating clock cycles．
 4．Oscillator Delay：The total delay for the clock to be ready for various clock source selections is given in Table 6－1．Refer to Section 9.0 ＂Oscillator Configuration＂for more information．
 5．When the oscillator clock is ready，the processor begins execution from location 0×000000 ．The user application programs a GOTO instruction at the Reset address，which redirects program execution to the appropriate start－up routine．
 6．The Fail－Safe Clock Monitor（FSCM），if enabled， begins to monitor the system clock when the system clock is ready and the delay，Tfscm， elapsed．

 TABLE 6－1：OSCILLATOR DELAY

 | Oscillator Mode | Oscillator Start－up Delay | Oscillator Start－up Timer | PLL Lock Time | Total Delay |
 | :---: | :---: | :---: | :---: | :---: |
 | FRC，FRCDIV16，FRCDIVN | ToscD ${ }^{(1)}$ | － | － | Toscd ${ }^{(1)}$ |
 | FRCPLL | Toscd ${ }^{(1)}$ | － | TLOCK ${ }^{(3)}$ | Toscd＋ $\operatorname{TLOCK}^{(1,3)}$ |
 | XT | $\operatorname{ToscD}^{(1)}$ | Tost ${ }^{(2)}$ | － | Toscd＋ $\operatorname{ToST}^{(1,2)}$ |
 | HS | Toscd ${ }^{(1)}$ | Tost ${ }^{(2)}$ | － | Toscd＋ $\operatorname{ToST}^{(1,2)}$ |
 | EC | － | － | － | － |
 | XTPLL | ToscD ${ }^{(1)}$ | $\operatorname{Tost}^{(2)}$ | TLOCK ${ }^{(3)}$ | $\begin{gathered} \text { TOSCD }+ \text { TOST + } \\ \text { TLOCK }^{(1,2,3)} \end{gathered}$ |
 | HSPLL | ToscD ${ }^{(1)}$ | Tost ${ }^{(2)}$ | TLOCK ${ }^{(3)}$ | $\begin{gathered} \text { TOSCD + TOST + } \\ \text { TLOCK }^{(1,2,3)} \end{gathered}$ |
 | ECPLL | － | － | TLOCK ${ }^{(3)}$ | TLOCK ${ }^{(3)}$ |
 | LPRC | ToscD ${ }^{(1)}$ | － | － | Toscd ${ }^{(1)}$ |

 Note 1：TosCD＝Oscillator start－up delay（1．1 $\mu \mathrm{s}$ max for FRC， $70 \mu \mathrm{~s}$ max for LPRC）．Crystal oscillator start－up times vary with crystal characteristics，load capacitance，etc．
 2：Tost $=$ Oscillator start－up timer delay（1024 oscillator clock period）．For example，Tost $=102.4 \mu \mathrm{~s}$ for a 10 MHz crystal and Tost $=32 \mathrm{~ms}$ for a 32 kHz crystal．
 3：TLOCK $=$ PLL lock time（ 1.5 ms nominal）if PLL is enabled．

 ##

 Note 1: POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed.

 2: BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TbOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

 3: PWRT Timer: The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT has elapsed and the SYSRST becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles.
 4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 9.0 "Oscillator Configuration" for more information.

 5: When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
 6: If the Fail-Safe Clock Monitor (FSCM) is enabled, it begins to monitor the system clock when the system clock is ready and the delay, TFSCM, has elapsed.

 Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges; otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters within specification.

 ## 查询dsPIC33FJ32GS606供应商

 6．2 Power－on Reset（POR）
 A Power－on Reset（POR）circuit ensures the device is reset from power－on．The POR circuit is active until VDD crosses the VPOR threshold and the delay，Tpor， has elapsed．The delay，TPOR，ensures the internal device bias circuits become stable．

 The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR．Refer to Section 27.0 ＂Electrical Characteristics＂for details．
 The POR Status（POR）bit in the Reset Control （ $\mathrm{RCON}<0>$ ）register is set to indicate the Power－on Reset．

 ## 6．3 Brown－out Reset（BOR）and Power－up Timer（PWRT）

 The on－chip regulator has a Brown－out Reset（BOR） circuit that resets the device when the VDD is too low （VDD＜VBOR）for proper device operation．The BOR circuit keeps the device in Reset until VdD crosses the

 Vbor threshold and the delay，Tbor，has elapsed．The delay，Tbor，ensures the voltage regulator output becomes stable．
 The BOR Status（BOR）bit in the Reset Control （ $\mathrm{RCON}<1>$ ）register is set to indicate the Brown－out Reset．
 The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full－speed operation．The PWRT provides power－up time delay （TPWRT）to ensure that the system power supplies have stabilized at the appropriate levels for full－speed operation before the SYSRST is released．
 The power－up timer delay（TPWRT）is programmed by the Power－on Reset Timer Value Select （FPWRT＜2：0＞）bits in the POR Configuration （FPOR＜2：0＞）register，which provides eight settings （from 0 ms to 128 ms ）．Refer to Section 24.0 ＂Special Features＂for further details．
 Figure 6－3 shows the typical brown－out scenarios．The reset delay（TBOR＋TPWRT）is initiated each time VDD rises above the Vbor trip point

 FIGURE 6－3：BROWN－OUT SITUATIONS

 ##

 The external Reset is generated by driving the $\overline{\mathrm{MCLR}}$ pin low. The $\overline{M C L R}$ pin is a Schmitt Trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 27.0 "Electrical Characteristics" for minimum pulse width specifications. The external Reset ($\overline{\mathrm{MCLR}}$) pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

 ### 6.4.0.1 EXTERNAL SUPERVISORY CIRCUIT

 Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This external Reset signal can be directly connected to the $\overline{\mathrm{MCLR}}$ pin to reset the device when the rest of system is reset.

 ### 6.4.0.2 INTERNAL SUPERVISORY CIRCUIT

 When using the internal power supervisory circuit to reset the device, the external Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the $\overline{M C L R}$ pin will not be used to generate a Reset. The external Reset pin ($\overline{\mathrm{MCLR}}$) does not have an internal pull-up and must not be left unconnected.

 ### 6.5 Software RESET Instruction (SWR)

 Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. $\overline{\text { SYSRST }}$ is released at the next instruction cycle and the Reset vector fetch will commence.

 The Software Reset (SWR) flag (instruction) in the Reset Control ($\mathrm{RCON}<6>$) register is set to indicate the software Reset.

 ### 6.6 Watchdog Time-out Reset (WDTO)

 Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.
 The Watchdog Timer Time-out (WDTO) flag in the Reset Control ($\mathrm{RCON}<4>$) register is set to indicate the Watchdog Reset. Refer to Section 24.4 "Watchdog Timer (WDT)" for more information on Watchdog Reset.

 ### 6.7 Trap Conflict Reset

 If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of pri-
 ority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.
 The Trap Reset (TRAPR) flag in the Reset Control ($\mathrm{RCON}<15>$) register is set to indicate the Trap Conflict Reset. Refer to Section 7.0 "Interrupt Controller" for more information on Trap Conflict Resets.

 ### 6.8 Illegal Condition Device Reset

 An illegal condition device Reset occurs due to the following sources:

 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

 The Illegal Opcode or Uninitialized W Access Reset (IOPUWR) flag in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

 ### 6.8.1 ILLEGAL OPCODE RESET

 A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.
 The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

 ### 6.8.2 UNINITIALIZED W REGISTER RESET

 Any attempt to use the uninitialized W register as an Address Pointer will Reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

 ### 6.8.3 SECURITY RESET

 If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (boot and secure segment), that operation will cause a Security Reset.
 The PFC occurs when the program counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.
 The VFC occurs when the program counter is reloaded with an interrupt or trap vector.
 Refer to Section 24.8 "Code Protection and CodeGuard ${ }^{\text {M }}$ Security" for more information on Security Reset.

 ##

 The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

 Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

 Table 6-2 provides a summary of the Reset flag bit operation.

 TABLE 6-2: RESET FLAG BIT OPERATION

 | Flag Bit | Set by: | Cleared by: |
 | :---: | :---: | :---: |
 | TRAPR (RCON<15>) | Trap conflict event | POR,BOR |
 | IOPWR (RCON<14>) | Illegal opcode or uninitialized W register access or Security Reset | POR,BOR |
 | EXTR (RCON<7>) | $\overline{\mathrm{MCLR}}$ Reset | POR |
 | SWR (RCON<6>) | RESET instruction | POR,BOR |
 | WDTO (RCON<4>) | WDT time-out | PWRSAV instruction, CLRWDT instruction, POR,BOR |
 | SLEEP (RCON<3>) | PWRSAV \#SLEEP instruction | POR,BOR |
 | IDLE (RCON<2>) | PWRSAV \#IDLE instruction | POR,BOR |
 | BOR (RCON<1>) | POR, BOR | |
 | POR (RCON<0>) | POR | |

 Note: All Reset flag bits can be set or cleared by user software.

 ## 旬dsPIC33FT32GS606供应商

 7．0－MNTERBUPTCONTROLLER
 Note 1：This data sheet summarizes the features of the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 families of devices．It is not intended to be a comprehensive reference source．To complement the information in this data sheet，refer to Section 47．＂Interrupts （Part V）＂（DS70597）in the＂dsPIC33F／ PIC24H Family Reference Manual＂， which is available from the Microchip web site（www．microchip．com）．
 2：Some registers and associated bits described in this section may not be avail－ able on all devices．Refer to Section 4.0 ＂Memory Organization＂in this data sheet for device－specific register and bit information．

 The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 CPU．It has the following features：
 －Up to eight processor exceptions and software traps
 －Seven user－selectable priority levels
 －Interrupt Vector Table（IVT）with up to 118 vectors
 －A unique vector for each interrupt or exception source
 －Fixed priority within a specified user priority level
 －Alternate Interrupt Vector Table（AIVT）for debug support
 －Fixed interrupt entry and return latencies

 ## 7．1 Interrupt Vector Table

 The Interrupt Vector Table（IVT）is shown in Figure 7－1． The IVT resides in program memory，starting at location 000004 h ．The IVT contains 126 vectors，consisting of eight nonmaskable trap vectors，plus up to 118 sources of interrupt．In general，each interrupt source has its own vector．Each interrupt vector contains a 24－bit－wide address．The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine（ISR）．

 Interrupt vectors are prioritized in terms of their natural priority．This priority is linked to their position in the vector table．Lower addresses generally have a higher natural priority．For example，the interrupt associated with vector 0 will take priority over interrupts at any other vector address．
 The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 devices implement up to 71 unique interrupts and five non－maskable traps． These are summarized in Table 7－1．

 ## 7．1．1 ALTERNATE INTERRUPT VECTOR TABLE

 The Alternate Interrupt Vector Table（AIVT）is located after the IVT，as shown in Figure 7－1．Access to the AIVT is provided by the ALTIVT control bit （INTCON2＜15＞）．If the ALTIVT bit is set，all interrupt and exception processes use the alternate vectors instead of the default vectors．The alternate vectors are organized in the same manner as the default vectors．
 The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed．This feature also enables switching between applications for evaluation of different software algorithms at run time．If the AIVT is not needed，the AIVT should be programmed with the same addresses used in the IVT．

 ## 7．2 Reset Sequence

 A device Reset is not a true exception because the interrupt controller is not involved in the Reset process． The dsPIC33FJ32GS406／606／608／610 and dsPIC33FJ64GS406／606／608／610 device clears its registers in response to a Reset，which forces the PC to zero．The digital signal controller then begins program execution at location 0x000000．A GOTO instruction at the Reset address can redirect program execution to the appropriate start－up routine．

 ## Note：Any unimplemented or unused vector

 locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction．
 ## 查询的PIC33FJ32GS606供应商
 dspic 33 INTERRUPT VECTOR TABLE

 Note 1：See Table 7－1 for the list of implemented interrupt vectors．

 ## 旬dsPIC33FJ32GS606供应商

 TABLE 7－1：INTERRUPT VECTORS

 | Vector
 Number | Interrupt Request （IQR） | IVT Address | AIVT Address | Interrupt Source |
 | :---: | :---: | :---: | :---: | :---: |
 | Highest Natural Order Priority | | | | |
 | 8 | 0 | 0x000014 | 0×000114 | INTO－External Interrupt 0 |
 | 9 | 1 | 0×000016 | 0×000116 | IC1－Input Capture 1 |
 | 10 | 2 | 0×000018 | 0x000118 | OC1－Output Compare 1 |
 | 11 | 3 | 0x00001A | 0x00011A | T1－Timer1 |
 | 12 | 4 | 0x00001C | 0x00011C | DMA0－DMA Channel 0 |
 | 13 | 5 | 0x00001E | 0x00011E | IC2－Input Capture 2 |
 | 14 | 6 | 0x000020 | 0x000120 | OC2－Output Compare 2 |
 | 15 | 7 | 0×000022 | 0×000122 | T2－Timer2 |
 | 16 | 8 | 0×000024 | 0x000124 | T3－Timer3 |
 | 17 | 9 | 0×000026 | 0×000126 | SPI1E－SPI1 Fault |
 | 18 | 10 | 0×000028 | 0×000128 | SPI1－SPI1 Transfer Done |
 | 19 | 11 | 0x00002A | 0x00012A | U1RX－UART1 Receiver |
 | 20 | 12 | 0x00002C | 0x00012C | U1TX－UART1 Transmitter |
 | 21 | 13 | 0x00002E | 0x00012E | ADC－ADC Group Convert Done |
 | 22 | 14 | 0x000030 | 0x000130 | DMA1－DMA Channel 1 |
 | 23 | 15 | 0x000032 | 0x000132 | Reserved |
 | 24 | 16 | 0×000034 | 0x000134 | SI2C1－I2C1 Slave Event |
 | 25 | 17 | 0×000036 | 0×000136 | MI2C1－I2C1 Master Event |
 | 26 | 18 | 0×000038 | 0×000138 | CMP1－Analog Comparator 1 Interrupt |
 | 27 | 19 | 0x00003A | 0x00013A | CN－Input Change Notification Interrupt |
 | 28 | 20 | 0x00003C | 0x00013C | INT1－External Interrupt 1 |
 | 29－31 | 21－23 | $\begin{aligned} & \hline 0 \times 00003 E- \\ & 0 \times 000042 \end{aligned}$ | $\begin{aligned} & \hline 0 \times 00013 E- \\ & 0 \times 000142 \end{aligned}$ | Reserved |
 | 32 | 24 | 0x000044 | 0x000144 | DMA2－DMA Channel 2 |
 | 33 | 25 | 0×000046 | 0×000146 | OC3－Output Compare 3 |
 | 34 | 26 | 0x000048 | 0x000148 | OC4－Output Compare 4 |
 | 35 | 27 | 0x00004A | 0x00014A | T4－Timer4 |
 | 36 | 28 | 0x00004C | 0x00014C | T5－Timer5 |
 | 37 | 29 | 0x00004E | 0x00014E | INT2－External Interrupt 2 |
 | 38 | 30 | 0×000050 | 0×000150 | U2RX－UART2 Receiver |
 | 39 | 31 | 0×000052 | 0×000152 | U2TX－UART2 Transmitter |
 | 40 | 32 | 0x000054 | 0x000154 | SPI2E－SPI2 Error |
 | 41 | 33 | 0×000056 | 0×000156 | SPI2－SPI2 Transfer Done |
 | 42 | 34 | 0×000058 | 0×000158 | C1RX－ECAN1 Receive Data Ready |
 | 43 | 35 | 0x00005A | 0x00015A | C1－ECAN1 Event |
 | 44 | 36 | 0x00005C | 0x00015C | DMA3－DMA Channel 3 |
 | 45 | 37 | 0x00005E | 0x00015E | IC3－Input Capture 3 |
 | 46 | 38 | 0x000060 | 0x000160 | IC4－Input Capture 4 |
 | 47－56 | 39－48 | $\begin{aligned} & 0 \times 000062- \\ & 0 \times 000074 \end{aligned}$ | $\begin{aligned} & \hline 0 \times 000162- \\ & 0 \times 000174 \end{aligned}$ | Reserved |
 | 57 | 49 | 0×000076 | 0×000176 | SI2C2－12C2 Slave Events |
 | 58 | 50 | 0x000078 | 0×000178 | MI2C2－I2C2 Master Events |
 | 59－60 | 51－52 | $\begin{aligned} & 0 \times 00007 \mathrm{~A}- \\ & 0 \times 00007 \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0 \times 00017 \mathrm{~A}- \\ & 0 \times 00017 \mathrm{C} \end{aligned}$ | Reserved |
 | 61 | 53 | 0x00007E | 0x00017E | INT3－External Interrupt 3 |
 | 62 | 54 | 0x000080 | 0x000180 | INT4－External Interrupt 4 |

 查询dsPIC33FJ32GS606供应商
 TABLE 7－1：INTERRUPTVECTORS（CONTINUED）

 | Vector
 Number | Interrupt Request （IQR） | IVT Address | AIVT Address | Interrupt Source |
 | :---: | :---: | :---: | :---: | :---: |
 | 63－64 | 55－56 | $\begin{aligned} & \hline 0 \times 000082- \\ & 0 \times 000084 \end{aligned}$ | $\begin{aligned} & \hline 0 \times 000182- \\ & 0 \times 000184 \end{aligned}$ | Reserved |
 | 65 | 57 | 0×000086 | 0×000186 | PWM PSEM Special Event Match |
 | 66 | 58 | 0×000088 | 0x000188 | QEI1－Position Counter Compare |
 | 67－72 | 59－64 | $\begin{aligned} & 0 \times 00008 \mathrm{~A}- \\ & 0 \times 000094 \end{aligned}$ | $\begin{aligned} & \hline 0 \times 00018 \mathrm{~A}- \\ & 0 \times 000194 \end{aligned}$ | Reserved |
 | 73 | 65 | 0×000096 | 0×000196 | U1E－UART1 Error Interrupt |
 | 74 | 66 | 0x000098 | 0x000198 | U2E－UART2 Error Interrupt |
 | 75－77 | 67－69 | $\begin{aligned} & \hline \text { 0x00009A- } \\ & 0 \times 00009 \mathrm{E} \end{aligned}$ | $\begin{aligned} & \hline \text { 0x00019A- } \\ & 0 \times 00019 \mathrm{E} \end{aligned}$ | Reserved |
 | 78 | 70 | 0x0000A0 | 0x0001A0 | C1TX－ECAN1 Transmit Data Request |
 | 79 | 71 | 0x0000A2 | 0x0001A2 | Reserved |
 | 80 | 72 | 0x0000A4 | 0x0001A4 | Reserved |
 | 81 | 73 | 0x0000A6 | 0x0001A6 | PWM Secondary Special Event Match |
 | 82 | 74 | 0x0000A8 | 0x0001A8 | Reserved |
 | 83 | 75 | 0x0000AA | 0x0001AA | QEI2－Position Counter Compare |
 | 84－88 | 76－80 | $\begin{aligned} & \hline 0 \times 0000 \mathrm{AC}- \\ & 0 \times 0000 \mathrm{~B} 4 \end{aligned}$ | $\begin{aligned} & \text { 0x0001AC- } \\ & 0 \times 0001 \mathrm{~B} 4 \end{aligned}$ | Reserved |
 | 89 | 81 | 0x0000B6 | 0x0001B6 | ADC Pair 8 Conversion Done |
 | 90 | 82 | 0x0000B8 | 0x0001B8 | ADC Pair 9 Conversion Done |
 | 91 | 83 | 0x0000BA | 0x0001BA | ADC Pair 10 Conversion Done |
 | 92 | 84 | 0x0000BC | 0x0001BC | ADC Pair 11 Conversion Done |
 | 93 | 85 | 0x0000BE | 0x0001BE | ADC Pair 12 Conversion Done |
 | 94－101 | 86－93 | $\begin{aligned} & \hline \text { 0x0000CO- } \\ & \text { Ox0000CE } \end{aligned}$ | $\begin{aligned} & \hline \text { 0x0001C0- } \\ & 0 \times 0001 \mathrm{CE} \end{aligned}$ | Reserved |
 | 102 | 94 | 0x0000D0 | 0x0001D0 | PWM1－PWM1 Interrupt |
 | 103 | 95 | 0x0000D2 | 0x0001D2 | PWM2－PWM2 Interrupt |
 | 104 | 96 | 0x0000D4 | 0x0001D4 | PWM3－PWM3 Interrupt |
 | 105 | 97 | 0x0000D6 | 0x0001D6 | PWM4－PWM4 Interrupt |
 | 106 | 98 | 0x0000D8 | 0x0001D8 | PWM5－PWM5 Interrupt |
 | 107 | 99 | 0x0000DA | 0x0001DA | PWM6－PWM6 Interrupt |
 | 108 | 100 | 0x0000DC | 0x0001DC | PWM7－PWM7 Interrupt |
 | 109 | 101 | 0x0000DE | 0x0001DE | PWM8－PWM8 Interrupt |
 | 110 | 102 | 0x0000E0 | 0x0001E0 | PWM9－PWM9 Interrupt |
 | 111 | 103 | 0x0000E2 | 0x00001E2 | CMP2－Analog Comparator 2 |
 | 112 | 104 | 0x0000E4 | 0x0001E4 | CMP3－Analog Comparator 3 |
 | 113 | 105 | 0x0000E6 | 0x0001E6 | CMP4－Analog Comparator 4 |
 | 114－117 | 106－109 | $\begin{aligned} & \text { 0x0000E8- } \\ & 0 \times 0000 \mathrm{E} \end{aligned}$ | $\begin{aligned} & \text { 0x0001E8- } \\ & 0 \times 0001 \mathrm{EE} \end{aligned}$ | Reserved |
 | 118 | 110 | 0x0000F0 | 0x0001F0 | ADC Pair 0 Convert Done |
 | 119 | 111 | 0x0000F2 | 0x0001F2 | ADC Pair 1 Convert Done |
 | 120 | 112 | 0x0000F4 | 0x0001F4 | ADC Pair 2 Convert Done |
 | 121 | 113 | 0x0000F6 | 0x0001F6 | ADC Pair 3 Convert Done |
 | 122 | 114 | 0x0000F8 | 0x0001F8 | ADC Pair 4 Convert Done |
 | 123 | 115 | 0x0000FA | 0x0001FA | ADC Pair 5 Convert Done |
 | 124 | 116 | 0x0000FC | 0x0001FC | ADC Pair 6 Convert Done |
 | 125 | 117 | 0x0000FE | 0x0001FE | ADC Pair 7 Convert Done |
 | Lowest Natural Order Priority | | | | |

 ##

 7.3 Interrupt control and Status Registers

 The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement 27 registers for the interrupt controller:

 - INTCON1
 - INTCON2
 - IFSx
 - IECx
 - IPCX
 - INTTREG

 ### 7.3.1 INTCON1 AND INTCON2

 Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

 ### 7.3.2 IFSX

 The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

 ### 7.3.3 IECx

 The IECX registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

 ### 7.3.4 IPCx

 The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

 ### 7.3.5 INTTREG

 The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt priority Level, which are latched into the Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.
 The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INTO (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0 . Thus, the INTOIF bit is found in IFSO<0>, the INTOIE bit is found in IECO<0> and the INTOIP bits are found in the first position of IPCO (IPCO<2:0>).

 ### 7.3.6 STATUS/CONTROL REGISTERS

 Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

 - The CPU STATUS register, SR, contains the $\mathrm{IPL}<2: 0>$ bits ($\mathrm{SR}<7: 5>$). These bits indicate the current CPU interrupt Priority Level. The user can change the current CPU priority level by writing to the IPL bits.
 - The CORCON register contains the IPL3 bit, which together with $\mathrm{IPL}<2: 0>$, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

 All Interrupt registers are described in Register 7-1 through Register 7-46 in the following pages.

 ##

 | R-0 | R-0 | R/C-0 | R/C-0 | R-0 | R/C-0 | R -0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | OA | OB | SA | SB | OAB | SAB | DA | DC |
 | bit 15 | | | | | | | |

 | R/W-0 ${ }^{(3)}$ | $\mathrm{R} / \mathrm{W}-0^{(3)}$ | R/W-0 ${ }^{(3)}$ | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\mathrm{IPL2}{ }^{(2)}$ | IPL1 ${ }^{(2)}$ | $1 \mathrm{PLO} 0^{(2)}$ | RA | N | OV | Z | C |
 | bit $7 \times$ bit 0 | | | | | | | |

 ## Legend:

 | $\mathrm{C}=$ Clearable bit | $\mathrm{R}=$ Readable bit | $\mathrm{U}=$ Unimplemented bit, read as '0' |
 | :--- | :--- | :--- |
 | $\mathrm{S}=$ Settable bit | $\mathrm{W}=$ Writable bit | $-\mathrm{n}=$ Value at POR |
 | ' 1 ' = Bit is set | $' 0 '=$ Bit is cleared | $\mathrm{x}=$ Bit is unknown |

 bit 7-5
 IPL<2:0>: CPU Interrupt Priority Level Status bits ${ }^{(2)}$
 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
 110 = CPU Interrupt Priority Level is 6 (14)
 101 = CPU Interrupt Priority Level is 5 (13)
 100 = CPU Interrupt Priority Level is 4 (12)
 011 = CPU Interrupt Priority Level is 3 (11)
 010 = CPU Interrupt Priority Level is 2 (10)
 001 = CPU Interrupt Priority Level is 1 (9)
 $000=$ CPU Interrupt Priority Level is 0 (8)
 Note 1: For complete register details, see Register 3-1.
 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when $\mathrm{IPL}<3>=1$.
 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) $=1$.

 REGISTER 7-2: CORCON: CORE CONTROL REGISTER ${ }^{(1)}$

 | U-0 | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | U-0 | U-0 | U-O | R/W | R-0 | R-0 | R-0 |
 | bit 15 | - | US | EDT | | DL<2:0> | | | |

 | R/W-0 | R/W-0 | R/W-1 | R/W-0 | R/C-0 | R/W-0 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | SATA | SATB | SATDW | ACCSAT | IPL3 ${ }^{(2)}$ | PSV | RND | IF |
 | bit 7 bit 0 | | | | | | | |

 | Legend: | $C=$ Clearable bit | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $-\mathrm{n}=$ Value at POR \quad ' 1 ' = Bit is set |
 | 0 ' = Bit is cleared | ' $x=$ Bit is unknown | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |

 bit $3 \quad$ IPL3: CPU Interrupt Priority Level Status bit $3^{(2)}$
 1 = CPU Interrupt Priority Level is greater than 7
 $0=$ CPU Interrupt Priority Level is 7 or less
 Note 1: For complete register details, see Register 3-2.
 2: The IPL3 bit is concatenated with the IPL<2:0> bits ($\mathrm{SR}<7: 5>$) to form the CPU Interrupt Priority Level.

 REGSTER 7－3：INTCON：INTERRUPT CONTROL REGISTER 1

 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | NSTDIS | OVAERR | OVBERR | COVAERR | COVBERR | OVATE | OVBTE | COVTE |
 | bit 15 | | | | | | | |

 | R／W－0 | U－0 | | | | | | |
|---|---|---|---|---|---|---|---|
 | SFTACERR | DIVOERR | DMACERR | MATHERR | ADDRERR | STKERR | OSCFAIL | - |
 | bit 7 | | | | | | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$＇$=$ Bit is set | $' 0$＇$=$ Bit is cleared |

 bit 15 NSTDIS：Interrupt Nesting Disable bit
 1 ＝Interrupt nesting is disabled
 $0=$ Interrupt nesting is enabled
 bit 14 OVAERR：Accumulator A Overflow Trap Flag bit
 1 ＝Trap was caused by overflow of Accumulator A
 $0=$ Trap was not caused by overflow of Accumulator A
 bit 13 OVBERR：Accumulator B Overflow Trap Flag bit
 1 ＝Trap was caused by overflow of Accumulator B
 $0=$ Trap was not caused by overflow of Accumulator B
 bit 12 COVAERR：Accumulator A Catastrophic Overflow Trap Flag bit
 1 ＝Trap was caused by catastrophic overflow of Accumulator A
 0 ＝Trap was not caused by catastrophic overflow of Accumulator A
 bit 11 COVBERR：Accumulator B Catastrophic Overflow Trap Flag bit
 1 ＝Trap was caused by catastrophic overflow of Accumulator B
 $0=$ Trap was not caused by catastrophic overflow of Accumulator B
 bit 10 OVATE：Accumulator A Overflow Trap Enable bit
 1 ＝Trap overflow of Accumulator A
 0 ＝Trap disabled
 bit 9 OVBTE：Accumulator B Overflow Trap Enable bit
 1 ＝Trap overflow of Accumulator B
 0 ＝Trap disabled
 bit 8 COVTE：Catastrophic Overflow Trap Enable bit
 1 ＝Trap on catastrophic overflow of Accumulator A or B enabled
 0 ＝Trap disabled
 bit 7 SFTACERR：Shift Accumulator Error Status bit
 1 ＝Math error trap was caused by an invalid accumulator shift
 $0=$ Math error trap was not caused by an invalid accumulator shift
 bit 6 DIVOERR：Arithmetic Error Status bit
 1 ＝Math error trap was caused by a divide by zero
 0 ＝Math error trap was not caused by a divide by zero
 bit 5 DMACERR：DMA Controller Error Status bit
 1 ＝DMA controller error trap has occurred
 $0=$ DMA controller error trap has not occurred
 bit 4 MATHERR：Arithmetic Error Status bit
 1 ＝Math error trap has occurred
 $0=$ Math error trap has not occurred

 ##

 | bit 3 | ADDRERR: Address Error Trap Status bit |
 | :---: | :---: |
 | | 1 = Address error trap has occurred |
 | | 0 = Address error trap has not occurred |
 | bit 2 | STKERR: Stack Error Trap Status bit |
 | | 1 = Stack error trap has occurred |
 | | 0 = Stack error trap has not occurred |
 | bit 1 | OSCFAIL: Oscillator Failure Trap Status bit |
 | | 1 = Oscillator failure trap has occurred |
 | | 0 = Oscillator failure trap has not occurred |
 | bit 0 | Unimplemented: Read as '0' |

 | R/W-0 | R-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | ALTIVT | DISI | - | - | - | - | - | - |
 | bit 15 | | | | | | | |

 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | INT4EP | INT3EP | INT2EP | INT1EP | INTOEP |
 | bit $7 \times$ bit 0 | | | | | | | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as '0' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0 '=$ Bit is cleared |

 bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit
 1 = Use alternate vector table
 $0=$ Use standard (default) vector table
 bit 14 DISI: DISI Instruction Status bit
 1 = DISI instruction is active
 $0=$ DISI instruction is not active
 bit 13-5 Unimplemented: Read as ' 0 '
 bit 4 INT4EP: External Interrupt 4 Edge Detect Polarity Select bit
 1 = Interrupt on negative edge
 $0=$ Interrupt on positive edge
 bit 3 INT3EP: External Interrupt 3 Edge Detect Polarity Select bit
 1 = Interrupt on negative edge
 0 = Interrupt on positive edge
 bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit
 1 = Interrupt on negative edge
 0 = Interrupt on positive edge
 bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit
 1 = Interrupt on negative edge
 0 = Interrupt on positive edge
 bit $0 \quad$ INTOEP: External Interrupt 0 Edge Detect Polarity Select bit
 1 = Interrupt on negative edge
 $0=$ Interrupt on positive edge

 ## 龺询dsPIC33EJ32GS606供应商

 | U－0 | R／W－0 | | | | | | |
|---|---|---|---|---|---|---|---|
 | - | DMA1IF | ADIF | U1TXIF | U1RXIF | SPI1IF | SPI1EIF | T3IF |
 | bit 15 | | | | bit 8 | | | |

 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | T2IF | OC2IF | IC2IF | DMAOIF | T1IF | OC1IF | IC1IF | INTOIF |
 | bit 7 | | | bit 0 | | | | |

 | Legend： | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-\mathrm{n}=$ Value at POR | $' 1$＇＝Bit is set | $' 0$＇＝Bit is cleared $\quad x=$ Bit is unknown |

 bit $15 \quad$ Unimplemented：Read as＇ 0 ＇
 bit 14 DMA1IF：DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit 13 ADIF：ADC Group Conversion Complete Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit 12 U1TXIF：UART1 Transmitter Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit 11 U1RXIF：UART1 Receiver Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 10
 SPI1IF：SPI1 Event Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit $9 \quad$ SPI1EIF：SPI1 Fault Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 8 T3IF：Timer3 Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $7 \quad$ T2IF：Timer2 Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $6 \quad$ OC2IF：Output Compare Channel 2 Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit $5 \quad$ IC2IF：Input Capture Channel 2 Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit 4 DMAOIF：DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit 3 T1IF：Timer1 Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred

 bit 2
 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $1 \quad$ IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $0 \quad$ INTOIF: External Interrupt 0 Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred

 | bit 12 | U2TXIF: UART2 Transmitter Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | :---: | :---: |
 | bit 11 | U2RXIF: UART2 Receiver Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 13 | INT2IF: External Interrupt 2 Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | bit 12 | T5IF: Timer5 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | bit 11 | T4IF: Timer4 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | bit 10 | OC4IF: Output Compare Channel 4 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | bit 9 | OC3IF: Output Compare Channel 3 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 8 | DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 7-5 | Unimplemented: Read as '0' |
 | bit 4 | INT1IF: External Interrupt 1 Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 3 | CNIF: Input Change Notification Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 2 | AC1IF: Analog Comparator 1 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | bit 1 | MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | bit 0 | SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |

 旬dsPIC33FJ32GS606供应商
 REGISTER 7－7：IFS2：NTERRUPT FLAG STATUS REGISTER 2

 | U－0 | U－0 | U－0 | U－0 | U－O | U－0 | U－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | - | - | - |
 | bit 15 | | | | | | | |

 | U－0 | | | | | | | | | R／W－0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | - | IC4IF | IC3IF | DMA3IF | C1IF $^{(\mathbf{1})}$ | C1EIF $^{(\mathbf{1})}$ | SPI2IF | SPI2EIF | | | | | | | | |
 | bit 7 | | | | bit 0 | | | | | | | | | | | |

 | Legend： | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-n=$ Value at POR | $' 1$＇＝Bit is set | $' 0$＇＝Bit is cleared $\quad x=$ Bit is unknown |

 bit 15－7 Unimplemented：Read as＇ 0 ＇
 bit $6 \quad$ IC4IF：Input Capture Channel 4 Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $5 \quad$ IC3IF：Input Capture Channel 3 Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit 4 DMA3IF：DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $3 \quad$ C1IF：ECAN1 Event Interrupt Flag Status bit ${ }^{(1)}$
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 2 C1EIF：ECAN1 External Event Interrupt Flag Status bit ${ }^{(1)}$
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit 1 SPI2IF：SPI2 Event Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $0 \quad$ SPI2EIF：SPI2 Error Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred

 Note 1：Interrupts disabled on devices without ECAN ${ }^{\text {TM }}$ modules

 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | QEIIIF | PSEMIF | - |
 | bit 15 | | | | bit 8 | | | |

 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | INT4IF | INT3IF | - | - | MI2C2IF | SI2C2IF | - |
 | bit 7 | | | | | | | |

 Legend:

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |

 bit 15-11 Unimplemented: Read as ' 0 '
 bit 10 QEIIIF: QEI1 Event Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $9 \quad$ PSEMIF: PWM Special Event Match Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 8-7 Unimplemented: Read as ' 0 '
 bit $6 \quad$ INT4IF: External Interrupt 4 Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred
 bit $5 \quad$ INT3IF: External Interrupt 3 Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 4-3 Unimplemented: Read as ' 0 '
 bit 2 MI2C2IF: I2C2 Master Events Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 0
 Unimplemented: Read as ‘ 0 '

 REGISTER $7-9$ GS69

 | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | R/W-0 | U-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | QEI2IF | - | PSESMIF | - |
 | bit 15 | | | | bit 8 | | | |

 | Legend: | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | $-n=$ Value at POR | $' 1$ ' = Bit is set | ' 0 ' $=$ Bit is cleared |

 | bit 15-12 | Unimplemented: Read as '0' |
 | :---: | :---: |
 | bit 11 | QEI2IF: QEI2 Event Interrupt Flag Status bit |
 | | 1 = Interrupt request has occurred |
 | | 0 = Interrupt request has not occurred |
 | bit 10 | Unimplemented: Read as '0' |
 | bit 9 | PSESMIF: PWM Special Event Secondary Match Interrupt Flag Status bit |
 | | 1 = Interrupt request has occurred |
 | | $0=$ Interrupt request has not occurred |
 | bit 8-7 | Unimplemented: Read as '0' |
 | bit 6 | C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit ${ }^{(1)}$ |
 | | 1 = Interrupt request has occurred |
 | | 0 = Interrupt request has not occurred |
 | bit 5-3 | Unimplemented: Read as '0' |
 | bit 2 | U2EIF: UART2 Error Interrupt Flag Status bit |
 | | 1 = Interrupt request has occurred |
 | | 0 = Interrupt request has not occurred |
 | bit 1 | U1EIF: UART1 Error Interrupt Flag Status bit |
 | | 1 = Interrupt request has occurred |
 | | $0=$ Interrupt request has not occurred |
 | bit 0 | Unimplemented: Read as '0' |

 Note 1: Interrupts disabled on devices without ECAN ${ }^{\text {TM }}$ modules.

 bit 15 PWM2IF: PWM2 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred
 bit $14 \quad$ PWM1IF: PWM1 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 13 ADCP12IF: ADC Pair 12 Conversion Done Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 12-5 Unimplemented: Read as ' 0 '
 bit 4 ADCP11IF: ADC Pair 11 Conversion Done Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 3 ADCP10IF: ADC Pair 10 Conversion Done Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred
 bit 2 ADCP9IF: ADC Pair 9 Conversion Done Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 1 ADCP8IF: ADC Pair 8 Conversion Done Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit $0 \quad$ Unimplemented: Read as ' 0 '

 询REGISTERTJ3

 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | ADCP1IF | ADCPOIF | - | - | - | - | AC4IF | AC3IF |
 | bit 15 | | | | | | | |

 | R/W-0 |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | AC2IF | PWM9IF | PWM8IF | PWM7IF | PWM6IF | PWM5IF | PWM4IF | PWM3IF |
 | bit 7 | | | | bit 0 | | | |

 | Legend: | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | $-n=$ Value at POR | $' 1$ ' = Bit is set | 0 ' = Bit is cleared |

 | bit 15 | ADCP1IF: ADC Pair 1 Conversion Done Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | :---: | :---: |
 | bit 14 | ADCPOIF: ADC Pair 0 Conversion Done Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 13-10 | Unimplemented: Read as '0' |
 | bit 9 | AC4IF: Analog Comparator 4 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 8 | AC3IF: Analog Comparator 3 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | bit 7 | AC2IF: Analog Comparator 2 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 $0=$ Interrupt request has not occurred |
 | bit 6 | PWM9IF: PWM9 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 5 | PWM8IF: PWM8 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 4 | PWM7IF: PWM7 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 3 | PWM6IF: PWM6 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 2 | PWM5IF: PWM5 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 1 | PWM4IF: PWM4 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |
 | bit 0 | PWM3IF: PWM3 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred |

 | U－0 | U－0 | U－0 | U－0 | U－0 | U－0 | U－O | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | - | - | - |
 | bit 15 | | bit 8 | | | | | |

 | U－0 | U－0 | R／W－0 | R／W－0 | R／W－0 | R／W－0 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | － | － | ADCP7IF | ADCP6IF | ADCP5IF | ADCP4IF | ADCP3IF | ADCP2IF |
 | bit $7 \times$ bit 0 | | | | | | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$＇＝Bit is set | 0 ＇$=$ Bit is cleared |

 bit 15－6 Unimplemented：Read as＇ 0 ＇
 bit 5 ADCP7IF：ADC Pair 7 Conversion Done Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred
 bit 4 ADCP6IF：ADC Pair 6 Conversion Done Interrupt Flag Status bit
 1 ＝Interrupt request has occurred
 0 ＝Interrupt request has not occurred
 bit 3 ADCP5IF：ADC Pair 5 Conversion Done Interrupt Flag Status bit 1 ＝Interrupt request has occurred 0 ＝Interrupt request has not occurred
 bit 2 ADCP4IF：ADC Pair 4 Conversion Done Interrupt Flag Status bit 1 ＝Interrupt request has occurred $0=$ Interrupt request has not occurred
 bit 1 ADCP3IF：ADC Pair 3 Conversion Done Interrupt Flag Status bit 1 ＝Interrupt request has occurred 0 ＝Interrupt request has not occurred
 bit $0 \quad$ ADCP2IF：ADC Pair 2 Conversion Done Interrupt Flag Status bit 1 ＝Interrupt request has occurred
 $0=$ Interrupt request has not occurred

 ## dsPIC33FJ32GS606供应商

 REGISTER 7－13：HECO：NTERRUPT ENABLE CONTROL REGISTER 0

 | U－0 | R／W－0 | | | | | | |
|---|---|---|---|---|---|---|---|
 | - | DMA1IE | ADIE | U1TXIE | U1RXIE | SPI1IE | SPIIEIE | T3IE |
 | bit 15 | | | | | | | |

 | R／W－0 |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | T2IE | OC2IE | IC2IE | DMAOIE | T1IE | OC1IE | IC1IE | INTOIE |
 | bit 7 | | | | | | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$＇$=$ Bit is set | $' 0$＇$=$ Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

 bit $15 \quad$ Unimplemented：Read as＇ 0 ’
 bit 14 DMA1IE：DMA Channel 1 Data Transfer Complete Interrupt Enable bit
 1 ＝Interrupt request enabled
 0 ＝Interrupt request not enabled
 bit 13
 bit 12
 bit 11
 bit 10
 bit 9
 bit 8
 bit 7
 bit 6
 bit 5 IC2IE：Input Capture Channel 2 Interrupt Enable bit
 1 ＝Interrupt request enabled
 0 ＝Interrupt request not enabled
 bit 4 DMAOIE：DMA Channel 0 Data Transfer Complete Interrupt Enable bit
 1 ＝Interrupt request enabled
 0 ＝Interrupt request not enabled
 bit $3 \quad$ T1IE：Timer1 Interrupt Enable bit
 1 ＝Interrupt request enabled
 0 ＝Interrupt request not enabled

 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | U2TXIE | U2RXIE | INT2IE | T5IE | T4IE | OC4IE | OC3IE | DMA2IE |
 | bit 15 | | | bit 8 | | | | |

 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | INT1IE | CNIE | AC1IE | MI2C1IE | SI2C1IE |
 | bit 7 | | | | bit 0 | | | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0 '=$ Bit is cleared |

 bit 12 U2TXIE: UART2 Transmitter Interrupt Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled
 bit 11 U2RXIE: UART2 Receiver Interrupt Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled
 bit 13 INT2IE: External Interrupt 2 Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled
 bit 12
 T5IE: Timer5 Interrupt Enable bit
 1 = Interrupt request enabled
 $0=$ Interrupt request not enabled
 bit 11
 bit 10
 bit 9
 bit 8
 bit 7-5
 T4IE: Timer4 Interrupt Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled
 bit 4
 bit 3 CNIE: Input Change Notification Interrupt Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled
 bit 2 AC1IE: Analog Comparator 1 Interrupt Enable bit
 1 = Interrupt request enabled
 $0=$ Interrupt request not enabled
 bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit
 1 = Interrupt request enabled
 $0=$ Interrupt request not enabled
 bit $0 \quad$ SI2C1IE: I2C1 Slave Events Interrupt Enable bit
 1 = Interrupt request enabled
 $0=$ Interrupt request not enabled

 ## 查询dsPIC33F J32GS606供应商

 REGISTER 7－15：HEC2：NNTERRUPT ENABLE CONTROL REGISTER 2

 | U－0 |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | - | - | - |
 | bit 15 | | | | bit 8 | | | |

 | U－0 | R／W－0 | | | | | | |
|---|---|---|---|---|---|---|---|
 | - | IC4IE | IC3IE | DMA3IE | C1IE $^{(\mathbf{1})}$ | C1RXIE $^{(\mathbf{1})}$ | SPI2IE | SPI2EIE |
 | bit 7 | | | | bit 0 | | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$＇$=$ Bit is set | $' 0$＇$=$ Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

 bit 15－7 Unimplemented：Read as＇ 0 ’
 bit 6 IC4IE：Input Capture Channel 4 Interrupt Enable bit
 1 ＝Interrupt request enabled
 0 ＝Interrupt request not enabled
 bit 5 IC3IE：Input Capture Channel 3 Interrupt Enable bit
 1 ＝Interrupt request enabled
 0 ＝Interrupt request not enabled
 bit 4 DMA3IE：DMA Channel 3 Data Transfer Complete Interrupt Enable bit
 1 ＝Interrupt request enabled
 $0=$ Interrupt request has enabled
 bit $3 \quad$ C1IE：ECAN1 Event Interrupt Enable bit ${ }^{(1)}$
 1 ＝Interrupt request enabled
 $0=$ Interrupt request not enabled
 bit $2 \quad$ C1RXIE：ECAN1 Receive Data Ready Interrupt Enable bit ${ }^{(1)}$
 1 ＝Interrupt request enabled
 0 ＝Interrupt request not enabled
 bit 1 SPI2IE：SPI2 Event Interrupt Enable bit
 1 ＝Interrupt request enabled
 $0=$ Interrupt request not enabled
 bit $0 \quad$ SPI2EIE：SPI2 Error Interrupt Enable bit
 1 ＝Interrupt request enabled
 $0=$ Interrupt request not enabled

 Note 1：Interrupts disabled on devices without ECAN ${ }^{\text {TM }}$ modules

 旬REGISTERRJ3星6S6qE苍3应啇ERRUPT ENABLE CONTROL REGISTER 3

 | U－0 | U－0 | U－0 | U－0 | U－0 | R／W－0 | R／W－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | QEIIIE | PSEMIE | - |
 | bit 15 | | | | bit 8 | | | |

 | U－0 | R／W－0 | R／W－0 | U－0 | U－0 | R／W－0 | R／W－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | INT4IE | INT3EI | - | - | MI2C2IE | SI2C2IE | - |
 | bit 7 | | | | bit 0 | | | |

 | Legend： | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-n=$ Value at POR | $' 1$＇＝Bit is set | $' 0$＇＝Bit is cleared $\quad x=$ Bit is unknown |

 | bit 15－11 | Unimplemented：Read as＇0＇ |
 | :---: | :---: |
 | bit 10 | QEI1IE：QEI1 Event Interrupt Enable bit |
 | | 1 ＝Interrupt request enabled |
 | | 0 ＝Interrupt request not enabled |
 | bit 9 | PSEMIE：PWM Special Event Match Interrupt Enable bit |
 | | 1 ＝Interrupt request enabled |
 | | 0 ＝Interrupt request not enabled |
 | bit 8－7 | Unimplemented：Read as＇0＇ |
 | bit 6 | INT4IE：External Interrupt 4 Enable bit |
 | | 1 ＝Interrupt request enabled |
 | | 0 ＝Interrupt request not enabled |
 | bit 6 | INT3IE：External Interrupt 3 Enable bit |
 | | 1 ＝Interrupt request enabled |
 | | 0 ＝Interrupt request not enabled |
 | bit 4－3 | Unimplemented：Read as＇0＇ |
 | bit 2 | MI2C2IE： 2 C2 Master Events Interrupt Enable bit |
 | | 1 ＝Interrupt request enabled |
 | | 0 ＝Interrupt request not enabled |
 | bit 1 | SI2C2IE：I2C2 Slave Events Interrupt Enable bit |
 | | 1 ＝Interrupt request enabled |
 | | 0 ＝Interrupt request not enabled |
 | bit 0 | Unimplemented：Read as＇0＇ |

 | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | R/W-0 | U-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | QEI2IE | - | PSESMIE | - |
 | bit 15 | | | | | | | |

 | U-0 | R/W-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | C1TXIE ${ }^{(1)}$ | - | - | - | U2EIE | U1EIE | - |

 Legend:

 | $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplemente | as '0' |
 | :---: | :---: | :---: | :---: |
 | -n = Value at POR | ' 1 ' = Bit is set | '0' = Bit is cleared | $x=$ Bit is unknown |

 bit 15-12 Unimplemented: Read as ' 0 '
 bit 11 QEI2IE: QEI2 Event Interrupt Enable bit
 1 = Interrupt request enabled
 $0=$ Interrupt request not enabled
 bit $10 \quad$ Unimplemented: Read as ' 0 '
 bit 9 PSESMIE: PWM Special Event Secondary Match Error Interrupt Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled
 bit 8-7 Unimplemented: Read as ' 0 '
 bit $6 \quad$ C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit ${ }^{(1)}$
 1 = Interrupt request occurred
 $0=$ Interrupt request not occurred
 bit 5-3 Unimplemented: Read as ' 0 '
 bit 2 U2EIE: UART2 Error Interrupt Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled
 bit 1 U1EIE: UART1 Error Interrupt Enable bit
 1 = Interrupt request enabled
 $0=$ Interrupt request not enabled
 bit $0 \quad$ Unimplemented: Read as ' 0 '
 Note 1: Interrupts disabled on devices without ECAN ${ }^{\text {TM }}$ modules.

 REGISTER 7 18：

 | R／W－0 | R／W－0 | R／W－0 | U－0 | U－0 | U－0 | U－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | PWM2IE | PWM1IE | ADCP12IE | - | - | - | - | - |
 | bit 15 | | | | | | | |

 | U－0 | U－0 | U－0 | R／W－0 | R／W－0 | R／W－0 | R／W－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | ADCP11IE | ADCP10IE | ADCP9IE | ADCP8IE | - |
 | bit 7 | | | | bit 0 | | | |

 | Legend： | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-n=$ Value at POR | $' 1$＇＝Bit is set | $' 0$＇$=$ Bit is cleared $\quad x=$ Bit is unknown |

 bit $15 \quad \begin{array}{ll}\text { PWM2IE：} \text { PWM2 Interrupt Enable bit }{ }^{(1)} \\ 1=\text { Interrupt request is enabled }\end{array}$
 $0=$ Interrupt request is not enabled
 bit 14 PWM1IE：PWM1 Interrupt Enable bit
 1 ＝Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit 13 ADCP12IE：ADC Pair 12 Conversion Done Interrupt Enable bit
 1 ＝Interrupt request is enabled
 0 ＝Interrupt request is not enabled
 bit 12－5 Unimplemented：Read as＇ 0 ＇
 bit 4 ADCP11IE：ADC Pair 11 Conversion Done Interrupt Enable bit
 $1=$ Interrupt request is enabled
 0 ＝Interrupt request is not enabled
 bit 3 ADCP10IE：ADC Pair 10 Conversion Done Interrupt Enable bit
 1 ＝Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit 2 ADCP9IE：ADC Pair 9 Conversion Done Interrupt Enable bit
 1 ＝Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit 1 ADCP8IE：ADC Pair 8 Conversion Done Interrupt Enable bit
 1 ＝Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit $0 \quad$ Unimplemented：Read as＇ 0 ＇

 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | ADCP1IE | ADCPOIE | - | - | - | - | AC4IE | AC3IE |
 | bit 15 bit 8 | | | | | | | |

 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | AC2IE | PWM9IE | PWM8IE | PWM7IE | PWM6IE | PWM5IE | PWM4IE | PWM3IE |
 | bit 7 | | | | bit 0 | | | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

 bit 15 ADCP1IE: ADC Pair 1 Conversion Done Interrupt Enable bit
 1 = Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit 14 ADCPOIE: ADC Pair 0 Conversion Done Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled
 bit 13-10 Unimplemented: Read as ' 0
 bit 9 AC4IE: Analog Comparator 4 Interrupt Enable bit
 1 = Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit 8 AC3IE: Analog Comparator 3 Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled
 bit 7 AC2IE: Analog Comparator 2 Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled
 bit 6 PWM9IE: PWM9 Interrupt Enable bit
 1 = Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit $5 \quad$ PWM8IE: PWM8 Interrupt Enable bit
 1 = Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit 4 PWM7IE: PWM7 Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled
 bit 3 PWM6IE: PWM6 Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled
 bit 2 PWM5IE: PWM5 Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled
 bit 1 PWM4IE: PWM4 Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled
 bit $0 \quad$ PWM3IE: PWM3 Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled

 | U-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | - | - | - |
 | bit 15 | | | | | | | |

 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | ADCP7IE | ADCP6IE | ADCP5IE | ADCP4IE | ADCP3IE | ADCP2IE |
 | bit 7 | | | | bit 0 | | | |

 | Legend: | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | $-n=$ Value at POR | $' 1$ ' = Bit is set | ' 0 ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

 | bit 15-6 | Unimplemented: Read as ' 0 ' |
 | :--- | :--- |
 | bit 5 | ADCP7IE: ADC Pair 7 Conversion Done Interrupt Enable bit |

 $1=$ Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit 4 ADCP6IE: ADC Pair 6 Conversion Done Interrupt Enable bit
 1 = Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit ADCP5IE: ADC Pair 5 Conversion Done Interrupt Enable bit
 1 = Interrupt request is enabled
 0 = Interrupt request is not enabled
 bit ADCP4IE: ADC Pair 4 Conversion Done Interrupt Enable bit
 1 = Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit
 ADCP3IE: ADC Pair 3 Conversion Done Interrupt Enable bit
 1 = Interrupt request is enabled
 $0=$ Interrupt request is not enabled
 bit
 ADCP2IE: ADC Pair 2 Conversion Done Interrupt Enable bit
 1 = Interrupt request is enabled
 $0=$ Interrupt request is not enabled

 ##

 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | T1IP<2:0> | - | | OC1IP<2:0> | | | |
 | bit 15 | | | | | bit 8 | | |

 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | | IC1IP<2:0> | - | | INTOIP<2:0> | | |
 | bit 7 | | | | | bit 0 | | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplemente | as ' 0 ' |
 | :---: | :---: | :---: | :---: |
 | -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $x=$ Bit is unknown |

 | bit 15 | Unimplemented: Read as '0' |
 | :---: | :---: |
 | bit 14-12 | T1IP<2:0>: Timer1 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 (highest priority interrupt) |
 | | - |
 | | - |
 | | - |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 11 | Unimplemented: Read as ' 0 ' |
 | bit 10-8 | OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 (highest priority interrupt) |
 | | - |
 | | - |
 | | - |
 | | $001=$ Interrupt is priority 1 |
 | | 000 = Interrupt source is disabled |
 | bit 7 | Unimplemented: Read as ' 0 ' |
 | bit 6-4 | IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 (highest priority interrupt) |
 | | |
 | | - |
 | | - |
 | | $001=$ Interrupt is priority 1 |
 | | 000 = Interrupt source is disabled |
 | bit 3 | Unimplemented: Read as ' 0 ' |
 | bit 2-0 | INTOIP<2:0>: External Interrupt 0 Priority bits |
 | | $111=$ Interrupt is priority 7 (highest priority interrupt) |
 | | - |
 | | - ${ }^{\text {- }}$ |
 | | - 001 - Interrupt is priority 1 |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |

 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | T2IP<2:0> | - | | OC2IP<2:0> | | | |
 | bit 15 | | | | | bit 8 | | |

 | U-0 | $\mathrm{R} / \mathrm{W}-1$ | $\mathrm{R} / \mathrm{W}-0$ | $\mathrm{R} / \mathrm{W}-0$ | $\mathrm{U}-0$ | $\mathrm{R} / \mathrm{W}-1$ | $\mathrm{R} / \mathrm{W}-0$ | $\mathrm{R} / \mathrm{W}-0$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | | $\mathrm{IC} 2 \mathrm{IP}<2: 0>$ | - | | DMAOIP<2:0> | | |
 | bit 7 | | | | bit 0 | | | |

 | Legend: | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |

 | bit 15 | Unimplemented: Read as '0' |
 | :---: | :---: |
 | bit 14-12 | T2IP<2:0>: Timer2 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 (highest priority interrupt) |
 | | - |
 | | - |
 | | - |
 | | $001=$ Interrupt is priority 1 |
 | | 000 = Interrupt source is disabled |
 | bit 11 | Unimplemented: Read as ' 0 ' |
 | bit 10-8 | OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 (highest priority interrupt) |
 | | - |
 | | - |
 | | - ${ }^{\text {- }}$ |
 | | $001=$ Interrupt is priority 1 |
 | | 000 = Interrupt source is disabled |
 | bit 7 | Unimplemented: Read as ' 0 ' |
 | bit 6-4 | IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 (highest priority interrupt) |
 | | - |
 | | - |
 | | - ${ }^{\text {- }}$ |
 | | $001=$ Interrupt is priority 1 |
 | | 000 = Interrupt source is disabled |
 | bit 3-0 | DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits |
 | | 111 = Interrupt is priority 7 (highest priority interrupt) |
 | | - |
 | | - |
 | | - |
 | | 001 = Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |

 ##

 ## Legend:

 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' | | |
|---|---|---|---|---|
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |$\quad x=$ Bit is unknown | |
 | :--- |

 | | Unimplemented: Read as '0' |
 | :---: | :---: |
 | bit 14-12 | U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits $111=$ Interrupt is priority 7 (highest priority interrupt)
 $001=$ Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 11 | Unimplemented: Read as '0' |
 | bit 10-8 | SPI1IP<2:0>: SPI1 Event Interrupt Priority bits $111=$ Interrupt is priority 7 (highest priority interrupt)
 $001=$ Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented: Read as '0' |
 | bit 6-4 | SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits
 $111=$ Interrupt is priority 7 (highest priority interrupt)
 001 = Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 3 | Unimplemented: Read as '0' |
 | bit 2-0 | T3IP<2:0>: Timer3 Interrupt Priority bits
 $111=$ Interrupt is priority 7 (highest priority interrupt)
 $001=$ Interrupt is priority 1
 $000=$ Interrupt source is disabled |

 | U－0 | U－0 | U－0 | U－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | | DMA1IP＜2：0＞ | |
 | bit 15 | | | | | | | |

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | | ADIP＜2：0＞ | - | | U1TXIP＜2：0＞ | | |
 | bit 7 | | | | | bit 0 | | |

 | Legend： | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-\mathrm{n}=$ Value at POR | $' 1$＇＝Bit is set | $' 0$＇＝Bit is cleared |

 | bit 15－11 | Unimplemented：Read as＇0＇ |
 | :---: | :---: |
 | bit 10－8 | DMA1IP＜2：0＞：DMA Channel 1 Data Transfer Complete Interrupt Priority bits 111 ＝Interrupt is priority 7 （highest priority interrupt）
 001 ＝Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented：Read as＇ 0 ＇ |
 | bit 6－4 | ADIP＜2：0＞：ADC1 Conversion Complete Interrupt Priority bits
 111 ＝Interrupt is priority 7 （highest priority interrupt）
 001 ＝Interrupt is priority 1
 000 ＝Interrupt source is disabled |
 | bit 3 | Unimplemented：Read as＇ 0 ＇ |
 | bit 2－0 | U1TXIP＜2：0＞：UART1 Transmitter Interrupt Priority bits
 111 ＝Interrupt is priority 7 （highest priority interrupt）
 001 ＝Interrupt is priority 1
 $000=$ Interrupt source is disabled |

 ##

 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | | CNIP<2:0> | - | | AC1IP<2:0> | | |
 | bit 15 | | | | | bit 8 | | |

 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | MI2C1IP<2:0> | - | | SI2C1IP<2:0> | | | |
 | bit 7 | | | | | bit 0 | | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplemen | as '0' |
 | :---: | :---: | :---: | :---: |
 | -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $x=$ Bit is unknown |

 | bit 15 | Unimplemented: Read as '0' |
 | :---: | :---: |
 | bit 14-12 | CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
 001 = Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 11 | Unimplemented: Read as ' 0 ' |
 | bit 10-8 | AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits $111=$ Interrupt is priority 7 (highest priority interrupt)
 001 = Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented: Read as ' 0 ' |
 | bit 6-4 | MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits $111=$ Interrupt is priority 7 (highest priority interrupt)
 001 = Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 3 | Unimplemented: Read as '0' |
 | bit 2-0 | SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
 001 = Interrupt is priority 1
 $000=$ Interrupt source is disabled |

 ##

 | U-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | - | - | - |
 | bit 15 | | | | | | | |

 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-1 | R/W-0 | R/W-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | | INT1IP<2:0> | |
 | bit 7 | | | | bit 0 | | | |

 | Legend: | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

 bit 15-3 Unimplemented: Read as ' 0 ’
 bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits
 $111=$ Interrupt is priority 7 (highest priority interrupt)
 -
 -
 $001=$ Interrupt is priority 1
 $000=$ Interrupt source is disabled

 ## 查询dsPIC33FJ32GS606供应商

 ## REGISTER 7－27：IPC6：INTERRUPT PRIORITY CONTROL REGISTER 6

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | T4IP＜2：0＞ | - | | OC4IP＜2：0＞ | | | |
 | bit 15 | | | | bit 8 | | | |

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | | OC3IP＜2：0＞ | - | | DMA2IP＜2：0＞ | | |
 | bit 7 | | | | | bit 0 | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | W＝Writable bit | $\mathrm{U}=$ Unimplement | as＇ 0 ＇ |
 | :---: | :---: | :---: | :---: |
 | －n＝Value at POR | ＇ 1 ＇＝Bit is set | ＇0＇＝Bit is cleared | $\mathrm{x}=$ Bit is unknown |

 | bit 15 | Unimplemented：Read as＇0＇ |
 | :---: | :---: |
 | bit 14－12 | T4IP＜2：0＞：Timer4 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | 龶 |
 | | － |
 | | 001 ＝Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 11 | Unimplemented：Read as＇ 0 ＇ |
 | bit 10－8 | OC4IP＜2：0＞：Output Compare Channel 4 Interrupt Priority bits |
 | | 111 ＝Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | － |
 | | 001 ＝Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented：Read as＇0＇ |
 | bit 6－4 | OC3IP＜2：0＞：Output Compare Channel 3 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | － |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 3 | Unimplemented：Read as＇ 0 ＇ |
 | bit 2－0 | DMA2IP＜2：0＞：DMA Channel 2 Data Transfer Complete Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | |
 | | |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |

 旬dsPIC33F $32 G$ G606供应商
 REGISTER 7－28：IPCㄴNNERRUPT PRIORITY CONTROL REGISTER 7

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | U2TXIP＜2：0＞ | | - | | U2RXIP＜2：0＞ | | |
 | bit 15 | | | | | bit 8 | | |

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | | INT2IP＜2：0＞ | - | | T5IP＜2：0＞ | | |
 | bit 7 | | | | | bit 0 | | |

 | Legend： | | | |
 | :---: | :---: | :---: | :---: |
 | $\mathrm{R}=$ Readable bit | W＝Writable bit | $\mathrm{U}=$ Unimplemente | as＇0＇ |
 | －n＝Value at POR | ＇ 1 ＇＝Bit is set | ＇ 0 ＇＝Bit is cleared | $x=$ Bit is unknown |

 | | Unimplemented：Read as＇0＇ |
 | :---: | :---: |
 | bit 14－12 | U2TXIP＜2：0＞：UART2 Transmitter Interrupt Priority bits 111 ＝Interrupt is priority 7 （highest priority interrupt）
 001 ＝Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 11 | Unimplemented：Read as＇ 0 ＇ |
 | bit 10－8 | U2RXIP＜2：0＞：UART2 Receiver Interrupt Priority bits 111 ＝Interrupt is priority 7 （highest priority interrupt）
 001 ＝Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented：Read as＇0＇ |
 | bit 6－4 | INT2IP＜2：0＞：External Interrupt 2 Priority bits
 111 ＝Interrupt is priority 7 （highest priority interrupt）
 001 ＝Interrupt is priority 1
 $000=$ Interrupt source is disabled |
 | bit 3 | Unimplemented：Read as＇0＇ |
 | bit 2－0 | T5IP＜2：0＞：Timer5 Interrupt Priority bits
 $111=$ Interrupt is priority 7 （highest priority interrupt）
 $001=$ Interrupt is priority 1
 $000=$ Interrupt source is disabled |

 ## 查询dsPIC33FJ32GS606供应商

 REGISTER 7－29：IPC8．INTERRUPT PRIORITY CONTROL REGISTER 8

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | － | | C1IP＜2：0＞${ }^{(1)}$ | | － | C1RXIP＜2：0＞（1） | | |
 | bit 15 bit 8 | | | | | | | |
 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | － | | SPI2IP＜2：0＞ | | － | | $2 \mathrm{EIP}<2$ ： | |
 | bit $7 \times$ bit 0 | | | | | | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | W＝Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ | |
 | :---: | :---: | :---: | :---: |
 | －n＝Value at POR | ＇ 1 ＇＝Bit is set | ＇ 0 ＇＝Bit is cleared | $\mathrm{x}=\mathrm{B}$ |

 | bit 15 | Unimplemented：Read as＇0＇ |
 | :---: | :---: |
 | bit 14－12 | C1IP＜2：0＞：ECAN1 Event Interrupt Priority bits ${ }^{(\mathbf{1})}$ |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | － |
 | | 001 ＝Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 11 | Unimplemented：Read as＇ 0 ＇ |
 | bit 10－8 | C1RXIP＜2：0＞：ECAN1 Receive Data Ready Interrupt Priority bits ${ }^{(1)}$ |
 | | 111 ＝Interrupt is priority 7 （highest priority interrupt） |
 | | |
 | | － |
 | | － |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented：Read as＇ 0 ＇ |
 | bit 6－4 | SPI2IP＜2：0＞SPI2 Event Interrupt Priority bits |
 | | 111 ＝Interrupt is priority 7 （highest priority interrupt） |
 | | |
 | | － |
 | | － |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 3 | Unimplemented：Read as＇0＇ |
 | bit 2－0 | SPI2EIP＜2：0＞：SPI2 Error Interrupt Priority bits |
 | | 111 ＝Interrupt is priority 7 （highest priority interrupt） |
 | | - |
 | | - |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |

 Note 1：Interrupts disabled on devices without ECAN ${ }^{\text {TM }}$ modules

 ## 询dsPIC33FJ32GS606供应商

 REGISTER 7－30：IPC9：NTERRUPT PRIORITY CONTROL REGISTER 9

 | U－0 | U－0 | U－0 | U－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | | IC4IP＜2：0＞ | |
 | bit 15 | | | | | | | |

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | | $I C 3 I P<2: 0>$ | - | | DMA3IP＜2：0＞ | | |
 | bit 7 | | | | | bit 0 | | |

 | Legend： | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-n=$ Value at POR | $' 1$＇＝Bit is set | ＇ 0 ＇＝Bit is cleared |

 | bit 15－11 | Unimplemented：Read as＇0＇ |
 | :---: | :---: |
 | bit 10－8 | IC4IP＜2：0＞：Input Capture Channel 4 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | － |
 | | 001 ＝Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented：Read as＇0＇ |
 | bit 6－4 | IC3IP＜2：0＞：Input Capture Channel 3 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | －${ }^{\text {c }}$ |
 | | －${ }^{\text {－}}$ |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 3 | Unimplemented：Read as＇ 0 ＇ |
 | bit 2－0 | DMA3IP＜2：0＞ ：DMA Channel 3 Data Transfer Complete Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | － |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |

 ##

 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-1 | R/W-0 | R/W-0 |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | | MI2C2IP<2:0> | |
 | bit 15 | | | | bit 8 | | | |

 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | SI2C2IP<2:0> | - | - | - | - | | |
 | bit 7 | | | | bit 0 | | | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | :---: | :---: | :---: |
 | -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared $\quad x=$ Bit is unknown |

 bit 15-11 Unimplemented: Read as ' 0 '
 bit 10-8 MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits
 $111=$ Interrupt is priority 7 (highest priority interrupt)
 -
 -
 001 = Interrupt is priority 1
 $000=$ Interrupt source is disabled
 bit $7 \quad$ Unimplemented: Read as ' 0 '
 bit 6-4 SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits
 $111=$ Interrupt is priority 7 (highest priority interrupt)
 -
 -
 -
 001 = Interrupt is priority 1
 $000=$ Interrupt source is disabled
 bit 3-0 Unimplemented: Read as ' 0 ’

 ## dsPIC33F T32GS606供应商

 REGISTER 7－32：IPC 13：INTERRUPT PRIORITY CONTROL REGISTER 13

 | U－0 | U－0 | U－0 | U－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | | INT4IP＜2：0＞ | |
 | bit 15 | | | | | | | |

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | U－0 | U－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | | INT3IP＜2：0＞ | - | - | - | - | |
 | bit 7 | | | | | | | |

 | Legend： | | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit，read as＇ 0 ＇ |
 | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$＇\quad Bit is cleared |$\quad x=$ Bit is unknown

 | bit 15－11 | Unimplemented：Read as ‘0＇ |
 | :--- | :--- |
 | bit 10－8 | INT4IP＜2：0＞：External Interrupt 4 Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented：Read as ‘0＇ |
 | bit 6－4 | INT3IP＜2：0＞：External Interrupt 3 Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | － |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 3－0 | Unimplemented：Read as ‘0＇ |

 ## 查询dsPIC33FJ32GS606供应商

 REGISTER 7－33：IPC14：INTERRUPT PRIORITY CONTROL REGISTER 14

 | U－0 | U－0 | U－0 | U－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | | QEIIIP＜2：0＞ | |
 | bit 15 | | | | | | | |

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | U－0 | U－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | PSEMIP＜2：0＞ | - | - | - | - | | |
 | bit 7 | | | | bit 0 | | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemente | as＇ 0 ＇ |
 | :---: | :---: | :---: | :---: |
 | －n＝Value at POR | ＇ 1 ＇＝Bit is set | ＇ 0 ＇＝Bit is cleared | $x=$ Bit is unknown |

 | bit 15－11 | Unimplemented：Read as＇ 0 ＇ |
 | :---: | :---: |
 | bit 10－8 | QEIIIP＜2：0＞：QEI1 Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | － |
 | | 001 ＝Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented：Read as＇0＇ |
 | bit 6－4 | PSEMIP＜2：0＞：PWM Special Event Match Interrupt Priority bits |
 | | 111 ＝Interrupt is priority 7 （highest priority interrupt） |
 | | |
 | | － |
 | | － |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 3－0 | Unimplemented：Read as＇0＇ |

 ## 询dsPIC33FJ32GS606供应商

 REGISTER 7－34：IPC16：INTERRUPT PRIORITY CONTROL REGISTER 16

 | U－0 | U－0 | U－0 | U－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | | U2EIP＜2：0＞ | |
 | bit 15 | | | | | bit 8 | | |

 | U－0 | R／W－1 | R／W－0 | R／W－0 | U－0 | U－0 | U－0 | U－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | U1EIP＜2：0＞ | - | - | - | - | | |
 | bit 7 | | | | bit 0 | | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | ＇ 1 ＇＝Bit is set | ＇ 0 ＇$=$ Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

 | bit 15－11 | Unimplemented：Read as＇ 0 ＇ |
 | :--- | :--- |
 | bit 10－8 | U2EIP＜2：0＞：UART2 Error Interrupt Priority bits |
 | | 111＝Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 7 | Unimplemented：Read as ‘ 0 ＇ |
 | bit 6－4 | U1EIP＜2：0＞：UART1 Error Interrupt Priority bits |
 | | $111=$ Interrupt is priority 7 （highest priority interrupt） |
 | | － |
 | | － |
 | | － $001=$ Interrupt is priority 1 |
 | | $000=$ Interrupt source is disabled |
 | bit 3－0 | Unimplemented：Read as＇ 0 ＇ |

 REGISTER 7－35：IPC17：INTERRUPT PRIORITY CONTROL REGISTER 17

 | U－0 | U－0 | U－0 | U－0 | U－0 | R／W－1 | R／W－0 | R／W－0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | | C1TXIP＜2：0＞（1） | |
 | bit 15 | | | bit 8 | | | | |

 | U－O | U－0 | U－O | U－O | U－O | U－O | U－O | U－O |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | - | - | - | - | - | - | - | - |
 | bit 7 | | | | | | | |

 ## Legend：

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit，read as＇ 0 ＇ |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$＇＝Bit is set | $' 0$＇＝Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

    ```
    bit 15-11 Unimplemented: Read as ' 0'
    bit 10-8 C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits ```

