

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Data Sheet

High-Performance, 16-bit Digital Signal Controllers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-027-0

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 ===

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

High-Performance, 16-Bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance DSC CPU:

- · Modified Harvard architecture
- · C compiler optimized instruction set
- · 16-bit wide data path
- · 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- Linear data memory addressing up to 64 Kbytes
- 83 base instructions: mostly 1 word/1 cycle
- Two 40-bit accumulators with rounding and saturation options
- Flexible and powerful addressing modes:
 - Indirect
 - Modulo
 - Bit-Reversed
- · Software stack
- 16 x 16 fractional/integer multiply operations
- 32/16 and 16/16 divide operations
- Single-cycle multiply and accumulate:
 - Accumulator write back for DSP operations
 - Dual data fetch
- Up to ±16-bit shifts for up to 40-bit data

Direct Memory Access (DMA):

- · 4-channel hardware DMA
- 1 Kbyte dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- · Most peripherals support DMA

Digital I/O:

- Up to 85 programmable digital I/O pins
- Wake-up/Interrupt-on-Change for up to 24 pins
- · Output pins can drive voltage from 3.0V to 3.6V
- Up to 5V output with open drain configuration
- 5V tolerant digital input pins
- 16 mA source/sink on all PWM pins

On-Chip Flash and SRAM:

- Flash program memory (up to 64 Kbytes)
- Data SRAM (up to 8 Kbytes)
- · Boot and General Security for program Flash

Peripheral Features:

- · Timer/Counters, up to five 16-bit timers
 - Can pair up to make one 32-bit timer
- Input Capture (up to four channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to four channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
- 4-wire SPI (up to two modules):
 - Framing supports I/O interface to simple codecs
 - 1-deep FIFO buffer
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C[™] (up to two modules):
 - Supports Full Multi-Master Slave mode
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking

Peripheral Features (Continued)

- UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA[©] encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN™ module) 2.0B active:
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All
 - Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet™ addressing support
- Quadrature Encoder Interface (up to 2 modules):
 - Phase A, Phase B, and index pulse input
 - 16-bit up/down position counter
 - Count direction status
 - Position Measurement (x2 and x4) mode
 - Programmable digital noise filters on inputs
 - Alternate 16-bit Timer/Counter mode
 - Interrupt on position counter rollover/underflow

High-Speed PWM Module Features:

- Up to nine PWM generators with up to 18 outputs
- · Primary and Secondary time-base
- Individual time base and duty cycle for each of the PWM output
- · Dead time for rising and falling edges:
 - Duty cycle resolution of 1.04 ns
 - Dead-time resolution of 1.04 ns
- Phase shift resolution of 1.04 ns
- Frequency resolution of 1.04 ns
- · PWM modes supported:
 - Standard Edge-Aligned
 - True Independent Output
 - Complementary
 - Center-Aligned
 - Push-Pull
 - Multi-Phase
 - Variable Phase
 - Fixed Off-Time
 - Current Reset
 - Current-Limit

- · Independent Fault/Current-Limit inputs
- · Output override control
- · Special Event Trigger
- · PWM capture feature
- Prescaler for input clock
- Dual Trigger from PWM TO ADC
- PWMxL, PWMxH output pin swapping
- On-the-Fly PWM Frequency, Duty cycle and Phase Shift changes
- · Disabling of Individual PWM generators
- · Leading-Edge Blanking (LEB) functionality

High-Speed Analog Comparator:

- Up to four Analog Comparators:
 - 20 ns response time
 - 10-bit DAC for each analog comparator
 - DACOUT pin to provide DAC output
 - Programmable output polarity
 - Selectable input source
 - ADC sample and convert capability
- · PWM module interface:
 - PWM Duty Cycle Control
 - PWM Period Control
 - PWM Fault Detect

Interrupt Controller:

- 5-cycle latency
- · Up to five external interrupts
- Seven programmable priority levels
- · Five processor exceptions

High-Speed 10-bit ADC:

- 10-bit resolution
- Up to 24 input channels grouped into 12 conversion pairs
- Two internal reference monitoring inputs grouped into a pair
- Successive Approximation Register (SAR) converters for parallel conversions of analog pairs:
 - 4 Msps for devices with two SARs
 - 2 Msps for devices with one SAR
- · Dedicated result buffer for each analog channel
- Independent trigger source section for each analog input conversion pairs

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- Idle, Sleep, and Doze modes with fast wake-up

CMOS Flash Technology:

- · Low-power, high-speed Flash technology
- · Fully static design
- 3.3V (±10%) operating voltage
- Industrial and Extended temperature
- · Low power consumption

System Management:

- Flexible clock options:
 - External, crystal, resonator, internal RC
 - Phase-Locked Loop (PLL) with 120 MHz VCO
 - Primary Crystal Oscillator (OSC) in the range of 3 MHz to 40 MHz
 - Secondary oscillator (SOSC)
 - Internal Low-Power RC (LPRC) oscillator at a frequency of 32.767 kHz
 - Internal Fast RC (FRC) oscillator at a frequency of 7.37 MHz
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- · Watchdog Timer with its RC oscillator
- Fail-Safe Clock Monitor
- · Reset by multiple sources
- In-Circuit Serial Programming[™] (ICSP[™])
- · Reference Oscillator Output

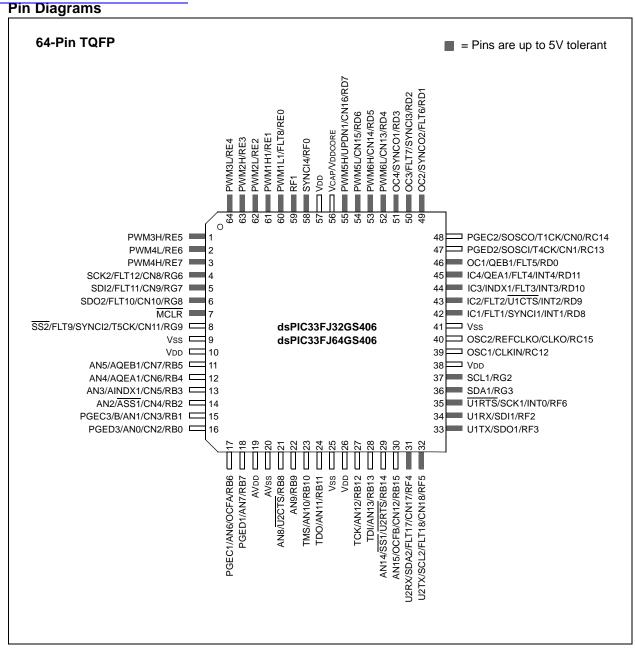
Application Examples:

- AC-to-DC Converters
- · Automotive HID
- Battery Chargers
- DC-to-DC Converters
- · Digital Lighting
- · Induction Cooking
- LED Ballast
- Renewable Power/Pure Sine Wave Inverters
- Uninterruptible Power Supply (UPS)

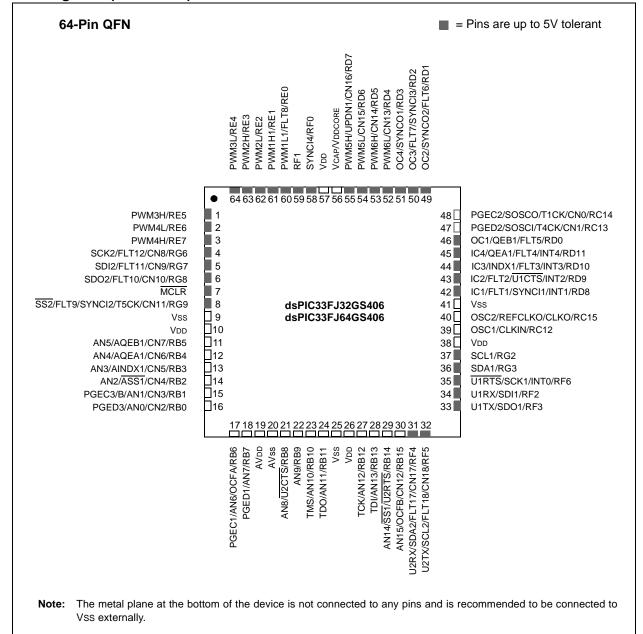
Packaging:

- 64-pin QFN (9x9x0.9 mm)
- 64-pin TQFP (10x10x1 mm)
- 80-pin TQFP (12x12x1 mm)
- 100-pin TQFP (14x14x1 mm and 12x12x1 mm)

Note: See the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Controller Families table for exact peripheral features per device.

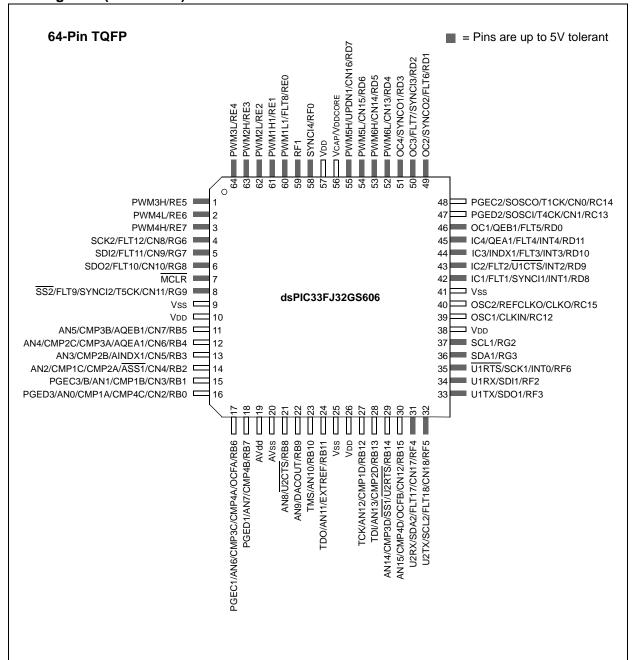

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 PRODUCT FAMILIES

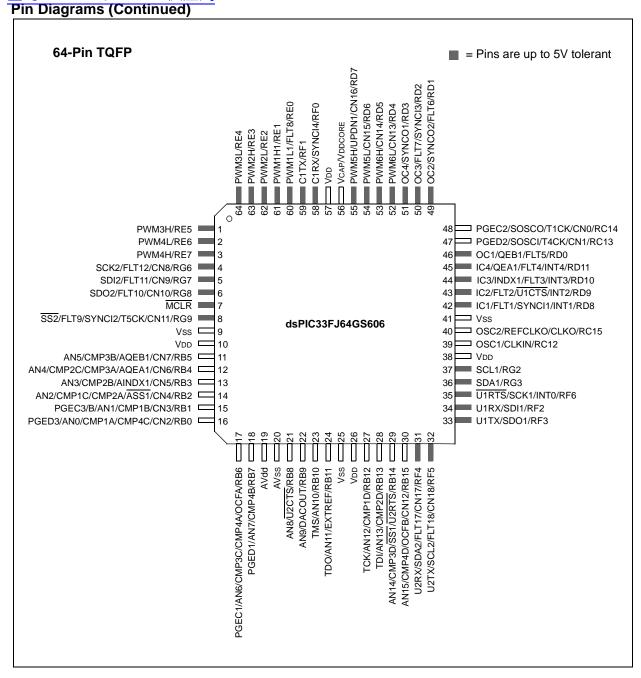
The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

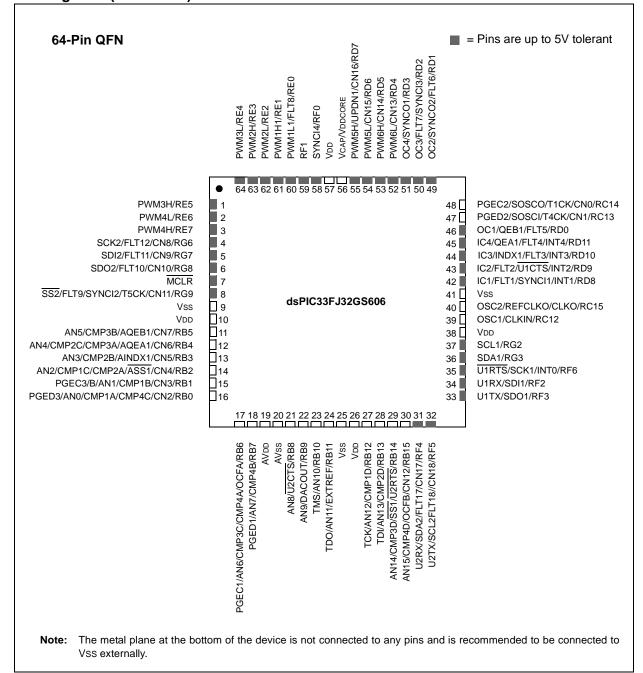

TABLE 1: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CONTROLLER FAMILIES

		(se						ą										ADC			
Device	Pins	Program Flash Memory (Kbytes)	RAM (Bytes)	16-bit Timer	Input Capture	Output Compare	UART	Quadrature Encoder Interface	SPI	ECAN™	DMA Channels	MMd	Analog Comparator	External Interrupts	DAC Output	I ² Стм	SARs	Sample and Hold (S&H) Circuit	Analog-to-Digital Inputs	sul O/I	Packages
dsPIC33FJ32GS406	64	32	4K	5	4	4	2	1	2	0	0	6x2	0	5	0	2	1	5	16	58	PT, MR
dsPIC33FJ32GS606	64	32	4K	5	4	4	2	2	2	0	0	6x2	4	5	1	2	2	6	16	58	PT, MR
dsPIC33FJ32GS608	80	32	4K	5	4	4	2	2	2	0	0	8x2	4	5	1	2	2	6	18	74	PT
dsPIC33FJ32GS610	100	32	4K	5	4	4	2	2	2	0	0	9x2	4	5	1	2	2	6	24	85	PT, PF
dsPIC33FJ64GS406	64	64	8K	5	4	4	2	1	2	0	0	6x2	0	5	0	2	1	5	16	58	PT, MR
dsPIC33FJ64GS606	64	64	9K ⁽¹⁾	5	4	4	2	2	2	1	4	6x2	4	5	1	2	2	6	16	58	PT, MR
dsPIC33FJ64GS608	80		9K ⁽¹⁾		4	4	2	2	2	1	4	8x2	4	5	1	2	2	6	18	74	РТ
dsPIC33FJ64GS610	100	64	9K ⁽¹⁾	5	4	4	2	2	2	1	4	9x2	4	5	1	2	2	6	24	85	PT, PF

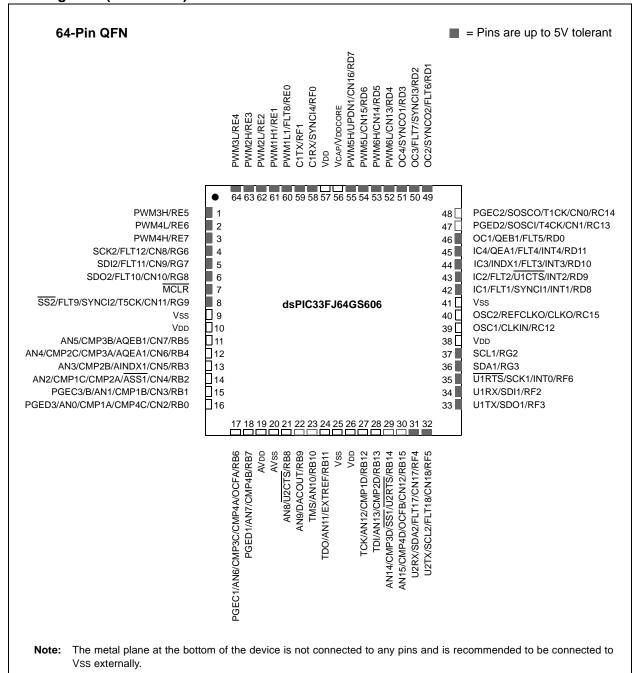
Note 1: RAM size is inclusive of 1 Kbyte DMA RAM.

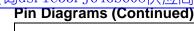


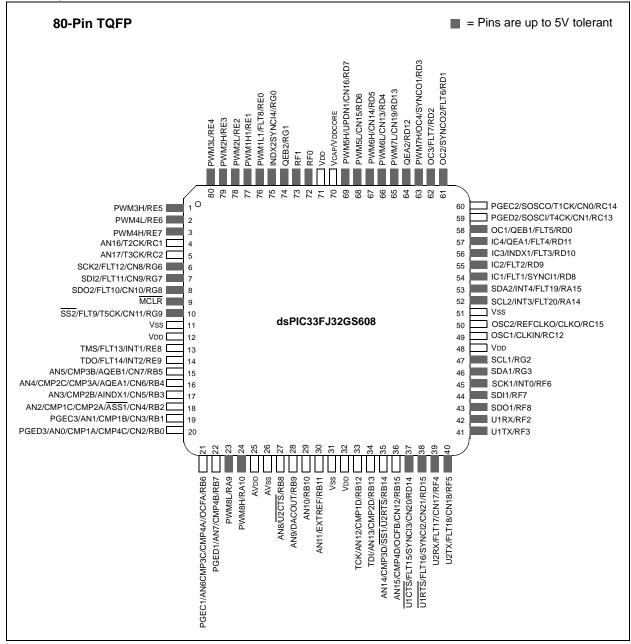

Pin Diagrams (Continued)

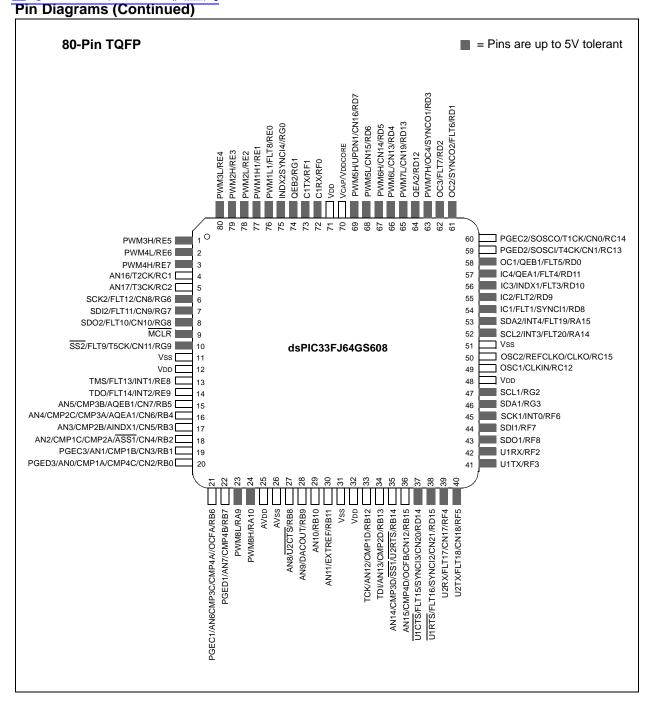

Preliminary

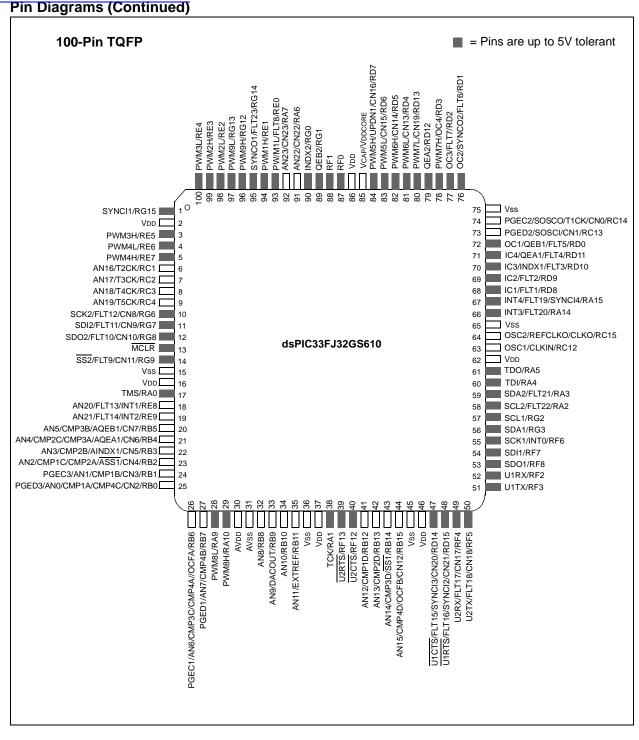
Pin Diagrams (Continued)




Pin Diagrams (Continued)




Pin Diagrams (Continued)




Preliminary

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商 Table of Contents

dsPl	C33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Product Families	6
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	25
3.0	CPU	35
4.0	Memory Organization	47
5.0	Flash Program Memory	109
6.0	Resets	115
7.0	Interrupt Controller	123
8.0	Direct Memory Access (DMA)	177
9.0	Oscillator Configuration	187
10.0	Power-Saving Features	199
11.0	I/O Ports	209
12.0	Timer1	211
13.0	Timer2/3/4/5 features	213
14.0	Input Capture	219
15.0	Output Compare	221
16.0	High-Speed PWM	225
	Quadrature Encoder Interface (QEI) Module	
18.0	Serial Peripheral Interface (SPI)	
19.0		
20.0		
21.0	Enhanced CAN (ECAN TM) Module	279
22.0		
23.0	High-Speed Analog Comparator	329
24.0	Special Features	333
25.0	Instruction Set Summary	341
26.0	Development Support	349
27.0	Electrical Characteristics	353
28.0	Packaging Information	389
Appe	endix A: Migrating from dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 to dsPIC33FJ32GS406/606/608/610	
	dsPIC33FJ64GS406/606/608/610 Devices	
Appe	endix B: Revision History	404
Index	x	409
The I	Microchip Web Site	415
Cust	omer Change Notification Service	415
Cust	omer Support	415
Read	der Response	416
Prod	uct Identification System	417

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

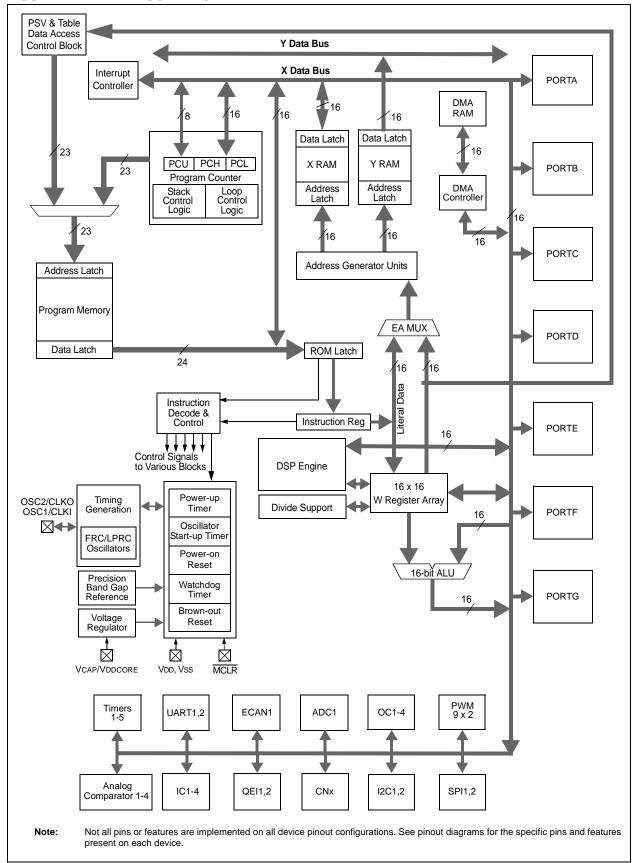
Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

Note:

This data sheet summarizes the features of the dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.


This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices:

- dsPIC33FJ32GS406
- dsPIC33FJ32GS606
- dsPIC33FJ32GS608
- dsPIC33FJ32GS610
- dsPIC33FJ64GS406
- dsPIC33FJ64GS606
- dsPIC33FJ64GS608
- dsPIC33FJ64GS610

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: BLOCK DIAGRAM

查询dsPIC33FJ64GS608供应商
TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name Pin Type		Buffer Type	Description					
AN0-AN23	ı	Analog	Analog input channels					
CLKI	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.					
CLKO	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.					
OSC1	1	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.					
OSC2	I/O	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.					
SOSCI	1	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.					
SOSCO	0	_	32.768 kHz low-power oscillator crystal output.					
CN0-CN23	I	ST	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.					
C1RX	1	ST	ECAN1 bus receive pin.					
C1TX IC1-IC4	0	ST	ECAN1 bus transmit pin. Capture inputs 1/4					
	<u>'</u>		• •					
INDX1, INDX2, AINDX1 QEA1, QEA2, AQEA1	I	ST ST	Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode.					
QEB1, QEB2, AQEB1	1	ST	Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode.					
UPDN1	0	CMOS	Position Up/Down Counter Direction State.					
OCFA	I	ST	Compare Fault A input (for Compare Channels 1 and 2)					
OCFB	1	ST	Compare Fault B input (for Compare Channels 3 and 4)					
OC1-OC4	0	_	Compare Outputs 1 through 4					
INT0	I	ST	External Interrupt 0					
INT1	l	ST	External Interrupt 1					
INT2 INT3	l l	ST	External Interrupt 2					
INT4	1	ST ST	External Interrupt 3 External Interrupt 4					
RA0-RA15	I/O	ST	PORTA is a bidirectional I/O port					
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port					
RC0-RC15	I/O	ST	PORTC is a bidirectional I/O port					
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port					
RE0-RE9	I/O	ST	PORTE is a bidirectional I/O port					
RF0-RF13	I/O	ST	PORTF is a bidirectional I/O port					
RG0-RG15	I/O	ST	PORTG is a bidirectional I/O port					
T1CK	ı	ST	Timer1 External Clock Input					
T2CK	1	ST	Timer2 External Clock Input					
T3CK	1	ST	Timer3 External Clock Input					
T4CK	I	ST	Timer4 External Clock Input					
T5CK	I	ST	Timer5 External Clock Input					

Legend: CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-Transistor Logic

Analog = Analog input P = Power

I = Input O = Output

查询dsPIC33FJ64GS608供应商
TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	Description						
U1CTS	ı	ST	UART1 clear to send						
U1RTS	0	_	UART1 ready to send						
U1RX	Ī	ST	UART1 receive						
U1TX	0	_	UART1 transmit						
U2CTS	1	ST	UART2 clear to send						
U2RTS	0	_	UART2 ready to send						
U2RX	1	ST	UART2 receive						
U2TX	0	_	UART2 transmit						
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1						
SDI1	1	ST	SPI1 data in						
SDO1	0	_	SPI1 data out						
SS1, ASS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O						
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2						
SDI2	1	ST	SPI2 data in						
SDO2	0	_	SPI2 data out						
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O						
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1						
SDA1	I/O	ST	Synchronous serial data input/output for I2C1						
SCL2	I/O	ST	Synchronous serial clock input/output for I2C2						
SDA2	I/O	ST	Synchronous serial data input/output for I2C2						
TMS	1	TTL	JTAG Test mode select pin						
TCK	I	TTL	JTAG test clock input pin						
TDI	I	TTL	JTAG test data input pin						
TDO	0	_	JTAG test data output pin						
CMP1A	1	Analog	Comparator 1 Channel A						
CMP1B	I	Analog	Comparator 1 Channel B						
CMP1C	I	Analog	Comparator 1 Channel C						
CMP1D	I	Analog	Comparator 1 Channel D						
CMP2A	I	Analog	Comparator 2 Channel A						
CMP2B	I	Analog	Comparator 2 Channel B						
CMP2C	I	Analog	Comparator 2 Channel C						
CMP2D	I	Analog	Comparator 2 Channel D						
CMP3A	1	Analog	Comparator 3 Channel A						
CMP3B	1	Analog	Comparator 3 Channel B						
CMP3C	1	Analog	Comparator 3 Channel C						
CMP3D	1	Analog	Comparator 3 Channel D						
CMP4A	1	Analog	Comparator 4 Channel A						
CMP4B	1	Analog	Comparator 4 Channel B						
CMP4C	1	Analog	Comparator 4 Channel C						
CMP4D	- 1	Analog	Comparator 4 Channel D						
DACOUT	0	_	DAC output voltage						
EXTREF	I	Analog	External Voltage Reference Input for the Reference DACs						
REFCLK	0	_	REFCLK output signal is a postscaled derivative of the system clock						

Legend: CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-Transistor Logic

Analog = Analog input I = Input

P = Power O = Output

查询dsPIC33FJ64GS608供应商
TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	Description						
FLT1-FLT23	I	ST	Fault Inputs to PWM Module						
SYNCI1-SYNCI4	I	ST	External synchronization signal to PWM Master Time Base						
SYNCO1-SYNCO2	0	_	PWM Master Time Base for external device synchronization						
PWM1L	0	_	PWM1 Low output						
PWM1H	0	_	PWM1 High output						
PWM2L	0	_	PWM2 Low output						
PWM2H	0	_	PWM2 High output						
PWM3L	0	_	PWM3 Low output						
PWM3H	0	_	PWM3 High output						
PWM4L	0	_	PWM4 Low output						
PWM4H	0	_	PWM4 High output						
PWM5L	0	_	PWM5 Low output						
PWM5H	0	_	PWM5 High output						
PWM6L	0	_	PWM6 Low output						
PWM6H	0	_	PWM6 High output						
PWM7L	0	_	PWM7 Low output						
PWM7H	0	_	PWM7 High output						
PWM8L	0	_	PWM8 Low output						
PWM8H	0	_	PWM8 High output						
PWM9L	0	_	PWM9 Low output						
PWM9H	0	_	PWM9 High output						
PGED1	I/O	ST	Data I/O pin for programming/debugging communication Channel 1						
PGEC1	I	ST	Clock input pin for programming/debugging communication Channel 1						
PGED2	I/O	ST	Data I/O pin for programming/debugging communication Channel 2						
PGEC2	I	ST	Clock input pin for programming/debugging communication Channel 2						
PGED3	I/O	ST	Data I/O pin for programming/debugging communication Channel 3						
PGEC3	I	ST	Clock input pin for programming/debugging communication Channel 3						
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.						
AVDD	Р	Р	Positive supply for analog modules						
AVss	Р	Р	Ground reference for analog modules						
VDD	Р	_	Positive supply for peripheral logic and I/O pins						
VCAP/VDDCORE	Р	_	CPU logic filter capacitor connection						
Vss	Р	_	Ground reference for logic and I/O pins						

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input P = Power O = Output

TTL = Transistor-Transistor Logic

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 23 查询dsPIC33FJ64GS608供应商 NOTES:

GUIDELINES FOR GETTING STARTED WITH 16-BIT **DIGITAL SIGNAL CONTROLLERS**

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see Microchip web (www.microchip.com) for the latest 74dsPIC33F/PIC24H Family Reference Manual sections.

> 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

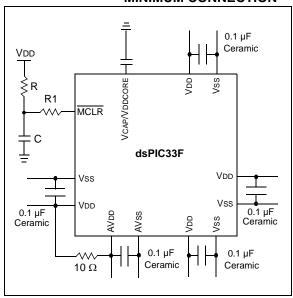
2.1 **Basic Connection Requirements**

Gettina started the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")

- VCAP/VDDCORE (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP Pins")
- · OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")


2.2 **Decoupling Capacitors**

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD, and AVss is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 µF (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 µF to 0.001 µF. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 µF in parallel with 0.001 µF.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

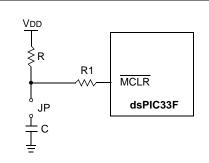
2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 27.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 24.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:


- Device Reset
- · Device programming and debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

- Note 1: $R \le 10 \text{ k}\Omega$ is recommended. A suggested starting value is $10 \text{ k}\Omega$. Ensure that the MCLR pin VIH and VIL specifications are met.
 - 2: $R1 \le 470\Omega$ will limit any current flowing into \overline{MCLR} from the external capacitor C, in the event of \overline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or $\overline{Electrical}$ Overstress (EOS). Ensure that the \overline{MCLR} pin VIH and VIL specifications are met.

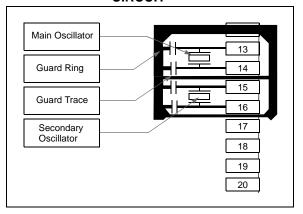
2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB® ICD 2, MPLAB® ICD 3, or MPLAB® REAL ICE™.

For more information on ICD 2, ICD 3, and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB® ICD 2" (poster) DS51265
- "MPLAB[®] ICD 2 Design Advisory" DS51566
- "Using MPLAB® ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB® REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV, and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3, or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When MPLAB ICD 2, ICD 3, or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.

查询dsPIC33FJ64GS608供应商 FIGURE 2-4: DIGITAL PFC

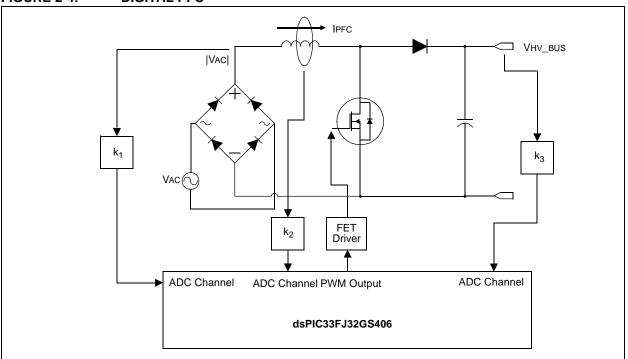
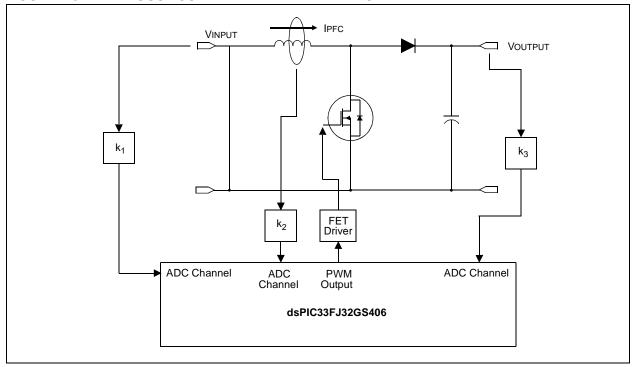



FIGURE 2-5: **BOOST CONVERTER IMPLEMENTATION**

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 29

FIGURE 2-6: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

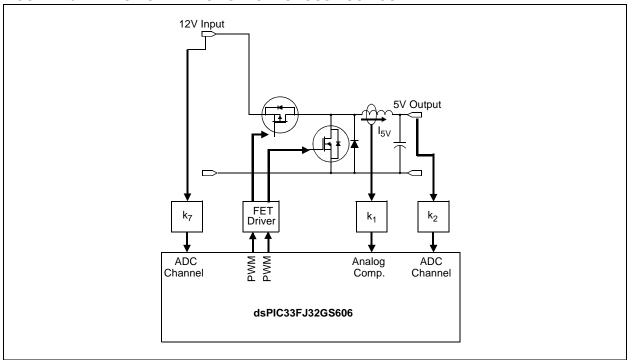
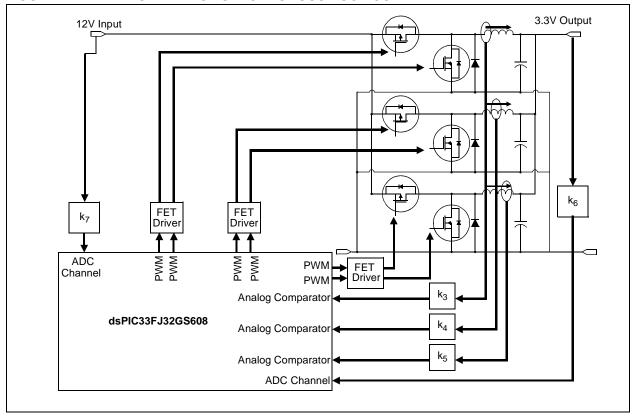
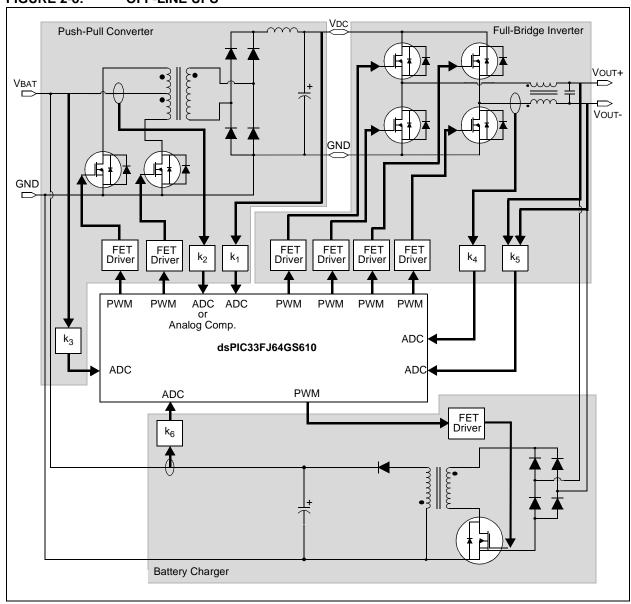
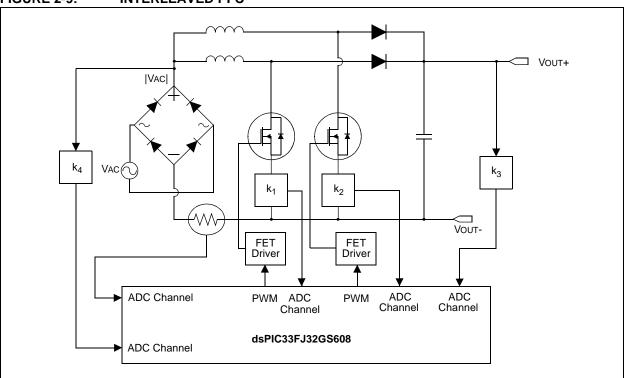
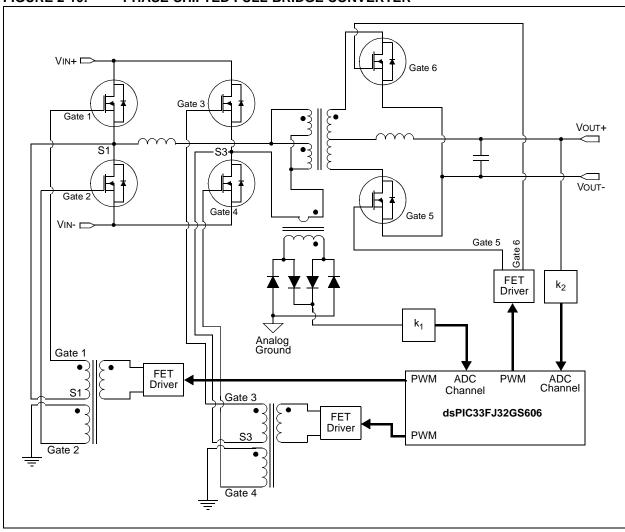
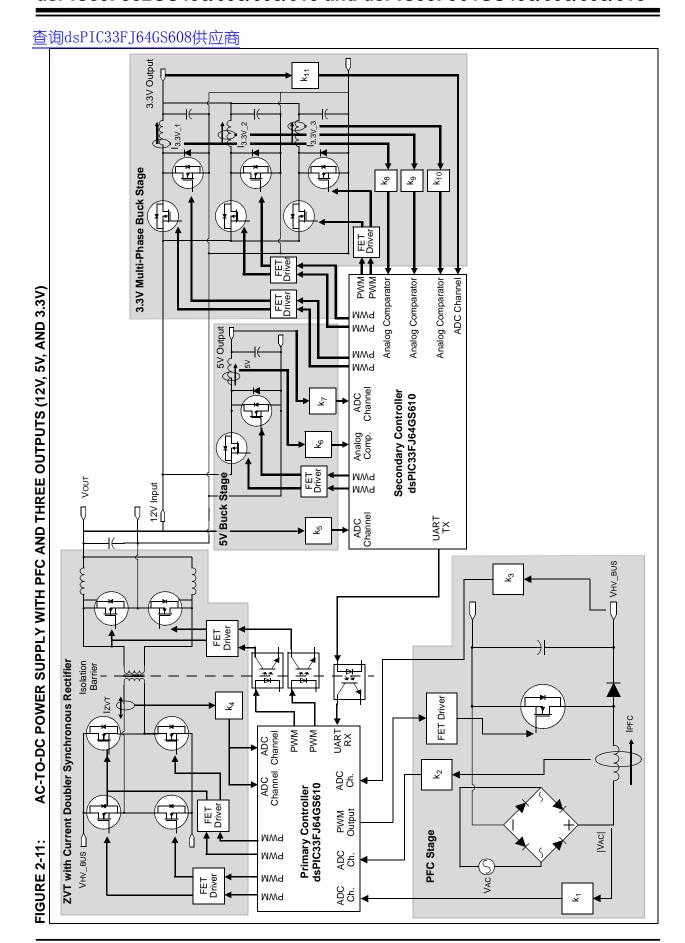




FIGURE 2-7: MULTI-PHASE SYNCHRONOUS BUCK CONVERTER



查询dsPIC33FJ64GS608供应商 FIGURE 2-8: OFF-LINE UPS




Preliminary © 2010 Microchip Technology Inc. DS70591C-page 31

查询dsPIC33FJ64GS608供应商 FIGURE 2-9: INTERLEAVED PFC

FIGURE 2-10: PHASE-SHIFTED FULL-BRIDGE CONVERTER

3.0 CPU

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 dsPIC33FJ64GS406/606/608/610 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The sixteenth working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction

cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU CORE BLOCK DIAGRAM

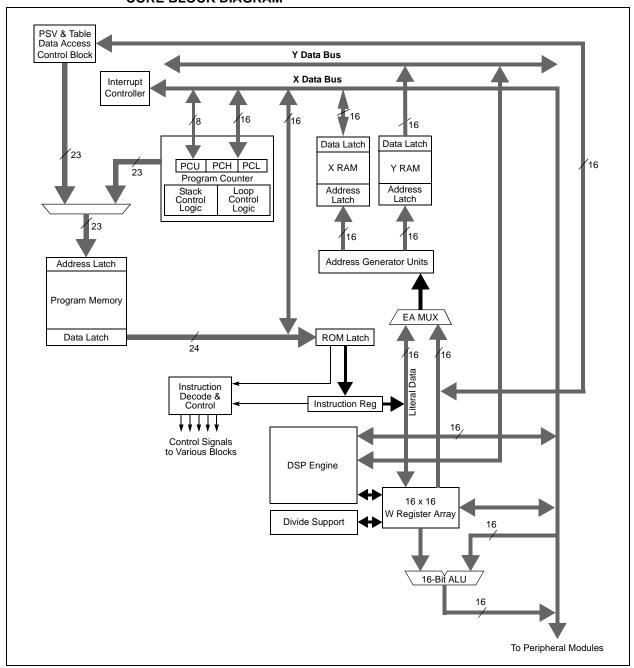


FIGURE 3-2: **PROGRAMMER'S MODEL** D15 D0 W0/WREG PUSH.S Shadow W1 DO Shadow W2 W3 Legend W4 **DSP** Operand W5 Registers W6 W7 Working Registers W8 W9 **DSP Address** W10 Registers W11 W12/DSP Offset W13/DSP Write Back W14/Frame Pointer W15/Stack Pointer **SPLIM** Stack Pointer Limit Register AD39 AD31 AD15 AD0 DSP ACCA Accumulators PC22 PC0 0 **Program Counter** 0 **TBLPAG** Data Table Page Address **PSVPAG** Program Space Visibility Page Address **RCOUNT** REPEAT Loop Counter DCOUNT DO Loop Counter DOSTART DO Loop Start Address DOEND DO Loop End Address 15 CORCON Core Configuration Register DA IPL2 IPL1 IPL0 OB SA SB OAB SAB DC OV Ζ RA С STATUS Register SRH SRL

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	ОВ	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC
bit 15							bit 8

R/W-0 ⁽²⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit 0

Legend:			
C = Clearable bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Settable bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 OA: Accumulator A Overflow Status bit

1 = Accumulator A overflowed

0 = Accumulator A has not overflowed

bit 14 **OB:** Accumulator B Overflow Status bit

1 = Accumulator B overflowed

0 = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation 'Sticky' Status bit (1)

1 = Accumulator A is saturated or has been saturated at some time

0 = Accumulator A is not saturated

bit 12 SB: Accumulator B Saturation 'Sticky' Status bit (1)

1 = Accumulator B is saturated or has been saturated at some time

0 = Accumulator B is not saturated

bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit

1 = Accumulators A or B have overflowed

0 = Neither Accumulators A or B have overflowed

bit 10 SAB: SA || SB Combined Accumulator 'Sticky' Status bit (1,4)

1 = Accumulators A or B are saturated or have been saturated at some time in the past

0 = Neither Accumulator A or B are saturated

bit 9 DA: DO Loop Active bit

1 = DO loop in progress

0 = DO loop not in progress

bit 8 **DC:** MCU ALU Half Carry/Borrow bit

1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred

0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred

Note 1: This bit can be read or cleared (not set).

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

4: Clearing this bit will clear SA and SB.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

110 = CPU Interrupt Priority Level is 6 (14)

101 = CPU Interrupt Priority Level is 5 (13)

100 = CPU Interrupt Priority Level is 4 (12)

011 = CPU Interrupt Priority Level is 3 (11)

010 = CPU Interrupt Priority Level is 2 (10)

001 = CPU Interrupt Priority Level is 1 (9)

000 = CPU Interrupt Priority Level is 0 (8)

bit 4 RA: REPEAT Loop Active bit

1 = REPEAT loop in progress

0 = REPEAT loop not in progress

bit 3 N: MCU ALU Negative bit

1 = Result was negative

0 = Result was non-negative (zero or positive)

bit 2 **OV:** MCU ALU Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state.

1 = Overflow occurred for signed arithmetic (in this arithmetic operation)

0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit

1 = An operation that affects the Z bit has set it at some time in the past

0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)

bit 0 C: MCU ALU Carry/Borrow bit

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note 1: This bit can be read or cleared (not set).

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

4: Clearing this bit will clear SA and SB.

REGISTER 332: 164 CORCONVEORE CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	_	_	US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit			
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set	
0' = Bit is cleared	x = Bit is unknown	U = Unimplemented bit	, read as '0'	

bit 15-13 Unimplemented: Read as '0'

bit 12 US: DSP Multiply Unsigned/Signed Control bit

1 = DSP engine multiplies are unsigned0 = DSP engine multiplies are signed

bit 11 EDT: Early DO Loop Termination Control bit⁽¹⁾

1 = Terminate executing DO loop at end of current loop iteration

0 = No effect

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits

111 = 7 DO loops active

•

001 = 1 DO loop active 000 = 0 DO loops active

bit 7 SATA: ACCA Saturation Enable bit

1 = Accumulator A saturation enabled 0 = Accumulator A saturation disabled

bit 6 SATB: ACCB Saturation Enable bit

1 = Accumulator B saturation enabled0 = Accumulator B saturation disabled

bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit

1 = Data space write saturation enabled0 = Data space write saturation disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit

1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation)

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 70 = CPU Interrupt Priority Level is 7 or less

bit 2 PSV: Program Space Visibility in Data Space Enable bit

1 = Program space visible in data space0 = Program space not visible in data space

bit 1 RND: Rounding Mode Select bit

1 = Biased (conventional) rounding enabled0 = Unbiased (convergent) rounding enabled

1 = Integer mode enabled for DSP multiply ops

0 = Fractional mode enabled for DSP multiply ops

Note 1: This bit will always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

查询dsPIC33FJ64GS608供应商 3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/608/610 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

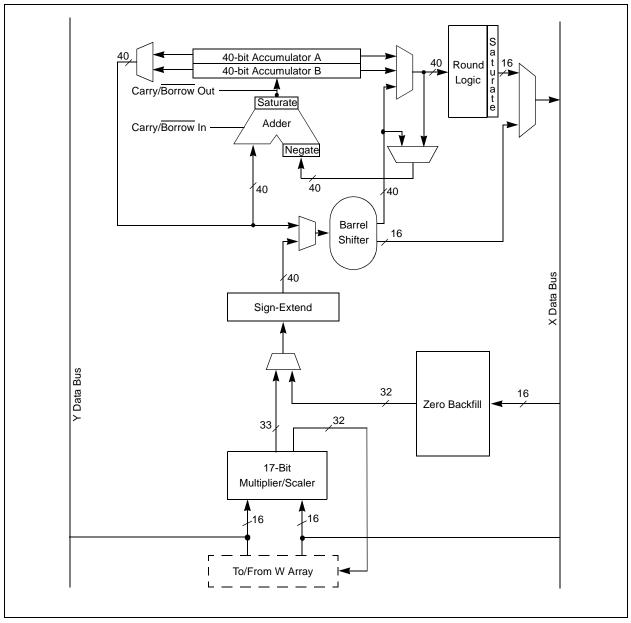
3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ${\tt ADD}$, ${\tt SUB}$ and ${\tt NEG}$

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:


- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACC-SAT)

A block diagram of the DSP engine is shown in Figure 3-3.

查询dsPIC33FJ64GS608供应商 TABLE 3-1: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	A = (x - y)2	No
EDAC	A = A + (x - y)2	No
MAC	A = A + (x * y)	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	A = x 2	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1}-1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1-2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10^{-10} .

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

SB: ACCB saturated (bit 31 overflow and saturation)

or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- · OAB: Logical OR of OA and OB
- · SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0** "Interrupt Controller"). This allows the user application to take immediate action, for example, to correct system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

- Bit 39 Overflow and Saturation:
 When bit 39 overflow and saturation occurs, the
 saturation logic loads the maximally positive
 9.31 (0x7FFFFFFFFF) or maximally negative
 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until
 cleared by the user application. This condition is
 referred to as 'super saturation' and provides
 protection against erroneous data or unexpected
 algorithm problems (such as gain calculations).
- Bit 31 Overflow and Saturation:
 When bit 31 overflow and saturation occurs, the
 saturation logic then loads the maximally positive
 1.31 value (0x007FFFFFFFF) or maximally negative 1.31 value (0x0080000000) into the target
 accumulator. The SA or SB bit is set and remains
 set until cleared by the user application. When
 this Saturation mode is in effect, the guard bits are
 not used, so the OA, OB or OAB bits are never
 set.
- Bit 39 Catastrophic Overflow:
 The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct:
 The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see Section 3.6.3.2 "Data Space Write Saturation"). For the MAC class of instructions, the accumulator write-back operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value. 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

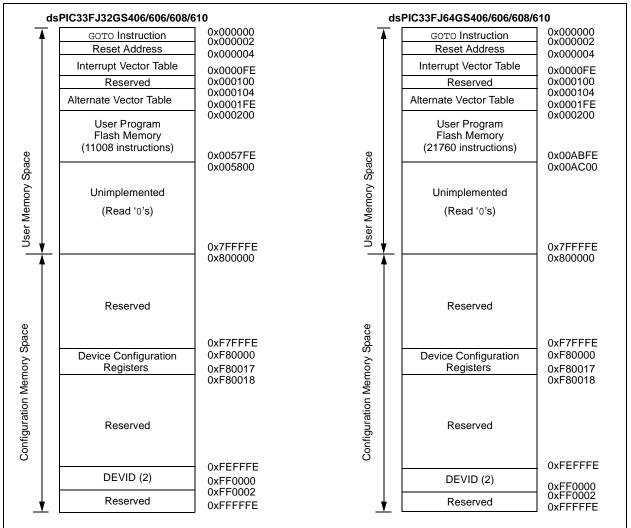
The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

查询dsPIC33FJ64GS608供应商 NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F/PIC24H Family Reference Manual, "Section 4. Program Memory" (DS70202), which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.


4.1 Program Address Space

The program address memory space of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.6** "Interfacing Program and Data Memory Spaces".

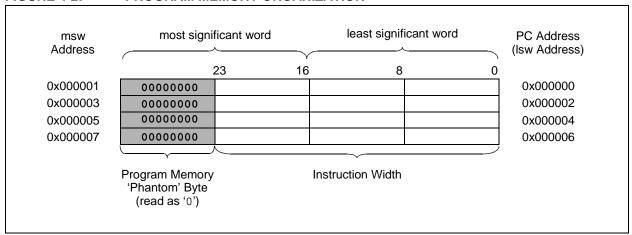
User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAPS FOR dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DEVICES

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-2).


Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x0000002.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector **Table**".

4.2 Data Address Space

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data From Program Memory Using Program Space Visibility").

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement up to 9 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC® MCU devices and improve data space memory usage efficiency, the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] that results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MoV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

FIGURE 4-3: DATA MEMORY MAP FOR DEVICES WITH 4 KB RAM

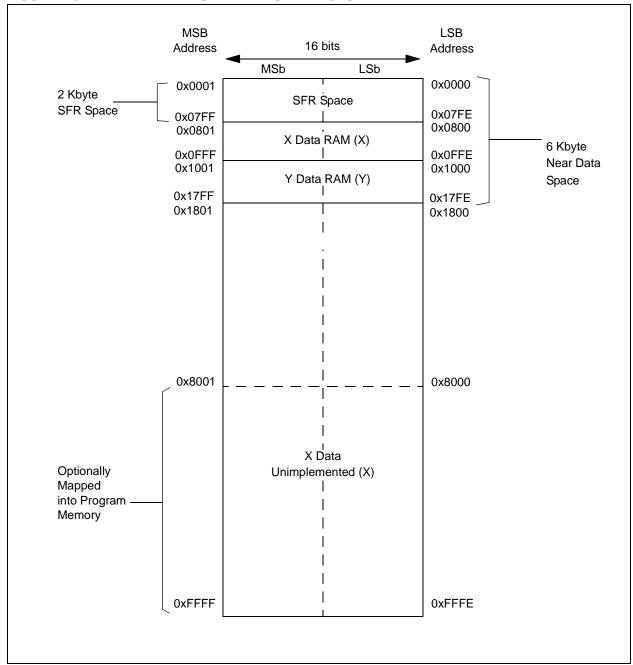
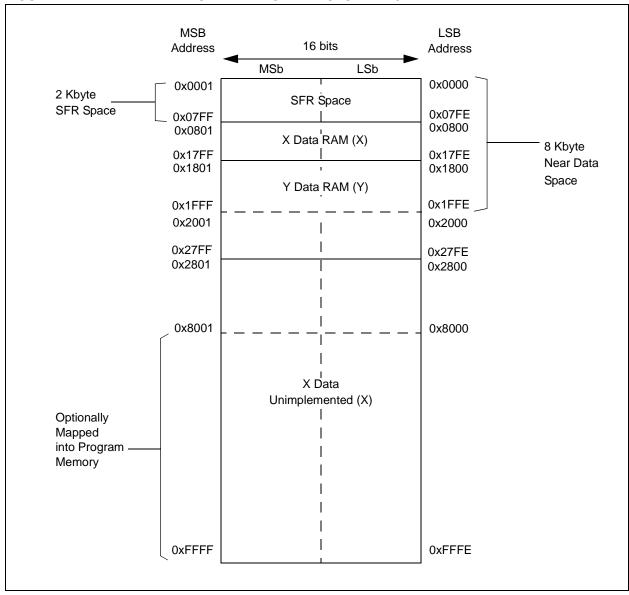
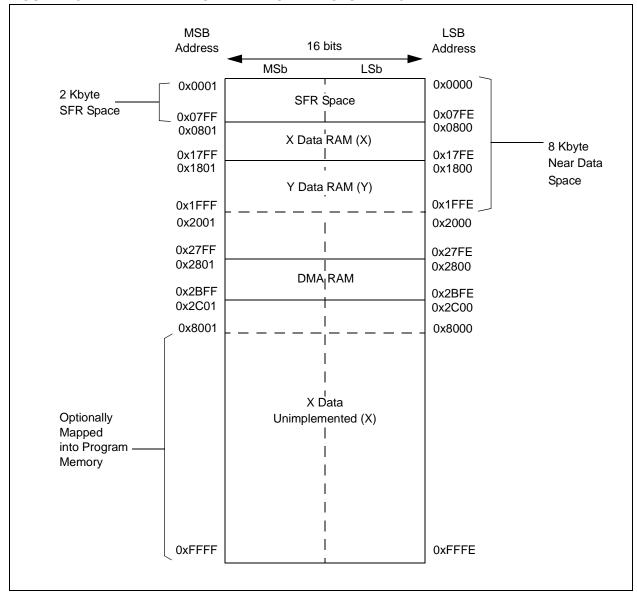




FIGURE 4-4: DATA MEMORY MAP FOR DEVICES WITH 8 KB RAM

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 51

FIGURE 4-5: DATA MEMORY MAP FOR DEVICES WITH 9 KB RAM

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Some devices contain 1 Kbyte of dual ported DMA RAM, which is located at the end of Y data space. Memory locations that are part of Y data RAM and are in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

TABLE 4-1 :		CPU COR	E REGIS	CPU CORE REGISTER MAP	_												•	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREGO	0000						-	Working Register 0	ter 0									0000
WREG1	0000							Working Register 1	ter 1									0000
WREG2	0004						1	Working Register 2	ter 2									0000
WREG3	9000						1	Working Register 3	ter 3									0000
WREG4	8000							Working Register 4	ter 4									0000
WREG5	000A							Working Register 5	ter 5									0000
WREG6	000C							Working Register 6	ter 6									0000
WREG7	3000							Working Register 7	ter 7									0000
WREG8	0010							Working Register 8	ter 8									0000
WREG9	0012							Working Register 9	ter 9									0000
WREG10	0014						>	Working Register 10	er 10									0000
WREG11	0016						^	Working Register 11	er 11									0000
WREG12	0018						>	Working Register 12	er 12									0000
WREG13	001A						>	Working Register 13	er 13									0000
WREG14	001C						>	Working Register 14	er 14									0000
WREG15	001E						×	Working Register 15	er 15									0800
SPLIM	0020						Stack	Stack Pointer Limit Register	Register									XXXX
ACCAL	0022							ACCAL										XXXX
ACCAH	0024							ACCAH										XXXX
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39> ACCA<39> ACCA<39>		ACCA<39> ACCA<39> ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCAU					xxxx
ACCBL	0028							ACCBL										xxxx
АССВН	002A							ACCBH										xxxx
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39> ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCBU					xxxx
PCL	002E						Program C	Sounter Low V	Program Counter Low Word Register									0000
PCH	0030	I	I	1	I	Ι	I	I	1			Program (Program Counter High Byte Register	h Byte R	egister			0000
TBLPAG	0032	I	1	ĺ	ĺ	1	I	I	1			Table Pag	Table Page Address Pointer Register	Pointer R	egister			0000
PSVPAG	0034	I	I	I	Ι	1	I	1	1	Ь	Program l	Memory Vis	Program Memory Visibility Page Address Pointer Register	Address	S Pointer	Register		0000
RCOUNT	9600						Repea	Repeat Loop Counter Register	r Register									XXXX
DCOUNT	9800							DCOUNT<15:0>	<0:									XXXX
DOSTARTL	003A						DOS	DOSTARTL<15:1>									0	XXXX
DOSTARTH	003C	1	1	1	Ι	Ι	I	Ι	Ι	1			900	DOSTARTH<5:0>	<2:0>			00xx
DOENDL	003E						DOE	DOENDL<15:1>									0	XXXX
DOENDH	0040	1	1	1	1	1	1	1	1	1	1			DOENDH	Į			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	_			RA	z	0	Z	ပ	0000
CORCON	0044	I	I	1	SN	EDT		DL<2:0>		SATA	SATB ($\overline{}$	ACCSAT	IPL3	PSV	RND	ч	0000
MODCON	0046	XMODEN	YMODEN	1	1		BWM	BWM<3:0>			YWI	YWM<3:0>			XWM<3:0>	<3:0>		0000
Legend:	x = unknc	own value on	Reset, — = L	unimplemente	d. read as '0'.	m x= unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	are shown in	hexadecimal.										

x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are

TABLE 4-1:		CPU CORE REGISTER MAP (CONTINUED)	E REGIS	TER MAF	CONTIL	NUED)											月 d
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 7 Bit 6 Bit 5	Bit 4	Bit 3 Bit 2	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT	0048						×	XS<15:1>								0	xxxx
XMODEND	004A						×	XE<15:1>								1	XXXX
YMODSRT	004C						У	YS<15:1>								0	04 xxxx
YMODEND	004E						Y	YE<15:1>								1	XXXX
XBREV	0020	BREN						XB<	XB<14:0>								xxxx
DISICNT	0052	I	I					Disable In	Disable Interrupts Counter Register	nter Regi	ster						XXXX
Legend:	x = unkn	\mathbf{x} = unknown value on Reset, — = unimplemented, read	Reset, — = u	nimplementec	i, read as '0'.	as '0'. Reset values are shown in hexadecimal	are shown in	hexadecimal.									<u> </u>

查	询ds	sPI	<u>C3</u>	3F	J6	4GS60	08供区	立商

<u>鱼</u>	迫ds	148	<u>.C3</u>	3F	J6	4
	AII Resets	0000	0000	0000	0000	
	Bit 0	CNOIE	CN16IE	CNOPUE	CN16PUE	
EVICES	Bit 1	CN2IE CN1IE CN0IE	CN17IE	CN1PUE	CN17PUE	
3/610 DE	Bit 2	CN2IE	CN18IE	CN2PUE	CN18PUE	
34GS608	Bit 3	CN3IE	CN19IE	CN3PUE	CN19PUE	
IC33FJ6	Bit 4	CN4IE	CN23IE CN22IE CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE 0000	CN4PUE	CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN17PUE CN16PUE 0000	
ND dsP	Bit 5	CN5IE	CN211E	CN5PUE	CN21PUE	
08/610 A	Bit 6	CN8IE CN7IE CN6IE	CN22IE	CN6PUE	CN22PUE	
132GS60	Bit 7	CN7IE	CN23IE	CN7PUE	CN23PUE	1
PIC33F.	Bit 8	CN8IE	I	CN8PUE	_	because of all and
FOR ds	Bit 9	CN9IE	I	SUBPUE	_	
R MAP	Bit 10	CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE	1	CN10PUE	_	
EGISTE	Bit 11	CN11IE	Ι	CN11PUE	_	(o)
TION R	Bit 12	CN12IE	Ι	CN12PUE	_	L = 4 = 5 = 1 = 1
DTIFICA	Bit 13	CN13IE	Ι	CN13PUE	_	.;
NGE N	Bit 15 Bit 14	CN14IE	Ι	CN14PUE	_	
CHANGE NOTIFICATION REGISTER MAP FOR dSPIC33FJ32GS608/610 AND dSPIC33FJ64GS608/610 DEVICES	Bit 15	CNEN1 0060 CN15IE	I	CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN3PUE CN1PUE CN0PUE 0000	_	
4-2:	SFR Addr	0900	0062	8900	006A	
TABLE 4-2 :	File Name	CNEN1	CNEN2 0062	CNPU1	CNPU2 006A	1

TABLE	± 4-3:	CHA	NGE NC	OTIFICA	TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dSPIC33FJ32GS406/606 AND dSPIC33FJ64GS406/606 DEVICES	GISTE	R MAP	OR ds	1C33FJ	32GS40	6/606 AI	ND dsP	IC33FJ6	4GS406	%06 DE	SAICES		共 <u>「</u>
File Name	SFR Addr	File SFR Bit 15 Bit 14	Bit 14	Bit 13 Bit 12		Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0900	CN15IE	CN14IE	CN13IE	CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CNOIE	0000
CNEN2 0062	0062	I		-	I	I	ı	I	I	CN23IE CN22IE	CN22IE	I	I	I	CN18IE	CN18IE CN17IE CN16IE	CN16IE	0000
CNPU1	8900	CN15PUE	CN14PUE	CN13PUE	CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	IPUE CN10PUE CN9PUE CN8PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000	CNOPUE	0000
CNPU2 006A	006A	I	I	Ι	I	1	Ι	I	-	CN23PUE	CN23PUE CN22PUE	I	I	I	CN18PUE	CN18PUE CN17PUE CN16PUE 00000	CN16PUE	0000

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES TABLE 4-4:

IABLE 4-4:	4-4	Z	アストレ		INTERKUPT CONTROLLER RE	25コと		2011	コンニムの	GIOLER MAP FOR GSPICSST304G3010 DEVICES		コンコン						
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets OT A
INTCON1	0800	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	I	0000
INTCON2	0082	ALTIVT	DISI	I	Ι	I	I	I	1	Ι	I	Ι	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	0000
IFS0	0084	1	DMA11F	ADIF	U1TXIF	U1RXIF	SPI11F	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC11F	IC11F	INTOIF	0000
IFS1	9800	U2TXIF	U2RXIF	INT2IF	TSIF	T4IF	OC4IF	OC3IF	DMA2IF	-	-	1	INT1IF	CNIF	AC11F	MI2C1IF	SI2C11F	0000
IFS2	0088	Ι	Ι	Ι	Ι	Ι	1	Ι	1	1	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPIZIF	SPIZEIF	0000
IFS3	008A	Ι	I	I	Ι	I	QEI1IF	PSEMIF	I	I	INT4IF	INT3IF	Ι	I	MI2C2IF	SI2C2IF	I	0000
IFS4	008C	Ι	I	Ι	Ι	QEI2IF	I	PSESMIF	I	I	C1TXIF	1	I	I	UZEIF	U1EIF	I	0000
IFS5	008E	PWM2IF	PWM11F	ADCP12IF	Ι	Ι	Ι	1	1	Ι	Ι	1	ADCP111F	ADCP10IF	ADCP91F	ADCP8IF	1	0000
IFS6	0600	0090 ADCP11F ADCP01F	ADCP01F	Ι	-	Ι	1	AC4IF	AC3IF	AC2IF	PWM91F	PWM8IF	PWM71F	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	Ι	Ι	Ι	Ι	Ι	1	Ι	1	1	-	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP4IF ADCP3IF	ADCP2IF	0000
IEC0	0094	Ι	DMA11E	ADIE	U1TXIE	U1RXIE	SPI1E	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC11E	IC1IE	INTOIE	0000
IEC1	9600	U2TXIE	UZRXIE	INT2IE	TSIE	T4IE	OC4IE	OC3IE	DMA2IE	I	Ι	Ι	INT11E	CNIE	AC11E	MI2C1IE	SI2C1IE	0000
IEC2	8600	Ι	Ι	Ι	Ι	Ι	1	Ι	1	1	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPIZEIE	0000
IEC3	009A	Ι	Ι	Ι	Ι	Ι	QEI1IE	PSEMIE	1	1	INT4IE	INT3IE	Ι	1	MI2C2IE	SI2C2IE	1	0000
IEC4	000C	1	1	Ι	-	QEI2IE	1	PSESMIE	1	-	C1TXIE	1	Ι	1	UZEIE	U1EIE	1	0000
IEC5	3600	PWM2IE	PWM11E	009E PWM2IE PWM1IE ADCP12IE	Ι	I	I	I	I	I	Ι	1	ADCP111E	ADCP11IE ADCP10IE ADCP8IE ADCP8IE	ADCP91E	ADCP8IE	I	0000
IEC6	00A0	00A0 ADCP11E ADCP01E	ADCP0IE	Ι	Ι	I	I	AC4IE	AC3IE	AC2IE	JI6MW4	PWM8IE	PWM71E	PWM6IE	PWM5IE	PWM5IE PWM4IE	PWM3IE	0000
IEC7	00A2	Ι	I	Ι	Ι	I	I	I	I	I	Ι	ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP4IE ADCP3IE ADCP2IE	ADCP2IE	0000
IPC0	00A4	Ι		T11P<2:0>		I		OC1IP<2:0>		I		IC11P<2:0>		I		NT0IP<2:0>		4444
IPC1	00A6	Ι		T2IP<2:0>		I		OC2IP<2:0>		I		IC2IP<2:0>		I	D	DMA0IP<2:0>	٨	4444
IPC2	00A8	Ι		U1RXIP<2:0>	^(I	(J)	SPI1IP<2:0>		I		SPI1EIP<2:0>	^(I		T3IP<2:0>		0444
IPC3	00AA	Ι	I	Ι	Ι	I	D	DMA11P<2:0>		I		ADIP<2:0>		I	ח	U1TXIP<2:0>	^	0044
IPC4	00AC	Ι		CNIP<2:0>		Ι	1	AC11P<2:0>		1		MI2C11P<2:0>	<(1	S	SI2C1IP<2:0>	^	4444
IPC5	00AE	1	1	Ι	-	-	1	-	1	-	-	1	Ι	1	11	INT1IP<2:0>		0004
IPC6	00B0	1		T4IP<2:0>		Ι)	OC4IP<2:0>		1		OC3IP<2:0>	^	I	O	DMA2IP<2:0>	^	4444
IPC7	00B2	1		U2TXIP<2:0>	<	Ι	n	U2RXIP<2:0>		1		INT2IP<2:0>	^	I		T5IP<2:0>		4444
IPC8	00B4	1		C1IP<2:0>		Ι	S	C1RXIP<2:0>		1		SPI2IP<2:0>	^	I	Ś	SPI2EIP<2:0>	^	4444
IPC9	00B6	1	1	Ι	Ι	Ι	_	IC4IP<2:0>		1		IC3IP<2:0>		I	O	DMA3IP<2:0>	^	0444
IPC12	00BC	I	I	I	Ι	I	Σ	MI2C2IP<2:0>		I		SI2C2IP<2:0>	۵	I	I	I	I	0440
IPC13	00BE	I	I	Ι	1	I	=	INT4IP<2:0>		Ι		INT3IP<2:0>	^	1	1	I	-	0440
IPC14	00C0	1	1	Ι	Ι	Ι	0	QE11IP<2:0>		1		PSEMIP<2:0>	<	I	1	1	1	0440
IPC16	00C4	1	1	Ι	-	Ι	1	U2EIP<2:0>		-		U1EIP<2:0>	^	1	1	1	1	0440
IPC17	00Ce	1	1	Ι	Ι	1	S	C1TXIP<2:0>		1	-	1	1	1	1	1	1	0400
IPC18	00C8	1		QE12IP<2:0>	٨	1	I	1	I	Ι	4	PSESMIP<2:0>	0>	1	1	1	1	4040
IPC20	00CC	I	A	ADCP10IP<2:0>	<0:	I	AE	ADCP9IP<2:0>	_	I	,	ADCP8IP<2:0>	<0>	1	I	I	1	4440
			, C	1	and and and	(o) or hear 1	C		1 1 1 1	de effected								ĺ

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

DS70591C-page 57

TABLE 4-4 :	: 4-4:		ERRUF	L CON	INTERRUPT CONTROLLER RE	REGIS	TER M	AP FOR	dsPIC3	GISTER MAP FOR dsPIC33FJ64GS610 DEVICES (CONTINUED)	3610 DE	:VICES (NILNOC	UED)				<u>=</u>
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC21	00CE	Ι	Ι	I	Ι	I	Ι	I	Ι	Ι	A	ADCP12IP<2:0>	^	I	AD	ADCP111P<2:0>	^(0044 PI
IPC23	00D2	I		PWM2IP<2:0>	<0:	Ι	ď	PWM1IP<2:0>	<(-	I	-	_	I	_	Ι	I	4400
IPC24	00D4	I		PWM6IP<2:0>	<0:	Ι	ď	PWM5IP<2:0>	<(Ι	_	PWM4IP<2:0>	•	I	Ρ	PWM3IP<2:0>	٨	4444 3F
IPC25	9000	I		AC2IP<2:0>	<	Ι	ď	PWM9IP<2:0>	<(Ι	_	PWM8IP<2:0>	•	I	Ρ	PWM7IP<2:0>	٨	4444 J6
IPC26	8000	-	Ι	1	-	Ι	_	1	1	1		AC4IP<2:0>		Ι	ď	AC3IP<2:0>		0044
IPC27	00DA	-	,	ADCP1IP<2:0>	:0>	_	AL	ADCP0IP<2:0>	0>	-	_	1	_	1	_	1	I	4400
IPC28	OODC	1	,	ADCP5IP<2:0>	:0>	-	AL	ADCP4IP<2:0>	0>	1	d	ADCP3IP<2:0>	<	1	AE	ADCP2IP<2:0>	^	4444
IPC29	OODE	1	1	1	1	-	_	1	1	1	d	ADCP7IP<2:0>	<	1	AE	ADCP6IP<2:0>	^	0044
INTTREG 00E0	3 00E0	1	1	1	1		ILR<3:0>	3:0>		1			VEC	VECNUM<6:0>				0000
Legend:		unknown v	value on R	eset, — = u	x = unknown value on Reset, — = unimplemented, read x	d, read as '0	. Reset val	ues are shα	as '0'. Reset values are shown in hexadecimal.	decimal.								.10

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES **TABLE 4-5:**

S		3F	Jb	46	1 5 6	800	洪	<u> </u>	尚																										
	AII Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	4444	4444	4444	4444	4444	0004	4444	4444	4444	0444	0440	0440	0440	0440	0400	4040
	Bit 0	1	INTOEP	INTOIF	SI2C1IF	SPIZEIF	1	_	_	PWM3IF	ADCP2IF	INTOIE	SI2C1IE	SPI2EIE	_	-	I	PWM3IE	ADCP2IE	^	^		^	^	^	^		^	^	_	I	I	1	1	1
	Bit 1	OSCFAIL	INT1EP	IC1IF	MI2C1IF	SPI2IF	SI2C2IF	U1EIF	ADCP81F	PWM4IF	ADCP3IF ADCP2IF	IC1IE	MI2C1IE	SPI2IE	SI2C2IE	U1EIE	ADCP81E	PWM4IE	ADCP3IE	INT0IP<2:0>	DMA0IP<2:0>	T3IP<2:0>	U1TXIP<2:0>	S12C11P<2:0>	INT1IP<2:0>	DMA2IP<2:0>	T5IP<2:0>	SPI2EIP<2:0>	DMA3IP<2:0>	_	1	1	1	1	1
	Bit 2	STKERR	INT2EP	OC1IF	AC11F	C1RXIF	MI2C2IF	U2EIF	_	PWM5IF	ADCP4IF	OC1IE	AC11E	C1RXIE	MI2C2IE	U2EIE	1	PWM5IE	ADCP4IE ADCP3IE ADCP2IE	I	DI	•	n	S	II	DI	•	SF	DI	_	1	1	1	1	1
-	Bit 3	ADDRERR	INT3EP	T11F	CNIF	C1IF	_	_	_	PWM6IF	ADCP5IF	T11E	CNIE	C1IE	_	-		PWM6IE	ADCP5IE	_	_	1	_	_	-	1	1	-	-	_	1	1	1	1	1
=	Bit 4	MATHERR ADDRERR	INT4EP	DMA0IF	INT1IF	DMA3IF	1	-	_	PWM71F	ADCP6IF	DMA0IE	INT11E	DMA3IE	-	1	1	PWM7IE	ADCP6IE						1									1	
)	Bit 5		I	IC2IF	I	IC3IF	INT3IF	-	_	PWM8IF	ADCP71F	IC2IE	_	IC3IE	INT3IE	_	-	PWM8IE	ADCP71E	IC11P<2:0>	IC2IP<2:0>	SP11EIP<2:0>	ADIP<2:0>	MI2C11P<2:0>	_	OC3IP<2:0>	INT2IP<2:0>	SP12IP<2:0>	IC3IP<2:0>	SI2C2IP<2:0>	INT3IP<2:0>	PSEMIP<2:0>	U1EIP<2:0>	1	PSESMIP<2:0>
	Bit 6	DIVOERR [I	OC2IF	I	IC4IF	INT4IF	C1TXIF	1	1	1	OC2IE	-	IC4IE	INT4IE	C1TXIE	1	I	1			S		M	1)		3		S		Р		1	P.
;	Bit 7	SFTACERR DIVOERR DMACERR	1	T2IF	1	1	1	1	1	AC2IF	1	T2IE	1	1	1	1	1	AC2IE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-	Bit 8	COVTE	Ι	T3IF	DMA2IF	Ι	-	-	_	AC3IF	-	T3IE	DMA2IE	-	-		I	AC3IE	_				^				^	^		^		•			
	Bit 9	OVBTE	_	SPI1EIF	OC3IF	_	PSEMIF	PSESMIF	_	AC4IF	_	SPI1EIE	OC3IE	_	PSEMIE	PSESMIE	I	AC4IE	_	OC1IP<2:0>	OC2IP<2:0>	SPI1IP<2:0>	DMA1IP<2:0>	AC11P<2:0>	1	OC4IP<2:0>	U2RXIP<2:0>	C1RXIP<2:0>	IC4IP<2:0>	MI2C2IP<2:0>	INT4IP<2:0>	QE11IP<2:0>	U2EIP<2:0>	C1TXIP<2:0>	1
	Bit 10	OVATE	-	SPI1IF	OC4IF	-	QEI1IF	-	_	_	-	SPI1IE	OC4IE	-	QEI1IE	1		-	_		0	0,		,	1	J	٦	0		Δ		0			1
	Bit 11	COVBERR	I	U1RXIF	T4IF	I	1	QEI2IF	1	1	_	U1RXIE	T4IE	_	_	QEI2IE	1	I	1	-	1	I	_	_	1	1	1	1	1	_	1	1	1	1	1
· · · ·	Bit 12	COVAERR COVBERR	I	U1TXIF	T5IF	I	_	-	-	-	-	U1TXIE	TSIE	-	-	_	1	I	-			^	-		_		^		_	-	1	1	1	1	
	Bit 13	OVBERR	_	ADIF	INT2IF	_	_	_	ADCP12IF	_	_	ADIE	INT2IE	_	_	_	ADCP12IE	_	_	T11P<2:0>	T2IP<2:0>	U1RXIP<2:0>	_	CNIP<2:0>	_	T4IP<2:0>	U2TXIP<2:0>	C1IP<2:0>	_	_	1	1	1	1	QE12IP<2:0>
	Bit 14	OVAERR	DISI	DMA11F	U2RXIF	Ι	1	-	PWM1IF	ADCP01F	-	DMA11E	U2RXIE	-	-	1	PWM1IE	ADCP0IE	_			7	-		1		1		1	-	1	1	1	1	
	Bit 15	NSTDIS	: ALTIVT	-	UZTXIF	-	-		PWM2IF	0090 ADCP11F ADCP01F	-	1	USTXIE	-	-		: PWM2IE	00A0 ADCP11E ADCP01E		-			-	-	-			1		-	1	-			
•	SFR Addr	0080	0082	0084	9800	8800	008A	008C	008E	0600	0092	0094	9600	8600	009A	O00C	009E	00AC	00A2	00A4	00A6	00A8	00AA	00AC	00AE	00B0	00B2	00B4	00B6	00BC	00BE	00C0	00C4	00C6	00C8
	SFR Name	INTCON1	INTCON2	IFS0	IFS1	IFS2	IFS3	IFS4	IFS5	IFS6	IFS7	IEC0	IEC1	IEC2	EC3	IEC4	IEC5	9) 3	IEC7	0DdI	IPC1	IPC2	PC3	IPC4	IPC5	IPC6	IPC7	IPC8	IPC9	IPC12	IPC13	IPC14	IPC16	IPC17	IPC18

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

查询ds	sPIC33F	J64GS60	08供	应商

查	洵dsl	PI	C3:	3F,	J6	4GS	S60)84	共	<u>Ŵ</u>	苔
	AII Resets	0040	0040	4400	4444	4044	0044	4400	4444	0044	0000
	Bit 0	I	-	_	^	>		_	>	>	
	Bit 1	I	1	_	PWM3IP<2:0>	PWM7IP<2:0>	AC3IP<2:0>	_	ADCP2IP<2:0>	ADCP6IP<2:0>	
	Bit 2	I	I	_	PΛ	PV	A	_	AD	AD	
IUED)	Bit 3	I	Ι	_	1	_	_	_	_	_	VECNUM<6:0>
CONTIN	Bit 4	Δ		-	^	^		-	^	^	VE
INTERRUPT CONTROLLER REGISTER MAP FOR dSPIC33FJ64GS608 DEVICES (CONTINUED)	Bit 5	ADCP8IP<2:0>	ADCP12IP	_	PWM4IP<2:0>	PWM8IP<2:0>	AC4IP<2:0>	_	ADCP3IP<2:0>	ADCP7IP<2:0>	
S608 DE	Bit 6	A		1	а.	Ь		1	A	A	
3FJ64G	Bit 7	I	I	1	_	1	1	_	1	_	_
dsPIC3	Bit 8	I	I	^	^	1	1	<(>>	1	
AP FOR	Bit 9	I	_	PWM11P<2:0>	PWM5IP<2:0>	_	_	ADCP0IP<2:0>	ADCP4IP<2:0>	_	3:0>
STER M.	Bit 10	I	_	Ь	Ь	_	_	IA	IA	_	ILR<3:0>
REGIS	Bit 11	I	I	-	-	-	-	_	_	_	
ROLLEI	Bit 12	I	_	<(<(4	_)>)>	_	_
T CONT	Bit 13	1	_	PWM2IP<2:0>	PWM6IP<2:0>	AC2IP<2:0>	_	ADCP1IP<2:0>	ADCP5IP<2:0>	_	_
ERRUP	Bit 14	I	Ι	_			_	d	d	-	-
	Bit 15	I	_	_	_	_	_	_	_	_	_
4-5:	SFR Addr	00CC	OOCE	00D2	00D4	9□00	8000	00DA	00DC	00DE	00E0
TABLE 4-5 :	SFR Name	IPC20	IPC21	IPC23	IPC24	IPC25	IPC26	IPC27	IPC28	IPC29	INTTREG 00E0

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend:

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES **TABLE 4-6:**

191		l)11/																											_
	All Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	4444	4444	4444	4444	4444	0004	4444	4444	4444	0444	0440	0440	0440	0440	0400	0,00
	Bit 0	1	INT0EP	INTOIF	S12C11F	SPI2EIF	_	I	_	PWM3IF	ADCP2IF	INTOIE	SI2C11E	SPI2EIE	I	_	_	PWM3IE	ADCP2IE		^		^	٨		^		٨	٨	_	_	I	1	1	
	Bit 1	OSCFAIL	INT1EP	IC1IF	MI2C11F	SPI2IF	SI2C2IF	U1EIF	ADCP8IF	PWM41F	ADCP3IF	IC1IE	MI2C1IE	SPIZIE	SI2C2IE	U1EIE	ADCP8IE	PWM4IE		INT0IP<2:0>	DMA0IP<2:0>	T3IP<2:0>	U1TXIP<2:0>	S12C11P<2:0>	INT1IP<2:0>	DMA2IP<2:0>	T5IP<2:0>	SPI2EIP<2:0>	DMA3IP<2:0>	_	_	_	_		
	Bit 2	STKERR	INT2EP	OC1IF	AC11F	C1RXIF	MI2C2IF	UZEIF	I	PWM5IF	ADCP4IF	OC1IE	AC11E	C1RXIE	MI2C2IE	U2EIE	I	PWM5IE	ADCP4IE ADCP3IE	AI.	Dľ	•	n	SI	∠	Dľ		SF	D	-	1	I	1		
	Bit 3		INT3EP	T1IF	CNIF	C1IF	1	I	ı	PWM6IF	ADCP5IF	T1IE	CNIE	C1IE	I	1	ı	PWM6IE	ADCP5IE	1	1	1	I	1	1	1	1	I	I	1	1	1	1	I	
	Bit 4	ATHERR A	INT4EP	DMA0IF	INT11F	DMA3IF	_	1	-	1	ADCP6IF	DMA0IE	INT11E	DMA3IE	1	_	-	1	ADCP6IE						_										
212	Bit 5	SFTACERR DIVOERR DMACERR MATHERR ADDRERR	_	IC2IF	-	IC3IF	INT3IF	-	_	-	<i>–</i>	IC2IE	_	IC3IE	INT3IE	_	_	-	<i>'</i>	IC11P<2:0>	IC2IP<2:0>	SP11EIP<2:0>	ADIP<2:0>	MI2C1IP<2:0>	_	OC3IP<2:0>	INT2IP<2:0>	SPI2IP<2:0>	IC3IP<2:0>	SI2C2IP<2:0>	INT3IP<2:0>	PSEMIP<2:0>	U1EIP<2:0>	-	
	Bit 6	VOERR DA	_	OC2IF	-	IC4IF	INT4IF	C1TXIF	-	-	_	OC2IE	_	IC4IE	INT4IE	C1TXIE	-	-	1))	SP	A	MIZ	1	Ŏ	N	SF	01	SIS	.NI	PS	Ú		
5	Bit 7	ACERR DI	_	T2IF (_	_	_	0	_	AC2IF	_	T2IE (_	_	-	o —	_	AC2IE	I	_	_	_	-	_	_			ı	ı	_	_	ı	-		
5		_			JI5								JIE .																						
5	Bit 8	COVTE	1	T3IF	DMA21F	1	-		1	AC3IF	1	T3IE	DMA2IE	1	I	-	1	AC3IE	1	<(<(<(<0	Δ	1	^	<0	6	^	<0	<(<u>^</u>	Δ	0>	
5	Bit 9	OVBTE	-	SPI1EIF	OC3IF	_	PSEMIF	PSESMIF	_	AC4IF	_	SPI1EIE	OC3IE	-	PSEMIE	PSESMIE	_	AC4IE	Ι	OC1IP<2:0>	OC2IP<2:0>	SP11IP<2:0>	DMA1IP<2:0>	AC11P<2:0>	-	OC4IP<2:0>	U2RXIP<2:0>	C1RXIP<2:0>	IC4IP<2:0>	MI2C2IP<2:0>	INT4IP<2:0>	QE11IP<2:0>	U2EIP<2:0>	C1TXIP<2:0>	
	Bit 10	OVATE	_	SPI1IF	OC41F	_	QEI1IF	_	_	_	_	SPI1IE	OC4IE	_	QEI1IE	_	_	_	_))	3	a	,	_		ר)		Ν	I)		J	
	Bit 11	COVBERR	_	U1RXIF	T4IF	_	_	QEI2IF	_	-	_	U1RXIE	T4IE	_	-	QEI2IE	_	-	Ι	_	_	_	_	_	_	_	_	-	-	_	_	-	_	_	
i	Bit 12	COVAERR	1	U1TXIF	TSIF	_	1	I	1	1	1	U1TXIE	TSIE	1	1	1	1	1	1				1		1				1	1	1	1	1	1	
	Bit 13	OVBERR	-	ADIF	INT2IF	_	-	1	ADCP12IF	1	-	ADIE	INT2IE	-	1	-	ADCP12IE	1	I	T11P<2:0>	T2IP<2:0>	U1RXIP<2:0>	-	CNIP<2:0>	-	T4IP<2:0>	U2TXIP<2:0>	C1IP<2:0>	1	-	-	1	-		0 0 010120
	Bit 14	OVAERR	DISI	DMA11F	U2RXIF	-	_	1	PWM1IF A	ADCP0IF	_	DMA11E	U2RXIE	-	1	_	PWM1IE A	ADCPOIE	1			n	1)	1	•	U.		1	_	-	1	1	1	
	Bit 15	NSTDIS	ALTIVT	-	U2TXIF	I	_	Ι	PWM2IF	ADCP11F	_	1	U2TXIE	Ι	Ι	_	PWM2IE	ADCP11E ADCP01E	I	-	1	1	Ι	-	1	1	1	Ι	Ι	_	Ι	Ι	1	Ι	
;	SFR Addr	0800	0082	0084	9800	0088	008A	008C	008E	0600	0092	0094	9600	8600	A600	O600	∃600	00A0	00A2	00A4	00A6	00A8	00AA	00AC	00AE	00B0	00B2	00B4	00B6	00BC	00BE	00C0	00C4	00C6	
	SFR Name	INTCON1	INTCON2	IFS0	IFS1	IFS2	IFS3	IFS4	IFS5	IFS6	IFS7	IEC0	IEC1	IEC2	IEC3	IEC4	IEC5	IEC6	IEC7	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC6	IPC7	IPC8	IPC9	IPC12	IPC13	IPC14	IPC16	IPC17	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE	: 4-6:	IN	FRRUF	PT CON	TROLLE	R REGIS	TER MA	AP FOR	dsPIC	TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dSPIC33FJ64GS606 DEVICES (CONTINUED)	Se06 DI	EVICES (CONTIN	UED)					<u>李</u>
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets	洵ds
IPC20	00CC	I	1	1	Ι	I	1	ı	ı	1	1	ADCP8IP<2:0>	4	I	I	1	1	0040	PΙ
IPC21	00CE	I	1	I	Ι	I	1	I	I	I	٨	ADCP12IP<2:0>	^ 0	I	I	1	I	0040	C3:
IPC23	00D2	I		PWM2IP<2:0>	6	I	P	PWM11P<2:0>	Δ	I	I	1	I	I	I	1	I	4400	3F,
IPC24	00D4	Ι		PWM6IP<2:0>	6	I	Δ	PWM5IP<2:0>	Δ	I		PWM4IP<2:0>	٨	-	ΡV	PWM3IP<2:0>	<u> </u>	4444	J6
IPC25	9000	Ι		AC2IP<2:0>	^	I	_	Ι	1	I	_	Ι	I	_	_	_	_	4000	4G
IPC26	8000	Ι	1	ı	Ι	I	_	Ι	1	I		AC4IP<2:0>		-	4	AC3IP<2:0>	^	0044	S6
IPC27	00DA	Ι		ADCP1IP<2:0>	<0:	I	AE	ADCP0IP<2:0>	^(I	_	Ι	I	_	_	_	_	4400	08
IPC28	00DC	Ι		ADCP5IP<2:0>	<0:	I	AE	ADCP4IP<2:0>	^(I	1	ADCP3IP<2:0>	<u>^</u>	-	AD	ADCP2IP<2:0>	^(4444	供
IPC29	00DE	_	1	1	_	_	_	1	_	-	_	_	-	_	AD	ADCP6IP<2:0>	<0	0004	Ŵ
INTTREG 00E0	00E0	ı	1	1	1		ILR<3:0>	<0:8		1			VE	VECNUM<6:0>				0000	奇
Legend:		unknown	value on R	teset, — = u	${\bf x}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	d, read as '0	. Reset vali	ues are shc	wn in hexe	adecimal.									

TABLE 4-7 :	: 4-7:	Z	ERRUP	T CONT	INTERRUPT CONTROLLER	REGIST	ER MA	P FOR c	SPIC3:	REGISTER MAP FOR dSPIC33FJ32GS406 AND dSPIC33FJ64GS406 DEVICES	406 ANI	O dsPIC	;33FJ64(GS406 D	EVICES	2		
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
INTCON1	1 0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	I	0000
INTCON2	2 0082	ALTIVT	DISI	1	Ι	-	I	Ι	I	Ι	Ι	Ι	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	0000
IFS0	0084	_	-	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF		T11F	OC11F	IC11F	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	TSIF	T41F	OC4IF	OC3IF	-	1	Ι	1	INT11F	CNIF	1	MI2C1IF	SI2C1IF	0000
IFS2	0088	Ι	I	I	I	Ι	1	I	1	Ι	IC4IF	IC3IF	I	I	1	SPI2IF	SPIZEIF	0000
IFS3	008A	Ι	I	1	Ι	1	QEI11F	PSEMIF	I	Ι	INT4IF	INT3IF	Ι	Ι	MI2C2IF	SI2C2IF	I	0000
IFS4	008C	_	-	1	Ι	_	_	PSESMIF	-	1	Ι	1	-	_	U2EIF	U1EIF	1	0000
IFS5	008E	PWM2IF	PWM11F	ADCP12IF	I	-	I	Ι	I	Ι	Ι	Ι	Ι	Ι	I	ADCP8IF	I	0000
IFS6	0600	ADCP11F	ADCPOIF	1	Ι	-	I	Ι	I	Ι	Ι	Ι	Ι	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	_	-	1	Ι	_	_	-	-	1	Ι	1	ADCP6IF	ADCP5IF	ADCP41F	ADCP3IF	ADCP2IF	0000
IEC0	0094	I	I	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	I	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	9600	U2TXIE	U2RXIE	INT2IE	TSIE	T4IE	OC4IE	OC3IE	-	1	Ι	1	INT1IE	CNIE	1	MI2C1IE	SI2C1IE	0000
IEC2	8600	Ι	I	1	Ι	-	I	Ι	I	Ι	IC4IE	IC3IE	Ι	Ι	Ι	SPIZIE	SPIZEIE	0000
EC3	009A	I	I	Ι	I	I	QEI1IE	PSEMIE	1	Ι	INT4IE	INT3IE	I	I	MI2C2IE	SI2C2IE	I	0000
IEC4	009C	-	-	-	1	-	_	PSESMIE	_	-	-	_	-	_	UZEIE	U1EIE	-	0000
IEC5	3600	PWM2IE	PWM11E	ADCP12IE	I	-	I	Ι	I	Ι	Ι	I	I	Ι	1	ADCP8IE	I	0000
IEC6	0000	ADCP11E	ADCP0IE	1	Ι	-	I	Ι	I	Ι	Ι	Ι	Ι	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2	Ι	I	Ι	I	Ι	I	I	1	Ι	I	I	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE ,	ADCP2IE	0000
IPC0	00A4	_		T1IP<2:0>		_)	OC1IP<2:0>		1		IC1IP<2:0>		_	AI.	INT0IP<2:0>		4444
IPC1	00A6	-		T2IP<2:0>		_)	OC2IP<2:0>		-		IC2IP<2:0>		_	1	-	1	4440
IPC2	00A8	-		U1RXIP<2:0>	<(_	57	SPI1IP<2:0>		-	S	SP11EIP<2:0>	<(_	•	T3IP<2:0>		4444
IPC3	00AA	-	1	1	1	_	_	-	1	-		ADIP<2:0>		_	U	U1TXIP<2:0>		0044
IPC4	00AC	-		CNIP<2:0>		Ι	_	-	-	1	M	MI2C1IP<2:0>	<(-	SI	SI2C1IP<2:0>		4444
IPC5	00AE	-	1	1	1	_	_	-	1	1	Ι	1	Ι	_	AI .	INT11P<2:0>		0004
IPC6	00B0	I		T4IP<2:0>		-)	OC4IP<2:0>		1)	OC3IP<2:0>	^	-	1	I	1	4440
IPC7	00B2	1		U2TXIP<2:0>	<(1	ח	U2RXIP<2:0>	^	1	_	INT2IP<2:0>	^	1	'	T5IP<2:0>		4444
IPC8	00B4	1	1	1	I	1	-	1	1	1	0,	SP12IP<2:0>	^	1	SF	SPI2EIP<2:0>		0044
IPC9	00B6	-	1	1	1	_		IC4IP<2:0>		-		IC3IP<2:0>		_	1	-	1	0440
IPC12	00BC	-	-	1	1	Ι	M	MI2C2IP<2:0>	^	1	S	SI2C2IP<2:0>	<(-	-	1	1	0440
IPC13	00BE	1	1	1	I	1	_	INT4IP<2:0>		1	_	INT3IP<2:0>	^	1	1	1	1	0440
IPC14	00C0	-	1	1	1	_)	QE111P<2:0>		-	Р	PSEMIP<2:0>	<(_	1	-	1	0440
IPC16	00C4	1	1	1	I	1	7	U2EIP<2:0>		1	7	U1EIP<2:0>	^	1	1	1	1	0440
IPC18	00C8	1	1	1	I	1	-	1	1	1	PS	PSESMIP<2:0>	0>	1	1	1	1	0040
IPC20	0000	I	I	1	I	I	1	I	1	1	A	ADCP8IP<2:0>	<0	I	1	1	1	0040
- Priend) >	, amoayan	A no en les	ini – +00	implemented	,U, 36 Pco.	Does to to	woda ore ao	beyod ai a	lowioo								

 ${\bf x}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

供应商

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dSPIC33FJ32GS406 AND dSPIC33FJ64GS406 DEVICES (CONTINUED)	INTERRUPT CONTROLLER REGISTER MAP F	ERRUPT CONTROLLER REGISTER MAP F	T CONTROLLER REGISTER MAP F	ROLLER REGISTER MAP F	REGISTER MAP F	ER MAP F	F F	OR o	ISPIC33	FJ32GS	406 AN	D dsPIC	33FJ64	GS406 [EVICE	S (CON	TINUEL	<u> </u>
SFR Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 B	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10	Bit 14 Bit 13 Bit 12 Bit 11 Bit 10	Bit 12 Bit 11 Bit 10	Bit 12 Bit 11 Bit 10	Bit 10		ш	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
BOOCE	1		-	-	-	-	'		-	1	A	ADCP12IP<2:0>	<0:	-	1	-	_	0040
00D2 — PWM2IP<2:0> — PWM1IP<2:0>	— PWM2IP<2:0> —	-	-	-	- PWM1IP	PWM1IP.	WM1IP.	<2:0;	^	-	_	1	_	_	_	_	_	4400
00D4 — PWM6IP<2:0> — PWM5IP<2:0>	— PWM6IP<2:0> —	-	-	-	PWM5IP<	PWM5IP<	//W5IP	2:0;	^	-	4	PWM4IP<2:0>	<0	_	Д	PWM3IP<2:0>	<(4444
00DA — ADCP1IP<2:0> — ADCP0IP<2:0>	— ADCP1IP<2:0> —				ADCP0IP<	ADCP0IP<	CP0IP<	2:0	^	-	_	1	_	_	_	_	_	4400
00DC — ADCP5IP<2:0> — ADCP4IP<2:0>	— ADCP5IP<2:0> —				ADCP4IP<	ADCP4IP<	CP4IP<	2:0	^	-	∀	ADCP3IP<2:0>	<0	_	AI	ADCP2IP<2:0>	<0	4444
ODDE				1	1		_		_	-	_	1	_	_	AI	ADCP6IP<2:0>	<0	0004
INTTREG 00E0 ILR<3:0>	1 1	ı	ı		ILR<3:0>	ILR<3:0>	<0:8			1			M	VECNUM<6:0>	^			0000
Legend: $x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.$	unknown value on Reset, — = unimplemented, read as '0'. Reset values are sho	ralue on Reset, — = unimplemented, read as '0'. Reset values are sho	eset, — = unimplemented, read as '0'. Reset values are sho	implemented, read as '0'. Reset values are sho	read as '0'. Reset values are sho	Reset values are sho	es are sho	≥	n in hexad	ecimal.								供月

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES **TABLE 4-8:**

-	100	-	J	10	00		<u> </u>	13.7														-		-	-	-		-				-	_	—	
	All Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	4444	4440	4444	0044	4444	0004	4440	4444	0044	0440	0440	0440	0440	0440	4040	4440
	Bit 0	_	INT0EP	INTOIF	SI2C1IF	SPI2EIF	_	_	_	PWM3IF	ADCP2IF	INTOIE	SI2C1IE	SPI2EIE	_	_	_	PWM3IE	ADCP2IE		_			•		1		^	_	_	_	_	1	1	1
	Bit 1	OSCFAIL	INT1EP	IC11F	MI2C11F	SPI2IF	SI2C2IF	U1EIF	ADCP8IF	PWM4IF	ADCP3IF	IC1IE	MI2C1IE	SPI2IE	SI2C2IE	U1EIE	ADCP8IE	PWM4IE	ADCP3IE	NT0IP<2:0>	_	T3IP<2:0>	U1TXIP<2:0>	SI2C1IP<2:0>	INT11P<2:0>	_	T5IP<2:0>	SPI2EIP<2:0>	_	_	_	_	1	_	1
	Bit 2	STKERR	INT2EP	OC1IF	AC11F	I	MI2C2IF	U2EIF	ADCP9IF	PWM5IF	ADCP4IF	OC11E	AC11E	_	MI2C2IE	U2EIE	ADCP91E	PWM5IE	ADCP4IE	I	1	•	n	SI	II	1	•	SF	-	-	-	-	1	1	1
	Bit 3	ADDRERR	INT3EP	T1IF	CNIF	I	1	1	ADCP10IF	PWM6IF	ADCP5IF	T1IE	CNIE	1	Ι	1	ADCP10IE	PWM6IE	ADCP5IE	Ι	1	1	1	1	1	I	1	1	1	1	1	1	1	1	1
	Bit 4	MATHERR /	INT4EP	_	INT11F	1	-	1	ADCP11IF /	PWM71F	ADCP6IF	I	INT11E	_	1	_	ADCP11IE ADCP10IE	PWM71E	ADCP6IE			_		^	_					_		_		^	Δ
	Bit 5	-	I	IC2IF	-	IC3IF	INT3IF	-	_	PWM81F	ADCP7IF	IC2IE	-	IC3IE	INT3IE	_	_	PWM81E	ADCP71E	IC11P<2:0>	IC2IP<2:0>	SP11EIP<2:0>	ADIP<2:0>	MI2C1 IP<2:0>	_	OC3IP<2:0>	INT2IP<2:0>	SP121P<2:0>	IC3IP<2:0>	SI2C2IP<2:0>	INT3IP<2:0>	PSEMIP<2:0>	U1EIP<2:0>	PSESMIP<2:0>	ADCP8IP<2:0>
	Bit 6	DIVOERR	_	OC2IF	-	IC4IF	INT4IF	_	_	PWM91F	_	OC2IE	_	IC4IE	INT4IE	-	_	PWM9IE	_			S		N	-			3		S	1	Ь		Ä	A
	Bit 7	SFTACERR DIVOERR	-	T2IF	_	I	-	-	-	AC2IF	-	T2IE	-	_	-	_	-	AC2IE	-	-	-	_	-	_	_	1	1	_	_	_	_	_	1	1	1
	Bit 8	COVTE	I	T3IF	1	I	1	I	1	AC3IF	I	T3IE	1	1	I	1	I	AC3IE	1				1		1		^	1		^				1	Δ
	Bit 9	OVBTE	_	SPI1EIF	OC3IF	_	PSEMIF	PSESMIF	_	AC41F	_	SPI1EIE	OC3IE	_	PSEMIE	PSESMIE	_	AC4IE	_	OC1IP<2:0>	OC2IP<2:0>	SP111P<2:0>	_	AC11P<2:0>	_	OC4IP<2:0>	U2RXIP<2:0>	_	C4IP<2:0>	MI2C2IP<2:0>	INT4IP<2:0>	QE11IP<2:0>	U2EIP<2:0>	1	ADCP9IP<2:0>
	Bit 10	OVATE	-	SPI1IF	OC4IF	1	QE11IF	-	_	_	-	SPI1IE	OC4IE		QEI1IE		-	1	_	J)	0)	_	1		0	n			M	=	J		1	AE
	Bit 11	COVBERR	-	U1RXIF	T4IF	I	1	QEI2IF	1	1	-	U1RXIE	T4IE	_	-	QEI2IE	-	1	1	-	1	_	1	_	_	1	1	_	_	_	_	_	1	1	1
	Bit 12	COVAERR	I	U1TXIF	TSIF	I	-	I	-	-	I	U1TXIE	TSIE	-	I	-	I	I	-			^	-		-		^	-	-	-	-	-	1		0>
	Bit 13	OVBERR	_	ADIF	INT2IF	-	_	_	ADCP12IF		_	ADIE	INT2IE	_	_	_	ADCP12IE	-		T11P<2:0>	T2IP<2:0>	U1RXIP<2:0>		CNIP<2:0>	_	T4IP<2:0>	U2TXIP<2:0>	_	_	_	_	_	1	QEI2IP<2:0>	ADCP10IP<2:0>
	Bit 14	OVAERR	DISI	1	U2RXIF	Ι	1	1	PWM11F	ADCP11F ADCP01F	1	Ι	U2RXIE	-	1	-	PWM11E	ADCP11E ADCP01E	1			1	1		-		1	-	-	-	-	-	1		AI
	Bit 15	NSTDIS	ALTIVT	Ι	U2TXIF	Ι	1	I	PWM2IF	ADCP11F	I	Ι	U2TXIE	Ι	I	Ι	PWM2IE	ADCP11E	Ι	I	Ι	Ι	Ι	I	Ι	I	1	Ι	Ι	I	Ι	Ι	Ι	1	1
	SFR Addr	0800	0082	0084	9800	8800	008A	008C	∃800	0600	7600	900	9600	8600	V600	2600	3 600	0000	00A2	00A4	9Y00	00A8	00AA	OOAC	00AE	00B0	00B2	00B4	9 B 00	00BC	3800	0000	00C4	8200	00CC
	SFR Name	INTCON1	INTCON2	IFS0	IFS1	IFS2	IFS3	IFS4	IFS5	IFS6	IFS7	IEC0	IEC1	IEC2	IEC3	IEC4	IEC5	IEC6	IEC7	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC6	IPC7	IPC8	IPC9	IPC12	IPC13	IPC14	IPC16	IPC18	IPC20

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

LE 4	TABLE 4-8:		ERRUP	T CON	ROLLE	R REGIS	TER M	AP FOR	dsPIC	INTERRUPT CONTROLLER REGISTER MAP FOR dSPIC33FJ32GS610 DEVICES (CONTINUED)	S610 DI	EVICES	(CONTI	NUED)				查
o, a	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
Ō	00CE	I	I	1	I	I	I	I	I	I	AE	ADCP12IP<2:0>	<0	1	AD	ADCP111P<2:0>	_	0044
0	00D2	I	4	PWM2IP<2:0>	<0>	I	٩	PWM1IP<2:0>	<	_	-	_	I	1	I	_	I	0044
0	00D4	I	4	PWM6IP<2:0>	<0>	I	٩	PWM5IP<2:0>	<	-	Д	PWM4IP<2:0>	٨	1	Λd	PWM3IP<2:0>		4444
0	9Q00	I		AC2IP<2:0>	Λ	I	٩	PWM9IP<2:0>	<	-	Д	PWM8IP<2:0>	٨	1	Λd	PWM7IP<2:0>		4444
0	8Q00	1	I	_	-	-	1	_	_	_		AC4IP<2:0>		1	4	AC3IP<2:0>		0044
Ō	00DA	I	A	ADCP11P<2:0>	<0:	Ι	AĽ	ADCP0IP<2:0>	<c< td=""><td>_</td><td>-</td><td>_</td><td>I</td><td>1</td><td>I</td><td>_</td><td>I</td><td>4400</td></c<>	_	-	_	I	1	I	_	I	4400
Ó	00DC	_	A	ADCP5IP<2:0>	<0:	1	AL	ADCP4IP<2:0>	<c< td=""><td>_</td><td>A</td><td>ADCP3IP<2:0></td><td><(</td><td>_</td><td>AD</td><td>ADCP2IP<2:0></td><td></td><td>4444</td></c<>	_	A	ADCP3IP<2:0>	<(_	AD	ADCP2IP<2:0>		4444
Ó	00DE	1	1	_	-	1	_	_	_	_	A.	ADCP7IP<2:0>	<(_	AD	ADCP6IP<2:0>		0044
0	INTTREG 00E0	1	ı	_	I		ILR<3:0>	3:0>		_			Λ	VECNUM<6:0>	<(0000
Legend:	un = x	known v	alue on Re	set, — = ur	nimplemente.	${\bf x}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	. Reset val	ues are sho	own in hexe	decimal.]

TABLE 4-9:	4-9:	Z	ERRUP	INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608	ROLLER	REGIST	ER MA	P FOR a	IsPIC33	FJ32GS(308		•			•	•	us
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0800	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	-	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000
INTCON2	0082	ALTIVT	DISI	-	-	I	1	I	Ι	-	-	1	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	0000
IFS0	0084	-	Ι	ADIF	U1TXIF	U1RXIF	SPI11F	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T11F	OC1IF	IC1 IF	INTOIF	0000
IFS1	9800	U2TXIF	U2RXIF	INT2IF	TSIF	T4IF	OC4IF	OC3IF	Ι	_	_	-	INT11F	CNIF	AC11F	MI2C1IF	SI2C1IF	0000
IFS2	8800	-	1	_	_	1	1	Ι	Ι	_	IC4IF	IC3IF	_	_	_	SPI2IF	SPIZEIF	0000
IFS3	008A	-	1	_	_	Ι	QEI11F	PSEMIF	Ι	_	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	-	1	_	-	QEI2IF	1	PSESMIF	Ι	_	_	_	_	_	UZEIF	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM11F	ADCP12IF	_	1	1	Ι	Ι	_	_	_	_	_	_	ADCP8IF	_	0000
IFS6	0600	ADCP11F	ADCP0IF	-	-	I	1	AC4IF	AC3IF	AC2IF		PWM8IF	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	Ι	I	I	I	I	Ι	Ι	I	I	I	ADCP71F	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF ADCP2IF	ADCP2IF	0000
IEC0	0094	Ι	Ι	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	9600	U2TXIE	U2RXIE	INT2IE	TSIE	T4IE	OC4IE	OC3IE	Ι	I	I	Ι	INT11E	CNIE	-	MI2C1IE	SI2C1IE	0000
IEC2	8600	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	IC4IE	IC3IE	_	I	-	SPIZIE	SPIZEIE	0000
IEC3	A600	Ι	Ι	_	Ι	I	QE111E	PSEMIE	Ι	Ι	INT4IE	INT3IE	_	I	MI2C2IE	SI2C2IE	Ι	0000
IEC4	2600	Ι	Ι	Ι	Ι	QEI2IE	I	PSESMIE	Ι	I	I	Ι	_	I	UZEIE	U1EIE	Ι	0000
IEC5	∃600	PWM2IE	PWM11E	ADCP12IE	Ι	I	Ι	Ι	Ι	I	I	Ι	_	I	-	ADCP81E	Ι	0000
IEC6	00A0		ADCP11E ADCP01E	I	I	I	I	AC4IE	AC3IE	AC2IE	I	PWM8IE	PWM71E	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2	-	1	_	_	1	1	Ι	Ι	_	_	ADCP71E	ADCP6IE	ADCP5IE	ADCP4IE	ADCP4IE ADCP3IE ADCP2IE	ADCP2IE	0000
IPC0	00A4	-		T11P<2:0>		Ι)	OC11P<2:0>		_		IC1IP<2:0>		_	۱I	INT0IP<2:0>		4444
IPC1	00A6	-		T2IP<2:0>		Ι)	OC2IP<2:0>		_		IC2IP<2:0>		_	_	_	_	4440
IPC2	00A8	-	_	U1RXIP<2:0>	^	Ι	S	SPI1IP<2:0>		_	S	SP11EIP<2:0>	<	_	•	T3IP<2:0>		4444
IPC3	00AA	-	1	_	_	1	1	Ι	Ι	_		ADIP<2:0>		_	n	U1TXIP<2:0>	^	0044
IPC4	00AC	1		CNIP<2:0>		I	+	AC11P<2:0>		1	Ž	MI2C1IP<2:0>	^	1	S	SI2C1IP<2:0>	^	4444
IPC5	00AE	-	Ι	-	-	I	1	I	Ι	-	-	1	_	1	AI .	INT1IP<2:0>		0004
IPC6	00B0	-		T4IP<2:0>		1)	OC4IP<2:0>		1)	OC3IP<2:0>		1	I	_	_	4440
IPC7	00B2	1	_	U2TXIP<2:0>	^	1	'n	U2RXIP<2:0>		I		INT2IP<2:0>	•	1	•	T5IP<2:0>		4444
IPC8	00B4	I	1	I	I	I	I	I	I	I	3,	SPI2IP<2:0>		1	SF	SPI2EIP<2:0>	^	0044
IPC9	00B6	1	Ι	1	1	1	_	IC4IP<2:0>		I		IC3IP<2:0>		1	I		-	0440
IPC12	00BC	1	Ι	1	1	1	Σ	MI2C2IP<2:0>		I	S	SI2C2IP<2:0>	^	1	I		-	0440
IPC13	00BE	1	Ι	1	1	1	=	INT4IP<2:0>		I		INT3IP<2:0>	•	1	I		-	0440
IPC14	00C0	1	1	1	1	1	J	QE111P<2:0>		I	Ф	PSEMIP<2:0>	^	1	I		-	0440
IPC16	00C4	I	1	I	I	1	ار	U2EIP<2:0>		I		U1EIP<2:0>		1	1	I	1	0440
IPC18	00C8	I		QEI2IP<2:0>	_	1	I	I	I	I	Ą	PSESMIP<2:0>	^	1	I	1	1	4040
IPC20	00CC	1	1	Ι	-	1	1	1	1	Ι	A	ADCP8IP<2:0>	^	I	1	I	-	0040

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

ZmI	o All Specification (Specification)	00400 PI	4400	4444	4044 4044	4 4 00	4400	4444	0044	0000	<u></u>
	Bit 1 Bit 0	1	1	PWM3IP<2:0>	PWM71P<2:0>	AC3IP<2:0>		ADCP2IP<2:0>	ADCP6IP<2:0>		
	Bit 2	I	I	PΜ	PΜ	A	1	AD	AD	^	
	Bit 3	1	1	1	1	1	1	1	1	VECNUM<6:0>	
יחם	Bit 4	5:0>	-	<0:	<0:	<(-	<0:	<0:	VE	
MINO	Bit 5	ADCP12IP<2:0>	Ι	PWM4IP<2:0>	PWM8IP<2:0>	AC4IP<2:0>	-	ADCP3IP<2:0>	ADCP7IP<2:0>		
വാ ഗേ	Bit 6	∢	ı	4	4		-	٨	٨		
トリンとらつ	Bit 7	I	Ι	_	_	_	_	_	_	_	cimal.
มรคเนงง	Bit 8	_	^	<	_	_	<	<	_		n in hexade
אטר י	Bit 9	I	PWM11P<2:0>	PWM5IP<2:0>	1	1	ADCP0IP<2:0>	ADCP4IP<2:0>	1	3:0>	es are show
IEK MA	Bit 10	Ι	Ь	Ь	-	-	A	A	-	ILR<3:0>	. Reset valu
ארביםוט	Bit 11	Ι	_	_	_	_	_	_	_		l, read as '0'
ROLLER	Bit 12	I	^	>	,	_)>)>	_	_	mplemented
INTERRUPT CONTROLLER REGISTER MAP FOR ASPICASFJAZGS608 (CONTINUED)	Bit 13	I	PWM2IP<2:0>	PWM6IP<2:0>	AC2IP<2:0>	_	ADCP1IP<2:0>	ADCP5IP<2:0>	_	_	${\bf x}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal
EKKUP	Bit 14	I	-	1		_	<i>d</i>	<i>d</i>	_	_	alue on Re
	Bit 15	1	-			_			_	_	= unknown ⋅
: 4-9:	SFR Addr	00CE	00D2	00D4	00De	00D8	00DA	00DC	00DE) 00E0	
IABLE 4-9:	SFR Name	IPC21	IPC23	IPC24	IPC25	IPC26	IPC27	IPC28	IPC29	INTTREG 00E0	Legend:

PWM3IE

PWM4IE **ADCP3IE**

ADCP8IE

U1EIE

SI2C2IE

4440

NT0IP<2:0>

4444 0044 4444 0004

T3IP<2:0>

SI2C1IP<2:0>

MI2C1IP<2:0>

OC3IP<2:0> INT2IP<2:0> SPI2IP<2:0> IC3IP<2:0>

U2RXIP<2:0>

U2TXIP<2:0>

T4IP<2:0>

00B0 00B2

OC4IP<2:0>

AC11P<2:0>

CNIP<2:0>

00AC 00AE

PC4

IPC5 IPC₆

INT11P<2:0>

4440

0044 0440 0440 0440 0440 0440 4040

SPI2EIP<2:0>

PSEMIP<2:0>

U1EIP<2:0>

INT3IP<2:0>

SI2C2IP<2:0>

MI2C2IP<2:0>

IC4IP<2:0>

1

Τ Ī

> IPC12 IPC13 PC14

00B4 00B6 00BC 00BE 00C0

PC8

IPC7

IPC9

INT4IP<2:0> QE11IP<2:0> U2EIP<2:0>

T5IP<2:0>

查询dsPIC33FJ64GS608供应商 0000

INT0EP

INT1EP

IC1IF

0000

0000 0000 0000

S12C11F

MI2C1IF

SPIZIF

0000

SI2C2IF

U1EIF

0000 0000 0000 0000 0000

MI2C1IE

IC1IE

SPIZIE

ADCP2IF

ADCP3IF

PWM3IF

ADCP8IF PWM41F 0000 0000 0000 0000 0000 0000 4444

All Resets

Bit 0

Bit 1

ADCP4IE ADCP4IF MI2C2IE **PWM5IE PWM5IF** MI2C2IF OC1IE AC11E UZEIE INT2EP OC1IF **AC1IF** U2EIF Bit 2 **PWM6IF** ADCP5IF **PWM6IE** INT3EP CNE Bit 3 T1F CNIF INT4EP **ADCP6IF ADCP6IE** INT11E INT1IF Bit 4 SPI1EIP<2:0> IC11P<2:0> IC2IP<2:0> **INT3IE** INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES INT3IF IC2IF IC3IF IC2IE IC3IE Bit 5 OC2IF OC2IE INT4IE INT4IF IC4IE Bit 6 IC4IF **AC2IE AC2IF** Bit 7 T2IE T2IF **AC3IE** Bit 8 **AC3IF** T3IE T3IF Τ OC2IP<2:0> SPI11P<2:0> OC1IP<2:0> SPI1EIE PSEMIE **PSESMIE** SPI1EIF **PSESMIF** AC4IE **PSEMIF** OC3IF OC3IE AC4IF Bit 9 **SPI11F** SP11IE QEI11E OC4IF OC4IE QEI1IF Bit 10 **U1RXIF** U1RXIE QEIZIE Bit 11 QE12IF T4IE T4IF **U1TXIE U1TXIF** Bit 12 T5IE T5IF T2IP<2:0> U1RXIP<2:0> T11P<2:0> ADCP12IF ADCP12IE Bit 13 INT2IF INT2IE ADIE ADIF ADCPOIF **PWM11E ADCP0IE** U2RXIF **PWM11F** U2RXIE DISI **PWM2IE** ADCP11E **U2TXIF** ADCP11F **U2TXIE PWM2IF** ALTIVT 蓝 **FABLE 4-10:** 0082 9800 008C 008E 0600 0092 0094 9600 8600 009A 000C 3600 00A0 00A2 00A4 00A6 00A8 00AA SFR Addr 0084 008A 0088 INTCON2 SFR Name IEC0 IEC3 EC5 EC6 IPC0 FS0 FS2 FS3 FS4 FS5 FS6 EC1 IEC2 IEC4 IEC7 IPC1 IPC2 IPC3 FS7 FS1

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

0040

ADCP8IP<2:0> PSESMIP<2:0>

QE12IP<2:0>

00C8 00CC

IPC18 IPC20

00C4

IPC16

查	洵ds	PI	033	3F,	J6 ₄	4G	S60)84	共		苔
	All Resets	0040	4400	4444	4000	0044	4400	4444	0004	0000	
	Bit 0	I	I	^ C	I	٨	I	0>	0>		
	Bit 1	1	I	PWM3IP<2:0>	I	AC3IP<2:0>	I	ADCP2IP<2:0>	ADCP6IP<2:0>		
	Bit 2	1	I	<u>а</u>	I		I	A	A	^	
UED)	Bit 3	1	_	_	_	_	_	_	_	VECNUM<6:0>	
CONTIN	Bit 4	<0:	I	<(I	^	I	0>	_	VE	
VICES (Bit 5	ADCP12IP<2:0>	_	PWM4IP<2:0>	_	AC4IP<2:0>	_	ADCP3IP<2:0>	_		
606 DE\	Bit 6	ΑΓ	I	Ь	I		I	A	ı		
TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES (CONTINUED)	Bit 7	1	I	I	I	_	I	_	_	_	cimal.
dsPIC33	Bit 8	1	^	^	1	I	٨	^	1		n in hexade
P FOR	Bit 9	ı	PWM11P<2:0>	PWM5IP<2:0>	_	_	ADCP0IP<2:0>	ADCP4IP<2:0>	_	3:0>	es are show
TER MA	Bit 10	I	Ā	Ā	Ι	-	AI	AI.	_	ILR<3:0>	. Reset valu
REGIS	Bit 11	1	_	_	_	_	_	_	_		i, read as '0
ROLLEF	Bit 12	I	^	^		_	<(<(_	-	${\bf x}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.
T CONT	Bit 13	I	PWM2IP<2:0>	PWM6IP<2:0>	AC2IP<2:0>	-	ADCP1IP<2:0>	ADCP5IP<2:0>	_	-	set, — = uni
ERRUP'	Bit 14	I	Ы	Ы		_	Y	А	_	_	alue on Re
: INT	Bit 15	1	_	_	_	_	_	_	_	_	: unknown
4-10	SFR Addr	00CE	00D2	00D4	9000	00D8	00DA	00DC	00DE	00E0	
TABLE	SFR Name	IPC21	IPC23	IPC24	IPC25	IPC26	IPC27	IPC28	IPC29	INTTREG 00E0	Legend:

<u>sPIC</u>	331	JU)4U	190	UO.	/	W.										
AII Resets	XXXX	FFFF	0000	XXXX	XXXX	XXXX	ਸੁਸੁਸੁਸ	FFFF	0000	0000	XXXX	XXXX	XXXX	FFFF	FFFF	0000	0000
Bit 0			1						1	_						_	_
Bit 1		,	TCS						TCS	TCS						TCS	TCS
Bit 2			TSYNC						I	-						-	_
Bit 3			I						T32	I						T32	1
Bit 4			TCKPS<1:0>						TCKPS<1:0>	TCKPS<1:0>						TCKPS<1:0>	TCKPS<1:0>
Bit 5			TCKP		(TCKP	TCKP		(/				TCKP	TCKP
Bit 6		,	TGATE		erations only				TGATE	TGATE		erations only				TGATE	TGATE
Bit 7	gister	lister 1	1	gister	Timer3 Holding Register (for 32-bit timer operations only)	gister	lister 2	lister 3	I	I	gister	Timer5 Holding Register (for 32-bit timer operations only)	gister	lister 4	lister 5	I	-
Bit 8	Timer1 Register	Period Register 1	1	Timer2 Register	gister (for 32	Timer3 Register	Period Register 2	Period Register 3	I	I	Timer4 Register	egister (for 32	Timer5 Register	Period Register 4	Period Register 5	I	-
Bit 9			I		3 Holding Re				ı	Ι		5 Holding Re				Ι	-
Bit 10			1		Timer				I	_		Timer				_	_
Bit 11			1						1	1						1	I
Bit 12			1						1	-						-	_
Bit 13		•	TSIDL						TSIDL	TSIDL						TSIDL	TSIDL
Bit 14		•	I						I	I						I	I
Bit 15		•	NOT						NOT	NOT						NOT	NOT
SFR Addr	0100	0102	0104	0106	0108	010A	010C	010E	0110	0112	0114	0116	0118	011A	011C	011E	0120
SFR Name	TMR1	PR1	T1CON	TMR2	TMR3HLD	TMR3	PR2	PR3	T2CON	T3CON	TMR4	TMR5HLD	TMR5	PR4	PR5	T4CON	TSCON

nd: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: INPUT CAPTURE REGISTER MAP

	Bit 0 Resets		XXXX	0000	0000 xxxxx	0000 xxxxx	0000 xxxxx	0000 xxxxx 00000	xxxxx 00000 xxxxx
	Bit 1			ICM<2:0>	ICM<2:0>	ICM<2:0>	ICM<2:0>	ICM<2:0> ICM<2:0> ICM<2:0>	ICM-2:0> ICM-2:0> ICM-2:0>
	Bit 2								
	Bit 3			ICBNE		— —			
	t 5 Bit 4			COV	COV	NOO!	NOO ICON	COV COV	\(\text{OO} \) \(\text{OO} \) \(\text{OO} \)
Bit 6 Bit 5				ICI<1:0>	ICI<1:0>	ICk1:0>	ICK1:0>	ICK1:0> ICK1:0> ICK1:0> ICK1:0>	IOK1:0> IOK1:0> IOK1:0>
	Bit 7	re Register		ICTMR	ICTMR Ire Register	ICTMR Ire Register ICTMR	ICTMR re Register ICTMR re Register	ICTMR Ire Register ICTMR Ire Register ICTMR ICTMR	re Register ICTMR Ire Register Ire Register ICTMR Ire Register
	Bit 8	Input 1 Capture Register		1	T i	nput 2 Captun	Input 2 Capture Register - ICTMR - ICTMR Input 3 Capture Register	put 2 Captun	— ICTMR
	Bit 9	μl		1					
	Bit 10			1	I	1 1	1 1	1 1 1	1 1
;	Bit 11			I	1	1 1	1 1	1 1	1 1 1
	Bit 12		I			ı	ı		
	Bit 13		ICSIDF			ICSIDI	ICSIDL	ICSIDL	ICSIDL
	Bit 14		I			ı		1 1	
	Bit 15		Ι			1	1	1 1	1 1
	SFR Addr	0140	0142		0144	0144	0144	0144 0146 0148	0144 0146 0148 014A
	SFR Name	IC1BUF	IC1CON		IC2BUF	IC2BUF IC2CON	IC2BUF IC2CON IC3BUF	IC2BUF IC2CON IC3BUF IC3CON	IC2BUF IC3BUF IC3BUF IC4BUF

TIMERS REGISTER MAP

TABLE 4-11:

阅ds	110	/33)1·J	04	้นว	UU	8伊	<u> </u>	<u>/</u> 尼	<u>)</u>		_
All Resets	XXXX	XXXX	0000	XXXX	XXXX	0000	xxxx	xxxx	0000	XXXX	XXXX	0000
Bit 0												
Bit 1			OCM<2:0>			OCM<2:0>			OCM<2:0>			OCM<2:0>
Bit 2			0			0			0			0
Bit 3			OCTSEL			OCTSEL			OCTSEL			OCTSEL
Bit 4			OCFLT			OCFLT			OCFLT			OCFLT
Bit 5			_			_			_			-
Bit 6	ister		-	ister		_	ister		_	ister		_
Bit 7	Output Compare 1 Secondary Register	1 Register	I	Output Compare 2 Secondary Register	2 Register	1	Output Compare 3 Secondary Register	3 Register	1	Output Compare 4 Secondary Register	4 Register	I
Bit 8	mpare 1 Sec	Output Compare 1 Register	Ι	mpare 2 Sec	Output Compare 2 Register	1	mpare 3 Sec	Output Compare 3 Register	1	mpare 4 Sec	Output Compare 4 Register	1
Bit 9	Output Co	dnO	Ι	Output Co	dıno	_	Output Co	dıno	_	Output Co	Outp	_
Bit 10			I			_			_			_
Bit 11			Ι			-			-			1
Bit 12			Ι			_			_			1
Bit 13			OCSIDE			OCSIDL			OCSIDL			OCSIDL
Bit 14			Ι			_			_			-
Bit 15			Ι			_			_			1
SFR Addr	0180	0182	0184	0186	0188	018A	018C	018E	0190	0192	0194	0196
SFR Name	OC1RS	OC1R	OC1CON	OC2RS	OC2R	OC2CON	OC3RS	OC3R	OC3CON	OC4RS	OC4R	OC4CON

OUTPUT COMPARE REGISTER MAP

TABLE 4-13:

gend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: QEI1 REGISTER MAP

	·	, LI IVE																
SFR Name	Addr.	Addr. Bit 15	Bit 14	Bit 14 Bit 13 Bit 12	Bit 12	Bit 11	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1	Bit 1	Bit 0	All Resets
QEI1CON 01E0 CNTERR	01E0	CNTERR	1	QEISIDL INDX	NDX	NDAN		QEIM<2:0>		SWPAB	SWPAB PCDOUT TQGATE	TQGATE	TQCKPS	\$<1:0>	POSRES	TQCS	TQCKPS<1:0> POSRES TQCS UPDN_SRC	0000
DFLT1CON 01E2	01E2	1	_	Ι	-	_	IMV<	1:0>	CEID	IMV<1:0> CEID QEOUT		QECK<2:0>		Ι	_	_	-	0000
POS1CNT 01E4	01E4								Po	Position Counter<15:0>	iter<15:0>							0000
MAX1CNT 01E6	01E6								Ma	Maximum Count<15:0>								FFFF

Legend: u = uninitialized bit, —= unimplemented, read as '0'

TABLE 4-15: QEI2 REGISTER MAP

SFR Name	Addr.	Addr. Bit 15 Bit 14 Bit 13 Bit 12	Bit 14	Bit 13	Bit 12	Bit 11	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI2CON	01F0	01F0 CNTERR	I	QEISIDL INDX	NDX	NDAN	QEIM<2:0>	∃IM<2:0;		SWPAB	PCDOUT	TQGATE	TQCKP	3<1:0>	POSRES	Tacs	SWPAB PCDOUT TQGATE TQCKPS<1:0> POSRES TQCS UPDN_SRC 0000	0000
DFLT2CON 01F2	01F2	I	I	Ι	1	I	IMV<	1:0>	CEID	IMV<1:0> CEID QEOUT		QECK<2:0>		Ι	I	I	Ι	0000
POS2CNT 01F4	01F4								Po	Position Counter<15:0>	ter<15:0>							0000
MAX2CNT 01F6	01F6								Ma	Maximum Count<15:0>	unt<15:0>							FFFF
(c) as because heaters and amine the beautiful still and an extension of the second of	0:4: 0:0:	in a bit	acia:	Look Lotus	,0,00													

gend: u = u nninitialized bit, m = u unimplemented, read as '0'

	Bit 10
MAP	Bit 11
ISTER	Bit 12
/M REG	Rit 13
ED PM	Bit 14
HIGH-SPEED PWM REGISTER MAP	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10
.16:	Addr
TABLE 4-16 :	File Name

			!	,														
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
PTCON	0400	PTEN	I	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCPOL SYNCOEN SYNCEN	SYNCEN	SYF	SYNCSRC<2:0>	0>		SEVTP	SEVTPS<3:0>		0000
PTCON2	0402	_	1	-	_	_	Ι	-	I	-	-	_	I	-	PC	PCLKDIV<2:0>	^	0000
PTPER	0404								PTPER<15:0>	<0:								FFF8
SEVTCMP	0406						SE	SEVTCMP<15:3>	3>						-	I	_	0000
MDC	040A								MDC<15:0>	<(0000
STCON	040E	_	1	-	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCPOL SYNCOEN SYNCEN	SYNCEN	SYF	SYNCSRC<2:0>	<0		SEVTP	SEVTPS<3:0>		0000
STCON2	0410	_	1	-	_	_	Ι	-	I	-	-	_	I	-	PC	PCLKDIV<2:0>	^	0000
STPER	0412								PTPER<15:0>	<0:								FFF8
SSEVTCMP	0414						SS	SSEVTCMP<15:3>	:3>						_	_	_	0000
СНОР	041A	CHPCLKEN	-	_	_	_	-			CHC	CHOP<9:3>				_	-	_	0000
] ·																		

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset, Legend:

HIGH-SPEED PWM GENERATOR 1 REGISTER MAP TABLE 4-17:

	:))]]			:												
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0420	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>	<0:	DTCP	I	MTBS	CAM	XPRES	IUE	0000
IOCON1	0422	HN∃d	PENL	нтоа	POLL	PMOD<1:0>		OVRENH	OVRENL	OVRDAT<1:0>	<1:0>	FLTDAT<1:0>	<1:0>	CLDAT<1:0>	<1:0>	SWAP	OSYNC	0000
FCLCON1	0424	IFLTMOD			CLSRC<4:0>	<0		CLPOL	CLMOD		FL	FLTSRC<4:0>	٨		FLTPOL	FLTMOD<1:0>	><1:0>	0000
PDC1	0426								PDC1<15:0>	<0:5								0000
PHASE1	0428								PHASE1<15:0>	15:0>								0000
DTR1	042A	I	1							DTR1<13:0>	<0:							0000
ALTDTR1	042C	I	1							ALTDTR1<13:0>	13:0>							0000
SDC1	042E								SDC1<15:0>	<0:5								0000
SPHASE1	0430								SPHASE1<15:0>	15:0>								0000
TRIG1	0432						TRGCA	TRGCMP<15:3>							1	1	1	0000
TRGCON1	0434		TRGDIV<3:0>	V<3:0>		1	1	1	1	DTM	1			TRGS	TRGSTRT<5:0>			0000
STRIG1	0436						STRGC	STRGCMP<15:3>							1	1	1	0000
PWMCAP1	0438						PWMC <i></i>	PWMCAP1<15:3>							I	I	I	0000
LEBCON1	043A	PHR	JHd	PLR	PLF	FLTLEBEN	CLLEBEN	1	I	1	I	ВСН	BCL	ВРНН	BPHL	ВРГН	BPLL	0000
LEBDLY1	043C	1	1	1	1				LEB	LEB<11:3>					1	1	1	0000
AUXCON1	043E	HRPDIS	HRDDIS	1	1		BLANKSEL<3:0>	-<3:0>		1	1		CHOPSEL<3:0>	EL<3:0>		CHOPHEN	CHOPLEN	0000
													Ì		Ì			

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

	HGH.	SPEED I	HIGH-SPEED PWM GENERATO	NERA	FOR 2 RE	R 2 REGISTER MAP	MAP										主に
Addr Bit 15 E		Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
FLTSTAT	ΗŤ	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>	1:0>	DTCP	1	MTBS	CAM	XPRES	IUE	0000
PENH		PENL	РОГН	POLL	PMOD<1:0>	<1:0>	OVRENH	OVRENL	OVRDAT<1:0>	<0:1>	FLTDAT<1:0>	[<1:0>	CLDA	CLDAT<1:0>	SWAP	OSYNC	0000
IFLTMOD				CLSRC<4:0>	0>		CLPOL	CLMOD		교	FLTSRC<4:0>	Δ		FLTPOL	FLTMO	FLTMOD<1:0>	0000
								PDC2<15:0>									0000
							Ь	PHASE2<15:0>	٨								0000
Ι		-						۵	DTR2<13:0>	٨							0000
ı		-						ALT	ALTDTR2<13:0>	<0:							0000
								SDC2<15:0>									0000
							S	SPHASE2<15:0>	^								0000
						TRGCN	TRGCMP<15:3>							_	I	I	0000
		TRGDIV<3:0>	V<3:0>		1	_	1	Ι	MTQ	I			TRG	TRGSTRT<5:0>	^		0000
						STRGC	STRGCMP<15:3>							_	_	1	0000
						PWMCA	PWMCAP2<15:3>							_	_	1	0000
PHR		PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	1	ı	-	ВСН	BCL	ВРНН	BPHL	ВРСН	BPLL	0000
Ι			_	_				LEB<11:3>	:3>					_	_	1	0000
045E HRPDIS	"	HRDDIS	_	I		BLANKS	BLANKSEL<3:0>		ı	I		CHOPSEL<3:0>	EL<3:0>		CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19 :	-19:	HIGH-S	PEED !	HIGH-SPEED PWM GENERA	NERAT	TOR 3 REGISTER MAP	GISTER	MAP										
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
PWMCON3	0460	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>	-1:0>	DTCP	ı	MTBS	CAM	XPRES	IUE	0000
IOCON3	0462	PENH	PENL	РОГН	POLL	PMOD<1:0>	<1:0>	OVRENH	OVRENL	OVRDAT<1:0>	T<1:0>	FLTDAT<1:0>	<1:0>	CLDAT<1:0>	<1:0>	SWAP	OSYNC	0000
FCLCON3	0464	IFLTMOD			CLSRC<4:0>	^(CLPOL	CLMOD		FL	FLTSRC<4:0>	٨	_	FLTPOL	FLTMOD<1:0>	>(1:0>	0000
PDC3	0466							<u>I</u>	PDC3<15:0>									0000
PHASE3	0468							PH	PHASE3<15:0>									0000
DTR3	046C	I	-						DTF	DTR3<13:0>								0000
ALTDTR3	046C	I	I						ALTD	ALTDTR3<13:0>	^							0000
SDC3	046E							S	SDC3<15:0>									0000
SPHASE3	0470							SPF	SPHASE3<15:0>									0000
TRIG3	0472						TRGCMP<15:3>	><15:3>							1	Ι	I	0000
TRGCON3	0474		TRGDI	TRGDIV<3:0>		_	I	1	_	MTQ	I			TRG	TRGSTRT<5:0>	٨		0000
STRIG3	0476						STRGCMP<15:3>	P<15:3>							1	Ι	I	0000
PWMCAP3	0478						PWMCAP3<15:3>	3<15:3>							1	Ι	I	0000
LEBCON3	047A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	-	_	_	-	ВСН	BCL	ВРНН	BPHL	ВРГН	BPLL	0000
LEBDLY3	047C	1	1	_	-				LEB<11:3>	3>					-	1	1	0000
AUXCON3	047E	HRPDIS	HRDDIS	1	1		BL ANKSEL <3:0>	FL<3:0>		I	I		CHOPSEL<3:0>	1<3:0>		CHOPHEN CHOPLEN		0000

TABLE 4	-20:	HIGH-6	SPEED	PWM GE	NERAL	TABLE 4-20: HIGH-SPEED PWM GENERATOR 4 REGISTER MAP	GISTER	MAP										全迫
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets TSD
PWMCON4	0480	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>	1:0>	DTCP	I	MTBS	CAM	XPRES	IUE	0000
IOCON4	0482	PENH	PENL	НПОЧ	POLL	PMOD<1:0>	<1:0>	OVRENH	OVRENL	OVRDAT<1:0>	T<1:0>	FLTDAT<1:0>	⁻<1:0>	CLDA	CLDAT<1:0>	SWAP	OSYNC	0000
FCLCON4	0484	IFLTMOD			CLSRC<4:0>	<0.		CLPOL	CLMOD		FLT	FLTSRC<4:0>			FLTPOL	FLTMOD<1:0>	J<1:0>	0000
PDC4	0486								PDC4<15:0>	Δ								0000
PHASE4	0488							Д	PHASE4<15:0>	<0.								0000
DTR4	048A	Ι	Ι							DTR4<13:0>	^ C							0000
ALTDTR4	048A	Ι	Ι						AL	ALTDTR4<13:0>	3:0>							0000
SDC4	048E								SDC4<15:0>	Δ								0000
SPHASE4	0490							SF	SPHASE4<15:0>	<0:5								0000
TRIG4	0492						TRGCMP<15:3>	P<15:3>							I	I	1	0000
TRGCON4	0494		TRGDI	TRGDIV<3:0>		Ι	-	_	1	DTM	I			TRG	TRGSTRT<5:0>			0000
STRIG4	0496						STRGCMP<15:3>	P<15:3>							_	-	I	0000
PWMCAP4	0498						PWMCAP4<15:3>	4<15:3>							_	_	1	0000
LEBCON4	049A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	-	-	-	ВСН	BCL	ВРНН	BPHL	ВРСН	BPLL	0000
LEBDLY4	049C	1	1	-	_				LEB<11:3>	11:3>					_	_	1	0000
AUXCON4	049E	HRPDIS	HRDDIS	_	I		BLANKSEL<3:0>	L<3:0>		I	I		CHOPSEL<3:0>	:L<3:0>		CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	-21:	HIGH-S	PEED I	PWM GE	NERAT	TABLE 4-21: HIGH-SPEED PWM GENERATOR 5 REGISTER MAP	GISTER	MAP										
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON5	04A0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>	1:0>	DTCP	1	MTBS	CAM	XPRES	IUE	0000
IOCON5	04A2	PENH	PENL	РОГН	POLL	PMOD<1:0>	<1:0>	OVRENH OVRENL	OVRENL	OVRDAT<1:0>	T<1:0>	FLTDAT<1:0>	<1:0>	CLDAT<1:0>	T<1:0>	SWAP	OSYNC	0000
FCLCON5	04A4	IFLTMOD			CLSRC<4:(4:0>		CLPOL	CLMOD		FLT	FLTSRC<4:0>			FLTPOL	FLTMOD<1:0>	><1:0>	0000
PDC5	04A6							_	PDC5<15:0>	<u>^</u>								0000
PHASE5	04A8							I d	PHASE5<15:0>	<0::0>								0000
DTR5	04AA	Ι	I							DTR5<13:0>	^(0000
ALTDTR5	04AA	1	Ι						AI	ALTDTR5<13:0>	3:0>							0000
SDC5	04AE								SDC5<15:0>	^(0000
SPHASE5	04B0							SP	SPHASE5<15:0>	2:0>								0000
TRIG5	04B2						TRGCMP<15:3>	><15:3>							_	I	-	0000
TRGCON5	04B4		TRGDI	TRGDIV<3:0>		Ι	_	I	_	DTM	I			TRGS	TRGSTRT<5:0>			0000
STRIG5	04B6						STRGCMP<15:3>	P<15:3>							_	ı	-	0000
PWMCAP5	04B8						PWMCAP5<15:3>	5<15:3>							_	I	-	0000
LEBCON5	04BA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	Ι	_	1	1	ВСН	BCL	ВРНН	BPHL	ВРСН	BPLL	0000
LEBDLY5	04BC	-	1	-					LEB<	LEB<11:3>					1	-	1	0000
AUXCON5	04BE	HRPDIS	HRDDIS	1	ı		BLANKSEL<3:0>	<3:0>		I	ı		CHOPSEL <3:0>	1<3:0>		CHOPHEN CHOPLEN	CHOPLEN	0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: HIGH-SPEED PWM GENERATOR 6 REGISTER MAP	-22:	HIGH-S	PEED I	PWM GE	NERAT	OR 6 RE	GISTER	MAP										<u>主</u> 伯
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets ASD
PWMCON6	04C0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>	1:0>	DTCP	I	MTBS	CAM	XPRES	IUE	0000
9NOOOI	04C2	PENH	PENL	POLH	POLL	PMOD<1:0>	<1:0>	OVRENH	OVRENL	OVRDAT<1:0>	T<1:0>	FLTDAT<1:0>	<1:0>	CLDAT<1:0>	<1:0>	SWAP	OSYNC	0000
FCLCON6	04C4	IFLTMOD		_	CLSRC<4:0>	- C		CLPOL	CLMOD		FLT	FLTSRC<4:0>		-	FLTPOL	FLTMOD<1:0>	D<1:0>	0000
PDC6	04C6								PDC6<15:0>	٨								0000
PHASE6	04C8							А	PHASE6<15:0>	Ģ								0000
DTR6	04CA	1	I						_	DTR6<13:0>	^ C							0000
ALTDTR6	04CA	1	I						AL	ALTDTR6<13:0>	3:0>							0000
SDC6	04CE								SDC6<15:0>	٨								0000
SPHASE6	04D0							SF	SPHASE6<15:0>	<0::								0000
TRIG6	04D2						TRGCMP<15:3>	P<15:3>							-	ı	_	0000
TRGCON6	04D4		TRGDI	TRGDIV<3:0>		-	_	I	I	DTM	Ι			TRGS	TRGSTRT<5:0>			0000
STRIG6	04D6						STRGCMP<15:3>	1P<15:3>							-	1	_	0000
PWMCAP6	04D8						PWMCAF	PWMCAP6<15:3>							-	_	_	0000
LEBCON6	04DA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	1	1	_	1	ВСН	BCL	ВРНН	BPHL	BPLH	BPLL	0000
LEBDLY6	04DC	_	-	_	Ι				LEB<11:3>	11:3>					-	_	_	0000
AUXCON6	04DE	HRPDIS	HRDDIS	I	I		BLANKSEL<3:0>	L<3:0>		-	I		CHOPSEL<3:0>	L<3:0>		CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

ES)	All Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
3 DEVIC	Bit 0	IUE	ONASO	D<1:0>							_		_	_	BPLL	1	CHOPLEN
64GS40	Bit 1	XPRES	SWAP	FLTMOD<1:0>							_	٨	_	_	ВРLН	_	CHOPHEN
СЗЗЕЛ	Bit 2	CAM	CLDAT<1:0>	FLTPOL							_	TRGSTRT<5:0>	_	_	BPHL		
ID dsP	Bit 3	MTBS	CLDA									TRG			ВРНН		CHOPSEL<3:0>
106 AN	Bit 4	-	FLTDAT<1:0>	٨											BCL		CHOPS
132GS	Bit 5	DTCP	FLTDA	FLTSRC<4:0>											ВСН		
IC33F.	Bit 6	1:0>	T<1:0>	FLT			<(3:0>				Ι			1		1
S dsP	Bit 7	DTC<1:0>	OVRDAT<1:0>		^	> C	DTR7<13:0>	ALTDTR7<13:0>	Δ.	<0:		DTM			-	1:3>	-
CLUDE	Bit 8	MDCS	OVRENL	CLMOD	PDC7<15:0>	PHASE7<15:0>	٥	AL:	SDC7<15:0>	SPHASE7<15:0>		Ι			-	LEB<11:3>	
AP (EX	Bit 9	ITB	OVRENH	CLPOL	Ь	ЬН			S	SPI	15:3>	1	:15:3>	<15:3>	1		3:0>
STER M	Bit 10	TRGIEN									TRGCMP<15:3>	-	STRGCMP<15:3>	PWMCAP7<15:3>	CLLEBEN		BLANKSEL<3:0>
OR 7 REGISTER MAP (EXCLUDES dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES)	Bit 11	CLIEN T	PMOD<1:0>	^ C								1			FLTLEBEN CI		В
	Bit 12	FLTIEN	POLL	CLSRC<4:0>											PLF	_	_
HIGH-SPEED PWM GENERA	Bit 13	TRGSTAT	POLH									TRGDIV<3:0>			PLR	1	1
PEED I	Bit 14	CLSTAT	PENL				Ι	Ι				TRGDI			PHF	I	HRDDIS
HIGH-S	Bit 15	FLTSTAT	PENH	IFLTMOD			Ι	Ι							PHR	1	HRPDIS
-23:	Addr Offset	04E0	04E2	04E4	04E6	04E8	04EA	04EA	04EE	04F0	04F2	04F4	04F6	04F8	04FA	04FC	04FE
TABLE 4-23 :	File Name	PWMCON7	IOCON7	FCLCON7	PDC7	PHASE7	DTR7	ALTDTR7	SDC7	SPHASE7	TRIG7	TRGCON7	STRIG7	PWMCAP7	LEBCON7	LEBDLY7	AUXCON7

gend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

UE	OSYNC 0000	UE	OSYNC 0000 MOD<1:0> 0000 0000 0000	OSYNC 0000 MOD<1:0> 0000 0000 0000 0000	OSYNC 0000 OSTANC 0000 ODC-1:0> 00000 00000 00000 00000 00000	OSYNC 0000 OSYNC 0000 MOD<1:0> 0000 0000 0000 0000 0000 0000	OSYNC 0000 OSYNC 0000 OOSTO 0000 0000 0000 0000 0000 0000 0000	UE 0000 OSYNC 0000 OSYNC 0000 0000 0000 	IUE 0000 OSYNC 0000 OSYNC 0000 0000	UE	
X S	N X	X S X	X S	NS X	NS SN		\(\frac{1}{\times}\)	8 8 X	N X X X X X X X X X	S × N	
MTBS CAM CLDAT<1:0> FLTPOL		\square	⊢− 7 1	⊢−−	⊢	⊢−−	⊢∀∀− 	CLDAT<1:0> FLTPC FLTPC TRGSTRT<	CLDATA-1:05 FLTPC FLTPC TRGSTRT	FLTPC	
- 1:0>	1:0> M	\(\frac{1}{2}\)	V1:0 V2:0 V3:0 	V41:0	M	1 00 V	M	M	- M - (41:0> M - M - M - M - M - M - M - M - M - M	M	
OVRDAT<1:0> FLTDAT FLTSRC<4:0>				O> FLTSF	O> HELTSF	O> FLTSF	PLTSF	PLTSF	PLTSF	PLTSF	
			R8<13:0>	R8<13:0> TR8<13:0>	R8<13:0>	X8<13:0>	X8<13:0> TR8<13:0>	88<13.0> TR8<13.0>	788<13:0> TR8<13:0> TR8<13:0> TR8<13:0> TM	88<13:0> TR8<13:0> TR8<13:0> TR8<13:0>	
OL CLMOD				CLMOD PDC8<15 PHASE8<	CLMOD PDC8<15 PHASE8<′ SDC8<15	CLMOD PDC8<15 PHASE8< SDC8<15 SDC8<15	PDC8<16 PHASE8< SDC8<16 SDC8<16 SDC8<16	PDC8<15 PHASE8< SDC8<16 SPHASE8<	CLMOD PDC8<16 PHASE8< SPHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8< PHASE8<	PDC8<16 PHASE8< SDC8<16 SPHASE8< PHASE8< PHASE8< PHASE8<	
CLPOL	CLPOI	CLPOI	CLPOI	CLPOI	CLPOI	CLPOI	TRGCMP<15:3>	TRGCMP<15:3>	TRGCMP-STRGCMP STRGCMP PWMCAP8	TRGCMP-STRGCMP STRGCMP PWMCAP8	
									PLF FLTLEBEI		
			1	1 1	1 1				 TRGDIV<3:0>	NIGE NO.	
	0200	0506	0506 0508 050A	0506 0508 050A 050A	0506 0508 050A 050A	0506 0508 050A 050A 050E	0506 0508 050A 050A 0510 0512	0506 0508 050A 050A 050C 0510 0512 0514 0518	0506 0508 050A 050A 050C 0510 0512 0514 0514 0514	0506 0508 050A 050A 050E 0510 0514 0514 0518 0518	
	PDC8	PDC8 PHASE8	PDC8 PHASE8 DTR8	PDC8 PHASE8 DTR8 ALTDTR8	PDC8 PHASE8 DTR8 ALTDTR8 SDC8	PDC8 PHASE8 DTR8 ALTDTR8 SDC8 SPC8	PDC8 PHASE8 DTR8 ALTDTR8 SDC8 SPHASE8 TRIG8	PDC8 PHASE8 DTR8 ALTDTR8 SDC8 SPHASE8 TRIG8 TRGCON8 STRIG8	3 3 3 APB APB NN8	3 S S S S S S S S S S S S S S S S S S S	
8 6504 — — PHASE8 — — PHASE8 — — PHASE8 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —	Region — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — <td>R8 O50A — — — — ALTDTR8<<13:0> — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —</td> <td>650E SDC8<15:0> 651 TRGCMP<15:3> NN 0514 TRGDIV<3:0> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</td--><td>E8 0510 SPHASE8<15:0> 0512 TRGCMP<15:3> TRGCMP<15:3> Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">C</td><td>0512 TRGCMP<15:3> TRGCMP<15:3> — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —<!--</td--><td> 0514 TRGDIV<3:0></td><td></td><td>0518 PWMCAP8<15:3></td><td>0518 PWMCAP8<15:3> PWMCAP8<15:3> CLEBEN <th colspan<="" td=""><td>0518 PWMCAP8<15:3> 0514 PHF PLR FLTLEBEN CLLEBEN — — — BCH BPHL BPLH BPLH 0516 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —</td></th></td></td></td>	R8 O50A — — — — ALTDTR8<<13:0> — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —	650E SDC8<15:0> 651 TRGCMP<15:3> NN 0514 TRGDIV<3:0> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>E8 0510 SPHASE8<15:0> 0512 TRGCMP<15:3> TRGCMP<15:3> Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">C</td> <td>0512 TRGCMP<15:3> TRGCMP<15:3> — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —<!--</td--><td> 0514 TRGDIV<3:0></td><td></td><td>0518 PWMCAP8<15:3></td><td>0518 PWMCAP8<15:3> PWMCAP8<15:3> CLEBEN <th colspan<="" td=""><td>0518 PWMCAP8<15:3> 0514 PHF PLR FLTLEBEN CLLEBEN — — — BCH BPHL BPLH BPLH 0516 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —</td></th></td></td>	E8 0510 SPHASE8<15:0> 0512 TRGCMP<15:3> TRGCMP<15:3> Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">Colspan="8">C	0512 TRGCMP<15:3> TRGCMP<15:3> — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — </td <td> 0514 TRGDIV<3:0></td> <td></td> <td>0518 PWMCAP8<15:3></td> <td>0518 PWMCAP8<15:3> PWMCAP8<15:3> CLEBEN <th colspan<="" td=""><td>0518 PWMCAP8<15:3> 0514 PHF PLR FLTLEBEN CLLEBEN — — — BCH BPHL BPLH BPLH 0516 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —</td></th></td>	0514 TRGDIV<3:0>		0518 PWMCAP8<15:3>	0518 PWMCAP8<15:3> PWMCAP8<15:3> CLEBEN CLEBEN <th colspan<="" td=""><td>0518 PWMCAP8<15:3> 0514 PHF PLR FLTLEBEN CLLEBEN — — — BCH BPHL BPLH BPLH 0516 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —</td></th>	<td>0518 PWMCAP8<15:3> 0514 PHF PLR FLTLEBEN CLLEBEN — — — BCH BPHL BPLH BPLH 0516 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —</td>	0518 PWMCAP8<15:3> 0514 PHF PLR FLTLEBEN CLLEBEN — — — BCH BPHL BPLH BPLH 0516 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
8 6508 PHASE8<15:0> 8 650A — <th< td=""><td>RS NOA L L ALTDTR8 ALTDTR8</td></th<> <td>R8 O50A — — — ALTDTR8<13.0> ALTDTR8<13.0> ALTDTR8<15.0> ALTDTR8 ALTDTR8<15.0> ALTDTR8 ALTDTR8<td>E8 0500 SDC8<15:0> E8 0510 TRGCMP<15:3> NN 0514 TRGDIV<3:0> DTM DTM DTM TRGSTRT<5:0> D000 D000 3 0516 TRGDIV<3:0> TRGSTRT<45:0> DTM DTM</td><td>E8 0510 SPHASE8<15:0> NS 0512 TRGDIV<3:0> TRGDIV<3:0> C<</td><td>NS 6512 TRGDIV< -3.0516 -</td><td>VB 0514 TRGDIV<3:0> — — — — DTM — TRGSTRT<5:0> 8 0516 — STRGCMP<15:3> — — — — — — —</td><td>0516 STRGCMP<15:3></td><td></td><td>051A PHR PHF PLR PLF FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLL BPLL</td><td>051A PHF PLF FLTLEBEN CLLEBEN — — — BCH BCH BPHL BPLL BPLL 051C — — — — BCH BPLH <td< td=""></td<></td></td>	RS NOA L L ALTDTR8	R8 O50A — — — ALTDTR8<13.0> ALTDTR8<13.0> ALTDTR8<15.0> ALTDTR8 ALTDTR8<15.0> ALTDTR8 ALTDTR8 <td>E8 0500 SDC8<15:0> E8 0510 TRGCMP<15:3> NN 0514 TRGDIV<3:0> DTM DTM DTM TRGSTRT<5:0> D000 D000 3 0516 TRGDIV<3:0> TRGSTRT<45:0> DTM DTM</td> <td>E8 0510 SPHASE8<15:0> NS 0512 TRGDIV<3:0> TRGDIV<3:0> C<</td> <td>NS 6512 TRGDIV< -3.0516 -</td> <td>VB 0514 TRGDIV<3:0> — — — — DTM — TRGSTRT<5:0> 8 0516 — STRGCMP<15:3> — — — — — — —</td> <td>0516 STRGCMP<15:3></td> <td></td> <td>051A PHR PHF PLR PLF FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLL BPLL</td> <td>051A PHF PLF FLTLEBEN CLLEBEN — — — BCH BCH BPHL BPLL BPLL 051C — — — — BCH BPLH <td< td=""></td<></td>	E8 0500 SDC8<15:0> E8 0510 TRGCMP<15:3> NN 0514 TRGDIV<3:0> DTM DTM DTM TRGSTRT<5:0> D000 D000 3 0516 TRGDIV<3:0> TRGSTRT<45:0> DTM	E8 0510 SPHASE8<15:0> NS 0512 TRGDIV<3:0> TRGDIV<3:0> C<	NS 6512 TRGDIV< -3.0516 -	VB 0514 TRGDIV<3:0> — — — — DTM — TRGSTRT<5:0> 8 0516 — STRGCMP<15:3> — — — — — — —	0516 STRGCMP<15:3>		051A PHR PHF PLR PLF FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLL BPLL	051A PHF PLF FLTLEBEN CLLEBEN — — — BCH BCH BPHL BPLL BPLL 051C — — — — BCH BPLH BPLH <td< td=""></td<>	

Legend: x = unknown value on Reset, --= unimplemented, read as '0'. Reset values are shown in hexadecimal.

AII Resets 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 CHOPLEN OSYNC Bit 0 BPLL FLTMOD<1:0> HIGH-SPEED PWM GENERATOR 9 REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES CHOPHEN XPRES SWAP BPLH Bit 1 TRGSTRT<5:0> FLTPOL Bit 2 CAM BPHL CLDAT<1:0> MTBS ВРНН Bit 3 CHOPSEL<3:0> Bit 4 BCL FLTDAT<1:0> FLTSRC<4:0> Bit 5 BCH Bit 6 OVRDAT<1:0> Bit 7 DTM LEB<11:3> SPHASE9<15:0> PDC9<15:0> SDC9<15:0> OVRENL CLMOD Bit 8 OVRENH CLPOL Bit 9 PWMCAP9<15:3> STRGCMP<15:3> FRGCMP<15:3> BLANKSEL<3:0> CLLEBEN TRGIEN PMOD<1:0> FLTLEBEN CLIEN Bit 11 CLSRC<4:0> FLTIEN Bit 12 POLL PF **TRGSTAT** Bit 13 POLH $_{\rm LR}$ FRGDIV<3:0> CLSTAT HRDDIS Bit 14 PENL H IFLTMOD HRPDIS PENH PHR 蓝 0524 0520 0522 0526 0528 052A 052A 0530 0532 0534 0536 053A 053E 052E 0538 053C **FABLE 4-25:** File Name PWMCON9 PWMCAP9 TRGCON9 FCLCON9 LEBCON9 **AUXCON9** SPHASE9 ALTDTR9 LEBDLY9 6NOOOI PHASE9 STRIG9 TRIG9 SDC9 PDC9 DTR9

— = unimplemented, read as '0'. Reset values are shown in hexadecimal x = unknown value on Reset,Legend:

DECISTED MAD .36.

TABLE 4-26: I2C1 REGISTER MAP	4-26:	12C1 RI	EGISTE	R MAP														
SFR Name Addr	SFR Addr	Bit 15	Bit 14	Bit 14 Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	I	1	I	ı	ı	I	I	I				Receive Register	Register				0000
I2C1TRN	0202	-	-	_	I	1	Ι	I	Ι				Transmit Register	Register				00FF
I2C1BRG	0204	-	_	-	I	1	_	1				Baud Rate	Baud Rate Generator Register	Register				0000
I2C1CON	0206	IZCEN	-	IZCSIDL SCLREL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	N∃d	RSEN	NEN	1000
I2C1STAT	0208	ACKSTAT TRSTAT	TRSTAT	Ι	I	I	BCL	GCSTAT	ADD10	IWCOL	IZCOV	D_A	Ь	S	R_W	RBF	TBF	0000
I2C1ADD	020A	-	-	_	1		_					Address Register	Register					0000
I2C1MSK	020C		-	_	1		_				1	Address Mask Register	sk Register					0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend:

4	.27:	TABLE 4-27: 12C2 REGISTER MAP	GISTE	R MAP		•			•								•	
	SFR Name Addr	Bit 15	Bit 14	Bit 15 Bit 14 Bit 13 Bit 12 Bit 1	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets Resets
+	0210	1	1	1	1	1	1	1	1				Receive Register	Register				0000
—	0212	_	I	_	Ι	Ι	_	Ι	1				Transmit Register	Register				00FF
2C2BRG	0214	_	I	_	Ι	Ι	_	Ι				Baud Rate	Baud Rate Generator Register	Register				F J 0000
I2C2CON	0216	IZCEN	I	IZCSIDL SCLREL IPMIEN	SCLREL	IPMIEN	A10M	DISSLW	SMEN	NEO5	STREN	ACKDT ACKEN	ACKEN	RCEN	PEN	RSEN	SEN	1000
2C2STAT	0218	ACKSTAT TRSTAT	TRSTAT	_	Ι	I	BCL	GCSTAT	ADD10	IMCOL	I2COV	D_A	Ь	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	I	_	Ι	_	_					Address Register	Register					0000
2C2MSK	021C	_	I	_	Ι	I	_				,	Address Mask Register	k Register					0000
l																		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 15 Bit 14 Bit 13 Bit 12 Bit	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
J1MODE		0220 UARTEN	1	USIDL IREN		RTSMD	ı	UEN1	UENO	WAKE	WAKE LPBACK ABAUD URXINV	ABAUD	URXINV	BRGH	PDSE	PDSEL<1:0>	STSEL	0000
U1STA	0222	0222 UTXISEL1 UTXINV UTXISEL0	VNIXTO	UTXISELO	Ι	UTXBRK	UTXEN	UTXBRK UTXEN UTXBF	TRMT	URXISE	URXISEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
J1TXREG 0224	0224	-	-	Ι	Ι	Ι	I	_				UART	UART Transmit Register	gister				XXXX
J1RXREG	0226	-	-	Ι	Ι	Ι	I	_				UART	UART Receive Register	gister				0000
J1BRG	0228								Baud Rate G	Baud Rate Generator Prescaler	escaler							0000

gend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	iit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2 Bit 1	Bit 0	All Resets
U2MODE 0230 UARTEN	0230	UARTEN	1	USIDL IREN	IREN	RTSMD	I	UEN1	UENO	WAKE	UEN1 UEN0 WAKE LPBACK ABAUD URXINV BRGH	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL	0000
U2STA	0232	0232 UTXISEL1 UTXINV UTXISEL0	VNIXTO	UTXISELO	I	UTXBRK	UTXEN	UTXBF	TRMT	TXBRK UTXEN UTXBF TRMT URXISEL<1:0>		ADDEN	ADDEN RIDLE	PERR		OERR	FERR OERR URXDA	0110
U2TXREG 0234	0234	I	1	Ι	I	I	1	1				UART	UART Transmit Register	egister				XXXX
U2RXREG 0236	0236	Ι	_	I	I	I	-	_				UART	JART Receive Register	gister				0000
UZBRG	0238							Band	Rate Gene	Baud Rate Generator Prescaler	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

608供应商

洵 d:		33]	FJ(GS
	All Resets	0000	0000	0000	0000
	Bit 0	SPITBF SPIRBF	PPRE<1:0>	Ι	
	Bit 1 Bit 0	SPITBF	PPRE	FRMDLY	
	Bit 2	1		_	
	Bit 3	I	SPRE<2:0>	Ι	
	Bit 4	I		Ι	
	Bit 5	I	MSTEN	Ι	
	Bit 6	SPIROV	CKP MSTEN	-	er Register
	Bit 7	I	SSEN	-	SPI1 Transmit and Receive Buffer Register
	Bit 8	I	CKE	-	ansmit and F
		1	SMP	Ι	SPI1 Tra
	Bit 10 Bit 9	1	DISSCK DISSDO MODE16 SMP	Ι	
	Bit 11	1	OGSSIG	_	
	Bit 12	I	DISSCK	-	
R MAP	Bit 13 Bit 12 Bit 11	SPISIDL	_	FRMEN SPIFSD FRMPOL	
EGISTE	Bit 14	1	Ι	SPIFSD	
SPI1 REGISTER MAP	Bit 15	SPIEN	_	FRMEN	
-30:	SFR Addr	0240	0242	0244	0248
TABLE 4-30 :	SFR Name	SPI1STAT 0240	SPI1CON1 0242	SPI1CON2 0244	SPI1BUF 0248

m x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

SPI2 REGISTER MAP TABLE 4-31:

SFR Name Addr	SFR Addr		Bit 14	Bit 15 Bit 14 Bit 13 Bit 12	Bit 12	Bit 11	Bit 10 Bit 9		Bit 8	Bit 7	Bit 8 Bit 7 Bit 6 Bit 5	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2 Bit 1	Bit 0	All Resets
SPI2STAT 0260	0560	SPIEN	I	SPISIDL	I	I	I	I	1	1	SPIROV	I	I	I	I	SPITBF SPIRBF		0000
SPI2CON1 0262	0262	I	Ι	Ι	DISSCK	Ω	ISSDO MODE16 SMP	SMP	CKE	CKE SSEN	CKP MSTEN	MSTEN		SPRE<2:0>		PPRE<1:0>	<0:1	0000
SPI2CON2 0264 FRMEN SPIFSD FRMPOL	0264	FRMEN	SPIFSD	FRMPOL	Ι	_	Ι	_	_	1	_	Ι	I	Ι	I	FRMDLY —	_	0000
SPIZBUF	8970							SPI2 Tra	SPI2 Transmit and Receive Buffer Register	eceive Buffe	r Register							0000
Legend:		own value	on Reset, -	x= unknown value on Reset, — = unimplemented, read	mented, re	ead as '0'. I	as '0'. Reset values are shown in hexadecimal.	are showr	ו in hexade،	imal.								

10 DEVICES ONLY
10 AND dsPIC33FJ64GS610 DEVICES
MAP FOR dsPIC33FJ32GS610 AN
C REGISTER I
HIGH-SPEED 10-BIT AD
FABLE 4-32 :

查说	j dsP	PΙC	33	FJ	64	GS	60	8년	<u> </u>	<u>V</u> P	<u>\$</u>																				1					ì
	All Resets	0003	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	xxxx	xxxx	xxxx	xxxx	xxxx	xxxx	xxxx	XXXX	XXXX	xxxx	xxxx	xxxx											
	Bit 0		PCFG0	PCFG16	PORDY	-																														
NLY	Bit 1	ADCS<2:0>	PCFG1	PCFG17	P1RDY																															
ICES OI	Bit 2	AD	PCFG2	PCFG18 F	P2RDY		TRGSRC0<4:0>	TRGSRC2<4:0>	TRGSRC4<4:0>	TRGSRC6<4:0>	TRGSRC8<4:0>	TRGSRC10<4:0>	TRGSRC12<4:0>																							
10 DEV	Bit 3	I	PCFG3	PCFG19	P3RDY		TRGSI	TRGSI	TRGSI	TRGSI	TRGSI	TRGSF	TRGSF																							[
TER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY	Bit 4	SEQSAMP ASYNCSAMP	PCFG4	PCFG20	P4RDY																															
odsPIC3	Bit 5	SEQSAMP	PCFG5	PCFG21	P5RDY		SWTRG0	SWTRG2	SWTRG4	SWTRG6	SWTRG8	SWTRG10	SWTRG12																							Ì
610 ANI	Bit 6	ORDER	PCFG6	PCFG22	P6RDY		PEND0	PEND2	PEND4	PEND6	PEND8	PEND10	PEND12)		2	3	4	2	9		8	6	0		
-J32GS	Bit 7	EE	PCFG7	PCFG23	P7RDY	15:1>	IRQENO	IRQEN2	IRQEN4	IRQEN6	IRQEN8	IRQEN10	IRQEN12	ADC Data Buffer 0	ADC Data Buffer 1	ADC Data Buffer 2	ADC Data Buffer 3	ADC Data Buffer 4	ADC Data Buffer 5	ADC Data Buffer 6	ADC Data Buffer 7	ADC Data Buffer 8	ADC Data Buffer 9	ADC Data Buffer 10	ADC Data Buffer 11	ADC Data Buffer 12	ADC Data Buffer 13	ADC Data Buffer 14	ADC Data Buffer 15	ADC Data Buffer 16	ADC Data Buffer 17	ADC Data Buffer 18	ADC Data Buffer 19	ADC Data Buffer 20	ADC Data Buffer 21	decimal.
sPIC33F	Bit 8	FORM	PCFG8	1	P8RDY	ADBASE<15:1>							1	ADC D	ADC Da	ADC D	ADC Da	ADC Da	ADC Da	ADC Da	wn in hexa															
FOR d	Bit 9	1	PCFG9		P9RDY		^	Δ	^	Δ	Δ	<(_																							es are sho
R MAP	Bit 10	GSWTRG	PCFG10	1	P10RDY		TRGSRC1<4:0>	TRGSRC3<4:0>	TRGSRC5<4:0>	TRGSRC7<4:0>	TRGSRC9<4:0>	TRGSRC11<4:0:	_																							Reset valu
	Bit 11	I	PCFG11	I	P11RDY		TRO	TRO	TRO	TRO	TRO	TRG	_																							read as '0'.
ADC RE	Bit 12	SLOWCLK	PCFG12	1	P12RDY								_																							plemented,
HIGH-SPEED 10-BIT ADC REGIS	Bit 13	ADSIDL	PCFG13	_	_		SWTRG1	SWTRG3	SWTRG5	SWTRG7	SWTRG9	PEND11 SWTRG11	_																							${ m x}$ = unknown value on Reset, —= unimplemented, read as '0'. Reset values are shown in hexadecimal
SPEEL	Bit 14	1	PCFG14	_	_		PEND1	PEND3	PEND5	PEND7	PEND9	PEND11	_																							e on Rese
HIGH-	Bit 15	ADON	PCFG15		1		IRQEN1	IRQEN3	IRQEN5	IRQEN7	IRQEN9	IRQEN11	_																							snown valu
-32:	SFR Addr	0300	0302	0304	0306	0308	030A	030C	030E	0310	0312	0314	0316	0340	0342	0344	0346	0348	034A	034C	034E	0320	0352	0354	0356	0358	035A	035C	035E	0360	0362	0364	0366	0368	036A	un = x
TABLE 4-32:	SFR Name	ADCON	ADPCFG	ADPCFG2	ADSTAT	ADBASE	ADCPC0	ADCPC1	ADCPC2	ADCPC3	ADCPC4	ADCPC5	ADCPC6	ADCBUF0	ADCBUF1	ADCBUF2	ADCBUF3	ADCBUF4	ADCBUF5	ADCBUF6	ADCBUF7	ADCBUF8	ADCBUF9	ADCBUF10	ADCBUF11	ADCBUF12	ADCBUF13	ADCBUF14	ADCBUF15	ADCBUF16	ADCBUF17	ADCBUF18	ADCBUF19	ADCBUF20 0368	ADCBUF21 036A	Legend:

_			Ě		
VUED)	All Resets	xxxx	xxxx	xxxx	xxxx
SONTIF	Bit 0				
) NLY ((Bit 1				
ICES C	Bit 3 Bit 2 Bit 1				
10 DEV	Bit 3				
GISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY (CONTINUED)	Bit 4				
) dsPIC3	Bit 5				
610 ANE	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6	2	3	4	2
-J32GS	Bit 7	ADC Data Buffer 22	ADC Data Buffer 23	ADC Data Buffer 24	ADC Data Buffer 25
sPIC33F	Bit 8	ADC D	ADC D	ADC D	ADC D
FOR ds	Bit 9				
R MAP	Bit 10				
GISTE	Bit 11				
ADC RE	Bit 12				
10-BIT	Bit 15 Bit 14 Bit 13				
SPEED	Bit 14				
HIGH.	Bit 15				
32:	SFR Addr	036C	036E	0370	0372
TABLE 4-32: HIGH-SPEED 10-BIT ADC REC	SFR Name Addr Bi	ADCBUF22 036C	ADCBUF23 036E	ADCBUF24 0370	ADCBUF25 0372

Legend: x = unknown value on Reset, --= unimplemented, read as '0'. Reset values are shown in hexadecimal.

PCFG16 0000 PCFG16 0000 0000 0000 0000 0000	PCFG16 0000 PCFG16 0000 0000 0000 0000 0000 0000	PCFG16 0000 PCFG16 0000	PCFG16 0000 PCFG16 0000 0000 0000 0000 0000 0000 00	PCFG16 0000 PORDY 0000 0000 0000 0000 0000 0000 0000 0000	PCFG16 0000	PCFG16 0000 PCFG16 0000 0000 0000 0000 0000 0000 0000 0000	PCFG16 0000 PORDY 0000 00000 00000 00000 00000 00000 00000	PCFG16 0000	PCFG16 0000	PCFG16 0000	PCFG16 0000	PCFG16 0000	POFG16 PORDY -
FG3 PCFG2 PCFG1 PCFG17 RDY P2RDY P1RDY TRGSRC0-4:0> TRGSRC4-4:0> TRGSRC4-4:0> TRGSRC4-4:0>	FG3 PCFG2 PCFG1 PCFG1 RDY P2RDY P1RDY TRGSRC0<4:0> TRGSRC4:0> TRGSRC6<4:0> TRGSRC8<4:0> TRGSRC8<4:0> TRGSRC8<4:0> TRGSRC8<4:0> TRGSRC8<4:0> TRGSRC8<4:0> TRGSRC8<4:0>	PCFG2 PCFG1 — PCFG1 P2RDY P1RDY RC0<4:0> RC4:0> RC4:0> RC6<4:0> RC8<4:0> RC8<4:0> RC8<4:0>	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC0<4:0> RC4<0> RC6<4:0> RC8<4:0> RC8<4:0> RC12<4:0>	PCFG2 PCFG1 — PCFG1 P2RDY P1RDY RC2<4:0> RC4<4:0> RC6<4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC8<4:0>	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC0<4:0> RC4<4:0> RC6<4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC12<4:0>	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC0<4:0> RC4:0> RC4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC8<4:0>	PCFG2 PCFG1 — PCFG17 P2RDY P1RDY RC0<4:0> RC2<4:0> RC6<4:0> RC8<4:0> RC8<4:0	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC2<4:0> RC4:0> RC8<4:0> RC8<4:0> RC12<4:0>	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC0<4:0> RC4<4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC12<4:0>	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC2<4:0> RC4<10> RC8<4:0> RC8<4:0> RC12<4:0> RC12<4:0>	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC0<4:0> RC4<6:0> RC8<4:0> RC8<4:0> RC8<4:0> RC12<4:0>	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC0<4:0> RC4<6:0> RC8<4:0> RC8<4:0> RC8<4:0> RC12<4:0>	PCFG2 PCFG1 — PCFG1 PZRDY P1RDY RC0<4:0> RC4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC8<4:0> RC12<4:0> RC12<4:0>
<u> </u>													
PCFG5 PCFG4 — — — — — — — — — — — — — — — — — — —												<u> </u>	
		RDY P5RDY SND0 SWTRG0 SND2 SWTRG4 SND4 SWTRG4 SND6 SWTRG6 SND6 SWTRG6 SND6 SWTRG8 SND7 SWTRG8 SND7 SWTRG8	RDY P5RDY INDO SWTRG0 IND2 SWTRG4 IND4 SWTRG4 IND6 SWTRG6 IND8 SWTRG8 IND8 SWTRG8 IND8 SWTRG8 IND8 SWTRG9 IND12 SWTRG1	NDO SWTRGG SNDO SWTRGG SND2 SWTRGG SND4 SWTRGG SND6 SWTRGG SND6 SWTRGG SND7 SWTRGG SND7 SWTRGG	RDY P5RDY SND0 SWTRG0 SND2 SWTRG4 SND4 SWTRG4 SND6 SWTRG6 SND6 SWTRG6 SND7 SWTRG8 SND7 SWTRG1	RDY P5RDY ENDO SWTRGO END2 SWTRG4 END4 SWTRG4 END6 SWTRG6 END8 SWTRG6 END8 SWTRG6 END8 SWTRG1 END8 SWTRG1	ND SWTRGB SND SWTRGG SND SWTRG4 SND SWTRG4 SND SWTRG8 SND SWTRG8 SND SWTRG8	— — —	— — —	ND0 SWTRG0 SWD2 SWTRG4 SND6 SWTRG4 SND7 SWTRG4 SWD8 SWTRG8 SWD8 SWTRG8 SWD9 SWTRG9 SWD9 SWTRG9 SWD9 SWTRG9 SWD9 SWTRG9 SWD9 SWTRG9 SWD9 SWTRG9 SWD9	HDY P5RDY	ND12 SWTRG1	ND SWTRGG SWTRGG SWD SWTRGG SWD SWTRGG SWD SWTRGG SWD SWTRGB SWD SWTRGB
P7RDY RQEN0 RQEN2 RQEN4 RQEN6	P7RDY IRQENO IRQEN4 IRQEN6 IRQEN6 IRQEN8 IRQEN8 IRQEN12	P7RDY RQEN0 RQEN2 RQEN4 RQEN6 RQEN12 Uffer 0	PARDY IRQENO IRQEN4 IRQEN4 IRQEN8 IRQEN8 IRQEN8 IRQEN8 IRQEN 0 uffer 1	P7RDY RQEN0 RQEN2 RQEN4 RQEN8 RQEN12 Uffer 0 uffer 2 uffer 2	PTRDY IRQENO IRQEN4 IRQEN8 IRQEN8 IRQEN8 IRQEN12 Uffer 1 Uffer 2 Uffer 3	ROENO ROENO ROENO ROENO ROENO ROENO ROENO Uffer 1 Uffer 2 Uffer 3 Uffer 4	IRGENO IRGENO IRGENO IRGENO IRGENO IRGENO INGENO IN	PARDY IRQENO IRQENA IRQENA IRQENA IRQENA IRQENA INTER O Uffer 0 Uffer 3 Uffer 5 Uffer 5 Uffer 6 Uffer 6 Uffer 6 Uffer 7	IRQENO IRQENO IRQENA IRQENA IRQENA IRQENA IRQENA IRGENA INTER 1 Uffer 2 Uffer 3 Uffer 5 Uffer 6 Uffer 6 Uffer 6 Uffer 6 Uffer 6 Uffer 7	RACEND RACEND RACEND RACEND RACEND RACEND RACEND RACEND Uffer 0 uffer 5 uffer 10 uffer 8 uffer 10 uffer 9 uffer 11 uffer 11 uffer 15 uffer	IRQENO IRQENO IRQENA IRQENA IRQENA IRQENA IRQENA IRQENA IRGENA INFORMA	IRQENO IRQENO IRQENA IRQENA IRQENA IRQENA IRQENA INTER 1 Uffer 1	ROENO ROENO ROENO ROENO ROENO ROENO ROENO Uffer 1 Uffer 1 Uffer 15
ADBASE < 15:1> ADBASE < 15:1> III	ADC Data Bu	ADBASE<15:1>	P8RDY F	P8RDY F ADBASE<15:1>	P8RDY F ADBASE < 15:1>	P8RDY F ADBASE<15:1>	P8RDY F8RDY F8 F9 F9 F9 F9 F9 F9 F9	P8RDY F8RDY F8 F9 F9 F9 F9 F9 F9 F9	P8RDY F8RDY F8 F9 F9 F9 F9 F9 F9 F9	ADBASE < 15:1> ADBASE < 15:1> III III III ADC Data Bu	ADBASE<15:1> III III III III ADC Data Bu	ADBASE<15:1> III ADBASE<15:1> III ADC Data Bu ADC Data Bul	ADBASE<15:1> III III III III ADC Data Bu
AI TRGSRC1<4:0> TRGSRC3<4:0> TRGSRC5<4:0>													
TRGSRC TRGSRC TRGSRC	TRGSRC TRGSRC TRGSRC												
SWTRG7	1 1	1 1	1 1										
SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7	SWTRG7
	1 1	1 1	1 1	1 1	1 1	1 1							
ADCPC3 0310		1								33 0310 34 0312 35 0346 36 0346 37 0348 38 0348 38 0348 38 0348 38 0348 38 0348 38 0350 38	3.3 0310 3.4 0312 3.6 0316 3.7 0340 3.7 0346 3.7 0346 3.7 0346 3.8 03	33 0310 34 0312 36 0316 37 0340 37 0346 38 0346 38 0346 38 0346 39 0356 39 0356 30 03 30 03 30 03 30 03 30 03 30 03 30 03 30 03 30 03 30	33 0310 34 0312 35 0316 150 0340 1F1 0342 1F2 0344 1F3 0346 1F6 0346 1F7 0346 1F1 0357 1F1 0357 1F1 0367 1F1 0367 1F1 0367
ADCPC4	DCPC6	DCPC6 DCBUF0 DCBUF1	DCPC6 DCBUF0 DCBUF1 DCBUF1	ADCPC6 ADCBUF0 ADCBUF1 ADCBUF2 ADCBUF3 ADCBUF3	ADCBUFO ADCBUF1 ADCBUF1 ADCBUF3 ADCBUF3 ADCBUF4 ADCBUF5	ADCBUFO ADCBUF1 ADCBUF1 ADCBUF3 ADCBUF3 ADCBUF4 ADCBUF4 ADCBUF6 ADCBUF6	ADCBUFO ADCBUFO ADCBUF2 ADCBUF3 ADCBUF4 ADCBUF6 ADCBUF6 ADCBUF6 ADCBUF6 ADCBUF6	ADCBUFG ADCBUF1 ADCBUF2 ADCBUF3 ADCBUF3 ADCBUF4 ADCBUF5 ADCBUF6 ADCBUF6 ADCBUF6 ADCBUF6 ADCBUF6	ADCBUFO ADCBUF1 ADCBUF1 ADCBUF3 ADCBUF3 ADCBUF3 ADCBUF5 ADCBUF5 ADCBUF6 ADCBUF6 ADCBUF6 ADCBUF6 ADCBUF7 ADCBUF7 ADCBUF7	ADCBUFG ADCBUF	ADCBUFG ADCBUF1 ADCBUF3 ADCBUF3 ADCBUF3 ADCBUF5 ADCBUF6 ADCBUF7 ADCBUF7 ADCBUF1 ADCBUF11	ADCBUFG ADCBUF1 ADCBUF3 ADCBUF3 ADCBUF5 ADCBUF5 ADCBUF6 ADCBUF6 ADCBUF7 ADCBUF11 ADCBUF11 ADCBUF113 ADCBUF114 ADCBUF115 ADCBUF	ADCBUF1 ADCBUF2 ADCBUF3 ADCBUF3 ADCBUF4 ADCBUF6 ADCBUF6 ADCBUF7 ADCBUF8 ADCBUF10 ADCBUF10 ADCBUF11 ADCBUF11 ADCBUF11 ADCBUF12 ADCBUF12 ADCBUF13 ADCBUF13 ADCBUF14 ADCBUF15
0342 ADC Data Buffer 1 0344 ADC Data Buffer 2 0346 ADC Data Buffer 3 0348 ADC Data Buffer 4 034A ADC Data Buffer 5 034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 7 0354 ADC Data Buffer 7 0355 ADC Data Buffer 7 0354 ADC Data Buffer 7 0355 ADC Data Buffer 10	ADC Data Buffer 2 0346 ADC Data Buffer 3 0348 ADC Data Buffer 4 034A ADC Data Buffer 5 034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 8 0353 ADC Data Buffer 9 0354 ADC Data Buffer 10	0346 ADC Data Buffer 3 0348 ADC Data Buffer 4 034A ADC Data Buffer 5 034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0350 ADC Data Buffer 9 0352 ADC Data Buffer 9 0354 ADC Data Buffer 9	034A ADC Data Buffer 5 034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 9 0355 ADC Data Buffer 10	034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10	034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0353 ADC Data Buffer 10	0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10	0352 ADC Data Buffer 9 0354 ADC Data Buffer 10	O354 ADC Data Buffer 10		ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15	ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 16	ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 16 ADC Data Buffer 16	ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 16 ADC Data Buffer 17 ADC Data Buffer 24
0342 ADC Data Buffer 1 0344 ADC Data Buffer 2 0346 ADC Data Buffer 3 0348 ADC Data Buffer 4 034A ADC Data Buffer 5 034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 9 0355 ADC Data Buffer 10 0356 ADC Data Buffer 10	ADC Data Buffer 2 ADC Data Buffer 3 0348 ADC Data Buffer 4 0348 ADC Data Buffer 5 034A ADC Data Buffer 6 034E ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0350 ADC Data Buffer 9 0354 ADC Data Buffer 9 0355 ADC Data Buffer 10 0356 ADC Data Buffer 10	ADC Data Buffer 3 ADC Data Buffer 4 0348 ADC Data Buffer 4 034A ADC Data Buffer 5 034C ADC Data Buffer 6 034E ADC Data Buffer 7 035O ADC Data Buffer 8 035Z ADC Data Buffer 9 035A ADC Data Buffer 10 035A ADC Data Buffer 11	O34A ADC Data Buffer 5 034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0356 ADC Data Buffer 10	034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0355 ADC Data Buffer 10	034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 10 0353 ADC Data Buffer 10 0354 ADC Data Buffer 11	0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0356 ADC Data Buffer 11	0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 11	0354 ADC Data Buffer 10 0356 ADC Data Buffer 11	0356 ADC Data Buffer 11	035A ADC Data Buffer 13 035C ADC Data Buffer 14 035E ADC Data Buffer 15	ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 16	ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 16 ADC Data Buffer 16	ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 16 ADC Data Buffer 17 ADC Data Buffer 24
0342 ADC Data Buffer 1 0344 ADC Data Buffer 2 0346 ADC Data Buffer 3 0348 ADC Data Buffer 4 034A ADC Data Buffer 5 034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 7 0352 ADC Data Buffer 10 0354 ADC Data Buffer 10 0355 ADC Data Buffer 11 0356 ADC Data Buffer 12	ADC Data Buffer 2 ADC Data Buffer 3 0348 ADC Data Buffer 4 0348 ADC Data Buffer 5 034A ADC Data Buffer 6 034C ADC Data Buffer 7 0350 ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0355 ADC Data Buffer 11 0356 ADC Data Buffer 12	ADC Data Buffer 3 ADC Data Buffer 4 0348 ADC Data Buffer 5 034A ADC Data Buffer 5 034C ADC Data Buffer 7 035D ADC Data Buffer 8 035A ADC Data Buffer 9 035A ADC Data Buffer 10 035A ADC Data Buffer 10 035A ADC Data Buffer 11 035B ADC Data Buffer 11	34A ADC Data Buffer 5 034A ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0355 ADC Data Buffer 10 0356 ADC Data Buffer 11 0358 ADC Data Buffer 11	034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0355 ADC Data Buffer 10 0356 ADC Data Buffer 11 0357 ADC Data Buffer 11	ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 10 0353 ADC Data Buffer 10 0354 ADC Data Buffer 11 0356 ADC Data Buffer 11 0357 ADC Data Buffer 11	0350 ADC Data Buffer 8 0352 ADC Data Buffer 10 0354 ADC Data Buffer 10 0355 ADC Data Buffer 11 0356 ADC Data Buffer 11 0358 ADC Data Buffer 12	0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0356 ADC Data Buffer 11 0358 ADC Data Buffer 12	0354 ADC Data Buffer 10 0356 ADC Data Buffer 11 0358 ADC Data Buffer 12	0356 ADC Data Buffer 11 0358 ADC Data Buffer 12	ADC Data Buffer 14 ADC Data Buffer 15	ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 16	ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 16 ADC Data Buffer 17	ADC Data Buffer 15 ADC Data Buffer 15 ADC Data Buffer 16 ADC Data Buffer 24
0342 ADC Data Buffer 1 0344 ADC Data Buffer 2 0346 ADC Data Buffer 3 0348 ADC Data Buffer 4 034A ADC Data Buffer 5 034C ADC Data Buffer 6 034C ADC Data Buffer 7 035D ADC Data Buffer 7 035G ADC Data Buffer 1 035G ADC Data Buffer 10 035G ADC Data Buffer 11 035G ADC Data Buffer 11 035G ADC Data Buffer 11 035G ADC Data Buffer 12 035G ADC Data Buffer 12	9344 ADC Data Buffer 2 9346 ADC Data Buffer 3 9348 ADC Data Buffer 4 934A ADC Data Buffer 5 934C ADC Data Buffer 6 934C ADC Data Buffer 7 935C ADC Data Buffer 8 935A ADC Data Buffer 9 935A ADC Data Buffer 10 935B ADC Data Buffer 11 935B ADC Data Buffer 12 935A ADC Data Buffer 12 935B ADC Data Buffer 13	ADC Data Buffer 3 ADC Data Buffer 4 0348 ADC Data Buffer 5 034A ADC Data Buffer 6 034C ADC Data Buffer 6 035D ADC Data Buffer 7 035A ADC Data Buffer 10 035A ADC Data Buffer 10 035A ADC Data Buffer 11 035B ADC Data Buffer 12	93.4A ADC Data Buffer 5 03.4C ADC Data Buffer 6 03.4E ADC Data Buffer 7 03.50 ADC Data Buffer 8 03.52 ADC Data Buffer 10 03.54 ADC Data Buffer 10 03.55 ADC Data Buffer 11 03.56 ADC Data Buffer 11 03.58 ADC Data Buffer 13	034C ADC Data Buffer 6 034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0356 ADC Data Buffer 11 0358 ADC Data Buffer 11 0358 ADC Data Buffer 13 035A ADC Data Buffer 13	034E ADC Data Buffer 7 0350 ADC Data Buffer 8 0354 ADC Data Buffer 10 0356 ADC Data Buffer 10 0357 ADC Data Buffer 11 0358 ADC Data Buffer 11 0359 ADC Data Buffer 12 0350 ADC Data Buffer 13	0350 ADC Data Buffer 8 0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0355 ADC Data Buffer 11 0356 ADC Data Buffer 11 0357 ADC Data Buffer 12 0358 ADC Data Buffer 13	0352 ADC Data Buffer 9 0354 ADC Data Buffer 10 0356 ADC Data Buffer 11 0358 ADC Data Buffer 12 0359 ADC Data Buffer 13	0354 ADC Data Buffer 10 0356 ADC Data Buffer 11 0358 ADC Data Buffer 12 035A ADC Data Buffer 13	0356 ADC Data Buffer 11 0358 ADC Data Buffer 12 ABC Data Buffer 13 ADC Data Buffer 13	035E ADC Data Buffer 15	ADC Data Buffer 15 ADC Data Buffer 16	035E ADC Data Buffer 15 0360 ADC Data Buffer 16 0362 ADC Data Buffer 17	035E ADC Data Buffer 15 0360 ADC Data Buffer 16 0362 ADC Data Buffer 17 0370 ADC Data Buffer 24
ADC Data Buffer 1 ADC Data Buffer 2 ADC Data Buffer 3 ADC Data Buffer 4 ADC Data Buffer 5 ADC Data Buffer 6 ADC Data Buffer 7 ADC Data Buffer 7 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14	ADC Data Buffer 2 ADC Data Buffer 3 ADC Data Buffer 4 ADC Data Buffer 5 ADC Data Buffer 6 ADC Data Buffer 7 ADC Data Buffer 7 ADC Data Buffer 7 ADC Data Buffer 7 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14	ADC Data Buffer 3 ADC Data Buffer 4 ADC Data Buffer 5 ADC Data Buffer 6 ADC Data Buffer 7 ADC Data Buffer 7 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14	ADC Data Buffer 5	ADC Data Buffer 6 ADC Data Buffer 7 ADC Data Buffer 8 ADC Data Buffer 9 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14	ADC Data Buffer 7 ADC Data Buffer 8 ADC Data Buffer 9 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 13 ADC Data Buffer 14	ADC Data Buffer 8 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14	ADC Data Buffer 9 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 13	ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 13	ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14		0360 ADC Data Buffer 16	0360 ADC Data Buffer 16 0362 ADC Data Buffer 17	0360 ADC Data Buffer 16 0362 ADC Data Buffer 17 0370 ADC Data Buffer 24

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

AII Resets 0000 0000 0000 0000 0000 0000 0000 0000 XXXX XXXX 0003 XXXX PCFG0 PORDY HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dSPIC33FJ32GS406/606 AND dSPIC33FJ64GS406/606 DEVICES PCFG1 P1RDY Bit 1 TRGSRC12<4:0> TRGSRC4<4:0> TRGSRC6<4:0> TRGSRC2<4:0> P2RDY PCFG2 Bit 2 P3RDY PCFG3 Bit 3 PCFG4 P4RDY Bit 4 SWTRG12 SWTRG2 SWTRG4 SWTRG6 PCFG5 **SWTRG0** P5RDY Ħ PEND12 PCFG6 PGRDY PEND0 PEND2 PEND4 ORDER PEND6 Bit 6 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15 ADC Data Buffer 24 ADC Data Buffer 25 ADC Data Buffer 0 ADC Data Buffer 2 ADC Data Buffer 3 ADC Data Buffer 4 ADC Data Buffer 5 ADC Data Buffer 6 ADC Data Buffer 8 ADC Data Buffer 9 ADC Data Buffer 7 ADC Data Buffer 1 IRQEN12 IRQEN2 IRQEN6 IRQEN4 PCFG7 IRGENO **P7RDY** Bit 7 出 ADBASE<15:1> PCFG8 Bit 8 FORM PCFG9 Bit 9 FRGSRC3<4:0> TRGSRC5<4:0> TRGSRC7<4:0> PCFG10 Bit 10 PCFG11 蓝 PCFG12 P12RDY Bit 12 PCFG13 SWTRG3 SWTRG5 SWTRG7 Bit 13 SWTRG1 ADSIDL PCFG14 PEND5 PEND7 PEND1 PEND3 4 퓲 IRQEN3 PCFG15 IRQEN1 **IRQEN5** IRQEN7 Ħ 030A 030C 0340 0342 0344 0346 0348 0354 0356 0372 0302 9080 0308 030E 0310 0316 034A 034C 034E 0320 0352 0358 035A 035C 035E 0370 SFR Addr **FABLE 4-34:** 0300 ADCBUF10 ADCBUF11 ADCBUF12 ADCBUF13 ADCBUF14 ADCBUF15 ADCBUF25 ADCBUF24 ADCBUF6 ADCBUF0 ADCBUF2 ADCBUF3 ADCBUF4 ADCBUF8 ADCBUF9 SFR Name ADCBUF1 ADCBUF5 ADCBUF7 ADPCFG ADCPC6 ADCPC3 ADSTAT ADBASE ADCPC0 ADCPC1 ADCPC2

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35 :		MAR	EGIST	DMA REGISTER MAP	a	Ï		ï	,									
Ad	Addr Bit	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
03	0380 CH	CHEN	SIZE	DIR	HALF	NULLW	I	I	I	I	I	AMODE<1:0>	<1:0>	1	1	MODE<1:0>	<1:0>	0000
0382		FORCE	_	1	1	_	-	_	-	_			IRC	RQSEL<6:0>				007F
0384	184								ST	STA<15:0>								0000
03	0386								ST	STB<15:0>								0000
DMA0PAD 0388	88								PA	PAD<15:0>								0000
038A	- A8	1	-	Ι	I	-	I					CNT<9:0>	<0:					0000
DMA1CON 038	038C CH	CHEN	SIZE	DIR	HALF	NOLLW	I	I	I	I	I	AMODE<1:0>	<1:0>	I	I	MODE<1:0>	<1:0>	0000
DMA1REQ 038E	-	FORCE	-	Ι	I	-	I	-	I	Ι			IRG	RQSEL<6:0>				007F
DMA1STA 0390	06:								ST	STA<15:0>								0000
DMA1STB 0392	92								ST	STB<15:0>								0000
DMA1PAD 0394	94								PA	PAD<15:0>								0000
DMA1CNT 0396	- 96		_	1	-	_	-					CNT<9:0>	<0:					0000
DMA2CON 03	0398 CH	CHEN	SIZE	DIR	HALF	MOLLW	-	_	1	_	_	AMODE<1:0>	<1:0>	_	_	MODE<1:0>	<1:0>	0000
DMA2REQ 039A		FORCE	_	1	1	_	-	_	1	_			IRC	RQSEL<6:0>				007F
DMA2STA 039C	9C								ST	STA<15:0>								0000
DMA2STB 039E	36								ST	STB<15:0>								0000
DMA2PAD 03A0	A0								PA	PAD<15:0>								0000
DMA2CNT 03A2	-A2	_	-	Ι	-	1	1					CNT<9:0>	<0:					0000
DMA3CON 03A4		CHEN	SIZE	DIR	HALF	MULLW	1	_	1	_	-	AMODE<1:0>	<1:0>	-	_	MODE<1:0>	<1:0>	0000
DMA3REQ 03A6	_	FORCE	-	Ι	-	1	1	1	I	1			IRC	RQSEL<6:0>				007F
DMA3STA 03A8	A8								ST	STA<15:0>								0000
DMA3STB 03AA	AA								ST	STB<15:0>								0000
DMA3PAD 03AC	AC								PA	PAD<15:0>								0000
DMA3CNT 03AE	AE -	_	-	Ι	-	1	1					CNT<9:0>	<0:					0000
03E0		1	1	1	I	PWCOL3	PWCOL2	PWCOL3 PWCOL2 PWCOL1 PWCOL0	PWCOL0	I	1	1	1	XWCOL3	XWCOL2	XWCOL2 XWCOL1 XWCOL0	XWCOL0	0000
03E2	E2 -		1	1	1		LSTCH<3:0>	<3:0>		1	1	1	1	PPST3	PPST2	PPST1	PPST0	0F00
03E4	E4								DSA	DSADR<15:0>								0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:

MIN

0000 0000 0000

TBIF TBIE 0000 0000

0000 FFFF

FLTENO

0000

0000

AII Resets 0480 0000 0000 0000

TABLE 4-36:	6: E	ECAN1 REGISTER	REGISTI		WHEN	C1CTR	MAP WHEN C1CTRL1.WIN = 0 OR 1	= 0 OR	1								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	_
C1CTRL1	0090	I	1	CSIDL	ABAT	1	RE	REQOP<2:0>		OPM	OPMODE<2:0>		1	CANCAP	1	1	
C1CTRL2	0602	I	I	1	I	I	Ι	I	Ι	1	I	Ι		ā	DNCNT<4:0>		
C1VEC	0604	-	_	-			FILHIT<4:0>			Ι			_	ICODE<6:0>	٨		
C1FCTRL	9090	۵	DMABS<2:0>	_	I	1	Ι	I	1	I	I	I			FSA<4:0>		
C1FIFO	8090	-	_			FBP.	FBP<5:0>			Ι	Ι			FNRB<5:0>	<2:0>		
C1INTF	060A	-	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	Ι	FIFOIF	RBOVIF	RBIF	٠.
C1INTE	O60C	-	_	-	_	I	Ι	_	-	IVRIE	WAKIE	ERRIE	Ι	FIFOIE	RBOVIE	RBIE	١.
C1EC	3090				TERRCNT<7:0>	VT<7:0>							RERRCNT<7:0>	T<7:0>			
C1CFG1	0610	-	_	-	_	I	Ι	_	-	SJW<1:0>	<0:			BRP<5:0>	:5:0>		
C1CFG2	0612	-	WAKFIL		_	_	SE	SEG2PH<2:0>	^	SEG2PHTS	SAM	SE	SEG1PH<2:0>	<0	PF	PRSEG<2:0>	
C1FEN1	0614	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5 FLTEN4		FLTEN3	FLTEN2	FLTEN1	FI
C1FMSKSEL1	0618	F7MSK<1:0>	<<1:0>	F6MSk	F6MSK<1:0>	F5MS	F5MSK<1:0>	F4MSF	F4MSK<1:0>	F3MSK<1:0>	1:0>	F2MSK<1:0>	<1:0>	F1MSK<1:0>	<1:0>	F0MSK<1	$\overline{}$
C1FMSKSEL2 061A	061A	F15MSK<1:0>	K<1:0>	F14MSK<1:0>	K<1:0>	F13MS	F13MSK<1:0>	F12MS	F12MSK<1:0>	F11MSK<1:0>	<1:0>	F10MSK<1:0>	<<1:0>	F9MSK<1:0>	<1:0>	F8MSK<1	7

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 **TABLE 4-37**:

IABLE 4-37. ECANI REGISIER MAP WHE	٠		0															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0600- 061E							See	See definition when WIN = x	when WIN	×							
C1RXFUL1	0620	0620 RXFUL15 RXFUL14 RXFUL13 RXFUL12	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL11 RXFUL10 RXFUL9 RXFUL8		RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL4 RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0622	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL26 RXFUL25	RXFUL24 RXFUL23	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL20 RXFUL19 RXFUL18 RXFUL17	RXFUL16	0000
C1RXOVF1		0628 RXOVF15 RXOVF14 RXOVF13 RXOVF12	RXOVF14	RXOVF13	RXOVF12		RXOVF10	RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2		062A RXOVF31 RXOVF30 RXOVF29 RXOVF28	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16	RXOVF16	0000
C1TR01CON 0630	0630	TXEN1	TXABT1	TXABT1 TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI<1:0>	<1:0>	TXEN0	TXABTO TXLARBO TXERRO TXREQO RTRENO	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI<1:0>	<1:0>	0000
C1TR23CON	1 0632	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI<1:0>	<1:0>	TXEN2	TXABT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI<1:0>	<1:0>	0000
C1TR45CON 0634	1 0634	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI<1:0>	<1:0>	TXEN4	TXABT4 TXLARB4 TXERR4	TXLARB4	TXERR4	TXREQ4 RTREN4	RTREN4	TX4PRI<1:0>	<1:0>	0000
C1TR67CON	9636	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI<1:0>	<1:0>	TXEN6	TXABT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI<1:0>	<1:0>	0000
C1RXD	0640				,				Received Data Word)ata Word								xxxx
C1TXD	0642								Transmit Data Word	ata Word								XXXX
Legend:	× = unk	$x = \text{unknown value on Reset}$ — $= \text{unimplemented read as } ^{+0}$. Reset values are shown in hexadecimal	on Reset -	-= unimple	mented res	R (0, Se pe	eset values	are shown	in hexadeci	mal								

查记	旬dsI	PIC3	3F	J6	4G	S6	08	供	NY.	商	
											Ī

TABLE 4-38:	38:	ECAN1	ECAN1 REGISTER MAP WHEN	TER M	AP WH		C1CTRL1.WIN =		1									
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0600- 061E								See definition when WIN	on when M	×							
C1BUFPNT1	0620		F3BP<3:0>	3:0>			F2BP	F2BP<3:0>			F1BP<3:0>	<3:0>			F0BP<3:0>	<3:0>		0000
C1BUFPNT2	0622		F7BP<3:0>	3:0>			F6BP	F6BP<3:0>			F5BP<3:0>	<3:0>			F4BP<3:0>	<3:0>		0000
C1BUFPNT3	0624		F11BP<3:0>	3:0>			F10BF	F10BP<3:0>			F9BP.	F9BP<3:0>			F8BP<3:0>	<3:0>		0000
C1BUFPNT4	0626		F15BP<3:0>	:3:0>			F14BI	F14BP<3:0>			F13BP<3:0>	<3:0>			F12BP<3:0>	<3:0>		0000
C1RXM0SID	0630				SID<	SID<10:3>					SID<2:0>		I	MIDE	I	EID<17:16>	<9	XXXX
C1RXM0EID	0632				EID	EID<15:8>							EID<7:0>	<0:,				XXXX
C1RXM1SID	0634				SID	SID<10:3>					SID<2:0>		1	MIDE	1	EID<17:16>	6)	XX XX
C1RXM1EID	9890				EID	EID<15:8>							EID<7:0>	<0:,				首 xxxxx
C1RXM2SID	0638				SID<	SID<10:3>					SID<2:0>		I	MIDE	I	EID<17:16>	<9	XXXX
C1RXM2EID	063A				EID	EID<15:8>							EID<7:0>	<0:,				XXXX
C1RXF0SID	0640				SID<	SID<10:3>					SID<2:0>		I	EXIDE	I	EID<17:16>	<9	XXXX
C1RXF0EID	0642				EID	EID<15:8>							EID<7:0>	<0:,				XXXX
C1RXF1SID	0644				SID	SID<10:3>					SID<2:0>		1	EXIDE	1	EID<17:16>	6)	XXXX
C1RXF1EID	0646				EID<	EID<15:8>							EID<7:0>	<0:2				XXXX
C1RXF2SID	0648				SID<	SID<10:3>					SID<2:0>		I	EXIDE	Ι	EID<17:16>	<9	XXXX
C1RXF2EID	064A				EID<	EID<15:8>							EID<7:0>	<0:2				XXXX
C1RXF3SID	064C				SID<	SID<10:3>					SID<2:0>		1	EXIDE	1	EID<17:16>	<9	XXXX
C1RXF3EID	064E				EID<	EID<15:8>							EID<7:0>	<0:,				XXXX
C1RXF4SID	0650				SID<	SID<10:3>					SID<2:0>		1	EXIDE	1	EID<17:16>	<9	XXXX
C1RXF4EID	0652				EID<	EID<15:8>							EID<7:0>	<0:2				XXXX
C1RXF5SID	0654				SID<	SID<10:3>					SID<2:0>		1	EXIDE	1	EID<17:16>	<9	XXXX
C1RXF5EID	9990				EID<	EID<15:8>							EID<7:0>	<0:,				XXXX
C1RXF6SID	0658				SID<	SID<10:3>					SID<2:0>		1	EXIDE	1	EID<17:16>	<9	XXXX
C1RXF6EID	065A				EID<	EID<15:8>							EID<7:0>	<0:,				XXXX
C1RXF7SID	065C				SID<	SID<10:3>					SID<2:0>		1	EXIDE	1	EID<17:16>	<9	XXXX
C1RXF7EID	065E				EID<	EID<15:8>							EID<7:0>	<0:2				XXXX
C1RXF8SID	0990				SID<	SID<10:3>					SID<2:0>		1	EXIDE	1	EID<17:16>	<9	XXXX
C1RXF8EID	0662				EID<	EID<15:8>							EID<7:0>	<0:,				XXXX
C1RXF9SID	0664				SID<	SID<10:3>					SID<2:0>		1	EXIDE	1	EID<17:16>	<9	XXXX
C1RXF9EID	9990				EID<	EID<15:8>							EID<7:0>	<0:				XXXX
C1RXF10SID	0668				SID<	SID<10:3>					SID<2:0>		I	EXIDE	1	EID<17:16>	<9	XXXX
C1RXF10EID	066A				EID<	EID<15:8>							EID<7:0>	<0:				XXXX
C1RXF11SID 066C	066C				SID<	SID<10:3>					SID<2:0>		I	EXIDE	I	EID<17:16>	<9	XXXX
Legend:	x = unkr	nown value	x = unknown value on Reset, — = unimplemented, read	-= unimp	lemented,	read as '0	. Reset va	lues are s	as '0'. Reset values are shown in hexadecimal.	adecimal.								

TABLE 4-38:	38:	ECAN1	ECAN1 REGISTER MAP WHEN	TER M	AP WH		CTRL1.	MIN =	1 (CON	C1CTRL1.WIN = 1 (CONTINUED)								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	3990				EID<	EID<15:8>							EID<7:0>	<0:2				xxxx
C1RXF12SID 0670	0290				SID<	SID<10:3>					SID<2:0>		Ι	EXIDE	I	<91:71>DI	:16>	xxxx
C1RXF12EID 0672	0672				EID<	EID<15:8>							EID<7:0>	<0:2				xxxx
C1RXF13SID 0674	0674				SID<	SID<10:3>					SID<2:0>		Ι	EXIDE	I	<91:71>DI	:16>	xxxx
C1RXF13EID	9290				EID<	EID<15:8>							EID<7:0>	<0:2				xxxx
C1RXF14SID	8290				SID<	SID<10:3>					SID<2:0>		Ι	EXIDE	I	<91:71>DI	:16>	xxxx
C1RXF14EID	067A				EID<	EID<15:8>							EID<7:0>	<0:2				xxxx
C1RXF15SID 067C	067C				SID<	SID<10:3>					SID<2:0>		Ι	EXIDE	I	<91:71>DI	:16>	xxxx
C1RXF15EID 067E	067E				EID<	EID<15:8>			_				EID<7:0>	<0:2				xxxx
Legend:	x = unkr	nown value	x = unknown value on Reset, —= unimplemented, read	— = unimp	olemented,		i'. Reset va	lues are sh	as '0'. Reset values are shown in hexadecimal	adecimal.								

应商

	All Resets Resets	PI(0000	3F,	J64 0000	4GS	0000	0000	共 00000	١
	Bit 0	RANGE				RANGE		RANGE		
	Bit 1	CMPPOL RANGE		CMPPOL RANGE		CMPPOL RANGE		CMPPOL RANGE		
	Bit 2	1		_		_		_		
	Bit 3	CMPSTAT		CMPSTAT		CMPSTAT		CMPSTAT		
	Bit 4	I	CMREF<9:0>	_	CMREF<9:0>	_	F<9:0>	_	CMREF<9:0>	
	Bit 5	EXTREF	CMRE	INSEL<1:0> EXTREF	CMRE	EXTREF	CMREF<9:0>	EXTREF	CMRE	
	Bit 6	INSEL<1:0>		L<1:0>		INSEL<1:0>		INSEL<1:0>		
	Bit 7	INSE								
	Bit 8	DACOE		DACOE		DACOE		DACOE		
ROL KEGISTEK MAP	Bit 9	1		_		_		_		
LOIDIL	Bit 10	1	_	_	_	_	_	_	_	
INOLIN	Bit 11	I	1	1	1	1	1	1	1	
CON	Bit 12	1	_	_	_	_	_	_	_	
AKAIOR	Bit 13	CMPSIDL		CMPSIDL	•	CMPSIDL	•	CMPSIDL	_	
S COINIL	Bit 14	1	-	_	_	_	_	_	_	
ANALO	Bit 15	CMPON	1	CMPON	1	CMPON	1	CMPON	1	
39:	ADR	0540	0542	0544	0546	0548	054A	054C	054E	
TABLE 4-39: ANALOG COMPARATOR CONTI	File Name	CMPCON1	CMPDAC1	CMPCON2	CMPDAC2	CMPCON3	CMPDAC3	CMPCON4	CMPDAC4	

PORTA REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES **TABLE 4-40:**

SFR SFR Name Addr	SFR Addr	Bit 15	Bit 15 Bit 14 Bit 13	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA 02C0 TRISA15 TRISA14	TRISA14	I	I	I	TRISA10 TRISA9	TRISA9	I	TRISA7	TRISA7 TRISA6	TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 C6FF	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	CGFF
PORTA	02C2	PORTA 02C2 RA15	RA14	I	I	I	RA10	RA9	Ι	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	02C4 LATA15 LATA14	LATA14	I	I	I	LATA10 LATA9	LATA9	I	LATA7	LATA7 LATA6	LATA5 LATA4 LATA3	LATA4		LATA2 LATA1 LATA0 0000	LATA1	LATA0	0000
ODCA	02C6	ODCA 02C6 ODCA15 ODCA14	ODCA14	I	I	I	ODCA10 ODCA9	ODCA9	I	I	Ι	ODCA5 ODCA4	ODCA4	_	1	ODCA1	ODCA1 ODCA0 0000	0000
		- disconstant	of an order	100	Language Lan	0,000000	conjust and an annual and confus to accompany	40 000	4 4 4	lo ocio ob								1

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,

PORTA REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES **TABLE 4-41**:

0 All Resets	C600	_	0000	0000	
Bit	I	-	-	-	
Bit 1 Bit 0	I	I	I	I	
Bit 2	1	I	I	I	
Bit 3	1	Ι	Ι	Ι	
Bit 4	1	I	I	I	
Bit 5 Bit 4	I	I	I	I	
Bit 6	I	1	1	1	
Bit 7	I	I	I	I	adecimal.
Bit 10 Bit 9 Bit 8 Bit 7	I	I	I	I	nown in hex
Bit 9	TRISA10 TRISA9	RA9	LATA10 LATA9	ODCA10 ODCA9	lues are sh
Bit 10	TRISA10	RA10 RA9	LATA10	ODCA10	0'. Reset va
Bit 11	1	I	I	I	Legend: $x = \text{unknown value on Reset, }= \text{unimplemented, read as } 0$ '. Reset values are shown in hexadecimal.
Bit 14 Bit 13 Bit 12	Ι	_	_	_	implemente
Bit 13	I	_	_	_	set, — = un
Bit 14	TRISA14	RA14	LATA14	ODCA14	alue on Res
Bit 15	TRISA 02C0 TRISA15 TRISA14	PORTA 02C2 RA15	LATA 02C4 LATA15 LATA14	ODCA 02C6 ODCA15 ODCA14	unknown v
SFR Addr	02C0	02C2	02C4	02C6	×
SFR SFR Name Addr	TRISA	PORTA	LATA	ODCA	Legend:

XXXX 0000

LATB0 RB0

LATB1 RB1

LATB2 RB2

LATB3 RB3

LATB4

LATB5 RB5

RB4

AII Resets

Bit 1

Bit 2

Bit 4

TABLE	4-42:	POR	TB REG	TABLE 4-42: PORTB REGISTER MAP	MAP						
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	02C8 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6
PORTB	02CA	RB15	RB14	PORTB 02CA RB15 RB14 RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6
LATB	02CC	LATB15	LATB14	LATB13	LATB12	02CC LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6	LATB10	LATB9	LATB8	LATB7	LATB6

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend: PORTC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES **TABLE 4-43:**

	Bit 0	Ι	_	_
	Bit 1	TRISC1	RC1	LATC1
	Bit 2	TRISC4 TRISC3 TRISC2 TRISC1	RC2	LATC4 LATC3 LATC2 LATC1
	Bit 3	TRISC3	RC3	LATC3
	Bit 4	TRISC4	RC4	LATC4
	Bit 5	1	_	_
	Bit 6	1	_	_
	Bit 7	-	-	-
1	Bit 8	1	_	_
	Bit 10 Bit 9 Bit 8 Bit 7		_	_
	Bit 10	1	_	_
5	Bit 11	_	_	_
	Bit 12	TRISC12	RC12	LATC12
	Bit 13	RISC 02D0 TRISC15 TRISC14 TRISC13 TRISC12	RC13	ATC 02D4 LATC15 LATC14 LATC13
	Bit 15 Bit 14	TRISC14	RC14	LATC14
		TRISC15	PORTC 02D2 RC15	LATC15
	SFR Addr	02D0	02D2	02D4
	SFR Name	TRISC	PORTC	LATC

AII Resets

F01E

00000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend: PORTC REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES **FABLE 4-44:**

All Resets	F006	XXXX	0000
Bit 0	I	1	-
Bit 1	TRISC1	RC1	LATC1
Bit 2	TRISC2	RC2	LATC2
Bit 3	Ι	-	_
Bit 4	I	Ι	-
Bit 5	1	Ι	-
Bit 6	Ι	-	_
Bit 7	1	1	1
Bit 8	1	I	1
Bit 9	1	I	1
Bit 10	Ι	I	1
Bit 11	Ι	_	_
Bit 12	TRISC12	RC12	LATC12
Bit 13	TRISC13 TRISC12	RC13	LATC13 LATC12
Bit 14	TRISC14	RC14	LATC15 LATC14
Bit 15	TRISC15 TRISC14	RC15	LATC15
SFR Addr	02D0	PORTC 02D2	02D4
SFR Name	TRISC	PORTC	LATC

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend: dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES PORTC REGISTER MAP FOR **TABLE 4-45**:

	All Resets	F000	XXXX	0000	
	Bit 0	1	_	_	
	Bit 1	I	_	_	
	Bit 2	_	_	_	
CLO	Bit 3	I	-	_	
000 DE	Bit 4	I	_	_	
00+00	Bit 5	I	Ι	Ι	
	Bit 6	I	Ι	_	
or ich	Bit 7	I	Ι	Ι	
00 AINE	Bit 8	I	_	Ι	
04000	Bit 9	Ι	Ι	-	
30010	Bit 10	1	_	_	
201 100	Bit 11	I	1	_	
5	Bit 12	TRISC12	RC12	LATC12	
IABEE 1-13: I OKIO KEGIOLEK IIIAI I OK GSI 10031 00200400000 AND GSI 10031 00400400000 DEVICEO	Bit 15 Bit 14 Bit 13	02D0 TRISC15 TRISC14 TRISC13 TRISC12	PORTC 02D2 RC15 RC14 RC13	02D4 LATC15 LATC14 LATC13 LATC12	
	Bit 14	TRISC14	RC14	LATC14	
5	Bit 15	TRISC15	RC15	LATC15	
. 7-1	SFR Addr		02D2	02D4	
ן ן	SFR Name	TRISC	PORTC	LATC	

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset, Legend:

DS70591C-page 93

AII Resets

OFFF XXXX 0000 0000

<u>争</u>	倒dsl	<u>٦</u> ۲(U3:	ЗF,	J6 ²	1
	AII Resets	FFFF	XXXX	0000	0000	
	Bit 0	TRISD0	RD0	LATD0	ODCD2 ODCD1 ODCD0	
	Bit 1	TRISD1	RD1	LATD1	ODCD1	
	Bit 2	TRISD2	RD2	LATD2	ODCD2	
ICES	Bit 3	TRISD3	RD3	LATD3	ODCD3	
TABLE 4-46: PORTD REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES	Bit 4	02D8 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD5 TRISD3 TRISD2 TRISD2 TRISD1 TRISD0	RD4	LATD 02DC LATD15 LATD14 LATD13 LATD12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0	ODCD 02DE ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10 ODCD9 ODCD8 ODCD6 ODCD5 ODCD4 ODCD3	
.GS608/	Bit 5	TRISD5	RD5	LATD5	ODCD5	
:33FJ64	Bit 6	TRISD6	RD6	LATD6	ODCD6	
D dsPIC	Bit 7	TRISD7	RD7	LATD7	ODCD7	
610 AN	Bit 8	TRISD8	RD8	LATD8	ODCD8	
GS608 /	Bit 9	TRISD9	RD9	LATD9	ODCD9	
:33FJ32	Bit 10	TRISD10	RD10	LATD10	ODCD10	
R dsPIC	Bit 11	TRISD11	RD11	LATD11	ODCD11	
MAP FO	Bit 12	TRISD12	RD12	LATD12	ODCD12	
ISTER	Bit 15 Bit 14 Bit 13 Bit 12	TRISD13	RD13	LATD13	ODCD13	
TD REG	Bit 14	TRISD14	RD14	LATD14	ODCD14	
POR		TRISD15	PORTD 02DA RD15 RD14 RD13 RD12	LATD15	ODCD15	
4-46:	SFR Addr	02D8	02DA	02DC	02DE	
TABLE	SFR Name	TRISD	PORTD	LATD	ODCD	

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset, PORTD REGISTER MAP FOR dspic33FJ32GS406/606 AND dspic33FJ64GS406/606 DEVICES **TABLE 4-47**:

	Bit 0	SISD0	RD0	LATD0	00000
		TRISD1 TRISD0			10 10
	Bit 1	TRISI	RD1	LATE	ODCI
	Bit 2	TRISD2	RD2	LATD2 LATD1	ODCD2 ODCD1
CLO	Bit 3	TRISD3	RD3	LATD3	ODCD3
000 DE	Bit 4	TRISD5 TRISD4 TRISD3	RD4	LATD4	ODCD5 ODCD4
00100	Bit 5	TRISD5	RD5	LATD5	SOCOS
	Bit 6	TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6	PD6	LATD11 LATD10 LATD9 LATD8 LATD7 LATD6	ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6
1 100 0	Bit 7	TRISD7	RD7	LATD7	ODCD7
000 AIN	Bit 8	TRISD8	RD8	LATD8	ODCD8
00+00	Bit 9	TRISD9	RD9	LATD9	60000
301 002	Bit 10	TRISD10	RD10	LATD10	ODCD10
I OIL dei 1000 1000 1000 AILE dei 1000 1000 1000 EEVICEO	Bit 11	TRISD11	RD11	LATD11	ODCD11
-	Bit 12	I	1	1	1
	Bit 13	I	Ι	Ι	1
	Bit 14	I	_	_	_
	Bit 15	I	I	I	-
	SFR Addr	02D8	02DA	02DC	02DE
ן ן	SFR Name	TRISD 02D8	PORTD 02DA	LATD	ODCD

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset, Legend: PORTE REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES **TABLE 4-48:**

	}															Ī
Bit 15 Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
	1	I	I	I	1	TRISE9	TRISE8 TRISE7	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2 TRISE1	TRISE1	TRISE0	03FF
	I	I	I	1	-	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
	Ι	-	I	Ι	-	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	0000
	1	I	I	1	-	-	1	ODCE7	ODCE7 ODCE6	ODCE5 ODCE4	ODCE4	ODCE3	ODCE2	ODCE1 ODCE0	ODCE0	0000
	١] -										

unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend: PORTE REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES **TABLE 4-49:**

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 Bit 8	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02E0	I	-	I	I	I	I	I	1	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2 TRISE1 TRISE0	TRISE1		00FF
PORTE	02E2	_	_	_	1	_	_	-	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02E4	_	_	-	-	_	-	1	1	LATE7 LATE6		LATE5	LATE4	LATE3	LATE2 LATE1	LATE1	LATE0	0000
ODCE	02E6	1	_	1	I	-	1	I	1	ODCE7	ODCE7 ODCE6	ODCE5 ODCE4 ODCE3	ODCE4		ODCE2	ODCE1 ODCE0		0000
-bassa-	1	ev awonda	ased no on	+ +	potaemolar	Lorand: unknown value on Decet = unimplemented read se 'n' Decet values are chown in havadarimal	Posest testing	vo are ac	beyod ai av	leminol								

	Al	30E	X	000	000
	Bit 0	TRISFO	RF0	LATF0	I
	Bit 1	TRISF1 TRISF0	RF1	LATF1	ODCF1
	Bit 2	TRISF2	RF2	LATF2 LATF1 LATF0	ODCF3 ODCF2 ODCF1
	Bit 3	TRISF3	RF3	LATF4 LATF3	ODCF3
ICES	Bit 4	TRISF4	RF4	LATF4	I
10 DEV	Bit 5	TRISF5	RF5	LATF5	_
J64GS6	Bit 6	TRISF6	RF6	LATE8 LATE7 LATE6 LATE5	ODCF6
PIC33F	Bit 7	TRISF8 TRISF7	RF7	LATF7	ODCF8 ODCF7 ODCF6
AND ds	Bit 8	TRISF8	RF8	LATF8	ODCF8
GS610	Bit 9	1	_	_	_
33FJ32	Bit 11 Bit 10 Bit 9	I	_	_	_
OR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES	Bit 11		_	_	-
NAP FO	Bit 12	TRISF13 TRISF12	RF12	LATF12	ODCF12
ISTER 1	Bit 15 Bit 14 Bit 13 Bit 12	TRISF13	RF13	LATF13 LATF12	ODCF13 ODCF12
TF REG	Bit 14	I	_	_	_
POR		_	I	_	I
4-50:	SFR Addr	02E8	02EA	02EC	02EE
TABLE 4-50: PORTF REGISTER MAP FO	SFR SFR Name Addr	TRISF 02E8	PORTF 02EA	LATF	ODCF 02EE

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend: PORTE REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES **TABLE 4-51**:

ון מער. דו	-	5	וו וורכ	ואוואוו		IABEE 4-31: 1 OK II KEGISTEN MAT TOK GST 18331 33263000 AND GST 18331 30463000 DEVICES	301 002		ש שווה		00+00	00 DEVI	CLO				
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 12 Bit 11 Bit 10	Bit 10	Bit 9	Bit 8	Bit 8 Bit 7	Bit 6	Bit 6 Bit 5 Bit 4	Bit 4	Bit 3	Bit 2	Bit 1	
TRISF 02E8	02E8	1	-	I	1	-	_	1	TRISF8	TRISF7	TRISF6	TRISF8 TRISF7 TRISF6 TRISF5 TRISF4	TRISF4	TRISF3 TRISF2 TRISF1	TRISF2	TRISF1	Ξ
PORTF 02EA	02EA	Ι	Ι	Ι	1	I	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	
LATF	02EC	1	_	Ι	_	_	_	-	LATF8	LATF7	LATF6	LATF5	LATF4	LATF8 LATF7 LATF6 LATF5 LATF4 LATF3 LATF2 LATF1	LATF2	LATF1	Г
ODCF 02EE	02EE	_	_	-	_	_	_	-	ODCF8	ODCF8 ODCF7 ODCF6	ODCF6	_	_	ODCF3 ODCF2 ODCF1	ODCF2	ODCF1	

All Resets 0.1FF XXXX 00000 00000

rrisf0

RF0 LATF0

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PORTF REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES **TABLE 4-52:**

All Resets	007F	XXXX	0000	0000
Bit 0	TRISF0	RF0	LATF2 LATF1 LATF0 0000	-
Bit 1	TRISF1	RF1	LATF1	ODCF1
Bit 2	TRISF2	RF2	LATF2	ODCF2 ODCF1
Bit 3	TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 007F	RF3	LATF3	ODCF3
Bit 4	TRISF4	RF4	LATF4	1
Bit 5	TRISF5	RF5	LATF5 LATF4	I
Bit 7 Bit 6	TRISF6	8F6	LATF6	ODCF6
	1	_	_	_
Bit 8	I	I	I	1
Bit 9	I	-	-	_
Bit 10	I	I	I	1
Bit 11	I	I	I	1
Bit 12	Ι	_	_	-
Bit 13	Ι	_	_	-
Bit 14	I	I	I	1
Bit 15	I	I	I	I
SFR Addr	02E8	02EA	02EC	02EE
SFR Name	TRISF	PORTF 02EA	LATF	ODCF

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PORTG REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES **TABLE 4-53:**

SFR S Name A	SFR Addr	Bit 15	Bit 15 Bit 14 Bit 13	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
TRISG	02F0	TRISG15	02F0 TRISG15 TRISG14 TRISG13 TRISG12	TRISG13	TRISG12	I	I	TRISG9	TRISG9 TRISG8 TRISG7 TRISG6	TRISG7	TRISG6	I	I	TRISG3	TRISG2	TRISG1 TRISG0	TRISG0	F3CF
PORTG	02F2	RG15	PORTG 02F2 RG15 RG14 RG13	RG13	RG12	_	_	RG9	RG8	RG7	RG6	I	Ι	RG3	RG2	RG1	RG0	XXXX
LATG	02F4	LATG15	02F4 LATG15 LATG14 LATG13 LATG12	LATG13	LATG12	Ι	_	LATG9	LATG9 LATG8 LATG7 LATG6	LATG7	LATG6	I	Ι	LATG3	LATG2	LATG2 LATG1 LATG0		0000
ODCG	02F6	ODCG15	ODCG 02F6 ODCG15 ODCG14 ODCG13 ODCG12	ODCG13	ODCG12	_	_	690G0	ODCG9 ODCG8 ODCG7 ODCG6	ODCG7	950GO	I	Ι	1	I	192GO	ODCG1 ODCG0	0000
-						1		-										

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

AII Resets 03CC XXXX 0000 0000

IABLE	4-54:	POR	IG REG	STER	IABLE 4-54: PORIG REGISTER MAP FOR		33FJ32	6 2608	AND ds	PIC33F	dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES	08 DEV	CES					_
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 14 Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
TRISG 02F0	02F0	I	I	I	I	I	I	TRISG9	TRISG8	TRISG9 TRISG8 TRISG7 TRISG6	TRISG6	I	I	TRISG3	TRISG2 TRISG1 TRISG0	TRISG1		O3CF
PORTG 02F2	02F2	_	I		I	_	_	69X	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG 02F4	02F4	_	I		I	_	_	LATG9	LATG8	LATG9 LATG8 LATG7 LATG6	LATG6	_	_	LATG3	LATG2	LATG1 LATG0		0000
ODCG 02F6	02F6	Ι	I	I	I	-	-	ടൊമഠ	ODCG9 ODCG8 ODCG7	ODCG7	95000	_	Ι	_	Ι	ODCG1 ODCG0		0000
Legend:	× = ×	an uwouyur.	lue on Res€	et, — = unir	Legend: $x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal$	read as '0'.	Reset value	es are shov	vn in hexad	ecimal.								10.

	Bit 1	Ι	Ι	_	I
	Bit 2	TRISG2	RG2	LATG2	I
/ICES	Bit 3	TRISG3 TRISG2	RG3	LATG3 LATG2	ı
606 DE\	Bit 4	-	_	_	-
:GS406/	Bit 5 Bit 4	-	_	_	_
TABLE 4-55: PORTG REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES	Bit 10 Bit 9 Bit 8 Bit 7 Bit 6	TRISG6	RG6	LATG6	950GO
D dsPI(Bit 7	TRISG9 TRISG8 TRISG7 TRISG6	RG7	LATG9 LATG8 LATG7 LATG6	ODCG9 ODCG8 ODCG7 ODCG6
606 AN	Bit 8	TRISG8	RG8	LATG8	ODCG8
:GS406/	Bit 9	TRISG9	RG9	LATG9	650G0
;33FJ32	Bit 10	1	Ι	1	I
R dsPIC	Bit 11	I	Ι	_	1
MAP FO	Bit 13 Bit 12 Bit 11	1	Ι	1	I
ISTER I	Bit 13	I	_	-	I
TG REG	Bit 14	Ι	_	_	1
POR	Bit 15	1	1	_	1
4-55:	SFR Addr	02F0	02F2	02F4	02F6
TABLE	SFR Name	TRISG 02F0	PORTG 02F2	LATG	ODCG 02F6

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

SYSTEM CONTROL REGISTER MAP **TABLE 4-56:**

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 11 Bit 10 Bit 9 Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
RCON	0740	TRAPR	IOPUWR	Ι	I	I	I	I	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	$xxxx^{(1)}$
OSCCON	0742	I	,	COSC<2:0>		-	_	NOSC<2:0>	<0>	CLKLOCK	I	LOCK	I	CF	I	I	OSWEN	0300(2)
CLKDIV	0744	ROI	_	DOZE<2:0>		DOZEN	芷	FRCDIV<2:0>	2:0>	PLLPOST<1:0>	T<1:0>	I		P	PLLPRE<4:0>	_		0040
PLLFBD	0746	I	I	Ι	I	-	1	-				P	PLLDIV<8:0>					0030
OSCIUN	0748	1	I	I	I	-	1	1	Ι	Ι	I			TUN<5:0>	5:0>			0000
REFOCON 074E	074E	ROON	I	ROSSLP	ROSEL		RODIV	RODIV<3:0>		Ι	Ι	I	I	Ι	I	I	Ι	0000
ACLKCON 0750	0220	ENAPLL	APLLCK	APLLCK SELACLK	I	_	APS	APSTSCLR<2:0>		ASRCSEL	FRCSEL	1	Ι	_	1	1	1	2300
Legend:	x = unk	snown value	on Reset -	Ledend: x = unknown value on Reset — = unimplemented read as '0'. Reset values are shown in hexadecimal	rented rea	d as '0'. R	eset valu	les are s	thown in he	exadecimal								

Legen Note

x = unkflown value on reset, — — uninipromented in the RCON register reset values are dependent on type of reset.

The OSCCON register reset values are dependent on the FOSC configuration bits, and on type of reset.

0000

0000

NVMOP<3:0>

All Resets

Bit 0

Bit 1

Bit 2

_	TABLE 4-57	4-57:	N N	REGIST	NVM REGISTER MAP	<u>.</u>									
	SFR Name	Addr	Bit 15	Bit 14	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
	NVMCON	0920	WR	WREN	WRERR	I	I	I	I	I	I	ERASE	I	I	
	NVMKEY	9920	_	_	_	Ι	_	_	Ι	Ι				NVMKEY<7:0>	<0:7>/

Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

AII Resets 0000 0000 0000 0000 0000 0000 **PWM9MD** OC1MD Bit 0 OC2MD 12C2MD C1MD Bit 1 OC3MD Bit 2 OC4MD REFOMD Bit 3 SP11MD **SPI2MD** Bit 4 QE12MD Bit 5 U1MD U2MD Bit 7 PWM1MD CMP1MD IC1MD PMD REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES PWM2MD IC2MD Bit 9 **PWM3MD** QEI1MD **CMP3MD** Bit 10 IC3MD CMPMD PWM4MD Bit 11 IC4MD **PWM5MD** T2MD **PWM6MD** Bit 13 T3MD **PWM7MD** Bit 14 T4MD **PWM8MD** Bit 15 T5MD **FABLE 4-58:** 077A 077C SFR Addr 0772 0774 9220 0770 SFR Name PMD6 PMD2 PMD3 PMD4 PMD1 PMD7

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset Legend:

	All Resets	0.0	0.0	0000	0000	0000	0.0
		0000	0000	0.0	0.0	0.0	O0000 Q
	Bit 0	ADCMD	OC1MD	I	1	I	РWM9MD
	Bit 1	I	OC2MD	I2C2MD	1	ı	I
	Bit 2	I	ОСЗМБ	I	Ι	-	Ι
	Bit 4 Bit 3	SPI1MD	OC4MD OC3MD OC2MD	_	REFOMD	_	_
		U1MD SPI2MD SPI1MD	I	I	I	ı	I
	Bit 5	U1MD	_	QEI2MD	_	_	_
	Bit 6	I2C1MD U2MD	Ι	Ι	Ι	I	I
	Bit 7	I2C1MD	I	I	I	-	I
ICES	Bit 8	I	IC1MD	_	_	PWM1MD	CMP4MD CMP3MD CMP2MD CMP1MD
ilo DEV	Bit 9	PWMMD	IC2MD	Ι	Ι	PWM2MD	CMP2MD
-J32GS(Bit 10	T1MD QEI1MD PWMMD	IC3MD	CMPMD	_	PWM3MD	CMP3MD
SPIC33	Bit 11	T1MD	IC4MD	-	-	PWM4MD	CMP4MD
P FOR d	Bit 12	T2MD	_	_	_	PWM5MD	-
I EK MA	Bit 13	T3MD	I	I	Ι	PWM6MD	Ι
IABLE 4-59: PMD REGISTER MAP FOR dSPIC33FJ32GS610 DEVICES	Bit 14	T4MD	I	I	I	PMD6 077A PWM8MD PWM7MD PWM6MD PWM5MD PWM4MD PWM3MD PWM3MD PWM1MD	Ι
: PMD	Bit 15	TSMD	I	I	I	PWM8MD	-
4-59	SFR Addr	0770	0772	0774	9220	077A	077C
IABLE	SFR 8	PMD1	PMD2	PMD3	PMD4 0776	PMD6	PMD7

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend:

x = unknown value on Reset

<u>鱼</u>	道ds!	1	03:					081
	All Resets	0000	0000	0000	0000	0000	0000	
	Bit 0	ADCMD	OC1MD	I	I	1	I	
	Bit 1	C1MD	OC2MD	12C2MD	I	-	-	
	Bit 2	Ι	OC4MD OC3MD	_	_	_	-	
	Bit 3	SPI1MD	OC4MD	_	REFOMD	_	_	
	Bit 4	SPI2MD	_	_	_	_	_	
	Bit 5	U1MD SPI2MD SPI1MD	_	QEI2MD	_	_	_	
	Bit 6	UZMD	Ι	Ι	Ι	1	_	
	Bit 7	I2C1MD	Ι	Ι	Ι	_		imal.
ICES	Bit 8	I	IC1MD	Ι	Ι	PWM1MD	CMP1MD	in hexadec
TABLE 4-60: PMD REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES	Bit 9	PWMMD	ICZMD	_	_	077A DWM8MD PWM7MD PWM6MD PWM5MD PWM3MD PWM3MD PWM1MD	CMP4MD CMP3MD CMP2MD CMP1MD	as '0'. Reset values are shown in hexadecimal
FJ64GS	Bit 10	QE11MD	IC3MD	CMPMD	_	ДМЕММЧ	СМРЗМD	Reset value
IsPIC33	Bit 11	T1MD	IC4MD	-	-	PWM4MD	CMP4MD	read as '0'.
P FOR o	Bit 12	T2MD	I	I	I	PWM5MD	1	nplemented,
TER MA	Bit 13	T3MD	_	_	_	PWM6MD	_	et, — = unir
REGIS	Bit 14	T4MD	1	1	1	PWM7MD	_	alue on Res
: PMD	Bit 15	T5MD	I	I	I	PWM8MD	I	${\bf x}$ = unknown value on Reset, — = unimplemented, read
4-60	SFR Addr	0770	0772	0774	9220	077A	077C	
TABLE	SFR Name	PMD1	PMD2	PMD3	PMD4	PMD6	PMD7	Legend:

PMD REGISTER MAP FOR dsPIC33FJ32GS608 DEVICES **TABLE 4-61**:

֡֝֝֝֝֜֜֜֝֝֜֜֜֝֝֡֜֜֝֝֡֜֜֜֝֡֓֓֓֓֜֜֜֜֜֜֜֜֜֜	- -				5			1										
SFR Name	SFR SFR Name Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QE11MD	QEI1MD PWMMD	I	I2C1MD U2MD	UZMD	U1MD SPI2MD SPI1MD	SPIZMD	SPI1MD	I	I	ADCMD	0000
PMD2	0772	Ι	Ι	Ι	Ι	IC4MD	IC3MD	IC2MD	IC1MD	ı	Ι	_	Ι	OC4MD OC3MD OC2MD OC1MD	OC3MD	OC2MD		0000
PMD3	0774	1	-	Ι	_	-	CMPMD	-	-	1	1	QEIZMD	1	-	-	12C2MD	1	0000
PMD4	9220	I	-	Ι	Ι	I	1	I	Ι	ı	Ι	_	Ι	REFOMD	Ι	-	Ι	0000
PMD6	077A	PMD6 077A PWM8MD PWM7MD PWM6MD PWM5MD PWM4MD PWM3MD PWM2MD PWM1MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	1	-	_	_	-	-	-	-	0000
PMD7 077C	077C	1	_	Ι	-	CMP4MD	CMP3MD	CMP4MD CMP3MD CMP2MD CMP1MD	CMP1MD	1	-	_	_	-	-	-	-	0000
																		l

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

PMD REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES **TABLE 4-62:**

	Bit 1 Bit 0 All Resets	C1MD ADCMD 00000	SZMD OC1MD 0000	12C2MD — 00000	00000 — —	00000 — —	00000 — —	
	Bit 2 B	i)	OC4MD OC3MD OC2MD	— ISC	I	I	I	
	Bit 3	SPI1MD	OC4MD	_	REFOMD	_	_	
	Bit 4	U1MD SPI2MD SPI1MD	_	_	_	_	_	
	Bit 5	U1MD	1	QEI2MD	1	1	1	
	Bit 6	I2C1MD U2MD	I	I	I	I	I	
	Bit 7	I2C1MD	I	I	I	I	I	
	Bit 8	Ι	IC1MD	_	_	DW11MD	CMP1MD	
	Bit 9	DWMWA	IC2MD	1	1	PWM2MD	CMP2MD	
	Bit 10	T1MD QEI1MD	IC3MD	CMPMD	Ι	PWM4MD PWM3MD PWM2MD PWM1MD	CMP4MD CMP3MD CMP2MD CMP1MD	
31 1000	Bit 11	T1MD	IC4MD	1	1	PWM4MD	CMP4MD	
	Bit 12	T2MD	I	I	I	PWM5MD	I	
	Bit 13	T3MD	_	_	_	ВММ6МБ РММ5МБ	_	
	Bit 14	T4MD	_	_	_	_	_	
	Bit 15	TSMD	I	I	I	I	I	
10.	SFR Addr	0220	0772	0774	9220	077A	077C	
	SFR Name	PMD1	PMD2	PMD3	PMD4	PMD6	PMD7	

	All Resets	0000	0000	0000	0000	0000	0000
	Bit 0	ADCMD	OC1MD	1	I	1	1
	Bit 1	1	OC2MD	I2C2MD	-	_	I
	Bit 2	Ι	ОСЗМБ	_	_	_	
	Bit 3	SPI1MD	OC4MD OC3MD OC2MD	_	REFOMD	_	1
	Bit 4	SPI2MD	_	_	_	_	
	Bit 5	U1MD SPI2MD SPI1MD	_	QEI2MD	_	_	
	Bit 6	U2MD	_	_	_	_	_
	Bit 7	I2C1MD	_	_	_	_	-
CES	Bit 8	_	IC1MD	_	_	PWM1MD	CMP1MD
IABLE 4-63: PIMD REGISTER MAP FOR ASPICASFJ32G3808 DEVICES	Bit 9	PWMMD	IC2MD	_	_	PWM4MD PWM3MD PWM2MD PWM1MD	CMP4MD CMP3MD CMP2MD CMP1MD
- J32Gコピ	Bit 10	QE11MD	IC3MD	CMPMD	1	PWM3MD	СМРЗМD
SPICSSF	Bit 11	T1MD	IC4MD	_	Ι	PWM4MD	CMP4MD
rok a	Bit 12	T2MD	Ι	_	1	PWM5MD	_
EK MAR	Bit 13	T3MD	_	_	_	PWM6MD PWM5MD	
KEGIST	Bit 14	T4MD	Ι	Ι	Ι	-	-
L	Bit 15	TSMD	I	Ι	I	1	1
4-03	SFR Addr	0770	0772	0774	9220	077A	077C
IABLE	SFR Name	PMD1	PMD2	PMD3	PMD4	PMD6	PMD7

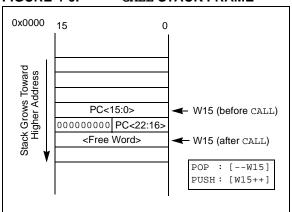
 ${\bf x}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend: PMD REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES **TABLE 4-64**:

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 6 Bit 5 Bit 4	Bit 4	Bit 3	Bit 2 Bit 1	Bit 1	Bit 0	All Resets
PMD1	PMD1 0770	T5MD	T4MD	T3MD	T2MD	T1MD	T1MD QEI1MD PWMMD	PWMMD	I	12C1MD	U2MD	12C1MD U2MD U1MD SPI2MD SPI1MD	SPI2MD	SPI1MD	I	I	ADCMD	0000
PMD2	PMD2 0772	_	_	1	Ι	IC4MD	IC4MD IC3MD	IC2MD	IC1MD	I	-	Ι	_	OC4MD OC3MD OC2MD OC1MD	OC3MD	OC2MD		0000
PMD3	0774	_	_	1	Ι	_	_	1	I	I	-	QEI2MD	_	-	1	12C2MD	Ι	0000
PMD4	PMD4 0776	_	_	-	-	_	_	1	1	1	_	-	_	REFOMD	-	-	-	0000
PMD6	PMD6 077A	_	_	PWM6MD	PWM6MD PWM5MD PW	PWM4MD	PWM3MD	VM4MD PWM3MD PWM2MD PWM1MD	PWM1MD	1	_	-	_	_	-	-	-	0000
10000		y, amoadan	ao on le	I canada Indianama value as Denet - Instandamentad reced on (c) Denet values are abound in bevealed	r potacacla	,0,00000	Poort to a	arrodo oro	aio oboyod ai	100								

4.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1800 in RAM, initialize the SPLIM with the value 0x17FE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-6: CALL STACK FRAME

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-65 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function > Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

DS70591C-page 100 Preliminary

TABLE 4-65: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the MAC class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 101

4.4 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

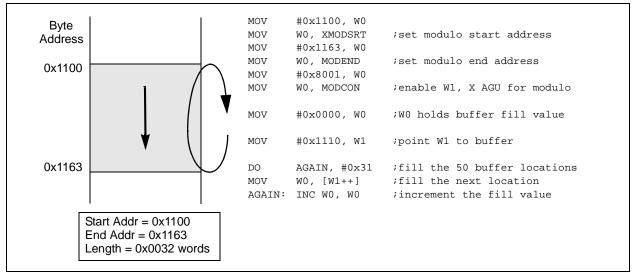
4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note:

The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- · The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:

All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:

Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing will assume priority when active for the X WAGU and X WAGU, Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 103

FIGURE 4-8: BIT-REVERSED ADDRESS EXAMPLE

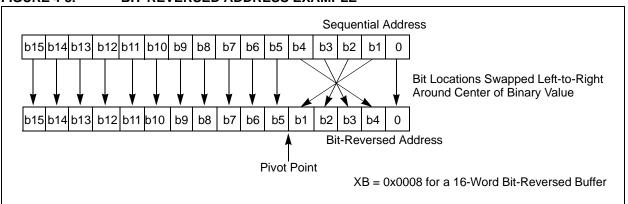


TABLE 4-66: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	ss			Bit-Rev	ersed Ac	ldress
А3	A2	A 1	Α0	Decimal	А3	A2	A 1	Α0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/608/610 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

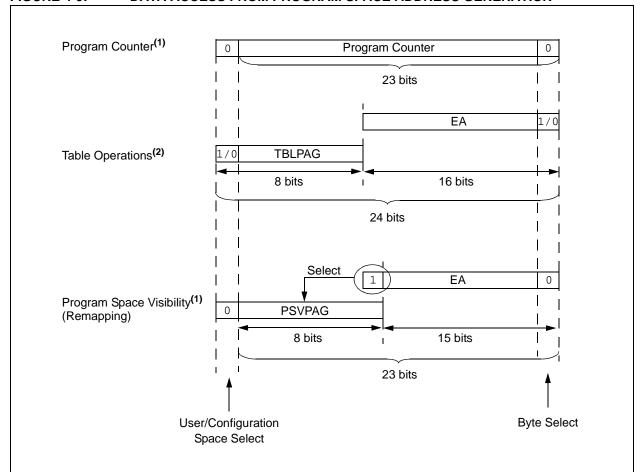
4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-67 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.


TABLE 4-67: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Tyres	Access		Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>		0				
(Code Execution)			0xx xxxx x	xxx xxx	x xxxx xxx0					
TBLRD/TBLWT	User	ТВ	LPAG<7:0>		Data EA<15:0>					
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xx	xx xxxx xxxx					
	Configuration	ТВ	LPAG<7:0>	Data EA<15:0>						
		1xxx xxxx xxxx			xxxx xxxx xxxx					
Program Space Visibility	User	0	PSVPAG<7	':0>	Data EA<14:0>(1)					
(Block Remap/Read)		0	xxxx xxxx	Σ	xxx xxxx xxxx	xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

© 2010 Microchip Technology Inc. **Preliminary** DS70591C-page 105

FIGURE 4-9: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

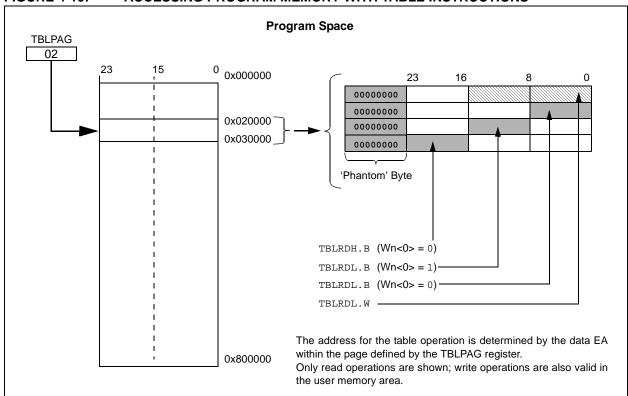
- **Note 1:** The Least Significant bit (LSb) of program space addresses is always fixed as '0' to maintain word alignment of data in the program and data spaces.
 - **2:** Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.


- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte
 of the lower program word is mapped to the
 lower byte of a data address. The upper byte
 is selected when Byte Select is '1'; the lower
 byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0** "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

© 2010 Microchip Technology Inc. **Preliminary** DS70591C-page 107

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

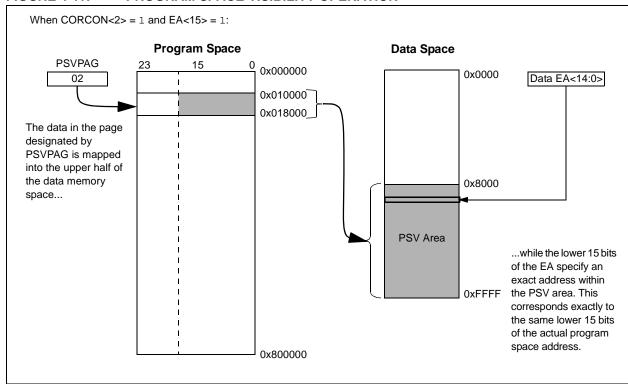
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. Dinstructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

查询50PIC3PLASHSPROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGC1/PGD1, PGC2/PGD2 or PGC3/PGD3),

and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data, either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

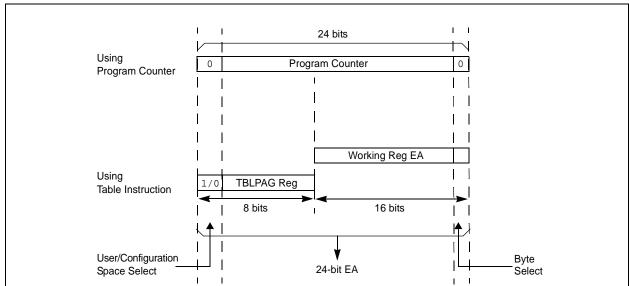


FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

查询dsPIC33FJ64GS608供应商

5.2 RTSP Operation

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/608/610 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 27-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time, and Word Write Cycle Time parameters (see Table 27-12).

EQUATION 5-1: PROGRAMMING TIME

$$\frac{T}{7.37 \; MHz \times (FRC \, Accuracy)\% \times (FRC \, Tuning)\%}$$

For example, if the device is operating at +125°C, the FRC accuracy will be ±5%. If the TUN<5:0> bits (see Register 9-4) are set to `b000000, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0)} = 1.43 ms$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0)} = 1.58 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3** "**Programming Operations**" for further details.

查询dsPIC33FJ64GS608供应商REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE	_	_		NVMOP	<3:0> ⁽²⁾	
bit 7							bit 0

Legend:	SO = Settable Only bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 WR: Write Control bit

1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete.

0 = Program or erase operation is complete and inactive

bit 14 WREN: Write Enable bit

1 = Enable Flash program/erase operations0 = Inhibit Flash program/erase operations

bit 13 WRERR: Write Sequence Error Flag bit

1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit)

0 = The program or erase operation completed normally

bit 12-7 Unimplemented: Read as '0'

bit 6 ERASE: Erase/Program Enable bit

1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command

0 = Perform the program operation specified by NVMOP<3:0> on the next WR command

bit 5-4 **Unimplemented:** Read as '0'

bit 3-0 **NVMOP<3:0>:** NVM Operation Select bits⁽²⁾

If ERASE = 1:

1111 = Memory bulk erase operation

1101 = Erase general segment

0011 = No operation

0010 = Memory page erase operation

0001 = No operation

0000 = Erase a single Configuration register byte

If ERASE = 0:

1111 = No operation

1101 = No operation

0011 = Memory word program operation

0010 = No operation

0001 = Memory row program operation

0000 = Program a single Configuration register byte

Note 1: These bits can only be Reset on POR.

2: All other combinations of NVMOP<3:0> are unimplemented.

查询dsPIC33FJ64GS608供应商

REGISTER 5-2: NVMKEY: NON-VOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
NVMKEY<7:0>							
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

<u>查询如果IC33</u>FEGERAMM加速南LGORITHM FOR FLASH PROGRAM MEMORY

One row of program Flash memory can be programmed at a time. To achieve this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- Update the program data in RAM with the desired new data.
- Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

```
; Set up NVMCON for block erase operation
       MOV
               #0x4042, W0
               WO, NVMCON
       MOV
                                             ; Initialize NVMCON
; Init pointer to row to be ERASED
               #tblpage(PROG_ADDR), W0
       MOV
               W0, TBLPAG
                                             ; Initialize PM Page Boundary SFR
       MOM
               #tbloffset(PROG_ADDR), W0
                                             ; Initialize in-page EA[15:0] pointer
       TBLWTL WO, [WO]
                                             ; Set base address of erase block
                                             ; Block all interrupts with priority <7
       DISI
               #5
                                             ; for next 5 instructions
       MOV
               #0x55, W0
               WO. NVMKEY
       MOV
                                             ; Write the 55 key
       MOV
               #0xAA, W1
       MOV
               W1, NVMKEY
                                             ; Write the AA key
       BSET
              NVMCON, #WR
                                             ; Start the erase sequence
       NOP
                                             ; Insert two NOPs after the erase
                                             ; command is asserted
       NOP
```

查询dsPIC33FJ64GS608供应商 EXAMPLE 5-2: LOADING THE WRITE BUFFERS

```
; Set up NVMCON for row programming operations
              #0x4001, W0
                                        ; Initialize NVMCON
       MOV
              W0, NVMCON
; Set up a pointer to the first program memory location to be written
; program memory selected, and writes enabled
      MOV
              #0×0000. W0
       MOV
              WO, TBLPAG
                                        ; Initialize PM Page Boundary SFR
             W0, TBLPAG ; Initialize PM Page Boundary SFR #0x6000, W0 ; An example program memory address
       MOV
; Perform the TBLWT instructions to write the latches
; 0th_program_word
            #LOW_WORD_0, W2
       MOV
                                      ;
              #HIGH_BYTE_0, W3
       MOV
       TBLWTL W2, [W0]
                                         ; Write PM low word into program latch
       TBLWTH W3, [W0++]
                                         ; Write PM high byte into program latch
; 1st_program_word
      MOV
            #LOW WORD 1, W2
       MOV
            #HIGH_BYTE_1, W3
       TBLWTL W2, [W0]
                                       ; Write PM low word into program latch
      TBLWTH W3, [W0++]
                                       ; Write PM high byte into program latch
; 2nd_program_word
              #LOW_WORD_2, W2 ,
#HIGH_BYTE_2, W3 ;
W2, [W0] ; Write PM low word into program latch
; Write PM high byte into program latch
       MOV #LOW_WORD_2, W2
       MOV
       TBLWTL W2, [W0]
       TBLWTH W3, [W0++]
                                        ; Write PM high byte into program latch
; 63rd_program_word
       MOV #LOW_WORD_31, W2
                                        ;
              #HIGH_BYTE_31, W3
       MOV
                                     ; Write PM low word into program latch
       TBLWTL W2, [W0]
       TBLWTH W3, [W0++]
                                         ; Write PM high byte into program latch
```

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

```
DISI
       #5
                                 ; Block all interrupts with priority <7
                                 ; for next 5 instructions
       #0x55, W0
MOV
MOV
       WO, NVMKEY
                                 ; Write the 55 key
MOV
       #0xAA, W1
MOV
       W1, NVMKEY
                                 ; Write the AA key
BSET
       NVMCON, #WR
                                 ; Start the erase sequence
NOP
                                 ; Insert two NOPs after the
NOP
                                 ; erase command is asserted
```

查询dsPIC33FI64CS608供应商

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

POR: Power-on ResetBOR: Brown-out Reset

• MCLR: Master Clear Pin Reset

• SWR: Software RESET Instruction

• WDTO: Watchdog Timer Reset

· TRAPR: Trap Conflict Reset

IOPUWR: Illegal Condition Device Reset

- Illegal Opcode Reset

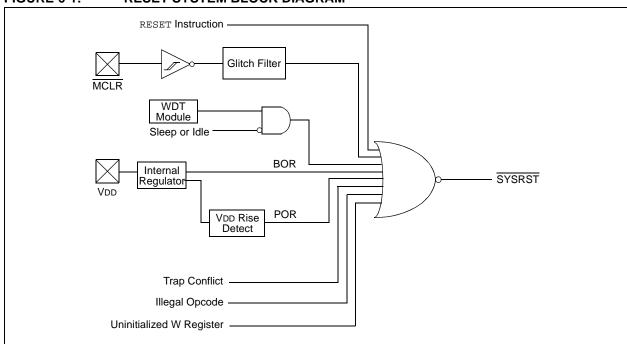
- Uninitialized W Register Reset

- Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or **Section 3.0 "CPU"** of this data sheet for register Reset states.


All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

查询dsPIC33FJ64GS608供应商 REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAPR	IOPUWR	_	_	_	_	_	VREGS
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0

Legend:

bit 5

bit 3

R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit

'1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

bit 15 TRAPR: Trap Reset Flag bit

1 = A Trap Conflict Reset has occurred

0 = A Trap Conflict Reset has not occurred

bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit

1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an

Address Pointer caused a Reset

0 = An illegal opcode or uninitialized W Reset has not occurred

bit 13-9 Unimplemented: Read as '0'

bit 8 VREGS: Voltage Regulator Standby During Sleep bit

1 = Voltage regulator is active during Sleep

0 = Voltage regulator goes into Standby mode during Sleep

bit 7 EXTR: External Reset Pin (MCLR) bit

1 = A Master Clear (pin) Reset has occurred

0 = A Master Clear (pin) Reset has not occurred

bit 6 SWR: Software Reset Flag (Instruction) bit

> 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed

SWDTEN: Software Enable/Disable of WDT bit⁽²⁾

1 = WDT is enabled

0 = WDT is disabled

bit 4 WDTO: Watchdog Timer Time-out Flag bit

1 = WDT time-out has occurred

0 = WDT time-out has not occurred

SLEEP: Wake-up from Sleep Flag bit

1 = Device has been in Sleep mode

0 = Device has not been in Sleep mode

bit 2 IDLE: Wake-up from Idle Flag bit

1 = Device was in Idle mode

0 = Device was not in Idle mode

bit 1 **BOR:** Brown-out Reset Flag bit

1 = A Brown-out Reset has occurred

0 = A Brown-out Reset has not occurred

bit 0 POR: Power-on Reset Flag bit

1 = A Power-up Reset has occurred

0 = A Power-up Reset has not occurred

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

查询dsPIC33FJ64GS608供应商

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices have two types of Reset:

- Cold Reset
- · Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC Configuration bits in the FOSC Configuration register select the device clock source.

A warm Reset is the result of all the other Reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 6-2.

 POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed.

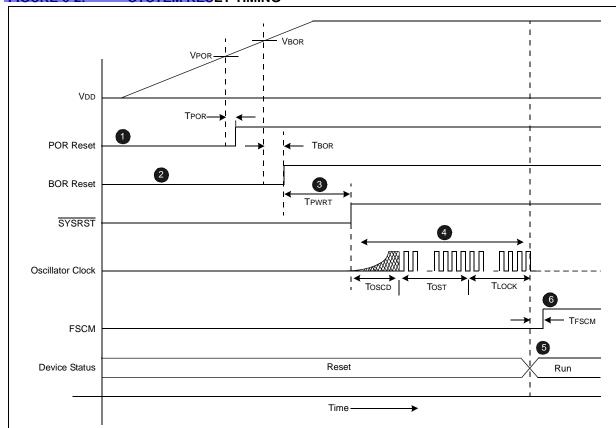

- BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures that the voltage regulator output becomes stable.
- timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT, has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 9.0 "Oscillator Configuration" for more information.
- 5. When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
- The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay, TFSCM, elapsed.

TABLE 6-1: OSCILLATOR DELAY

Oscillator Mode	Oscillator Start-up Delay	Oscillator Start-up Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Tosco ⁽¹⁾	_	_	Tosco ⁽¹⁾
FRCPLL	Tosco ⁽¹⁾	_	TLOCK ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Tosco ⁽¹⁾	Tost ⁽²⁾	_	Toscd + Tost ^(1,2)
HS	Tosco ⁽¹⁾	Tost ⁽²⁾	_	Toscd + Tost ^(1,2)
EC	_	_	_	_
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	TLOCK ⁽³⁾	Toscd + Tost + TLOCK ^(1,2,3)
HSPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	TLOCK ⁽³⁾	Toscd + Tost + Tlock ^(1,2,3)
ECPLL	_	_	TLOCK ⁽³⁾	TLOCK ⁽³⁾
LPRC	Tosco ⁽¹⁾	_	_	Tosco ⁽¹⁾

- Note 1: ToscD = Oscillator start-up delay (1.1 μ s max for FRC, 70 μ s max for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.
 - 2: Tost = Oscillator start-up timer delay (1024 oscillator clock period). For example, Tost = 102.4 μs for a 10 MHz crystal and Tost = 32 ms for a 32 kHz crystal.
 - 3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

Note 1: POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed.

- 2: BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.
- 3: PWRT Timer: The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT has elapsed and the SYSRST becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles.
- **4: Oscillator Delay:** The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to **Section 9.0 "Oscillator Configuration"** for more information.
- 5: When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
- 6: If the Fail-Safe Clock Monitor (FSCM) is enabled, it begins to monitor the system clock when the system clock is ready and the delay, TFSCM, has elapsed.

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges; otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters within specification.

查询dsPIC33FJ64GS608供应商

6.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures the internal device bias circuits become stable.

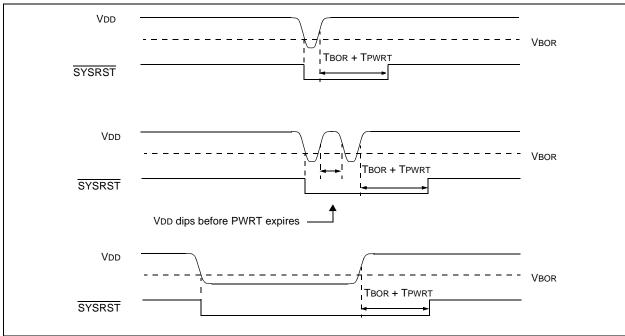
The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 27.0 "Electrical Characteristics" for details.

The POR Status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.3 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the

VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.


The BOR Status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 24.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

查询dsPIC33FI64CS608供应商

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt Trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 27.0 "Electrical Characteristics" for minimum pulse width specifications. The external Reset (MCLR) pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.4.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This external Reset signal can be directly connected to the $\overline{\text{MCLR}}$ pin to reset the device when the rest of system is reset.

6.4.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the external Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.5 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert \overline{SYSRST} , placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. \overline{SYSRST} is released at the next instruction cycle and the Reset vector fetch will commence.

The Software Reset (SWR) flag (instruction) in the Reset Control (RCON<6>) register is set to indicate the software Reset.

6.6 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out (WDTO) flag in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 24.4** "**Watchdog Timer (WDT)**" for more information on Watchdog Reset.

6.7 Trap Conflict Reset

If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of pri-

ority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset (TRAPR) flag in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0** "Interrupt Controller" for more information on Trap Conflict Resets.

6.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- · Illegal Opcode Reset
- Uninitialized W Register Reset
- · Security Reset

The Illegal Opcode or Uninitialized W Access Reset (IOPUWR) flag in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

6.8.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

6.8.2 UNINITIALIZED W REGISTER RESET

Any attempt to use the uninitialized W register as an Address Pointer will Reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (boot and secure segment), that operation will cause a Security Reset.

The PFC occurs when the program counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.

The VFC occurs when the program counter is reloaded with an interrupt or trap vector.

Refer to Section 24.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

查询dsPIC33FI64CS608供应商 6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note:

The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-2 provides a summary of the Reset flag bit operation.

TABLE 6-2: RESET FLAG BIT OPERATION

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR,BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR,BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR,BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR,BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR,BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR,BOR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	

Note: All Reset flag bits can be set or cleared by user software.

本的esPIC33FJ64GS608供应商

查询dsPIC33TI64CS608供应的TROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 47. "Interrupts (Part V)" (DS70597) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

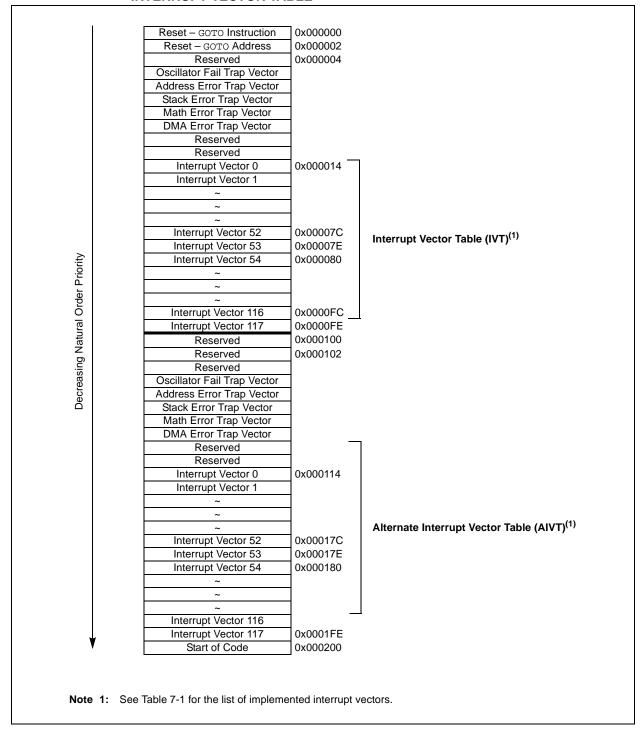
The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of eight nonmaskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement up to 71 unique interrupts and five non-maskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.


The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x0000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

章词はPIC33FJ64GS608供应う dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 INTERRUPT VECTOR TABLE

查询dsPIC33FJ64GS608供应商 TABLE 7-1: INTERRUPT VECTORS

Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source
	<u>'</u>	High	est Natural Order Pi	riority
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 - DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Fault
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC – ADC Group Convert Done
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Event
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Event
26	18	0x000038	0x000138	CMP1 – Analog Comparator 1 Interrupt
27	19	0x00003A	0x00013A	CN – Input Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29-31	21-23	0x00003E-	0x00013E-	Reserved
		0x000042	0x000142	
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI2 – SPI2 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47-56	39-48	0x000062- 0x000074	0x000162- 0x000174	Reserved
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59-60	51-52	0x00007A- 0x00007C	0x00017A- 0x00017C	Reserved
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4

查询dsPIC33FJ64GS608供应商
TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source
63-64	55-56	0x000082- 0x000084	0x000182- 0x000184	Reserved
65	57	0x000086	0x000186	PWM PSEM Special Event Match
66	58	0x000088	0x000188	QEI1 – Position Counter Compare
67-72	59-64	0x00008A- 0x000094	0x00018A- 0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error Interrupt
74	66	0x000098	0x000198	U2E – UART2 Error Interrupt
75-77	67-69	0x00009A- 0x00009E	0x00019A- 0x00019E	Reserved
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	Reserved
80	72	0x0000A4	0x0001A4	Reserved
81	73	0x0000A6	0x0001A6	PWM Secondary Special Event Match
82	74	0x0000A8	0x0001A8	Reserved
83	75	0x0000AA	0x0001AA	QEI2 – Position Counter Compare
84-88	76-80	0x0000AC- 0x0000B4	0x0001AC- 0x0001B4	Reserved
89	81	0x0000B6	0x0001B6	ADC Pair 8 Conversion Done
90	82	0x0000B8	0x0001B8	ADC Pair 9 Conversion Done
91	83	0x0000BA	0x0001BA	ADC Pair 10 Conversion Done
92	84	0x0000BC	0x0001BC	ADC Pair 11 Conversion Done
93	85	0x0000BE	0x0001BE	ADC Pair 12 Conversion Done
94-101	86-93	0x0000C0- 0x0000CE	0x0001C0- 0x0001CE	Reserved
102	94	0x0000D0	0x0001D0	PWM1 – PWM1 Interrupt
103	95	0x0000D2	0x0001D2	PWM2 – PWM2 Interrupt
104	96	0x0000D4	0x0001D4	PWM3 – PWM3 Interrupt
105	97	0x0000D6	0x0001D6	PWM4 – PWM4 Interrupt
106	98	0x0000D8	0x0001D8	PWM5 – PWM5 Interrupt
107	99	0x0000DA	0x0001DA	PWM6 – PWM6 Interrupt
108	100	0x0000DC	0x0001DC	PWM7– PWM7 Interrupt
109	101	0x0000DE	0x0001DE	PWM8 – PWM8 Interrupt
110	102	0x0000E0	0x0001E0	PWM9 – PWM9 Interrupt
111	103	0x0000E2	0x00001E2	CMP2 – Analog Comparator 2
112	104	0x0000E4	0x0001E4	CMP3 – Analog Comparator 3
113	105	0x0000E6	0x0001E6	CMP4 – Analog Comparator 4
114-117	106-109	0x0000E8- 0x0000EE	0x0001E8- 0x0001EE	Reserved
118	110	0x0000F0	0x0001F0	ADC Pair 0 Convert Done
119	111	0x0000F2	0x0001F2	ADC Pair 1 Convert Done
120	112	0x0000F4	0x0001F4	ADC Pair 2 Convert Done
121	113	0x0000F6	0x0001F6	ADC Pair 3 Convert Done
122	114	0x0000F8	0x0001F8	ADC Pair 4 Convert Done
123	115	0x0000FA	0x0001FA	ADC Pair 5 Convert Done
124	116	0x0000FC	0x0001FC	ADC Pair 6 Convert Done
125	117	0x0000FE	0x0001FE	ADC Pair 7 Convert Done

查询dsPIC33FI64GS608供应商 7.3 Interrupt Control and Status Registers

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement 27 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt priority Level, which are latched into the Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit is found in IEC0<0> and the INT0IP bits are found in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt Priority Level. The user can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-46 in the following pages.

查询lsPIC33FJ64CS608供应商TUS REGISTER(1)

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	ОВ	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:

C = Clearable bit R = Readable bit U = Unimplemented bit, read as '0'

S = Settable bit W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

110 = CPU Interrupt Priority Level is 6 (14)

101 = CPU Interrupt Priority Level is 5 (13)

100 = CPU Interrupt Priority Level is 4 (12)

011 = CPU Interrupt Priority Level is 3 (11)

010 = CPU Interrupt Priority Level is 2 (10)

001 = CPU Interrupt Priority Level is 1 (9)

000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
_	_	_	US	EDT		DL<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit	, read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

查询dsPIC33FI64GS608供应商 REGISTER 7-3: INTCONT: INTERRUPT CONTROL REGISTER 1

W = Writable bit

'1' = Bit is set

Legend:

bit 4

R = Readable bit

-n = Value at POR

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7							bit 0

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

bit 15	NSTDIS: Interrupt Nesting Disable bit
	1 = Interrupt nesting is disabled
	0 = Interrupt nesting is enabled
bit 14	OVAERR: Accumulator A Overflow Trap Flag bit
	1 = Trap was caused by overflow of Accumulator A0 = Trap was not caused by overflow of Accumulator A
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit
	1 = Trap was caused by overflow of Accumulator B0 = Trap was not caused by overflow of Accumulator B
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit
	1 = Trap was caused by catastrophic overflow of Accumulator A0 = Trap was not caused by catastrophic overflow of Accumulator A
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit
	1 = Trap was caused by catastrophic overflow of Accumulator B0 = Trap was not caused by catastrophic overflow of Accumulator B
bit 10	OVATE: Accumulator A Overflow Trap Enable bit
	1 = Trap overflow of Accumulator A0 = Trap disabled
bit 9	OVBTE: Accumulator B Overflow Trap Enable bit
	1 = Trap overflow of Accumulator B0 = Trap disabled
bit 8	COVTE: Catastrophic Overflow Trap Enable bit
	1 = Trap on catastrophic overflow of Accumulator A or B enabled0 = Trap disabled
bit 7	SFTACERR: Shift Accumulator Error Status bit
	1 = Math error trap was caused by an invalid accumulator shift0 = Math error trap was not caused by an invalid accumulator shift
bit 6	DIV0ERR: Arithmetic Error Status bit
	1 = Math error trap was caused by a divide by zero0 = Math error trap was not caused by a divide by zero
bit 5	DMACERR: DMA Controller Error Status bit

1 = DMA controller error trap has occurred 0 = DMA controller error trap has not occurred

MATHERR: Arithmetic Error Status bit 1 = Math error trap has occurred 0 = Math error trap has not occurred

東國的中央 325.164 (NYCON 中的TERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3

ADDRERR: Address Error Trap Status bit

1 = Address error trap has occurred

0 = Address error trap has not occurred

bit 2

STKERR: Stack Error Trap Status bit

1 = Stack error trap has occurred

0 = Stack error trap has not occurred

bit 1

OSCFAIL: Oscillator Failure Trap Status bit

1 = Oscillator failure trap has occurred

0 = Oscillator failure trap has not occurred

bit 0

Unimplemented: Read as '0'

查询REGISTER JO4GS60NTCOND: INTERRUPT CONTROL REGISTER 2

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	_	_	_	_	_	_
bit 15		•					bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit

1 = Use alternate vector table

0 = Use standard (default) vector table

bit 14 DISI Instruction Status bit

1 = DISI instruction is active 0 = DISI instruction is not active

bit 13-5 **Unimplemented:** Read as '0'

bit 4 INT4EP: External Interrupt 4 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

bit 3 INT3EP: External Interrupt 3 Edge Detect Polarity Select bit

1 = Interrupt on negative edge 0 = Interrupt on positive edge

bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

bit 0 INTOEP: External Interrupt 0 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

查询dsPIC33FJ64GS608供应商 REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IF	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14 DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 13 ADIF: ADC Group Conversion Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 12 **U1TXIF:** UART1 Transmitter Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 11 U1RXIF: UART1 Receiver Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 10 SPI1IF: SPI1 Event Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 9 SPI1EIF: SPI1 Fault Interrupt Flag Status bit

1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 8 T3IF: Timer3 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

T2IF: Timer2 Interrupt Flag Status bit

1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 6 OC2IF: Output Compare Channel 2 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 5 IC2IF: Input Capture Channel 2 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 4 DMA0IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 3 T1IF: Timer1 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 7

查询REGISTER 15.6GS608 STATUS REGISTER 0 (CONTINUED)

bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 INT0IF: External Interrupt 0 Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

查询dsPIC33FJ64GS608供应商 REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 12 **U2TXIF:** UART2 Transmitter Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 11 **U2RXIF:** UART2 Receiver Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 13 INT2IF: External Interrupt 2 Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 12 T5IF: Timer5 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 11 T4IF: Timer4 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 10 OC4IF: Output Compare Channel 4 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 9 OC3IF: Output Compare Channel 3 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 8 DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 7-5 **Unimplemented:** Read as '0'

bit 4 INT1IF: External Interrupt 1 Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 3 CNIF: Input Change Notification Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 2 AC1IF: Analog Comparator 1 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

查询dsPIC33FJ64GS608供应商 REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	IC4IF	IC3IF	DMA3IF	C1IF ⁽¹⁾	C1EIF ⁽¹⁾	SPI2IF	SPI2EIF
bit 7							bit 0

Legend:

R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6 IC4IF: Input Capture Channel 4 Interrupt Flag Status bit

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 5 IC3IF: Input Capture Channel 3 Interrupt Flag Status bit

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit bit 4

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

C1IF: ECAN1 Event Interrupt Flag Status bit(1) bit 3

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

C1EIF: ECAN1 External Event Interrupt Flag Status bit(1) bit 2

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 1 SPI2IF: SPI2 Event Interrupt Flag Status bit

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 0 SPI2EIF: SPI2 Error Interrupt Flag Status bit

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

Note 1: Interrupts disabled on devices without ECAN™ modules

京台 STER 3-28. J 64 G S 3.8 M TERR UPT FLAG STATUS REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	_	_	_	_	QEI1IF	PSEMIF	_
bit 15							bit 8

U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
_	INT4IF	INT3IF	_	-	MI2C2IF	SI2C2IF	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10 QEI1IF: QEI1 Event Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 9 PSEMIF: PWM Special Event Match Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 8-7 **Unimplemented:** Read as '0'

bit 6 INT4IF: External Interrupt 4 Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 5 INT3IF: External Interrupt 3 Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 4-3 **Unimplemented:** Read as '0'

bit 2 MI2C2IF: I2C2 Master Events Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 **Unimplemented:** Read as '0'

查询REGISTER J. 95560 FS4 NOTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0
_	_	_	_	QEI2IF	_	PSESMIF	_
bit 15							bit 8

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	C1TXIF ⁽¹⁾	_	_	_	U2EIF	U1EIF	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11 QEI2IF: QEI2 Event Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 10 **Unimplemented:** Read as '0'

bit 9 PSESMIF: PWM Special Event Secondary Match Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 8-7 **Unimplemented:** Read as '0'

bit 6 C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit⁽¹⁾

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 5-3 Unimplemented: Read as '0'

bit 2 **U2EIF:** UART2 Error Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 U1EIF: UART1 Error Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 Unimplemented: Read as '0'

Note 1: Interrupts disabled on devices without ECAN™ modules.

REGISTER 3-10.64 (FS5.8 INTERRUPT FLAG STATUS REGISTER 5

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
PWM2IF	PWM1IF	ADCP12IF	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
_	_	_	ADCP11IF	ADCP10IF	ADCP9IF	ADCP8IF	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'0' = Bit is cleared '1' = Bit is set -n = Value at POR x = Bit is unknown

bit 15 PWM2IF: PWM2 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 14 PWM1IF: PWM1 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 13 ADCP12IF: ADC Pair 12 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 12-5 Unimplemented: Read as '0'

bit 4 ADCP11IF: ADC Pair 11 Conversion Done Interrupt Flag Status bit

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 3 ADCP10IF: ADC Pair 10 Conversion Done Interrupt Flag Status bit

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 2 ADCP9IF: ADC Pair 9 Conversion Done Interrupt Flag Status bit

> 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 1 ADCP8IF: ADC Pair 8 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 0 Unimplemented: Read as '0'

查询REGISTER JO14:S60P\$60NFERRUPT FLAG STATUS REGISTER 6

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AC2IF	PWM9IF	PWM8IF	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM3IF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ADCP1IF: ADC Pair 1 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 14 ADCP0IF: ADC Pair 0 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 13-10 Unimplemented: Read as '0'

bit 9 AC4IF: Analog Comparator 4 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 8 AC3IF: Analog Comparator 3 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 7 AC2IF: Analog Comparator 2 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 6 **PWM9IF:** PWM9 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 5 PWM8IF: PWM8 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 4 **PWM7IF:** PWM7 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 3 **PWM6IF:** PWM6 Interrupt Flag Status bit

1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 2 **PWM5IF:** PWM5 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 **PWM4IF:** PWM4 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 PWM3IF: PWM3 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

查询はPIC33FJ64GS608供应商 REGISTER 7-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5 ADCP7IF: ADC Pair 7 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 4 ADCP6IF: ADC Pair 6 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 3 ADCP5IF: ADC Pair 5 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 2 ADCP4IF: ADC Pair 4 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 ADCP3IF: ADC Pair 3 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 ADCP2IF: ADC Pair 2 Conversion Done Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

ldsPIC33FJ64GS608供应商 REGISTER 7-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IE	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE
bit 7							bit 0

Legend	
--------	--

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 13 ADIE: ADC1 Conversion Complete Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 12 **U1TXIE:** UART1 Transmitter Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 11 **U1RXIE:** UART1 Receiver Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 10 SPI1IE: SPI1 Event Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 9 SPI1EIE: SPI1 Event Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled T3IE: Timer3 Interrupt Enable bit

bit 8

1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 7 T2IE: Timer2 Interrupt Enable bit

1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 6 OC2IE: Output Compare Channel 2 Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 5 IC2IE: Input Capture Channel 2 Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 4 DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit

1 = Interrupt request enabled 0 = Interrupt request not enabled T1IE: Timer1 Interrupt Enable bit

bit 3

1 = Interrupt request enabled 0 = Interrupt request not enabled

REGISTER 7-13:64GS608供在RUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 0 **INTOIE:** External Interrupt 0 Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

查询REGISTER JO14:S60E供应用 ERRUPT ENABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 12 **U2TXIE:** UART2 Transmitter Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 11 **U2RXIE:** UART2 Receiver Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 13 INT2IE: External Interrupt 2 Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 12 T5IE: Timer5 Interrupt Enable bit

1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 11 **T4IE:** Timer4 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 10 OC4IE: Output Compare Channel 4 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 9 OC3IE: Output Compare Channel 3 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 8 DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 7-5 **Unimplemented:** Read as '0'

bit 4 INT1IE: External Interrupt 1 Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 3 CNIE: Input Change Notification Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 2 AC1IE: Analog Comparator 1 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

查询dsPIC33FI64GS608供应商 REGISTER 7-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	IC4IE	IC3IE	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6 IC4IE: Input Capture Channel 4 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 5 IC3IE: Input Capture Channel 3 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 4 DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request has enabled

bit 3 C1IE: ECAN1 Event Interrupt Enable bit⁽¹⁾

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 2 C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit (1)

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 1 SPI2IE: SPI2 Event Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

Note 1: Interrupts disabled on devices without ECAN™ modules

查询REGISTER J646:560EC3中的ERRUPT ENABLE CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	_	_	_	_	QEI1IE	PSEMIE	_
bit 15							bit 8

U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
_	INT4IE	INT3EI	_	_	MI2C2IE	SI2C2IE	_
bit 7	_	_			_		bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10 QEI1IE: QEI1 Event Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 9 PSEMIE: PWM Special Event Match Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 8-7 **Unimplemented:** Read as '0'

bit 6 INT4IE: External Interrupt 4 Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 6 INT3IE: External Interrupt 3 Enable bit

1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 4-3 **Unimplemented:** Read as '0'

bit 2 MI2C2IE: I2C2 Master Events Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 1 SI2C2IE: I2C2 Slave Events Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 0 **Unimplemented:** Read as '0'

TEESISTER 32-17:64(EC48 INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0
_	_	_	_	QEI2IE	_	PSESMIE	_
bit 15							bit 8

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	C1TXIE ⁽¹⁾	_	_	_	U2EIE	U1EIE	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11 QEI2IE: QEI2 Event Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 10 Unimplemented: Read as '0'

bit 9 PSESMIE: PWM Special Event Secondary Match Error Interrupt Enable bit

1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 8-7 **Unimplemented:** Read as '0'

bit 6 C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit⁽¹⁾

1 = Interrupt request occurred0 = Interrupt request not occurred

bit 5-3 **Unimplemented:** Read as '0'

bit 2 U2EIE: UART2 Error Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 1 **U1EIE:** UART1 Error Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 0 **Unimplemented:** Read as '0'

Note 1: Interrupts disabled on devices without ECAN™ modules.

查询dsPIC33FI64GS608供应商 REGISTER 7-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
PWM2IE	PWM1IE	ADCP12IE	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
_	_	_	ADCP11IE	ADCP10IE	ADCP9IE	ADCP8IE	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PWM2IE: PWM2 Interrupt Enable bit ⁽¹⁾
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 14	PWM1IE: PWM1 Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 13	ADCP12IE: ADC Pair 12 Conversion Done Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 12-5	Unimplemented: Read as '0'
bit 4	ADCP11IE: ADC Pair 11 Conversion Done Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 3	ADCP10IE: ADC Pair 10 Conversion Done Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 2	ADCP9IE: ADC Pair 9 Conversion Done Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 1	ADCP8IE: ADC Pair 8 Conversion Done Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	Unimplemented: Read as '0'

© 2010 Microchip Technology Inc. **Preliminary** DS70591C-page 147

查询dsPIC33FI64GS608供应商 REGISTER 7-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
ADCP1IE	ADCP0IE	_	_	_	_	AC4IE	AC3IE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AC2IE	PWM9IE	PWM8IE	PWM7IE	PWM6IE	PWM5IE	PWM4IE	PWM3IE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ADCP1IE: ADC Pair 1 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 14 ADCP0IE: ADC Pair 0 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 13-10 Unimplemented: Read as '0

bit 9 AC4IE: Analog Comparator 4 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 8 AC3IE: Analog Comparator 3 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 7 AC2IE: Analog Comparator 2 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 6 **PWM9IE:** PWM9 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 5 **PWM8IE:** PWM8 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 4 **PWM7IE:** PWM7 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 3 **PWM6IE:** PWM6 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 2 **PWM5IE:** PWM5 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 1 **PWM4IE:** PWM4 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 0 **PWM3IE:** PWM3 Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

查询REGISTER JO20S60EC7中的ERRUPT ENABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-6 **Unimplemented:** Read as '0'

bit 5 ADCP7IE: ADC Pair 7 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 4 ADCP6IE: ADC Pair 6 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit ADCP5IE: ADC Pair 5 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit ADCP4IE: ADC Pair 4 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit ADCP3IE: ADC Pair 3 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit ADCP2IE: ADC Pair 2 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 149

查询以PIC33FI64GS608供在家UPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T1IP<2:0>		_		OC1IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC1IP<2:0>		_		INT0IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 **INT0IP<2:0>:** External Interrupt 0 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

查询REGISTER 1642:S60PC1中的ERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>		_		OC2IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC2IP<2:0>		_		DMA0IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 T2IP<2:0>: Timer2 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

_

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

_

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

秦宫(STER 3-23 64 GEO) (MTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U1RXIP<2:0>		_		SPI1IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		SPI1EIP<2:0>		_		T3IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 Unimplemented: Read as '0'

bit 10-8 SPI1IP<2:0>: SPI1 Event Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 T3IP<2:0>: Timer3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		DMA1IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		ADIP<2:0>		_		U1TXIP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 ADIP<2:0>: ADC1 Conversion Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits bit 2-0

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

秦宫(STER 3-25.64GEGA) 供在家UPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		CNIP<2:0>		_		AC1IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		MI2C1IP<2:0>		_		SI2C1IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 Unimplemented: Read as '0'

bit 10-8 AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

查询**REGISTER** JE 26:S608 C5:MT ERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		INT1IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 **INT1IP<2:0>:** External Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

REGISTER 7-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T4IP<2:0>		_		OC4IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		OC3IP<2:0>		_		DMA2IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 T4IP<2:0>: Timer4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

_

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

查询dsPIC33FJ64GS608供应商 REGISTER 7-28: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U2TXIP<2:0>		_		U2RXIP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>		_		T5IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 Unimplemented: Read as '0'

bit 10-8 U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 T5IP<2:0>: Timer5 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

查询dsPIC33FJ64GS608供应商 REGISTER 7-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		C1IP<2:0> ⁽¹⁾		_	C	1RXIP<2:0> ⁽¹⁾	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		SPI2IP<2:0>		_		SPI2EIP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 C1IP<2:0>: ECAN1 Event Interrupt Priority bits(1)

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 Unimplemented: Read as '0'

bit 10-8 C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits⁽¹⁾

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 SPI2IP<2:0>: SPI2 Event Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

Note 1: Interrupts disabled on devices without ECAN™ modules

查询dsPIC33FJ64GS608供应商 REGISTER 7-30: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		IC4IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC3IP<2:0>		_		DMA3IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

查询dsPIC33FJ64GS608供应商 REGISTER 7-31: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		MI2C2IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		SI2C2IP<2:0>		_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

查询dsPIC33FJ64GS608供应商 ——REGISTER 7-32: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		INT4IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		INT3IP<2:0>		_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit

'1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 INT4IP<2:0>: External Interrupt 4 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 INT3IP<2:0>: External Interrupt 3 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

查询dsPIC33FJ64GS608供应商

REGISTER 7-33: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		QEI1IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		PSEMIP<2:0>		_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 **QEI1IP<2:0>:** QEI1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 **PSEMIP<2:0>:** PWM Special Event Match Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 **Unimplemented:** Read as '0'

REGISTER 7-34: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		U2EIP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		U1EIP<2:0>		_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 **U2EIP<2:0>:** UART2 Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 **U1EIP<2:0>:** UART1 Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 **Unimplemented:** Read as '0'

REGISTER 7-35: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	(C1TXIP<2:0> ⁽¹)
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-8 C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits⁽¹⁾

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7-0 **Unimplemented:** Read as '0'

Note 1: Interrupts disabled on devices without ECAN™ modules

REGISTER 7-36: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		QEI2IP<2:0>		_	_	_	_
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		PSESMIP<2:0>	,	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 QEI2IP<2:0>: QEI2 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11-7 Unimplemented: Read as '0'

bit 6-4 PSESMIP<2:0>: PWM Special Event Secondary Match Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 **Unimplemented:** Read as '0'

REGISTER 7-37: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	,	ADCP10IP<2:0>	>	_	,	ADCP9IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		ADCP8IP<2:0>		_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 ADCP10IP<2:0>: ADC Pair 10 Conversion Done Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 ADCP9IP<2:0>: ADC Pair 9 Conversion Done Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 ADCP8IP<2:0>: ADC Pair 8 Conversion Done Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 **Unimplemented:** Read as '0'

REGISTER 7-38: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	A	DCP12IP<2:0	>	_	Д	DCP11IP<2:0>	>
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-4 ADCP12IP<2:0>: ADC Pair 12 Conversion Done Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 ADCP11IP<2:0>: ADC Pair 11 Conversion Done Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

查询dsPIC33FJ64GS608供应商

REGISTER 7-39: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		PWM2IP<2:0>		_		PWM1IP<2:0>	
bit 15		_					bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	-	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 **PWM2IP<2:0>:** PWM2 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 **PWM1IP<2:0>:** PWM1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 7-40: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		PWM6IP<2:0>		_		PWM5IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		PWM4IP<2:0>		_	ı	PWM3IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 **PWM6IP<2:0>:** PWM6 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 **PWM5IP<2:0>:** PWM5 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 **PWM4IP<2:0>:** PWM4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 **PWM3IP<2:0>:** PWM3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

REGISTER 7-41: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 25

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AC2IP<2:0>		_		PWM9IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		PWM8IP<2:0>		_		PWM7IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 AC2IP<2:0>: Analog Comparator 2 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 **PWM9IP<2:0>:** PWM9 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 **PWM8IP<2:0>:** PWM8 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 **PWM7IP<2:0>:** PWM7 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

REGISTER 7-42: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AC4IP<2:0>		_		AC3IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-4 AC4IP<2:0>: Analog Comparator 4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 AC3IP<2:0>: Analog Comparator 3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority)

•

•

•

001 = Interrupt is priority 1

查询dsPIC33FJ64GS608供应商

REGISTER 7-43: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		ADCP1IP<2:0>		_	,	ADCP0IP<2:0>	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 ADCP1IP<2:0>: ADC Pair 1 Conversion Done Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 ADCP0IP<2:0>: ADC Pair 0 Conversion Done Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 7-44: IPC28: INTERRUPT PRIORITY CONTROL REGISTER 28

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		ADCP5IP<2:0>		_	Į.	ADCP4IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		ADCP3IP<2:0>		_	P	DCP2IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 ADCP5IP<2:0>: ADC Pair 5 Conversion Done Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 ADCP4IP<2:0>: ADC Pair 4 Conversion Done Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 ADCP3IP<2:0>: ADC Pair 3 Conversion Done Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 ADCP2IP<2:0>: ADC Pair 2 Conversion Done Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

查询dsPIC33FJ64GS608供应商

REGISTER 7-45: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		ADCP7IP<2:0>		_	,	ADCP6IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-4 ADCP7IP<2:0>: ADC Pair 7 Conversion Done Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 ADCP6IP<2:0>: ADC Pair 6 Conversion Done Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

REGISTER 7-46: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_			ILR<	3:0>	
bit 15							bit 8

U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits

1111 = CPU Interrupt Priority Level is 15

•

.

0001 = CPU Interrupt Priority Level is 1

0000 = CPU Interrupt Priority Level is 0

bit 7 Unimplemented: Read as '0'

bit 6-0 **VECNUM<6:0>:** Vector Number of Pending Interrupt bits

0111111 = Interrupt vector pending is number 135

•

•

0000001 = Interrupt vector pending is number 9

0000000 = Interrupt vector pending is number 8

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- Push the current SR value onto the software stack using the PUSH instruction.
- Force the CPU to priority level 7 by inclusive ORing the value EOh with SRL.

To enable user interrupts, the ${\tt POP}$ instruction can be used to restore the previous SR value.

Note: Only user interrupts with a priority level of 7 or lower can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

8.0 DIRECT MEMORY ACCESS (DMA)

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70182) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information. Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., the UART Receive register and Input Capture 1 buffer) and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and, therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

Note: The DMA module is not available on dsIPC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406 devices.

The peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

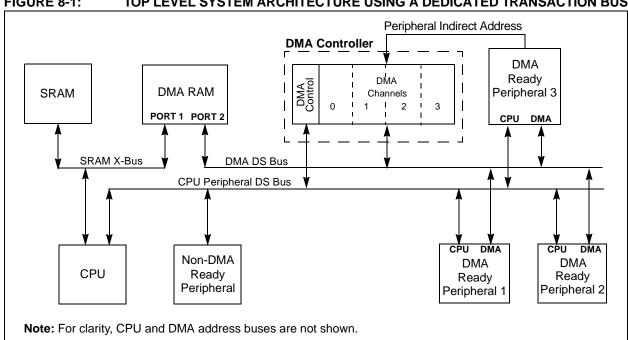
Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read From Peripheral	DMAxPAD Register Values to Write to Peripheral
INT0 – External Interrupt 0	0000000	_	_
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	_
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	_
IC3 – Input Capture 3	0100101	0x0148 (IC3BUF)	_
IC4 – Input Capture 4	0100110	0x0148C (IC4BUF)	_
OC1 – Output Compare 1 Data	0000010	_	0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data	0000010	_	0x0180 (OC1RS)
OC2 – Output Compare 2 Data	0000110	_	0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data	0000110	_	0x0186 (OC2RS)
OC3 – Output Compare 3 Data	0011001	_	0x018E (OC3R)
OC3 – Output Compare 3 Secondary Data	0011001	_	0x018C (OC3RS)
OC4 – Output Compare 4 Data	0011010	_	0x0194 (OC4R)
OC4 – Output Compare 4 Secondary Data	0011010	_	0x0192 (OC4RS)
TMR2 – Timer2	0000111	_	_
TMR3 – Timer3	0001000	_	_
TMR4 – Timer4	0011011	_	_
TMR5 – Timer5	0011100	_	_
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	_
UART1TX – UART1 Transmitter	0001100		0x0224 (U1TXREG)
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	_
UART2TX – UART2 Transmitter	0011111	_	0x0234 (U2TXREG)
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	_
ECAN1 – TX Data Request	1000110	_	0x0442 (C1TXD)

The DMA controller features four identical data transfer channels. Each channel has its own set of control and STATUS registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- · Word or byte sized data transfers.
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral.
- · Indirect Addressing of DMA RAM locations with or without automatic post-increment.
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral.
- One-Shot Block Transfers Terminating DMA transfer after one block transfer.
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete.
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately.
- · Automatic or manual initiation of block transfers.

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.


8.1 **DMAC Registers**

Each DMAC Channel x (x = 0, 1, 2, or 3) contains the following registers:

- · A 16-bit DMA Channel Control register (DMAxCON)
- · A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- · A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- · A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of STATUS registers, DMACS0 and DMACS1, are common to all DMAC channels.

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	_	AMODE<1:0>		_	_	MODE	<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 CHEN: Channel Enable bit

1 = Channel enabled 0 = Channel disabled

bit 14 SIZE: Data Transfer Size bit

1 = Byte0 = Word

bit 13 DIR: Transfer Direction bit (source/destination bus select)

1 = Read from DMA RAM address; write to peripheral address 0 = Read from peripheral address; write to DMA RAM address

bit 12 HALF: Early Block Transfer Complete Interrupt Select bit

1 = Initiate block transfer complete interrupt when half of the data has been moved
 0 = Initiate block transfer complete interrupt when all of the data has been moved

bit 11 NULLW: Null Data Peripheral Write Mode Select bit

1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)

0 = Normal operation

bit 10-6 Unimplemented: Read as '0'

bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits

11 = Reserved

10 = Peripheral Indirect Addressing mode

01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode

bit 3-2 **Unimplemented:** Read as '0'

bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits

11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)

10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled

00 = Continuous, Ping-Pong modes disabled

查询dsPIC33FJ64GS608供应商

REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_				IRQSEL<6:0>	(2)		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 FORCE: Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 **Unimplemented:** Read as '0'

bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾

0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA<	15:8>			
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | STA< | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<	15:8>			
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | STB. | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD<	15:8>			
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | PAD- | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: See Table 8-1 for a complete list of peripheral addresses.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	CNT<	9:8> ⁽²⁾
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | CNT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 **Unimplemented:** Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

U-0	U-0	U-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
_	_	_	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 15				•			bit 8

U-0	U-0	U-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
_	_	_	_	XWCOL3	XWCOL2	XWCOL1	XWCOL0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Unimplemented: Read as '0'
PWCOL3: Channel 3 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
PWCOL2: Channel 2 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
PWCOL1: Channel 1 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
PWCOL0: Channel 0 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
Unimplemented: Read as '0'
XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商

REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_	_	_	_	LSTCH<3:0>			
bit 15				•			bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-8 LSTCH<3:0>: Last DMA Channel Active bits

1111 = No DMA transfer has occurred since system Reset

1110-0100 = Reserved

0011 = Last data transfer was by DMA Channel 3 0010 = Last data transfer was by DMA Channel 2 0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 0

bit 7-4 Unimplemented: Read as '0'

bit 3 PPST3: Channel 3 Ping-Pong Mode Status Flag bit

1 = DMA3STB register selected 0 = DMA3STA register selected

bit 2 PPST2: Channel 2 Ping-Pong Mode Status Flag bit

1 = DMA2STB register selected 0 = DMA2STA register selected

bit 1 PPST1: Channel 1 Ping-Pong Mode Status Flag bit

1 = DMA1STB register selected 0 = DMA1STA register selected

bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit

1 = DMA0STB register selected 0 = DMA0STA register selected

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
DSADR<15:8>								
bit 15 bi								

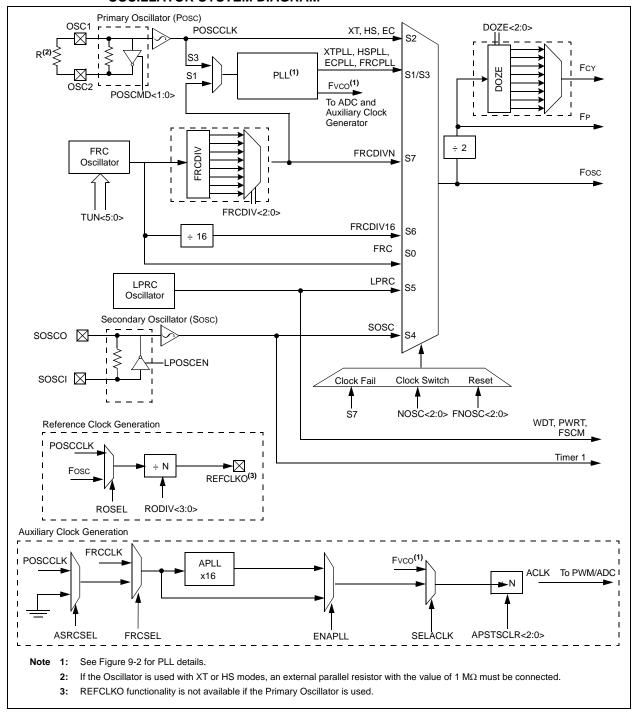
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
DSADR<7:0>								
bit 7								

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

查询dsPIC33FJ64GS608供应商 NOTES:

查询如PIC%SEMSAPOR立商 CONFIGURATION


- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.
- · Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 9-1.

章记录 JC33FJ64F3C33FJ32G5406/606/608/610 and dsPIC33FJ64GS406/606/608/610 OSCILLATOR SYSTEM DIAGRAM

9.1 CPU Clocking System

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS, or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator
- FRC Oscillator with Postscaler
- · Secondary (LP) Oscillator

9.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3** "PLL **Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 24.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), Fosc, is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJ32GS406/606/608/610 architecture.

Instruction execution speed or device operating frequency, FcY, is given by Equation 9-1.

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

章ABCEPIC33F ICONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary Oscillator (SOSC)	Secondary	xx	100	_
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	_
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

- Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.
 - 2: This is the default oscillator mode for an unprogrammed (erased) device.

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

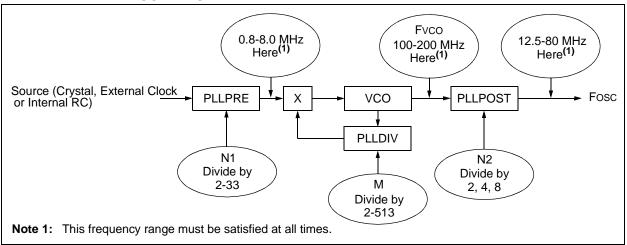
The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by Equation 9-2.

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN * \left(\frac{M}{N1*N2}\right)$$


For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 9-3).

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 9-3: XT WITH PLL MODE EXAMPLE

$$FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 * 32}{2 * 2} \right) = 40 \text{ MIPS}$$

查询dsPIC33FJ64GS608供应商 FIGURE 9-2: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 PLL BLOCK DIAGRAM

9.2 Auxiliary Clock Generation

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock such as a PWM or ADC.

Note: To achieve 1.04 ns PWM resolution, the auxiliary clock must be set up for 120 MHz.

The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock. The auxiliary PLL has a fixed 16x multiplication factor.

Note: If the primary PLL is used as a source for the auxiliary clock, then the primary PLL should be configured up to a maximum operation of 30 MIPS or less.

9.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (1)

U-0	R-y	R-y	R-y	U-0	R/W-y	R/W-y	R/W-y
_		COSC<2:0>		_		NOSC<2:0> ⁽²⁾	
bit 15							bit 8

R/W-0	U-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0
CLKLOCK	_	LOCK	_	CF	_	_	OSWEN
bit 7							bit 0

Legend: y = Value set from Configuration bits on POR

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only)

000 = Fast RC oscillator (FRC)

001 = Fast RC oscillator (FRC) with PLL

010 = Primary oscillator (XT, HS, EC)

011 = Primary oscillator (XT, HS, EC) with PLL

100 = Secondary oscillator (SOSC)

101 = Low-Power RC oscillator (LPRC)

110 = Fast RC oscillator (FRC) with divide-by-16

111 = Fast RC oscillator (FRC) with divide-by-n

bit 11 **Unimplemented:** Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽²⁾

000 = Fast RC oscillator (FRC)

001 = Fast RC oscillator (FRC) with PLL

010 = Primary oscillator (XT, HS, EC)

011 = Primary oscillator (XT, HS, EC) with PLL

100 = Secondary oscillator (SOSC)

101 = Low-Power RC oscillator (LPRC)

110 = Fast RC oscillator (FRC) with divide-by-16

111 = Fast RC oscillator (FRC) with divide-by-n

bit 7 CLKLOCK: Clock Lock Enable bit

If clock switching is enabled and FSCM is disabled, (FOSC<FCKSM> = 0b01):

1 = Clock switching is disabled, system clock source is locked

0 = Clock switching is enabled, system clock source can be modified by clock switching

bit 6 **Unimplemented:** Read as '0'

bit 5 **LOCK:** PLL Lock Status bit (read-only)

1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied

0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled

bit 4 **Unimplemented:** Read as '0'

bit 3 **CF:** Clock Fail Detect bit (read/clear by application)

1 = FSCM has detected clock failure

0 = FSCM has not detected clock failure

bit 2-1 Unimplemented: Read as '0'

bit 0 OSWEN: Oscillator Switch Enable bit

1 = Request oscillator switch to selection specified by NOSC<2:0> bits

0 = Oscillator switch is complete

Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F Family Reference Manual" (available from the Microchip web site) for details.

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

ildsPIC33FJ64GS608供应商 REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15	•						bit 8

R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOS	ST<1:0>	_			PLLPRE<4:0>	•	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 ROI: Recover on Interrupt bit

1 = Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1

0 = Interrupts have no effect on the DOZEN bit

bit 14-12 DOZE<2:0>: Processor Clock Reduction Select bits

000 = FCY/1

001 = FCY/2

010 = Fcy/4

011 = Fcy/8 (default)

100 = Fcy/16

101 = FCY/32

110 = Fcy/64

111 = FCY/128

DOZEN: Doze Mode Enable bit⁽¹⁾ bit 11

1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks

0 = Processor clock/peripheral clock ratio forced to 1:1

FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits bit 10-8

000 = FRC divide by 1 (default)

001 = FRC divide by 2

010 = FRC divide by 4

011 = FRC divide by 8

100 = FRC divide by 16

101 = FRC divide by 32

110 = FRC divide by 64

111 = FRC divide by 256

bit 7-6 PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)

00 = Output/2

01 = Output/4 (default)

10 = Reserved

11 = Output/8

bit 5 Unimplemented: Read as '0'

bit 4-0 PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as 'N1', PLL prescaler)

00000 = Input/2 (default)

00001 = Input/3

11111 = Input/33

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

章道はPIC335J64GP608借中華L FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	_	_	_	_	_	_	PLLDIV<8>	
bit 15 bit 8								

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0

Legend:

bit 8-0

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'

PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

0000000000 = 2

000000001 = 3

000000010 = 4

•

•

•

000110000 = 50 (default)

•

•

•

111111111 = 513

REGISTER 9-4: OSCTUN: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			TUN<	<5:0> ⁽¹⁾		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits⁽¹⁾

011111 = Center frequency + 11.625% (8.23 MHz)

011110 = Center frequency + 11.25% (8.20 MHz)

-

•

•

000001 = Center frequency + 0.375% (7.40 MHz)

000000 = Center frequency (7.37 MHz nominal)

111111 = Center frequency -0.375% (7.345 MHz)

•

100001 = Center frequency -11.625% (6.52 MHz)

100000 = Center frequency -12% (6.49 MHz)

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

TEGISTER 3-5-164GSCPREON AUXILIARY CLOCK DIVISOR CONTROL REGISTER

R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1
ENAPLL	APLLCK	SELACLK	_	_	A	PSTSCLR<2:0)>
bit 15							bit 0

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ASRCSEL	FRCSEL	_	_	_	_	_	_
bit 7							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **ENAPLL:** Auxiliary PLL Enable bit

1 = APLL is enabled 0 = APLL is disabled

bit 14 APLLCK: APLL Locked Status bit (read-only)

1 = Indicates that auxiliary PLL is in lock

0 = Indicates that auxiliary PLL is not in lock

bit 13 SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit

 ${\tt 1 = Auxiliary\ Oscillators\ provides\ the\ source\ clock\ for\ auxiliary\ clock\ divider}$

0 = Primary PLL (Fvco) provides the source clock for auxiliary clock divider

bit 12-11 Unimplemented: Read as '0'

bit 10-8 APSTSCLR<2:0>: Auxiliary Clock Output Divider bits

111 = Divided by 1

110 = Divided by 2

101 = Divided by 4

100 = Divided by 8

011 = Divided by 16

010 = Divided by 32

001 = Divided by 64

000 = Divided by 256

bit 7 ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit

1 = Primary oscillator is the clock source

0 = No clock input is selected

bit 6 FRCSEL: Select Reference Clock Source for Auxiliary PLL bit

1 = Select FRC clock for auxiliary PLL

0 = Input clock source is determined by ASRCSEL bit setting

bit 5-0 **Unimplemented:** Read as '0'

REGISTER 9-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON	_	ROSSLP	ROSEL		RODIV	<3:0> ⁽¹⁾	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 ROON: Reference Oscillator Output Enable bit

1 = Reference oscillator output enabled on REFCLK0 pin

0 = Reference oscillator output disabled

bit 14 Unimplemented: Read as '0'

bit 13 ROSSLP: Reference Oscillator Run in Sleep bit

1 = Reference oscillator output continues to run in Sleep

0 = Reference oscillator output is disabled in Sleep

bit 12 ROSEL: Reference Oscillator Source Select bit

1 = Oscillator crystal used as the reference clock

0 = System clock used as the reference clock

bit 11-8 RODIV<3:0>: Reference Oscillator Divider bits⁽¹⁾

1111 = Reference clock divided by 32,768

1110 = Reference clock divided by 16,384

1101 = Reference clock divided by 8,192

1100 = Reference clock divided by 4,096

1011 = Reference clock divided by 2,048

1010 = Reference clock divided by 1,024

1001 = Reference clock divided by 512

1000 = Reference clock divided by 312

0111 = Reference clock divided by 128

0110 = Reference clock divided by 64

0101 = Reference clock divided by 32

0100 = Reference clock divided by 16

0011 = Reference clock divided by 8

0010 = Reference clock divided by 4

0001 = Reference clock divided by 2

0000 = Reference clock

bit 7-0 **Unimplemented:** Read as '0'

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

9.4 Clock Switching Operation

Applications are free to switch among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices have a safeguard lock built into the switch process.

Note: Primary oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from primary oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 24.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSC Status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically

- and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) Status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC Status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence.

 Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F Family Reference Manual" for details.

9.5 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

查询10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices can manage power consumption in four different ways:

- · Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/608/610 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

10.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate. This includes the items such as the input change notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode PWRSAV #IDLE_MODE ; Put the device into IDLE mode

The following occur in Idle mode:

- · The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.5 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake-up from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 PWM Power-Saving Features

Typically, many applications need either a high resolution duty cycle or phase offset (for fixed frequency operation) or a high resolution PWM period for variable frequency modes of operation (such as Resonant mode). Very few applications require both high resolution modes simultaneously.

The HRPDIS and the HRDDIS bits in the AUXCONx registers permit the user to disable the circuitry associated with the high resolution duty cycle and PWM period to reduce the operating current of the device.

If the HRDDIS bit is set, the circuitry associated with the high resolution duty cycle, phase offset, and dead time for the respective PWM generator is disabled. If the HRPDIS bit is set, the circuitry associated with the high resolution PWM period for the respective PWM generator is disabled.

When the HRPDIS bit is set, the smallest unit of measure for the PWM period is 8.32 ns.

If the HRDDIS bit is set, the smallest unit of measure for the PWM duty cycle, phase offset and dead time is 8.32 ns.

查询位是IC33FI64GS6PM世纪意Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and STATUS registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

查询dsPIC33FJ64GS608供应商 REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD ⁽¹⁾	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	C1MD	ADCMD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	T5MD : Timer5 Module Disable bit
	1 = Timer5 module is disabled 0 = Timer5 module is enabled
bit 14	T4MD : Timer4 Module Disable bit
Dit 14	1 = Timer4 module is disabled
	0 = Timer4 module is enabled
bit 13	T3MD: Timer3 Module Disable bit
	1 = Timer3 module is disabled
	0 = Timer3 module is enabled
bit 12	T2MD : Timer2 Module Disable bit
	1 = Timer2 module is disabled
	0 = Timer2 module is enabled
bit 11	T1MD: Timer1 Module Disable bit
	1 = Timer1 module is disabled 0 = Timer1 module is enabled
bit 10	QEI1MD: QEI1 Module Disable bit
DIL TO	1 = QFI1 module is disabled
	0 = QEI1 module is disabled
bit 9	PWMMD : PWM Module Disable bit ⁽¹⁾
	1 = PWM module is disabled
	0 = PWM module is enabled
bit 8	Unimplemented: Read as '0'
bit 7	I2C1MD: I2C1 Module Disable bit
	1 = I2C1 module is disabled
	0 = I2C1 module is enabled
bit 6	U2MD : UART2 Module Disable bit
	1 = UART2 module is disabled
	0 = UART2 module is enabled
bit 5	U1MD : UART1 Module Disable bit
	1 = UART1 module is disabled 0 = UART1 module is enabled
bit 4	SPI2MD: SPI2 Module Disable bit
VIL 4	1 = SPI2 module is disabled
	0 = SPI2 module is enabled

Note 1: Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be reinitialized.

查询dsPIC33FJ64GS608供应商 REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 3 SPI1MD: SPI1 Module Disable bit

1 = SPI1 module is disabled

0 = SPI1 module is enabled

bit 2 **Unimplemented:** Read as '0'

bit 0

bit 1 C1MD: ECAN1 Module Disable bit

1 = ECAN1 module is disabled 0 = ECAN1 module is enabled

ADCMD: ADC Module Disable bit

1 = ADC module is disabled

0 = ADC module is enabled

Note 1: Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be reinitialized.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

秦道(\$PIC33FI64CS608件座席)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11 **IC4MD**: Input Capture 4 Module Disable bit

1 = Input Capture 4 module is disabled0 = Input Capture 4 module is enabled

bit 19 IC3MD: Input Capture 3 Module Disable bit

1 = Input Capture 3 module is disabled0 = Input Capture 3 module is enabled

bit 9 IC2MD: Input Capture 2 Module Disable bit

1 = Input Capture 2 module is disabled0 = Input Capture 2 module is enabled

bit 8 IC1MD: Input Capture 1 Module Disable bit

1 = Input Capture 1 module is disabled0 = Input Capture 1 module is enabled

bit 7-4 **Unimplemented:** Read as '0'

bit 3 OC4MD: Output Compare 4 Module Disable bit

1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled

bit 2 OC3MD: Output Compare 3 Module Disable bit

1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled

bit 1 OC2MD: Output Compare 2 Module Disable bit

1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled

bit 0 OC1MD: Output Compare 1 Module Disable bit

1 = Output Compare 1 module is disabled0 = Output Compare 1 module is enabled

ldsPIC33FJ64GS608供应商 REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	_		_	_	CMPMD		_
bit 15	•	•	•	•	•	•	bit 8

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0
_	_	QEI2MD	_	_	_	I2C2MD	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10 CMPMD: Analog Comparator Module Disable bit

1 = Analog Comparator module is disabled

0 = Analog Comparator module is enabled

bit 9-6 Unimplemented: Read as '0'

bit 5 QEI2MD: QEI2 Module Disable bit

1 = QEI2 module is disabled

0 = QEI2 module is enabled

bit 4-2 Unimplemented: Read as '0' bit 1 I2C2MD: I2C2 Module Disable bit

1 = I2C2 module is disabled

0 = I2C2 module is enabled

bit 0 Unimplemented: Read as '0'

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	_	_	_	REFOMD	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set '0' = Bit is cleared -n = Value at POR x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 REFOMD: Reference Clock Generator Module Disable bit

1 = Reference clock generator module is disabled

0 = Reference clock generator module is enabled

Unimplemented: Read as '0' bit 2-0

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 205

查询dsPIC33FI64GS608供应商 REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD |
| bit 15 | | | | | | | bit 8 |

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_		_		_
bit 7							bit 0

Legenda	:
---------	---

U = Unimplemented bit, read as '0' W = Writable bit R = Readable bit

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 PWM8MD: PWM Generator 8 Module Disable bit 1 = PWM Generator 8 module is disabled 0 = PWM Generator 8 module is enabled bit 14 PWM7MD: PWM Generator 7 Module Disable bit 1 = PWM Generator 7 module is disabled 0 = PWM Generator 7 module is enabled bit 13 PWM6MD: PWM Generator 6 Module Disable bit 1 = PWM Generator 6 module is disabled 0 = PWM Generator 6 module is enabled bit 12 PWM5MD: PWM Generator 5 Module Disable bit 1 = PWM Generator 5 module is disabled 0 = PWM Generator 5 module is enabled bit 11 PWM4MD: PWM Generator 4 Module Disable bit

1 = PWM Generator 4 module is disabled 0 = PWM Generator 4 module is enabled

bit 10 PWM3MD: PWM Generator 3 Module Disable bit

1 = PWM Generator 3 module is disabled

0 = PWM Generator 3 module is enabled

bit 9 PWM2MD: PWM Generator 2 Module Disable bit

> 1 = PWM Generator 2 module is disabled 0 = PWM Generator 2 module is enabled

PWM1MD: PWM Generator 1 Module Disable bit bit 8

> 1 = PWM Generator 1 module is disabled 0 = PWM Generator 1 module is enabled

bit 7-0 Unimplemented: Read as '0'

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	PWM9MD
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11 **CMP4MD**: Analog Comparator 4 Module Disable bit

1 = Analog Comparator 4 module is disabled0 = Analog Comparator 4 module is enabled

bit 10 CMP3MD: Analog Comparator 3 Module Disable bit

1 = Analog Comparator 3 module is disabled0 = Analog Comparator 3 module is enabled

bit 9 CMP2MD: Analog Comparator 2 Module Disable bit

1 = Analog Comparator 2 module is disabled0 = Analog Comparator 2 module is enabled

bit 8 CMP1MD: Analog Comparator 1 Module Disable bit

1 = Analog Comparator 1 module is disabled0 = Analog Comparator 1 module is enabled

bit 7-1 **Unimplemented:** Read as '0'

bit 0 **PWM9MD**: PWM Generator 9 Module Disable bit

1 = PWM Generator 9 module is disabled 0 = PWM Generator 9 module is enabled

查询dsPIC33FJ64GS608供应商 NOTES:

查询在PIC37616468698供应商

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

> 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, Vss, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

Peripheral Module Output Multiplexers Г Peripheral Input Data Peripheral Module Enable I/O Peripheral Output Enable Output Enable Peripheral Output Data **PIO Module Output Data** Rea<u>d T</u>RIS Data Bus D I/O Pin WR TRIS TRIS Latch D WR LAT + CK' WR PORT Data Latch Read LAT Input Data Read PORT

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 209

查询dsPIC33FI64GS608供应商tion

In addition to the PORT, LAT and TRIS registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to "Pin Diagrams" for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The ADPCFG and TRIS registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG and ADPCFG2 registers have a default value of 0x000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices to generate interrupt requests to the processor in response to a Change-Of-State (COS) on selected input pins. This feature can detect input Change-Of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-Of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

EQUATION 11-1: PORT WRITE/READ EXAMPLE

```
MOV 0xFF00, W0 ; Configure PORTB<15:8> as inputs
MOV W0, TRISBB ; and PORTB<7:0> as outputs
NOP ; Delay 1 cycle
BTSS PORTB, #13 ; Next Instruction
```

12.0 TIMER1

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32.767 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

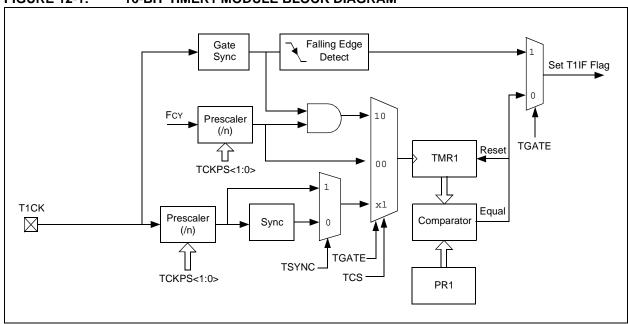
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

The timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	х	1
Asynchronous Counter	1	х	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

查询dsPIC33FI64CS608供应商 REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL	_	_	_	_	_
bit 15 bit 8							

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE	TCKPS<1:0>		_	TSYNC	TCS	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 TON: Timer1 On bit

1 = Starts 16-bit Timer1

0 = Stops 16-bit Timer1

bit 14 Unimplemented: Read as '0'

bit 13 TSIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12-7 Unimplemented: Read as '0'

bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit

When T1CS = 1: This bit is ignored. When T1CS = 0:

1 = Gated time accumulation enabled 0 = Gated time accumulation disabled

bit 5-4 TCKPS<1:0> Timer1 Input Clock Prescale Select bits

11 = 1:256 10 = 1:64 01 = 1:8

00 = 1:1

bit 3 Unimplemented: Read as '0'

bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit

When TCS = 1:

1 = Synchronize external clock input

0 = Do not synchronize external clock input

When TCS = 0: This bit is ignored.

bit 1 TCS: Timer1 Clock Source Select bit

1 = External clock from T1CK pin (on the rising edge)

0 = Internal clock (FCY)

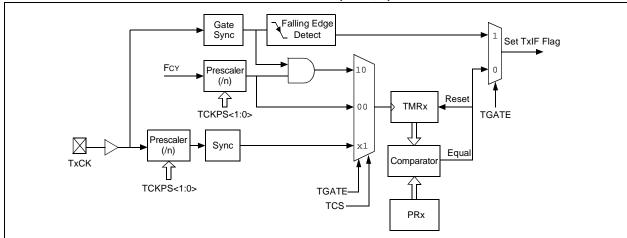
bit 0 **Unimplemented:** Read as '0'

查询dsPIC33FJ64GS608供应商 13.0 TIMER2/3/4/5 FEATURES

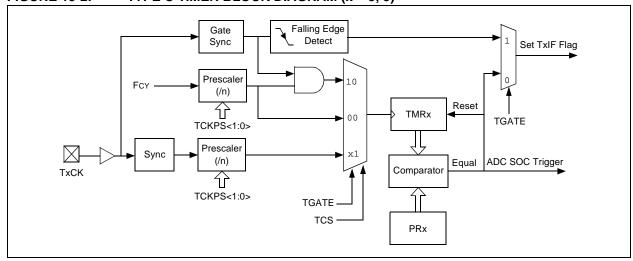
- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2 and Timer4 are Type B timers that offer the following major features:

- A Type B timer can be concatenated with a Type C timer to form a 32-bit timer
- External clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.


Figure 13-1 shows a block diagram of the Type B timer. Timer3 and Timer5 are Type C timers that offer the following major features:

- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an A/D conversion.
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler


A block diagram of the Type C timer is shown in Figure 13-2.

Note: Timer3 is not available on all devices.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2, 4)

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3, 5)

查询dsPIC33FJ64GS608供应商 the Timer2/3/4/5 modules can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

TABLE 13-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	
Timer	0	0	
Gated Timer	0	1	
Synchronous Counter	1	х	

13.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- Select the timer prescaler ratio using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits.
- Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

13.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

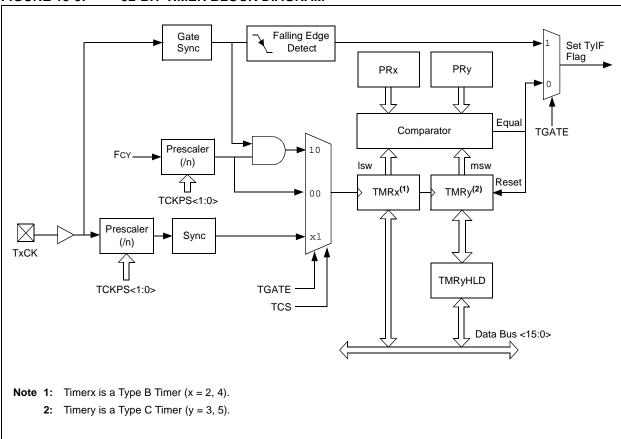
When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The timers that can be combined to form a 32-bit timer are listed in Table 13-2.

TABLE 13-2: 32-BIT TIMER

Type B Timer (Isw)	Type C Timer (msw)			
Timer2	Timer3			
TImer4	Timer5			


A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- · Synchronous Counter mode

To configure the timer features for 32-bit operation:

- 1. Set the T32 control bit.
- Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

FIGURE 13-3: 32-BIT TIMER BLOCK DIAGRAM

查询dsPIC33FJ64GS608供应商 REGISTER 13-1: TxCON: TIMER CONTROL REGISTER (x = 2, 4)

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL	_	_	_	_	_
bit 15 bit 8							

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	TGATE	TCKPS<1:0>		T32	_	TCS	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 TON: Timerx On bit

When T32 = 1 (in 32-Bit Timer mode): 1 = Starts 32-bit TMRx:TMRy timer pair 0 = Stops 32-bit TMRx:TMRy timer pair When T32 = 0 (in 16-Bit Timer mode):

1 = Starts 16-bit timer 0 = Stops 16-bit timer

bit 14 Unimplemented: Read as '0'

bit 13 TSIDL: Stop in Idle Mode bit

1 = Discontinue timer operation when device enters Idle mode

0 = Continue timer operation in Idle mode

bit 12-7 Unimplemented: Read as '0'

bit 6 TGATE: Timerx Gated Time Accumulation Enable bit

When TCS = 1: This bit is ignored. When TCS = 0:

1 = Gated time accumulation enabled 0 = Gated time accumulation disabled

bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits

11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value

bit 3 T32: 32-Bit Timerx Mode Select bit

1 = TMRx and TMRy form a 32-bit timer

0 = TMRx and TMRy form separate 16-bit timer

bit 2 **Unimplemented:** Read as '0'

bit 1 TCS: Timerx Clock Source Select bit

1 = External clock from TxCK pin

0 = Internal clock (Fosc/2)

bit 0 Unimplemented: Read as '0'

查询dsPIC33FJ64GS608供应商

REGISTER 13-2: TyCON: TIMER CONTROL REGISTER (y = 3, 5)

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	_	TSIDL ⁽¹⁾	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽²⁾	TCKPS	<1:0> ⁽²⁾	_	_	TCS ⁽²⁾	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **TON:** Timery On bit⁽²⁾

1 = Starts 16-bit Timery

0 = Stops 16-bit Timery

bit 14 Unimplemented: Read as '0'

bit 13 TSIDL: Stop in Idle Mode bit⁽¹⁾

1 = Discontinue timer operation when device enters Idle mode

0 = Continue timer operation in Idle mode

bit 12-7 Unimplemented: Read as '0'

bit 6 **TGATE:** Timery Gated Time Accumulation Enable bit⁽²⁾

When TCS = 1: This bit is ignored. When TCS = 0:

1 = Gated time accumulation enabled 0 = Gated time accumulation disabled

bit 5-4 TCKPS<1:0>: Timery Input Clock Prescale Select bits⁽²⁾

11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value

bit 3-2 **Unimplemented:** Read as '0'

bit 1 TCS: Timery Clock Source Select bit⁽²⁾

1 = External clock from TxCK pin 0 = Internal clock (Fosc/2)

bit 0 **Unimplemented:** Read as '0'

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits have no effect.

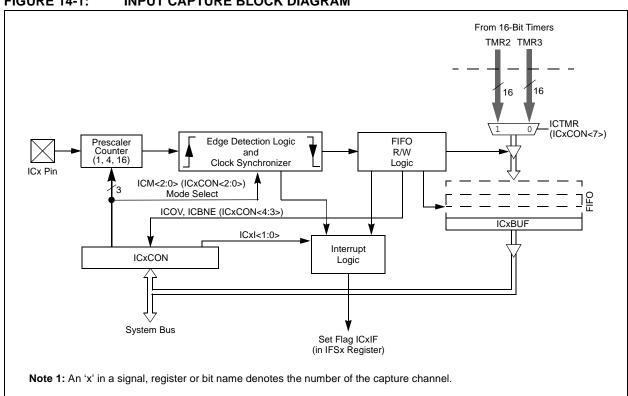
查询dsPIC33FJ64GS608供应商 NOTES:

查询46PIC33PI6468608供应查

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices support up to two input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:


- · Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- · Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of the two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

FIGURE 14-1: INPUT CAPTURE BLOCK DIAGRAM

© 2010 Microchip Technology Inc. **Preliminary** DS70591C-page 219

章询dsPIC33FJ64GS608供放管s

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	ICSIDL	_	_	_	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 **Unimplemented:** Read as '0'

bit 13 ICSIDL: Input Capture Module Stop in Idle Control bit

1 = Input capture module halts in CPU Idle mode

0 = Input capture module continues to operate in CPU Idle mode

bit 12-8 Unimplemented: Read as '0'

bit 7 ICTMR: Input Capture Timer Select bits

1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event

bit 6-5 ICI<1:0>: Select Number of Captures per Interrupt bits

11 = Interrupt on every fourth capture event
10 = Interrupt on every third capture event
01 = Interrupt on every second capture event
00 = Interrupt on every capture event

bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only)

1 = Input capture overflow occurred0 = No input capture overflow occurred

bit 3 ICBNE: Input Capture Buffer Empty Status bit (read-only)

1 = Input capture buffer is not empty, at least one more capture value can be read

0 = Input capture buffer is empty

bit 2-0 ICM<2:0>: Input Capture Mode Select bits

111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode. Rising edge detect-only, all other control bits are not applicable.

110 = Unused (module disabled)

101 = Capture mode, every 16th rising edge

100 = Capture mode, every 4th rising edge

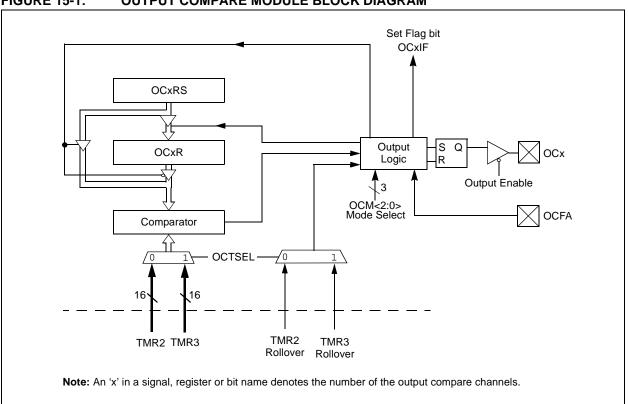
011 = Capture mode, every rising edge

010 = Capture mode, every falling edge

001 = Capture mode, every edge (rising and falling). ICI<1:0> bits do not control interrupt generation for this mode.

000 = Input capture module turned off

查询与的IC30UFPUFCOMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

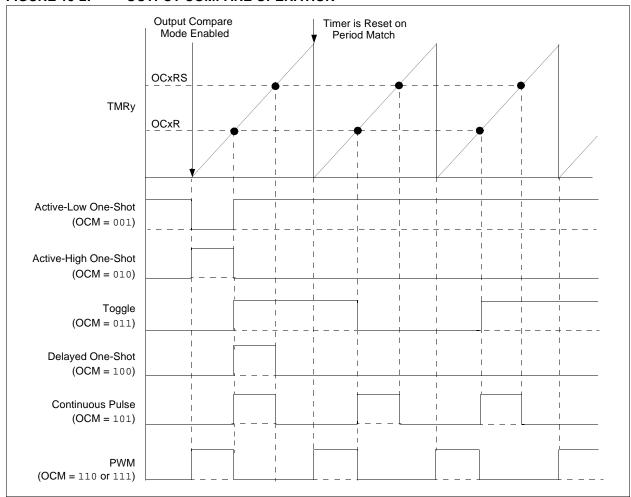
- · Active-Low One-Shot mode
- · Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 221

章词dsPJC33FJ64GS608供应商s

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user


application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note: See Section 13. "Output Compare" in the "dsPIC33F/PIC24H Family Reference Manual" (DS7029) for OCxR and OCxRS register restrictions.

TABLE 15-1: OUTPUT COMPARE MODES

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	_
001	Active-Low One-Shot	0	OCx rising edge
010	Active-High One-Shot	1	OCx falling edge
011	Toggle	Current output is maintained	OCx rising and falling edge
100	Delayed One-Shot	0	OCx falling edge
101	Continuous Pulse	0	OCx falling edge
110	PWM without Fault Protection	'0', if OCxR is zero '1', if OCxR is non-zero	No interrupt
111	PWM with Fault Protection	'0', if OCxR is zero '1', if OCxR is non-zero	OCFA falling edge for OC1 to OC4

FIGURE 15-2: OUTPUT COMPARE OPERATION

查询dspicase 164GS608供应应 OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	OCSIDL	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13 OCSIDL: Stop Output Compare in Idle Mode Control bit

1 = Output Compare x halts in CPU Idle mode

0 = Output Compare x continues to operate in CPU Idle mode

bit 12-5 **Unimplemented:** Read as '0'

bit 4 OCFLT: PWM Fault Condition Status bit

1 = PWM Fault condition has occurred (cleared in hardware only)

0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)

bit 3 OCTSEL: Output Compare Timer Select bit

1 = Timer3 is the clock source for Compare x

0 = Timer2 is the clock source for Compare x

bit 2-0 OCM<2:0>: Output Compare Mode Select bits

111 = PWM mode on OCx, Fault pin enabled

110 = PWM mode on OCx, Fault pin disabled

101 = Initialize OCx pin low, generate continuous output pulses on OCx pin

100 = Initialize OCx pin low, generate single output pulse on OCx pin

011 = Compare event toggles OCx pin

010 = Initialize OCx pin high, compare event forces OCx pin low

001 = Initialize OCx pin low, compare event forces OCx pin high

000 = Output compare channel is disabled

查询dsPIC33FJ64GS608供应商 NOTES:

查询6.0CHIGH-SPEED PWM

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "High-Speed PWM" (DS70579) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The High-Speed PWM module on the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction
- Uninterruptible Power Supply (UPS)
- Inverters
- · Battery Chargers
- Digital Lighting

16.1 Features Overview

The High-Speed PWM module incorporates the following features:

- Two master time base modules
- Up to nine PWM generators with up to 18 outputs
- Two PWM outputs per PWM generator
- Individual time base and duty cycle for each PWM output
- Duty cycle, dead time, phase shift, and frequency resolution of 1.04 ns at 40 MIPS
- Independent fault and current-limit inputs for eight PWM Outputs
- · Redundant output
- · True Independent output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- · Special Event Trigger
- · Prescaler for input clock
- Dual trigger from PWM to Analog-to-Digital Converter (ADC) per PWM period
- · PWMxL and PWMxH output pin swapping

- Independent PWM frequency, duty cycle, and phase shift changes
- Current compensation
- · Enhanced Leading-Edge Blanking (LEB) functionality
- · PWM Capture functionality

Note: Duty cycle, dead-time, phase shift and frequency resolution is 8.32 ns in Center-Aligned PWM mode.

Figure 16-1 conceptualizes the PWM module in a simplified block diagram. Figure 16-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode.

The PWM module contains nine PWM generators. The module has up to 18 PWM output pins: PWM1H, PWM1L, PWM2H, PWM2L, PWM3H, PWM3L, PWM4H, PWM4L, PWM5H, PWM5L, PWM6H, PWM6L, PWM7H, PWM7L, PWM8H, PWM8L, PWM9H, and PWM9L. For complementary outputs, these 18 I/O pins are grouped into H/L pairs.

16.2 Feature Description

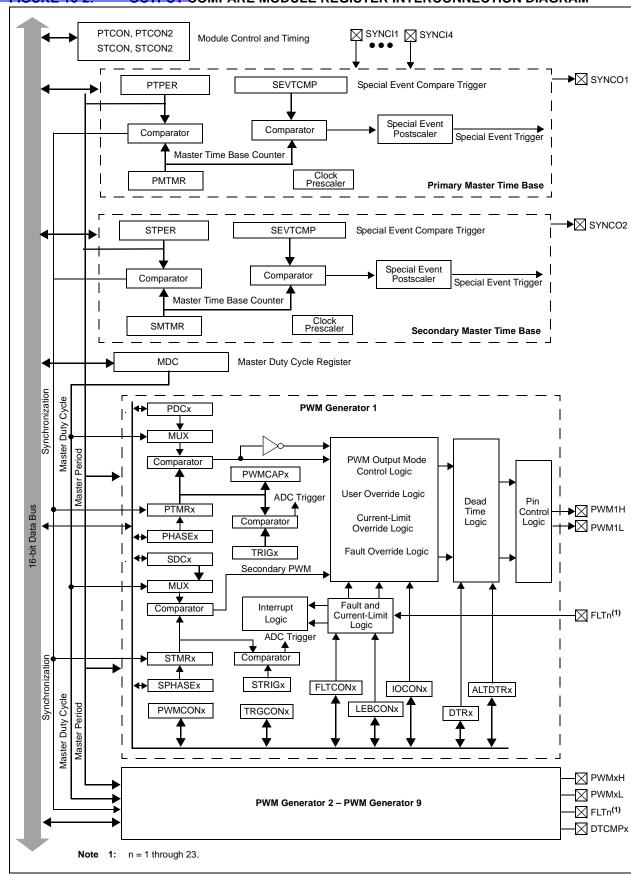
The PWM module is designed for applications that require:

- · High-resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode, and Push-Pull mode outputs
- The ability to create multiphase PWM outputs

For Center-Aligned mode, the duty cycle, period phase and dead-time resolutions will be 8.32 ns.

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable.


Multiphase PWM is often used to improve DC/DC converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC converters are often operated in parallel, but phase-shifted in time. A single PWM output operating at 250 kHz has a period of 4 μs , but an array of four PWM channels, staggered by 1 μs each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50%, and the power flow is controlled by varying the relative phase shift between the two PWM generators.

SYNCIX Data Bus Primary and Secondary Master Time Base ►X SYNCOx Synchronization Signal PWM1 Interrupt ►X PWM1H PWM Generator 1 **→**⊠ PWM1L Fault, Current-Limit and Dead Time Compensation Synchronization Signal PWM2 Interrupt ►⊠ PWM2H **PWM** Generator 2 ►X PWM2L Fault, Current-Limit and Dead Time Compensation CPU PWM3 through PWM7 Synchronization Signal PWM8 Interrupt ► PWM8H PWM Generator 8 ►X PWM8L Fault, Current-Limit and Dead Time Compensation Synchronization Signal PWM9 Interrupt ►⊠ PWM9H PWM Generator 9 ►X PWM9L Primary Trigger Secondary Trigger Fault and ADC Module Current-Limit Special Event Trigger

有阅读是1633FJ64GAGASPEEDPWM MODULE ARCHITECTURAL DIAGRAM

李適dsPCControl Registe供应商

The following registers control the operation of the High-Speed PWM module.

- PTCON: PWM Time Base Control Register
- PTCON2: PWM Clock Divider Select Register
- PTPER: Primary Master Time Base Period Register(1,2)
- SEVTCMP: PWM Special Event Compare Register(1)
- STCON: PWM Secondary Master Time Base Control Register
- STCON2: PWM Secondary Clock Divider Select Register
- STPER: Secondary Master Time Base Period Register
- SSEVTCMP: PWM Secondary Special Event Compare Register
- CHOP: PWM Chop Clock Generator Register
- MDC: PWM Master Duty Cycle Register
- PWMCONx: PWM Control Register
- PDCx: PWM Generator Duty Cycle Register
- PHASEx: PWM Primary Phase Shift Register
- DTRx: PWM Dead Time Register
- ALTDTRx: PWM Alternate Dead Time Register
- SDCx: PWM Secondary Duty Cycle Register
- SPHASEx: PWM Secondary Phase Shift Register
- TRGCONx: PWM Trigger Control Register
- IOCONx: PWM I/O Control Register
- FCLCONx: PWM Fault Current-Limit Control Register
- TRIGx: PWM Primary Trigger Compare Value Register
- STRIGx: PWM Secondary Trigger Compare Value Register(1)
- LEBCONx: Leading-Edge Blanking Control Register
- LEBDLYx: Leading-Edge Blanking Delay Register
- AUXCONx: PWM Auxiliary Control Register
- PWMCAPx: Primary PWM Time Base Capture Register

查询REGISTER 164GS608##CONPWM TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	S'	/NCSRC<2:0>	(1)		SEVTP	S<3:0> ⁽¹⁾	
bit 7							bit 0

Legend: HC = Cleared in Hardware		HS = Set in Hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 PTEN: PWM Module Enable bit 1 = PWM module is enabled 0 = PWM module is disabled bit 14 Unimplemented: Read as '0' PTSIDL: PWM Time Base Stop in Idle Mode bit bit 13 1 = PWM time base halts in CPU Idle mode 0 = PWM time base runs in CPU Idle mode SESTAT: Special Event Interrupt Status bit bit 12 1 = Special Event Interrupt is pending 0 = Special Event Interrupt is not pending bit 11 SEIEN: Special Event Interrupt Enable bit 1 = Special Event Interrupt is enabled 0 = Special Event Interrupt is disabled EIPU: Enable Immediate Period Updates bit(1) bit 10 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWM cycle boundaries bit 9 **SYNCPOL:** Synchronize Input and Output Polarity bit⁽¹⁾ 1 = SYNCIx/SYNCO1 polarity is inverted (active-low) 0 = SYNCIx/SYNCO1 is active-high **SYNCOEN:** Primary Time Base Sync Enable bit⁽¹⁾ bit 8 1 = SYNCO1 output is enabled 0 = SYNCO1 output is disabled **SYNCEN:** External Time Base Synchronization Enable bit⁽¹⁾ bit 7 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled SYNCSRC<2:0>: Synchronous Source Selection bits⁽¹⁾ bit 6-4 000 = SYNCI1 001 = SYNCI2 010 = SYNCI3 011 = SYNCI4 100 = Reserved 101 = Reserved 111 = Reserved

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 229

TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits⁽¹⁾

1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event

•

•

0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event

0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

查询dsPIC33FJ64GS608供应商 REGISTER 16-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	P	CLKDIV<2:0> ⁽¹	1)
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾

110 = Divide by 64, maximum PWM timing resolution

101 = Divide by 32, maximum PWM timing resolution

100 = Divide by 16, maximum PWM timing resolution

011 = Divide by 8, maximum PWM timing resolution

010 = Divide by 4, maximum PWM timing resolution

001 = Divide by 2, maximum PWM timing resolution

000 = Divide by 1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER^(1,2) REGISTER 16-3:

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
PTPER<15:8>									
bit 15 bit									

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0		
PTPER<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits

Note 1: The PWM time base has a minimum value of 0x0010, and a maximum value of 0xFFF8.

2: Any Period value that is less than 0x0028 must have the least significant 3 bits set to '0', thus yielding a Period resolution at 8.32 ns (at fastest auxiliary clock rate).

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 231

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商

REGISTER 16-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	SEVTCMP<15:8>									
bit 15										

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	SE	EVTCMP<7:3>			_	_	_
bit 7						bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 SEVTCMP<15:3>: Special Event Compare Count Value bits

bit 2-0 **Unimplemented:** Read as '0'

Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SEVTCMP resolution is 8.32 ns.

查询dsPIC33FJ64GS608供应商 PEGISTER 16-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER

U-0	U-0	U-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL	SYNCOEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SYNCEN	S	SYNCSRC<2:0	>	SEVTPS<3:0>				
bit 7							bit 0	

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12 SESTAT: Special Event Interrupt Status bit

1 = Secondary Special Event Interrupt is pending

0 = Secondary Special Event Interrupt is not pending

bit 11 SEIEN: Special Event Interrupt Enable bit

1 = Secondary Special Event Interrupt is enabled 0 = Secondary Special Event Interrupt is disabled

bit 10 **EIPU:** Enable Immediate Period Updates bit⁽¹⁾

1 = Active Secondary Period register is updated immediately

0 = Active Secondary Period register updates occur on PWM cycle boundries

bit 9 SYNCPOL: Synchronize Input and Output Polarity bit

1 = SYNCIx/SYNCO2 polarity is inverted (active-low)

0 = SYNCIx/SYNCO2 polarity is active-high

bit 8 SYNCOEN: Secondary Master Time Base Sync Enable bit

1 = SYNCO2 output is enabled. 0 = SYNCO2 output is disabled

bit 7 SYNCEN: External Secondary Master Time Base Synchronization Enable bit

1 = External synchronization of secondary time base is enabled

0 = External synchronization of secondary time base is disabled

bit 6-4 SYNCSRC<2:0>: Secondary Time Base Sync Source Selection bits

000 = SYNCI1

001 = SYNCI2

010 = SYNCI3

011 = SYNCI4

100 = Reserved

101 = Reserved

111 = Reserved

bit 3-0 SEVTPS<3:0>: PWM Secondary Special Event Trigger Output Postscaler Select bits

1111 = 1:16 Postcale

0001 = 1:2 Postcale

•

•

•

0000 = 1:1 Postscale

Note 1: This bit only applies to the secondary master time base period.

查询dsPIC33FI64GS608供应商 REGISTER 16-6: STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	P	CLKDIV<2:0> ⁽¹	1)
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 **Unimplemented:** Read as '0'

bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

110 = Divide by 64, maximum PWM timing resolution

101 = Divide by 32, maximum PWM timing resolution

100 = Divide by 16, maximum PWM timing resolution

011 = Divide by 8, maximum PWM timing resolution 010 = Divide by 4, maximum PWM timing resolution

001 = Divide by 2, maximum PWM timing resolution

000 = Divide by 1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-7: STPER: SECONDARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	STPER<15:8>									
bit 15										

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0			
STPER<7:0>										
bit 7							bit 0			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits

查询dsPIC33FJ64GS608供应商 REGISTER 16-8: SSEVICMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	SSEVTCMP<15:8>										
bit 15							bit 8				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	SS	EVTCMP<7:3>	_	_	_		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 SSEVTCMP<15:3>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

REGISTER 16-9: CHOP: PWM CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	_	_	_	_	_	CHOP<9:8>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		CHOP<7:3>			-	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 CHPCLKEN: Enable Chop Clock Generator bit

1 = Chop clock generator is enabled0 = Chop clock generator is disabled

bit 14-10 **Unimplemented:** Read as '0'

bit 9-3 CHOP<9:3>: Chop Clock Divider bits

Value in 8.32 ns increments. The frequency of the chop clock signal is given by the following

expression:

Chop Frequency = 1/(16.64 * (CHOP<7:3> + 1) * Primary Master PWM Input Clock Period)

Note: The chop clock generator operates with the primary PWM clock prescaler (PCLKDIV<2:0>) in the PTCON2 register (Register 16-2).

© 2010 Microchip Technology Inc. **Preliminary** DS70591C-page 235

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商 REGISTER 16-10: MDC: PWM MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
MDC<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
MDC<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period - 0x0008.

2: As the Duty Cycle gets closer to 0% or 100% of the PWM Period (0 to 40 ns, depending on the mode of operation), PWM Duty Cycle resolution will increase from 1 to 3 LSBs.

查询dsPIC33FJ64GS608供应商 REGISTER 16-11: PWMCONx: PWM CONTROL REGISTER

HS/HC-0	HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DTC<	<1:0>	DTCP ⁽⁴⁾	_	MTBS	CAM ^(2,3,5)	XPRES ⁽⁶⁾	IUE
bit 7							bit 0

Legend:	HC = Cleared in Hardware	HS = Set in Hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FLTSTAT: Fault Interrupt Status bit⁽¹⁾ bit 15

1 = Fault interrupt is pending

0 = No Fault interrupt is pending

This bit is cleared by setting FLTIEN = 0.

CLSTAT: Current-Limit Interrupt Status bit⁽¹⁾ bit 14

1 = Current-limit interrupt is pending

0 = No current-limit interrupt is pending

This bit is cleared by setting CLIEN = 0.

bit 13 TRGSTAT: Trigger Interrupt Status bit

1 = Trigger interrupt is pending

0 = No trigger interrupt is pending

This bit is cleared by setting TRGIEN = 0.

bit 12 FLTIEN: Fault Interrupt Enable bit

1 = Fault interrupt is enabled

0 = Fault interrupt is disabled and FLTSTAT bit is cleared

bit 11 **CLIEN:** Current-Limit Interrupt Enable bit

1 = Current-limit interrupt enabled

0 = Current-limit interrupt disabled and CLSTAT bit is cleared

TRGIEN: Trigger Interrupt Enable bit bit 10

1 = A trigger event generates an interrupt request

0 = Trigger event interrupts are disabled and TRGSTAT bit is cleared

bit 9 ITB: Independent Time Base Mode bit (3)

1 = PHASEx/SPHASEx registers provide time base period for this PWM generator

0 = PTPER register provides timing for this PWM generator

Note 1: Software must clear the interrupt status here, and in the corresponding IFS bit in the Interrupt Controller.

- 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- 3: These bits should not be changed after the PWM is enabled (PTEN = 1) (PTCON<15>).
- 4: For DTCP to be effective, DTC<1:0> must be set to '11'; otherwise, DTCP is ignored.
- 5: Center-Aligned mode ignores the least significant 3 bits of the duty cycle, phase, and dead time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest
- 6: Configure CLMOD = 0 (FCLCONX<8>) and ITB = 1 (PWMCONx<9>) to operate in External Period Reset mode.

東達 15 TER 36-11:4 PWMCONX PWM CONTROL REGISTER (CONTINUED)

bit 8 MDCS: Master Duty Cycle Register Select bit (3)

1 = MDC register provides duty cycle information for this PWM generator

0 = PDCx and SDCx registers provide duty cycle information for this PWM generator

bit 7-6 **DTC<1:0>:** Dead Time Control bits

11 = Dead Time Compensation mode

10 = Dead time function is disabled

01 = Negative dead time actively applied for Complementary Output mode

00 = Positive dead time actively applied for all output modes

bit 5 **DTCP:** Dead Time Compensation Polarity bit⁽⁴⁾

1 = If DTCMPx = 0, PWMxL is shortened, and PWMxH is lengthened

If DTCMPx = 1, PWMxH is shortened, and PWMxL is lengthened

0 = If DTCMPx = 0, PWMxH is shortened, and PWMLx is lengthened

If DTCMPx = 1, PWMxL is shortened, and PWMxH is lengthened

bit 4 Unimplemented: Read as '0'

bit 3 MTBS: Master Time Base Select bit

1 = PWM generator uses the secondary master time base for synchronization and the clock source for the PWM generation logic (if secondary time base is available)

0 = PWM generator uses the primary master time base for synchronization and the clock source for the PWM generation logic

bit 2 **CAM:** Center-Aligned Mode Enable bit^(2,3,5)

1 = Center-Aligned mode is enabled

0 = Edge-Aligned mode is enabled

bit 1 XPRES: External PWM Reset Control bit (6)

1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode

0 = External pins do not affect PWM time base

bit 0 IUE: Immediate Update Enable bit

1 = Updates to the active MDC/PDCx/SDCx registers are immediate

0 = Updates to the active PDCx registers are synchronized to the PWM time base

Note 1: Software must clear the interrupt status here, and in the corresponding IFS bit in the Interrupt Controller.

- 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- 3: These bits should not be changed after the PWM is enabled (PTEN = 1) (PTCON<15>).
- 4: For DTCP to be effective, DTC<1:0> must be set to '11'; otherwise, DTCP is ignored.
- 5: Center-Aligned mode ignores the least significant 3 bits of the duty cycle, phase, and dead time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest clock.
- **6:** Configure CLMOD = 0 (FCLCONX<8>) and ITB = 1 (PWMCONx<9>) to operate in External Period Reset mode.

查询dsPIC33FJ64GS608供应商 REGISTER 16-12: PDCx: PWM GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PDCx<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PDCx<7:0>									
bit 7							bit 0			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PDCx<15:0>: PWM Generator # Duty Cycle Value bits

- Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL.
 - 2: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.
 - **3:** As the Duty Cycle gets closer to 0% or 100% of the PWM Period (0 to 40 ns, depending on the mode of operation), PWM Duty Cycle resolution will increase from 1 to 3 LSBs.

REGISTER 16-13: SDCx: PWM SECONDARY DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SDCx<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SDCx<7:0>										
bit 7 bi										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **SDCx<15:0>:** Secondary Duty Cycle bits for PWMxL Output Pin

- **Note 1:** The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.
 - 2: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.
 - 3: As the Duty Cycle gets closer to 0% or 100% of the PWM Period (0 to 40 ns, depending on the mode of operation), PWM Duty Cycle resolution will increase from 1 to 3 LSBs.

© 2010 Microchip Technology Inc. **Preliminary** DS70591C-page 239

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FI64GS608供应商 REGISTER 16-14: PHASEX: PWM PRIMARY PHASE SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PHASEx<15:8>										
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PHASEx<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PHASEx<15:0>: PWM Phase Shift Value or Independent Time Base Period bits for the PWM Generator

Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:

- Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01, or 10)
 PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs
- True Independent Output mode (IOCONx<10:8> = 11) PHASEx<15:0> = Phase shift value for PWMxH only
- When the PHASEx/SPHASEx register provides the phase shift with respect to the master time base; therefore, the valid range is 0x0000 through Period.
- 2: If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (IOCONx<10:8> = 00, 01, or 10) PHA-SEx<15:0> = Independent time base period value for PWMxH and PWMxL
 - True Independent Output mode (IOCONx<10:8> = 11) PHASEx<15:0> = Independent time base period value for PWMxH only
 - When the PHASEx/SPHASEx register provides the local period, the valid range is 0x0000 through 0xFFF8.

查询dsPIC33FI64GS608供应意 REGISTER 16-15: SPHASEX: PWM SECONDARY PHASE SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SPHASEx<15:8>										
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SPHASEx<7:0>										
bit 7							bit 0			

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 SPHASEx<15:0>: Secondary Phase Offset bits for PWMxL Output Pin (used in Independent PWM mode only)

Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:

- Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01, or 10) SPHA-SEx<15:0> = Not used
- True Independent Output mode (IOCONx<10:8> = 11) PHASEx<15:0> = Phase shift value for PWMxL only
- 2: If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01, or 10) SPHA-SEx<15:0> = Not used
 - True Independent Output mode (IOCONx<10:8> = 11) PHASEx<15:0> = Independent time base period value for PWMxL only
 - When the PHASEx/SPHASEx register provides the local period, the valid range of values is 0x0010-0xFFF8.

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 241

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商 REGISTER 16-16: DTRX: PWW DEAD TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			DTRx	<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DTRx<7:0>										
bit 7							bit 0			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-bit Dead Time Value bits for PWMx Dead Time Unit

REGISTER 16-17: ALTDTRx: PWM ALTERNATE DEAD TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			ALTDTF	Rx<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ALTDTRx<7:0>										
bit 7							bit 0			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-bit Dead Time Value bits for PWMx Dead Time Unit

查询dsPIC33FJ64GS608供应商 REGISTER 16-18: TRGCONx: PWM TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	TRGDI\	/<3:0>		_	_	_	_
bit 15							bit 8

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DTM ⁽¹⁾	_		TRGSTRT<5:0>						
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown

bit 15-12 **TRGDIV<3:0>:** Trigger # Output Divider bits

1111 = Trigger output for every 16th trigger event

1110 = Trigger output for every 15th trigger event

1101 = Trigger output for every 14th trigger event

1100 = Trigger output for every 13th trigger event

1011 = Trigger output for every 12th trigger event

1010 = Trigger output for every 11th trigger event

1001 = Trigger output for every 10th trigger event

1000 = Trigger output for every 9th trigger event 0111 = Trigger output for every 8th trigger event

0110 = Trigger output for every 7th trigger event 0101 = Trigger output for every 6th trigger event

0100 = Trigger output for every 5th trigger event

0011 = Trigger output for every 4th trigger event

0010 = Trigger output for every 3rd trigger event

0001 = Trigger output for every 2nd trigger event

0000 = Trigger output for every trigger event

bit 11-8 Unimplemented: Read as '0'

DTM: Dual Trigger Mode bit⁽¹⁾ bit 7

1 = Secondary trigger event is combined with the primary trigger event to create PWM trigger

0 = Secondary trigger event is not combined with the primary trigger event to create PWM trigger. Two separate PWM triggers are generated.

bit 6 Unimplemented: Read as '0'

bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits

111111 = Wait 63 PWM cycles before generating the first trigger event after the module is enabled

000010 = Wait 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Wait 1 PWM cycles before generating the first trigger event after the module is enabled 000000 = Wait 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1: The secondary PWM generator cannot generate PWM trigger interrupts.

查询dsPIC33FI64CS608供应商 REGISTER 16-19: IOCONX: PWM I/O CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD)<1:0> ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDA	T<1:0>	FLTDA	T<1:0>	CLDAT<1:0>		SWAP	OSYNC
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **PENH:** PWMxH Output Pin Ownership bit

1 = PWM module controls PWMxH pin

0 = GPIO module controls PWMxH pin

bit 14 PENL: PWMxL Output Pin Ownership bit

1 = PWM module controls PWMxL pin 0 = GPIO module controls PWMxL pin

bit 13 **POLH:** PWMxH Output Pin Polarity bit

1 = PWMxH pin is active-low

0 = PWMxH pin is active-high

bit 12 POLL: PWMxL Output Pin Polarity bit

1 = PWMxL pin is active-low

0 = PWMxL pin is active-high

bit 11-10 **PMOD<1:0>:** PWM # I/O Pin Mode bits⁽¹⁾

11 = PWM I/O pin pair is in the True Independent Output mode

10 = PWM I/O pin pair is in the Push-Pull Output mode

01 = PWM I/O pin pair is in the Redundant Output mode

00 = PWM I/O pin pair is in the Complementary Output mode

bit 9 **OVRENH:** Override Enable for PWMxH Pin bit

1 = OVRDAT<1> provides data for output on PWMxH pin

0 = PWM generator provides data for PWMxH pin

bit 8 **OVRENL:** Override Enable for PWMxL Pin bit

1 = OVRDAT<0> provides data for output on PWMxL pin

0 = PWM generator provides data for PWMxL pin

bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits

If OVERENH = 1, OVRDAT<1> provides data for PWMxH

If OVERENL = 1, OVRDAT<0> provides data for PWMxL

bit 5-4 FLTDAT<1:0>: State⁽²⁾ for PWMxH and PWMxL Pins if FLTMOD is Enabled bits

FCLCONx<IFLTMOD> = 0: Normal Fault mode

If Fault active, then FLTDAT<1> provides state for PWMxH If Fault active, then FLTDAT<0> provides state for PWMxL

FCLCONx<IFLTMOD> = 1: Independent Fault mode

If Current-Limit active, then FLTDAT<1> provides data for PWMxH

If Fault active, then FLTDAT<0> provides state for PWMxL

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

2: State represents the active/inactive state of the PWM depending on the POLH and POLL bit settings.

查询dsPIC33FJ64GS608供应商

REGISTER 16-19: IOCONX: PWM I/O CONTROL REGISTER (CONTINUED)

bit 3-2 **CLDAT<1:0>:** State⁽²⁾ for PWMxH and PWMxL Pins if CLMOD is Enabled bits

FCLCONx<IFLTMOD> = 0: Normal Fault mode

If current-limit active, then CLDAT<1> provides state for PWMxH If current-limit active, then CLDAT<0> provides state for PWMxL

FCLCONx<IFLTMOD> = 1: Independent Fault mode

CLDAT<1:0> is ignored

bit 1 **SWAP:** SWAP PWMxH and PWMxL pins bit

1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH

pins

0 = PWMxH and PWMxL pins are mapped to their respective pins

bit 0 OSYNC: Output Override Synchronization bit

1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base

0 = Output overrides via the OVDDAT<1:0> bits occur on next CPU clock boundary

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

2: State represents the active/inactive state of the PWM depending on the POLH and POLL bit settings.

© 2010 Microchip Technology Inc. **Preliminary** DS70591C-page 245

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商

REGISTER 16-20: TRIGX: PWM PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TRGCMP<15:8>							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	Т	RGCMP<7:3>	_	_	_		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 **TRGCMP<15:3>:** Trigger Compare Value bits

When the primary PWM functions in local time base, this register contains the compare values that

can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

查询dsPIC33FJ64GS608供应商

REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD		C	CLPOL ⁽¹⁾	CLMOD			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FL	TSRC<4:0> ^{(2,3}	FLTPOL ⁽¹⁾	FLTMO	D<1:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **IFLTMOD:** Independent Fault Mode Enable bit

- 1 = Independent Fault mode: Current-limit input maps FLTDAT<1> to PWMxH output, and Fault input maps FLTDAT<0> to PWMxL output. The CLDAT<1:0> bits are not used for override functions.
- 0 = Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL outputs. The PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs.

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

- 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
- 3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 247

查询dsPIC33FJ64GS608供应商

REGISTER 16-21: FCLCONX: PWM FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

CLSRC<4:0>: Current-Limit Control Signal Source Select bits for PWM Generator #^(2,4). bit 14-10 These bits also specify the source for the dead time compensation input signal, DTCMPx. 11111 = Reserved 11110 = Fault 2311101 = Fault 22 11100 = Fault 21 11011 = Fault 20 11010 = Fault 1911001 = Fault 18 11000 = Fault 1710111 = Fault 1610110 = Fault 15 10101 = Fault 14 10100 = Fault 1310011 = Fault 12 10010 = Fault 1110001 = Fault 1010000 = Fault 901111 = Fault 8 01110 = Fault 701101 = Fault 6 01100 = Fault 501011 = Fault 401010 = Fault 3

01010 = Fault 3 01001 = Fault 2 01000 = Fault 1 00111 = Reserved

00110 = Reserved 00101 = Reserved 00100 = Reserved

00011 = Analog Comparator 4 00010 = Analog Comparator 3 00001 = Analog Comparator 2

00000 = Analog Comparator 1

CLPOL: Current-Limit Polarity bit for PWM Generator #(1)

1 = The selected current-limit source is active-low

0 = The selected current-limit source is active-high

bit 8 CLMOD: Current-Limit Mode Enable bit for PWM Generator #

1 = Current-Limit mode is enabled 0 = Current-Limit mode is disabled

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

- 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
- 3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

bit 9

查询register /6426.60 cttconx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

```
FLTSRC<4:0>: Fault Control Signal Source Select bits for PWM Generator #(2,4)
bit 7-3
               11111 = Reserved
               11110 = Fault 23
               11101 = Fault 22
               11100 = Fault 21
               11011 = Fault 20
               11010 = Fault 19
               11001 = Fault 18
               11000 = Fault 17
               10111 = Fault 16
               10110 = Fault 15
               10101 = Fault 14
               10100 = Fault 13
               10011 = Fault 12
               10010 = Fault 11
               10001 = Fault 10
               10000 = Fault 9
               01111 = Fault 8
               01110 = Fault 7
               01101 = Fault 6
               01100 = Fault 5
               01011 = Fault 4
               01010 = Fault 3
               01001 = Fault 2
               01000 = Fault 1
               00111 = Reserved
               00110 = Reserved
               00101 = Reserved
               00100 = Reserved
               00011 = Analog Comparator 4
               00010 = Analog Comparator 3
               00001 = Analog Comparator 2
               00000 = Analog Comparator 1
bit 2
               FLTPOL: Fault Polarity bit for PWM Generator #<sup>(1)</sup>
               1 = The selected Fault source is active-low
               0 = The selected Fault source is active-high
bit 1-0
               FLTMOD<1:0>: Fault Mode bits for PWM Generator #
               11 = Fault input is disabled
               10 = Reserved
               01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
               00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
```

- **Note 1:** These bits should be changed only when PTEN = 0 (PTCON<15>).
 - 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
 - 3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

章道はPIC33FJ64CS608供存成 SECONDARY TRIGGER COMPARE VALUE REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STRGCM	/IP<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	ST	RGCMP<7:3>	_	_	_		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 STRGCMP<15:3>: Secondary Trigger Compare Value bits

When the secondary PWM functions in local time base, this register contains the compare values that

can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

Note 1: STRIGx cannot generate the PWM trigger interrupts.

查询REGISTER 16-23:01EBCONx: LEADING-EDGE BLANKING CONTROL REGISTER

Legend:

bit 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		BCH	BCL	BPHH	BPHL	BPLH	BPLL
bit 7	_	BOIT	BCL	DETIII	DFIIL	DELII	bit 0

R = Readable	bit W	= Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at F	POR '1'	= Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	1 = Rising edge	ising Edge Trigger Enable of PWMxH will trigger Lea e Blanking ignores rising	ading-Edge Blanking counter	
bit 14	1 = Falling edge	alling Edge Trigger Enabl of PWMxH will trigger Le e Blanking ignores falling	ading-Edge Blanking counter	
bit 13	1 = Rising edge	sing Edge Trigger Enable of PWMxL will trigger Lea e Blanking ignores rising	ding-Edge Blanking counter	
bit 12	1 = Falling edge	lling Edge Trigger Enable of PWMxL will trigger Lea e Blanking ignores falling	ading-Edge Blanking counter	
bit 11	1 = Leading-Edg	It Input Leading-Edge Bla e Blanking is applied to s e Blanking is not applied	elected fault input	
bit 10	1 = Leading-Edg		lanking Enable bit elected current-limit input to selected current-limit input	
bit 9-6	Unimplemented	: Read as '0'		
bit 5	BCH: Blanking ir	Selected-Blanking Signa	al High Enable bit ⁽¹⁾	
		g (of current-limit and/or to when selected blanking s	fault input signals) when seled ignal is high	cted blanking signal is high
bit 4	BCL: Blanking in	Selected-Blanking Signa	al Low Enable bit ⁽¹⁾	
		g (of current-limit and/or t when selected blanking s	fault input signals) when seledignal is low	cted blanking signal is low
bit 3	BPHH: Blanking	in PWMxH High Enable I	oit	
		g (of current-limit and/or t when PWMxH output is h	fault input signals) when PWN igh	/IxH output is high
bit 2	BPHL: Blanking	in PWMxH Low Enable b	it	
		g (of current-limit and/or twhen PWMxH output is lo	fault input signals) when PWN ow	/IxH output is low
bit 1	BPLH: Blanking	in PWMxL High Enable b	it	
		g (of current-limit and/or t when PWMxL output is hi	fault input signals) when PWN igh	/lxL output is high

Note 1: The blanking signal is selected via the BLANKSEL bits in the AUXCONx register.

BPLL: Blanking in PWMxL Low Enable bit

0 = No blanking when PWMxL output is low

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 251

1 = State blanking (of current-limit and/or fault input signals) when PWMxL output is low

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

章语SPER 36-24-46-608供文章ADING-EDGE BLANKING DELAY REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	_	_	LEB<11:8>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
		LEB<7:3>			_	_	_		
bit 7 bit 0									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-3 LEB<11:3>: Leading-Edge Blanking Delay bits for Current-Limit and Fault Inputs

Value in 8.32 ns increments

bit 2-0 Unimplemented: Read as '0'

Note: The LEB delay timing operates with the primary PWM clock prescaler bits, PCLKDIV<2:0>

(PTCON<10:8>).

查询dsPIC33FJ64GS608供应商

REGISTER 16-25: AUXCONx: PWM AUXILIARY CONTROL REGISTER

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
HRPDIS	HRDDIS	_	_		BLANKS	SEL<3:0>	
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_		CHOPS	CHOPHEN	CHOPLEN		
bit 7							bit 0

Leaend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **HRPDIS**: High Resolution PWM Period Disable bit⁽¹⁾

1 = High resolution PWM period is disabled to reduce power consumption

0 = High resolution PWM period is enabled

bit 14 **HRDDIS**: High Resolution PWM Duty Cycle Disable bit⁽¹⁾

1 = High resolution PWM duty cycle is disabled to reduce power consumption

0 = High resolution PWM duty cycle is enabled

bit 13-12 **Unimplemented:** Read as '0'

bit 11-8 BLANKSEL<3:0>: PWM State Blank Source Select bits

The selected state blank signal will block the current limit and/or fault input signals

(if enabled via the BCH and BCL bits in the LEBCONx register)

1001 = PWM9H selected as state blank source

1000 = PWM8H selected as state blank source

0111 = PWM7H selected as state blank source

0110 = PWM6H selected as state blank source 0101 = PWM5H selected as state blank source

0100 = PWM4H selected as state blank source

0011 = PWM3H selected as state blank source

0010 = PWM2H selected as state blank source

5010 - I WWZI I Sciected as state blank source

0001 = PWM1H selected as state blank source

0000 = 1'b0 (no state blanking)

bit 7-6 Unimplemented: Read as '0'

bit 5-2 CHOPSEL<3:0>: PWM Chop Clock Source Select bits

The selected signal will enable and disable (CHOP) the selected PWM outputs

1001 = PWM9H selected as CHOP clock source

1000 = PWM8H selected as CHOP clock source

0111 = PWM7H selected as CHOP clock source

0110 = PWM6H selected as CHOP clock source 0101 = PWM5H selected as CHOP clock source

0100 = PWM4H selected as CHOP clock source

0011 = PWM3H selected as CHOP clock source

0010 = PWM2H selected as CHOP clock source

0001 = PWM1H selected as CHOP clock source

0000 = Chop Clock generator selected as CHOP clock source

bit 1 CHOPHEN: PWMxH Output Chopping Enable bit

1 = PWMxH chopping function is enabled

0 = PWMxH chopping function is disabled

bit 0 CHOPLEN: PWMxL Output Chopping Enable bit

1 = PWMxL chopping function is enabled

0 = PWMxL chopping function is disabled

查询dsPIC33FJ64GS608供应商

REGISTER 16-26: PWMCAPx: PRIMARY PWM TIME BASE CAPTURE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCA	P<15:8>			
bit 15							bit 8

R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
	Р	WMCAP<7:3>	_	_	_		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 **PWMCAP<15:3>:** Captured PWM Time Base Value bits^(1,2,3,4)

The value in this register represents the captured PWM time base value when a leading edge is

detected on the current-limit input.

bit 2-0 **Unimplemented:** Read as '0'

Note 1: The capture feature is only available on primary output (PWMxH).

2: This feature is active only after LEB processing on the current-limit input signal is complete.

3: The minimum capture resolution is 8.32 ns.

4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to '0'.

查询**迟如**C**QUADRATU**集度高NCODER INTERFACE (QEI) MODULE

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information. This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI include:

- Three input channels for two phase signals and index pulse
- 16-bit up/down position counter
- · Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Quadrature Encoder Interface interrupts

These operating modes are determined by setting the appropriate bits, QEIM<2:0> in (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

Note: An 'x' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number (x = 1 or 2).

FIGURE 17-1: QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM (x = 1 OR 2)

REGISTER 37-1.64 QELXOONY QEIX CONTROL REGISTER (x = 1 or 2)

R/W-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
CNTERR	_	QEISIDL	INDEX	UPDN		QEIM<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWPAB	PCDOUT	TQGATE	TQCKF	PS<1:0>	POSRES	TQCS	UPDN_SRC
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

CNTERR: Count Error Status Flag bit⁽¹⁾ bit 15

1 = Position count error has occurred

0 = No position count error has occurred

bit 14 Unimplemented: Read as '0'

bit 13 **QEISIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

INDEX: Index Pin State Status bit (Read-Only) bit 12

> 1 = Index pin is High 0 = Index pin is Low

bit 11 **UPDN:** Position Counter Direction Status bit⁽²⁾

1 = Position Counter Direction is positive (+)

0 = Position Counter Direction is negative (-)

bit 10-8 QEIM<2:0>: Quadrature Encoder Interface Mode Select bits

> 111 = Quadrature Encoder Interface enabled (x4 mode) with position counter reset by match (MAXxCNT)

110 = Quadrature Encoder Interface enabled (x4 mode) with Index Pulse reset of position counter

101 = Quadrature Encoder Interface enabled (x2 mode) with position counter reset by match (MAXxCNT)

100 = Quadrature Encoder Interface enabled (x2 mode) with Index Pulse reset of position counter

011 = Unused (Module disabled)

010 = Unused (Module disabled)

001 = Starts 16-bit Timer

000 = Quadrature Encoder Interface/Timer off

bit 7 SWPAB: Phase A and Phase B Input Swap Select bit

1 = Phase A and Phase B inputs swapped

0 = Phase A and Phase B inputs not swapped

bit 6 PCDOUT: Position Counter Direction State Output Enable bit

1 = Position Counter Direction Status Output Enable (QEI logic controls state of I/O pin)

0 = Position Counter Direction Status Output Disabled (Normal I/O pin operation)

Note 1: CNTERR flag only applies when QEIM<2:0> = '110' or '100'.

2: Read-only bit when QEIM<2:0> = '1xx'. Read/write bit when QEIM<2:0> = '001'.

3: Prescaler utilized for 16-bit Timer mode only.

4: This bit applies only when QEIM<2:0> = 100 or 110.

5: When configured for QEI mode, this control bit is a 'don't care'.

查询REGISTER 1741:S6(QELXCON: QEIX CONTROL REGISTER (x = 1 or 2) (CONTINUED)

bit 5 TQGATE: Timer Gated Time Accumulation Enable bit

1 = Timer gated time accumulation enabled0 = Timer gated time accumulation disabled

bit 4-3 TQCKPS<1:0>: Timer Input Clock Prescale Select bits⁽³⁾

11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value

bit 2 **POSRES:** Position Counter Reset Enable bit⁽⁴⁾

1 = Index Pulse resets Position Counter

0 = Index Pulse does not reset Position Counter

bit 1 TQCS: Timer Clock Source Select bit

1 = External clock from pin QEAx (on the rising edge)

0 = Internal clock (Tcy)

bit 0 **UPDN SRC:** Position Counter Direction Selection Control bit⁽⁵⁾

1 = QEBx pin state defines position counter direction

0 = Control/Status bit, UPDN (QEIxCON<11>), defines timer counter (POSxCNT) direction

Note 1: CNTERR flag only applies when QEIM<2:0> = '110' or '100'.

2: Read-only bit when QEIM<2:0> = '1XX'. Read/write bit when QEIM<2:0> = '001'.

3: Prescaler utilized for 16-bit Timer mode only.

4: This bit applies only when QEIM<2:0> = 100 or 110.

5: When configured for QEI mode, this control bit is a 'don't care'.

囊的 STER 3 7-2.64 OF CON DIGITAL FILTER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	IMV<2:0>		CEID
bit 15							bit 8

R/W-0	R/W-0	U-0	U-0	U-0	U-0
QEOUT	QECK<2:0>	_	_	_	
bit 7					bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9 **IMV<1:0>:** Index Match Value bits – These bits allow the user application to specify the state of the

QEAx and QEBx input pins during an Index pulse when the POSxCNT register is to be reset.

In x4 Quadrature Count Mode:

IMV1 = Required State of Phase B input signal for match on index pulse

IMV0 = Required State of Phase A input signal for match on index pulse

In x4 Quadrature Count Mode:

IMV1 = Selects Phase input signal for Index state match (0 = Phase A, 1 = Phase B)

IMV0 = Required state of the selected Phase input signal for match on index pulse

bit 8 CEID: Count Error Interrupt Disable bit

1 = Interrupts due to count errors are disabled

0 = Interrupts due to count errors are enabled

bit 7 **QEOUT:** QEAx/QEBx/INDXx Pin Digital Filter Output Enable bit

1 = Digital filter outputs enabled

0 = Digital filter outputs disabled (normal pin operation)

bit 6-4 QECK<2:0>: QEAx/QEBx/INDXx Digital Filter Clock Divide Select Bits

111 = 1:256 Clock Divide

110 = 1:128 Clock Divide

101 = 1:64 Clock Divide

100 = 1:32 Clock Divide

011 = 1:16 Clock Divide

010 = 1:4 Clock Divide

001 = 1:2 Clock Divide

000 = 1:1 Clock Divide

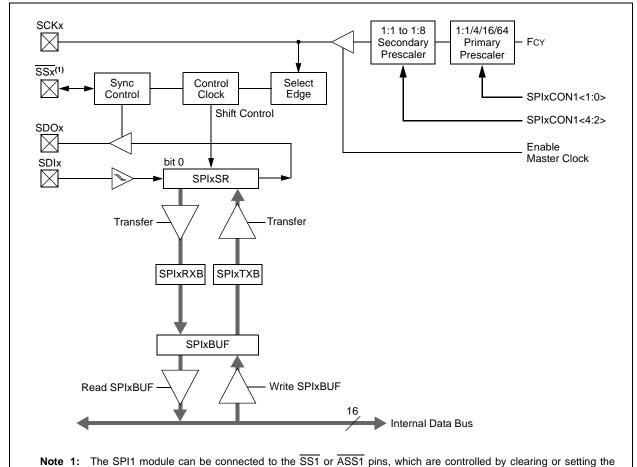
bit 3-0 **Unimplemented:** Read as '0'

查询dsPIC33FI64GS608供应商 18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters and so on. The SPI module is compatible with SPI and SIOP from Motorola[®].


The SPI module consists of a 16-bit shift register, SPIxSR (where x = 1), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a STATUS register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (Serial Data Input)
- SDOx (Serial Data Output)
- SCKx (Shift Clock Input Or Output)
- SSx (Active-Low Slave Select).

In Master mode operation, SCK is a clock output; in Slave mode, it is a clock input.

FIGURE 18-1: SPI MODULE BLOCK DIAGRAM

© 2010 Microchip Technology Inc. Preliminary DS70591C-page 259

ALTSS1 bit in the FPOR Configuration register. See Section 24.0 "Special Features" for more information.

查询dsPIC33FJ64GS608供应商 REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	_	SPISIDL	_	_	_	_	_
bit 15							bit 8

U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
_	SPIROV	_	_	_	_	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 SPIEN: SPIx Enable bit

1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins

0 = Disables module

bit 14 **Unimplemented:** Read as '0' bit 13 **SPISIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12-7 **Unimplemented:** Read as '0' bit 6 **SPIROV:** Receive Overflow Flag bit

1 = A new byte/word is completely received and discarded. The user software has not read the

previous data in the SPIxBUF register.

0 = No overflow has occurred

bit 5-2 **Unimplemented:** Read as '0'

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit not yet started, SPIxTXB is full

0 = Transmit started, SPIxTXB is empty. Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data

from SPIxTXB to SPIxSR.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive complete, SPIxRXB is full

0 = Receive is not complete, SPIxRXB is empty. Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.

查询dsPIC33FJ64GS608供应商 *** REGISTER 18-2: ** SPIXCON1: SPIx CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN	SPRE<2:0> ⁽²⁾			PPRE-	<1:0> ⁽²⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12 DISSCK: Disable SCKx pin bit (SPI Master modes only)

1 = Internal SPI clock is disabled; pin functions as I/O

0 = Internal SPI clock is enabled

bit 11 DISSDO: Disable SDOx pin bit

1 = SDOx pin is not used by module; pin functions as I/O

0 = SDOx pin is controlled by the module

bit 10 MODE16: Word/Byte Communication Select bit

1 = Communication is word-wide (16 bits)0 = Communication is byte-wide (8 bits)

bit 9 SMP: SPIx Data Input Sample Phase bit

Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

Slave mode:

SMP must be cleared when SPIx is used in Slave mode.

bit 8 **CKE:** SPIx Clock Edge Select bit⁽¹⁾

1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)

bit 7 SSEN: Slave Select Enable bit (Slave mode)(3)

 $1 = \overline{SSx}$ pin used for Slave mode

 $0 = \overline{SSx}$ pin not used by module; pin controlled by port function

bit 6 **CKP:** Clock Polarity Select bit

1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level

bit 5 MSTEN: Master Mode Enable bit

1 = Master mode

0 = Slave mode

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

- 2: Do not set both primary and secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

東連島下足33FJ64CS608世紀 SPIX CONTROL REGISTER 1 (CONTINUED)

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

- 2: Do not set both primary and secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

查询REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	_	_	_	_	_	FRMDLY	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 FRMEN: Framed SPIx Support bit

1 = Framed SPIx support enabled (\overline{SSx} pin used as frame sync pulse input/output)

0 = Framed SPIx support disabled

bit 14 SPIFSD: Frame Sync Pulse Direction Control bit

1 = Frame sync pulse input (slave)0 = Frame sync pulse output (master)

bit 13 FRMPOL: Frame Sync Pulse Polarity bit

1 = Frame sync pulse is active-high0 = Frame sync pulse is active-low

bit 12-2 Unimplemented: Read as '0'

bit 1 FRMDLY: Frame Sync Pulse Edge Select bit

1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock

bit 0 **Unimplemented:** This bit must not be set to '1' by the user application

查询dsPIC33FJ64GS608供应商 NOTES:

查询付加工的工程的工程的工程的 CIRCUIT (I²C™)

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit (I²CTM)" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I²C) module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- · The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7-bit and 10-bit addressing.
- I²C Master mode supports 7-bit and 10-bit addressing.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I²C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.

19.2 I²C Registers

I2CxCON and I2CxSTAT are control and STATUS registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A Status bit, ADD10, indicates 10-Bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

章词ke^P1933FJ64G26A8供应或 DIAGRAM (x = 1) Internal Data Bus I2CxRCV Read SCLx Shift Clock I2CxRSR LSb SDAx Address Match Write Match Detect **I2CxMSK** Read Write **I2CxADD** Read Start and Stop Bit Detect Wri<u>te</u> Start and Stop **I2CxSTAT** Bit Generation Control Logic Read Collision Write Detect **I2CxCON** Acknowledge Read Generation Clock Stretching Write **I2CxTRN** LSb Read Shift Clock Reload Control Write BRG Down Counter I2CxBRG Read

Tcy/2

查询dsPIC33FJ64GS608供应商 REGISTER 19-1: 12CxCON: 12Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	U = Unimplemented bit, re	U = Unimplemented bit, read as '0'						
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	HC = Hardware Clearable bit					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15 I2CEN: I2Cx Enable bit

1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins

0 = Disables the I2Cx module. All I²C pins are controlled by port functions.

bit 14 Unimplemented: Read as '0'

bit 13 I2CSIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters an Idle mode

0 = Continue module operation in Idle mode

SCLREL: SCLx Release Control bit (when operating as I²C slave) bit 12

1 = Release SCLx clock

0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit bit 11

1 = IPMI mode is enabled; all addresses Acknowledged

0 = IPMI mode disabled

bit 10 A10M: 10-Bit Slave Address bit

> 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address

bit 9 **DISSLW: Disable Slew Rate Control bit**

> 1 = Slew rate control disabled 0 = Slew rate control enabled

bit 8 SMEN: SMBus Input Levels bit

1 = Enable I/O pin thresholds compliant with SMBus specification

0 = Disable SMBus input thresholds

GCEN: General Call Enable bit (when operating as I²C slave) bit 7

> 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception)

0 = General call address disabled

bit 6 **STREN:** SCLx Clock Stretch Enable bit (when operating as I²C slave)

Used in conjunction with SCLREL bit.

1 = Enable software or receive clock stretching

0 = Disable software or receive clock stretching

查询dsPIC33FJ64GS608供应商

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5 **ACKDT:** Acknowledge Data bit (when operating as I²C master, applicable during master receive)

Value that is transmitted when the software initiates an Acknowledge sequence.

1 = Send NACK during Acknowledge

0 = Send ACK during Acknowledge

bit 4 ACKEN: Acknowledge Sequence Enable bit

(when operating as I²C master, applicable during master receive)

1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence.

0 = Acknowledge sequence not in progress

bit 3 RCEN: Receive Enable bit (when operating as I²C master)

1 = Enables Receive mode for 1^2 C. Hardware clear at end of eighth bit of master receive data byte.

0 = Receive sequence not in progress

bit 2 **PEN:** Stop Condition Enable bit (when operating as I²C master)

1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.

0 = Stop condition not in progress

bit 1 **RSEN:** Repeated Start Condition Enable bit (when operating as I²C master)

1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.

0 = Repeated Start condition not in progress

bit 0 **SEN:** Start Condition Enable bit (when operating as I²C master)

1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.

0 = Start condition not in progress

查询dsPIC33FJ64GS608供应商 REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10
bit 15							bit 8

R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	HSC = Hardware Settable/Clearable			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 **ACKSTAT:** Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

1 = NACK received from slave

0 = ACK received from slave

Hardware set or clear at end of slave Acknowledge.

bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)

1 = Master transmit is in progress (8 bits + ACK)

0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

bit 13-11 Unimplemented: Read as '0'

bit 10 **BCL:** Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision.

GCSTAT: General Call Status bit bit 9

1 = General call address was received

0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-Bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I2C module is busy

0 = No collision

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

bit 6 **I2COV:** Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte

0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

D_A: Data/Address bit (when operating as I²C slave) bit 5

1 = Indicates that the last byte received was data

0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

bit 4 P: Stop bit

1 = Indicates that a Stop bit has been detected last

0 = Stop bit was not detected last

Hardware set or clear when Start, Repeated Start or Stop detected.

查询dsPIC33FJ64GS608供应商 REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3 S: Start bit

1 = Indicates that a Start (or Repeated Start) bit has been detected last

0 = Start bit was not detected last

Hardware set or clear when Start, Repeated Start or Stop detected.

bit 2 **R_W:** Read/Write Information bit (when operating as I²C slave)

1 = Read – indicates data transfer is output from slave

0 = Write – indicates data transfer is input to slave

Hardware set or clear after reception of I²C device address byte.

bit 1 RBF: Receive Buffer Full Status bit

1 = Receive complete, I2CxRCV is full

0 = Receive not complete, I2CxRCV is empty

Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads

I2CxRCV.

bit 0 TBF: Transmit Buffer Full Status bit

1 = Transmit in progress, I2CxTRN is full

0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

查询dsPIC33FJ64GS608供应商 REGISTER 19-3: 12Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	AMSK	(<9:8>
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
AMSK<7:0>									
bit 7									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSK<9:0>: Mask for Address bit x Select bits

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 =Disable masking for bit x; bit match required in this position

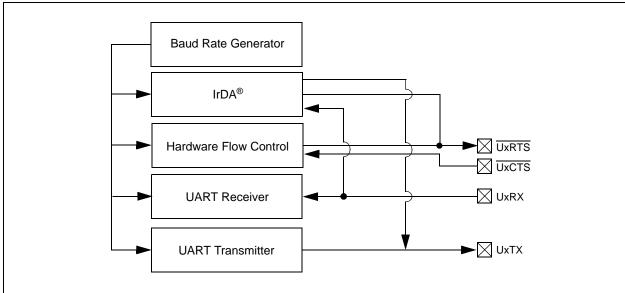
查询dsPIC33FJ64GS608供应商 NOTES:

查询26.61C设施VERSALASTNCHRONOUS RECEIVER TRANSMITTER (UART)

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device families. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- · A Separate Interrupt for all UART Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- · Support for Automatic Baud Rate Detection
- · IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support
- Support for DMA

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM

查询dsPIC33FJ64GS608供应商 REGISTER 20-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD	_	UEN-	<1:0>
bit 15							bit 8

R/W-0 HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL
bit 7							bit 0

Legend:	HC = Hardware Clearable		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

UARTEN: UARTx Enable bit⁽¹⁾ bit 15

1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>

0 = UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption

minimal

bit 14 Unimplemented: Read as '0'

bit 13 USIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

IREN: IrDA® Encoder and Decoder Enable bit(2) bit 12

> 1 = IrDA encoder and decoder enabled 0 = IrDA encoder and decoder disabled

bit 11 RTSMD: Mode Selection for UxRTS Pin bit

 $1 = \overline{\text{UxRTS}}$ pin in Simplex mode

0 = UxRTS pin in Flow Control mode

bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits

11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by PORT latches

10 = UxTX, UxRX, \overline{UxCTS} and \overline{UxRTS} pins are enabled and used

01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by PORT latches

00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by **PORT latches**

bit 7 WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit

> 1 = UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge

0 = No wake-up enabled

bit 6 LPBACK: UARTx Loopback Mode Select bit

> 1 = Enable Loopback mode 0 = Loopback mode is disabled

ABAUD: Auto-Baud Enable bit

1 = Enable baud rate measurement on the next character - requires reception of a Sync field (55h) before other data; cleared in hardware upon completion

0 = Baud rate measurement disabled or completed

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for receive or transmit operation. That section of the manual is available on the Microchip web site, www.microchip.com.

2: This feature is only available for the $16x BRG \mod (BRGH = 0)$.

bit 5

查询dsPIC33FI64GS608供应意 UARTx MODE REGISTER (CONTINUED)

bit 4 URXINV: Receive Polarity Inversion bit

1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'

bit 3 BRGH: High Baud Rate Enable bit

1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)

bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits

11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity

bit 0 STSEL: Stop Bit Selection bit

1 = Two Stop bits0 = One Stop bit

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation. That section of the manual is available on the Microchip web site, www.microchip.com.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

查询dsPIC33FI64GS608供应商 REGISTER 20-2: UxSTA: WARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	nd as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits
 - 11 = Reserved; do not use
 - 10 = Interrupt when a character is transferred to the Transmit Shift register, and as a result, the transmit buffer becomes empty
 - 01 = Interrupt when the last character is shifted out of the Transmit Shift register; all transmit operations are completed
 - 00 = Interrupt when a character is transferred to the Transmit Shift register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: Transmit Polarity Inversion bit

If IREN = 0:

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IREN = 1:

- 1 = IrDA[®] encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 Unimplemented: Read as '0'
- bit 11 UTXBRK: Transmit Break bit
 - 1 = Send Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 - 0 = Sync Break transmission disabled or completed
- bit 10 UTXEN: Transmit Enable bit⁽¹⁾
 - 1 = Transmit enabled, UxTX pin controlled by UARTx
 - 0 = Transmit disabled, any pending transmission is aborted and buffer is reset; UxTX pin controlled by port
- bit 9 **UTXBF:** Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full; at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
 - **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation. That section of the manual is available on the Microchip web site, www.microchip.com.

查询dsPIC33FI64GS608供应的ARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5 **ADDEN:** Address Character Detect bit (bit 8 of received data = 1)

1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.

0 = Address Detect mode disabled

bit 4 RIDLE: Receiver Idle bit (read-only)

1 = Receiver is Idle0 = Receiver is active

bit 3 PERR: Parity Error Status bit (read-only)

1 = Parity error has been detected for the current character (character at the top of the receive FIFO)

0 = Parity error has not been detected

bit 2 FERR: Framing Error Status bit (read-only)

1 = Framing error has been detected for the current character (character at the top of the receive

FIFO)

bit 0

0 = Framing error has not been detected

bit 1 OERR: Receive Buffer Overrun Error Status bit (clear/read-only)

1 = Receive buffer has overflowed

0= Receive buffer has not overflowed. Clearing a previously set OERR bit (1 ightarrow 0 transition) will reset

the receiver buffer and the UxRSR to the empty state.

URXDA: Receive Buffer Data Available bit (read-only)

1 = Receive buffer has data, at least one more character can be read

0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation. That section of the manual is available on the Microchip web site, www.microchip.com.

查询dsPIC33FJ64GS608供应商 NOTES:

<u>查询和OIC是NHANCED CAN</u> (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185) in the dsPIC33F/PIC24H Family Reference Manual, which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

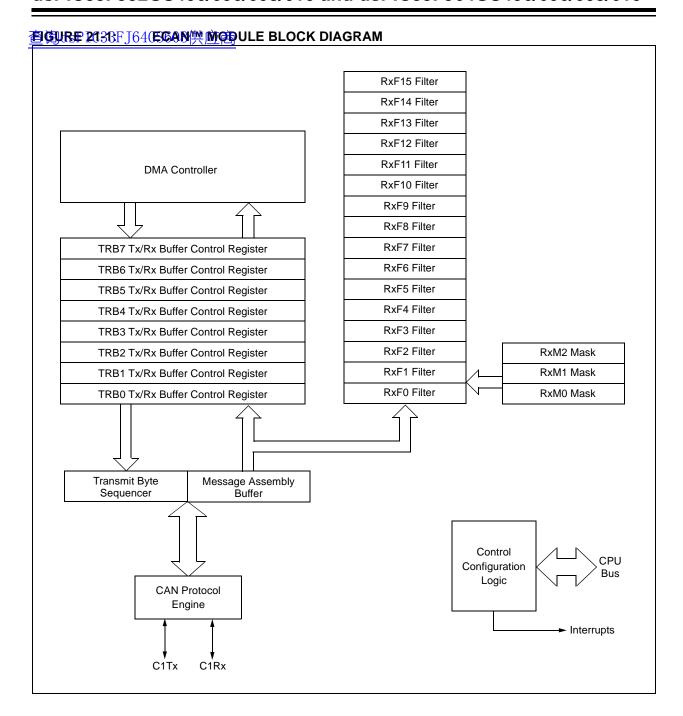
- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- · 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter

- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

21.2 Frame Types

The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:


- · Standard Data Frame:
 - A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).
- · Extended Data Frame:

An extended data frame is similar to a standard data frame, but includes an extended identifier as well.

- Remote Frame:
 - It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.
- Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

- Overload Frame:
 - An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.
- Interframe Space: Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

Note:

查询和3IC3MpdesOsfOpenation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- · Listen Only mode
- · Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control registers
- · Baud Rate and Interrupt Configuration registers
- · Bus Timing registers
- · Identifier Acceptance Filter registers
- · Identifier Acceptance Mask registers

21.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

21.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

21.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

21.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

21.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0
_	_	CSIDL	ABAT	_		REQOP<2:0>	
bit 15							bit 8

R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
	OPMODE<2:0>		_	CANCAP	_	_	WIN
bit 7							bit 0

Legend:C = Writable bit, but only '0' can be written to clear the bit r = Bit is ReservedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0' bit 13 **CSIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12 ABAT: Abort All Pending Transmissions bit

1 = Signal all transmit buffers to abort transmission

0 = Module will clear this bit when all transmissions are aborted

bit 11 Reserved: Do not use

bit 10-8 **REQOP<2:0>:** Request Operation Mode bits

000 = Set Normal Operation mode

001 = Set Disable mode 010 = Set Loopback mode 011 = Set Listen Only Mode

100 = Set Configuration mode

101 = Reserved 110 = Reserved

111 = Set Listen All Messages mode

bit 7-5 **OPMODE<2:0>**: Operation Mode bits

000 = Module is in Normal Operation mode

001 = Module is in Disable mode
010 = Module is in Loopback mode
011 = Module is in Listen Only mode
100 = Module is in Configuration mode

101 = Reserved 110 = Reserved

111 = Module is in Listen All Messages mode

bit 4 **Unimplemented:** Read as '0'

bit 3 CANCAP: CAN Message Receive Timer Capture Event Enable bit

1 = Enable input capture based on CAN message receive

0 = Disable CAN capture

bit 2-1 **Unimplemented:** Read as '0' bit 0 **WIN:** SFR Map Window Select bit

1 = Use filter window 0 = Use buffer window

查询REGISTER 20142.56 (C) 供配函 ECAN™ CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_			DNCNT<4:0>		
bit 7							bit 0

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>**: DeviceNet™ Filter Bit Number bits

10010-11111 = Invalid selection

10001 = Compare up to data byte 3, bit 6 with EID<17>

•

•

•

00001 = Compare up to data byte 1, bit 7 with EID<0>

00000 = Do not compare data bytes

食色。ISTER 221-3.64 CIVEC 中心 AN™ INTERRUPT CODE REGISTER

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_			FILHIT<4:0>		
bit 15							bit 8

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0		
_		ICODE<6:0>							
bit 7							bit 0		

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0' bit 12-8 **FILHIT<4:0>:** Filter Hit Number bits

10000-111111 = Reserved

01111 = Filter 15

•

00001 = Filter 1 00000 = Filter 0

bit 7 **Unimplemented:** Read as '0'

bit 6-0 ICODE<6:0>: Interrupt Flag Code bits

1000101-1111111 = Reserved

1000100 = FIFO almost full interrupt

1000011 = Receiver overflow interrupt

1000010 = Wake-up interrupt

1000001 = Error interrupt

1000000 = **No** interrupt

•

•

•

0010000-0111111 = Reserved 0001111 = RB15 buffer Interrupt

•

•

•

0001001 = RB9 buffer interrupt

0001000 = RB8 buffer interrupt

0000111 = TRB7 buffer interrupt

0000110 = TRB6 buffer interrupt

0000101 = TRB5 buffer interrupt 0000100 = TRB4 buffer interrupt

0000011 = TRB3 buffer interrupt

0000010 = TRB2 buffer interrupt

0000001 = TRB1 buffer interrupt

0000000 = TRB0 Buffer interrupt

查询REGISTER 20144S60ci并文字形态 ECAN™ FIFO CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			FSA<4:0>		
bit 7							bit 0

Legend:	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'		l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 DMABS<2:0>: DMA Buffer Size bits

111 = Reserved

110 = 32 buffers in DMA RAM

101 = 24 buffers in DMA RAM

100 = 16 buffers in DMA RAM

011 = 12 buffers in DMA RAM

010 = 8 buffers in DMA RAM

001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM

000 = 4 buncis in biv/(10 tiv

bit 12-5 **Unimplemented:** Read as '0'

bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits

11111 = Read buffer RB31

11110 = Read buffer RB30

•

•

•

00001 = Tx/Rx buffer TRB1 00000 = Tx/Rx buffer TRB0

東色 ISTER 24 5.64 CIFIFO ECAN™ FIFO STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FBP	<5:0>		
bit 15	•	•					bit 8

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FNRI	B<5:0>		
bit 7							bit 0

Legend:C = Writable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **FBP<5:0>**: FIFO Buffer Pointer bits

011111 = RB31 buffer 011110 = RB30 buffer

000001 = TRB1 buffer

•

•

•

000000 = TRB0 buffer

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 FNRB<5:0>: FIFO Next Read Buffer Pointer bits

011111 = RB31 buffer 011110 = RB30 buffer

•

•

•

000001 = TRB1 buffer 000000 = TRB0 buffer

查询REGISTER 12/16:S608 MT中華CAN™ INTERRUPT FLAG REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8

R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0

Legend:	C = Writeable bit, but	only '0' can be written to clear	the bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP: Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state
	0 = Transmitter is not in Bus Passive state
bit 11	RXBP: Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state
h:: 40	
bit 10	TXWAR: Transmitter in Error State Warning bit 1 = Transmitter is in Error Warning state
	0 = Transmitter is not in Error Warning state
bit 9	RXWAR: Receiver in Error State Warning bit
Dit 0	1 = Receiver is in Error Warning state
	0 = Receiver is not in Error Warning state
bit 8	EWARN : Transmitter or Receiver in Error State Warning bit
	1 = Transmitter or Receiver is in Error State Warning state
	0 = Transmitter or Receiver is not in Error State Warning state
bit 7	IVRIF: Invalid Message Received Interrupt Flag bit
	1 = Interrupt Request has occurred
	0 = Interrupt Request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
	1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred
bit 5	
טונ ט	ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)
	1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
DIL 3	1 = Interrupt Request has occurred
	0 = Interrupt Request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	1 = Interrupt Request has occurred
	0 = Interrupt Request has not occurred
bit 1	RBIF: RX Buffer Interrupt Flag bit
	1 = Interrupt Request has occurred
	0 = Interrupt Request has not occurred
bit 0	TBIF: TX Buffer Interrupt Flag bit
	1 = Interrupt Request has occurred
	0 = Interrupt Request has not occurred

THE PROPERTY OF THE PROPERTY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	-	_	_	_		_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-8	Unimplemented: Read as '0'
DIL 13-0	Ullilible lile lile u. Neau as U

bit 7 IVRIE: Invalid Message Received Interrupt Enable bit

1 = Interrupt Request Enabled0 = Interrupt Request not enabled

bit 6 WAKIE: Bus Wake-up Activity Interrupt Flag bit

1 = Interrupt Request Enabled
 0 = Interrupt Request not enabled
 ERRIE: Error Interrupt Enable bit
 1 = Interrupt Request Enabled
 0 = Interrupt Request not enabled

bit 4 **Unimplemented:** Read as '0'

bit 5

bit 1

bit 3 FIFOIE: FIFO Almost Full Interrupt Enable bit

1 = Interrupt Request Enabled0 = Interrupt Request not enabled

bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit

1 = Interrupt Request Enabled0 = Interrupt Request not enabledRBIE: RX Buffer Interrupt Enable bit

1 = Interrupt Request Enabled0 = Interrupt Request not enabled

bit 0 TBIE: TX Buffer Interrupt Enable bit

1 = Interrupt Request Enabled0 = Interrupt Request not enabled

查询REGISTER 2018 S608 CIEC ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERRC	NT<7:0>			
bit 15		bit 8					

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERRC	NT<7:0>			
bit 7							bit 0

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-8 **TERRCNT<7:0>:** Transmit Error Count bits bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CICFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>			BRP	P<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-6 **SJW<1:0>:** Synchronization Jump Width bits

 $11 = \text{Length is } 4 \times \text{TQ}$ $10 = \text{Length is } 3 \times \text{TQ}$

 $01 = \text{Length is } 2 \times \text{TQ}$

 $00 = \text{Length is } 1 \times \text{TQ}$

bit 5-0 BRP<5:0>: Baud Rate Prescaler bits

11 1111 = TQ = 2 x 64 x 1/FCAN

•

•

•

00 0010 = $TQ = 2 \times 3 \times 1/FCAN$

00 0001 = $TQ = 2 \times 2 \times 1/FCAN$

00 0000 = TQ = 2 x 1 x 1/FCAN

京色はTER 27-16:4 Cicrota 座商N™ BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	WAKFIL	_	_	_		SEG2PH<2:0>	
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	;	SEG1PH<2:0>	•		PRSEG<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit

1 = Use CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 13-11 **Unimplemented:** Read as '0'

bit 10-8 **SEG2PH<2:0>:** Phase Segment 2 bits

111 = Length is 8 x TQ

•

•

000 = Length is 1 x TQ

bit 7 SEG2PHTS: Phase Segment 2 Time Select bit

1 = Freely programmable

0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater

bit 6 SAM: Sample of the CAN bus Line bit

1 = Bus line is sampled three times at the sample point

0 = Bus line is sampled once at the sample point

bit 5-3 **SEG1PH<2:0>:** Phase Segment 1 bits

111 = Length is 8 x TQ

•

•

000 = Length is 1 x TQ

bit 2-0 PRSEG<2:0>: Propagation Time Segment bits

111 = Length is 8 x TQ

•

•

•

000 = Length is 1 x TQ

查询REGISTER 12946 120 CIFE NATE CAN™ ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend: C = Writeable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n 0 = Disable Filter n

REGISTER 21-12: Cibufpnt1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BP<	<3:0>		F2BP<3:0>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F1BP<	<3:0>		F0BP<3:0>				
bit 7							bit 0	

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-12 F3BP<3:0>: RX Buffer Mask for Filter 3 bits

1111 = Filter hits received in RX FIFO buffer

1110 = Filter hits received in RX Buffer 14

•

•

0001 = Filter hits received in RX Buffer 1

0000 = Filter hits received in RX Buffer 0

bit 11-8 **F2BP<3:0>:** RX Buffer Mask for Filter 2 bits (same values as bit 15-12) bit 7-4 **F1BP<3:0>:** RX Buffer Mask for Filter 1 bits (same values as bit 15-12)

bit 3-0 **F0BP<3:0>:** RX Buffer Mask for Filter 0 bits (same values as bit 15-12)

秦色(STER 221-13:4 C)BUFFNTD ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BP<	<3:0>		F6BP<3:0>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BP<	<3:0>		F4BP<3:0>				
bit 7							bit 0	

Legend: C = Writeable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 F7BP<3:0>: RX Buffer Mask for Filter 7 bits

1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14

•

•

•

0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

bit 11-8 F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bit 15-12) bit 7-4 F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bit 15-12) bit 3-0 F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bit 15-12)

REGISTER 21-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BP	<3:0>			F10BF	P<3:0>	
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | F9BP< | <3:0> | | | F8BP | <3:0> | |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-12 F11BP<3:0>: RX Buffer Mask for Filter 11 bits

1111 = Filter hits received in RX FIFO buffer

1110 = Filter hits received in RX Buffer 14

•

•

0001 = Filter hits received in RX Buffer 1

0000 = Filter hits received in RX Buffer 0

bit 11-8 F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bit 15-12)

bit 7-4 **F9BP<3:0>:** RX Buffer Mask for Filter 9 bits (same values as bit 15-12) bit 3-0 **F8BP<3:0>:** RX Buffer Mask for Filter 8 bits (same values as bit 15-12)

DS70591C-page 292 Preliminary © 2010 Microchip Technology Inc.

查询dsPIC33FJ64GS608供应商 REGISTER 21-15: CIBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F15BP	<3:0>			F14BF	P<3:0>	
bit 15							bit 8

R/W-0	R/W-0						
	F13BP	<3:0>			F12BF	P<3:0>	
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-12 F15BP<3:0>: RX Buffer Mask for Filter 15 bits

1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14

•

.

0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

bit 11-8 F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bit 15-12) bit 7-4 F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bit 15-12) bit 3-0 F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bit 15-12)

REGISTER 27-16:4 CIRXENSIDE CAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	EXIDE	_	EID17	EID16
bit 7							bit 0

Legend:	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-5 SID<10:0>: Standard Identifier bits

1 = Message address bit SIDx must be '1' to match filter 0 = Message address bit SIDx must be '0' to match filter

bit 4 Unimplemented: Read as '0'

bit 3 **EXIDE:** Extended Identifier Enable bit

If MIDE = 1 then:

1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses

If MIDE = 0 then:
Ignore EXIDE bit.

bit 2 Unimplemented: Read as '0'

bit 1-0 **EID<17:16>:** Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

查询 SPIC33FI64CS608供应商 REGISTER 21-17: CIRX FREID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER n (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but only	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set $'0' = Bit is cleared$ $x = Bit is unknown$						

bit 15-0 EID<15:0>: Extended Identifier bits

bit 15-14

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

REGISTER 21-18: CIFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSk	<<1:0>	F6MSł	<<1:0>	F5MSK<1:0>		F4MSK<1:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSK	<1:0>	F2MSł	<<1:0>	F1MS	K<1:0>	F0MSI	<<1:0>
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

	 11 = Reserved 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bits (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bits (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bits (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bits (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bits (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bits (same values as bit 15-14)
bit 1-0	F0MSK<1:0>: Mask Source for Filter 0 bits (same values as bit 15-14)

F7MSK<1:0>: Mask Source for Filter 7 bits

查询dsPIC33FI64CS608供应商 REGISTER 21-19: CIFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15MS	F15MSK<1:0> F14MSK<1:0>		F13MSK<1:0>		F12MSK<1:0>		
bit 15						bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MS	K<1:0>	F10MS	K<1:0>	F9MS	SK<1:0>	F8MSI	<<1:0>
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15-14	F15MSK<1:0>: Mask Source for Filter 15 bits 11 = Reserved
	10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 1 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bits (same values as bit 15-14)
bit 11-10	F13MSK<1:0>: Mask Source for Filter 13 bits (same values as bit 15-14)
bit 9-8	F12MSK<1:0>: Mask Source for Filter 12 bits (same values as bit 15-14)
bit 7-6	F11MSK<1:0>: Mask Source for Filter 11 bits (same values as bit 15-14)
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bits (same values as bit 15-14)
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bits (same values as bit 15-14)
bit 1-0	F8MSK<1:0>: Mask Source for Filter 8 bits (same values as bit 15-14)

查询REGISTER 21-20:60 CIRXMISID: ECAN™ ACCEPTANCE FILTER MASK STANDARD IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	MIDE	_	EID17	EID16
bit 7							bit 0

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-5 SID<10:0>: Standard Identifier bits

1 = Include bit SIDx in filter comparison0 = Bit SIDx is don't care in filter comparison

bit 4 **Unimplemented:** Read as '0' bit 3 **MIDE:** Identifier Receive Mode bit

1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter

0 = Match either standard or extended address message if filters match

(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))

bit 2 Unimplemented: Read as '0'

bit 1-0 EID<17:16>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **EID<15:0>:** Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

章词dsPIC33FI64GS608供应章can™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 21-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

查询REGISTER J64566 CIRXOVE1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15	•	•	•	•		•	bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 21-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **RXOVF<31:16>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

<u>REGISTER 24-26.4 CITRIMICON</u> ECAN™ Tx/Rx BUFFER m CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

			-				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPR	RI<1:0>
bit 15	•	•	•	•		•	bit 8

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	RI<1:0>
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-8 See Definition for Bits 7-0, Controls Buffer n

bit 7 TXENm: TX/RX Buffer Selection bit

1 = Buffer TRBn is a transmit buffer 0 = Buffer TRBn is a receive buffer

bit 6 **TXABTm:** Message Aborted bit⁽¹⁾

1 = Message was aborted

0 = Message completed transmission successfully

bit 5 TXLARBm: Message Lost Arbitration bit (1)

1 = Message lost arbitration while being sent

0 = Message did not lose arbitration while being sent

bit 4 TXERRm: Error Detected During Transmission bit (1)

1 = A bus error occurred while the message was being sent

0 = A bus error did not occur while the message was being sent

bit 3 TXREQm: Message Send Request bit

1 = Requests that a message be sent. The bit automatically clears when the message is successfully sent

sent.

0 = Clearing the bit to '0' while set requests a message abort.

bit 2 RTRENm: Auto-Remote Transmit Enable bit

1 = When a remote transmit is received, TXREQ will be set

0 = When a remote transmit is received, TXREQ will be unaffected

bit 1-0 **TXmPRI<1:0>:** Message Transmission Priority bits

11 = Highest message priority

10 = High intermediate message priority

01 = Low intermediate message priority

00 = Lowest message priority

Note 1: This bit is cleared when TXREQ is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

查询2hs4IC**ECAN Message Bo**ffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN Special Function Registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN[™] MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'
bit 12-2 SID<10:0>: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit

1 = Message will request remote transmission

0 = Normal message

bit 0 **IDE:** Extended Identifier bit

1 = Message will transmit extended identifier0 = Message will transmit standard identifier

BUFFER 21-2: ECAN[™] MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
_		-	_	EID17	EID16	EID15	EID14
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID13 | EID12 | EID11 | EID10 | EID9 | EID8 | EID7 | EID6 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0' bit 11-0 **EID<17:6>:** Extended Identifier bits

查询reeRIC33FJ64CS6AN供收送SAGE BUFFER WORD 2

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8

U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 **EID<5:0>:** Extended Identifier bits bit 9 **RTR:** Remote Transmission Request bit

1 = Message will request remote transmission

0 = Normal message

bit 8 RB1: Reserved Bit 1

User must set this bit to '0' per CAN protocol.

bit 7-5 **Unimplemented:** Read as '0'

bit 4 RB0: Reserved Bit 0

User must set this bit to '0' per CAN protocol.

bit 3-0 **DLC<3:0>:** Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
Byte 1								
bit 15							bit 8	

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 0			
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable bit		U = Unimplem	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	n l

bit 15-8 **Byte 1<15:8>:** ECAN™ Message Byte 0 bit 7-0 **Byte 0<7:0>:** ECAN Message Byte 1

查询的PIC337164GS608供加纳ESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
	Byte 3								
bit 15							bit 8		

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 2			
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable bit		U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	n

bit 15-8 **Byte 3<15:8>:** ECAN™ Message Byte 3 bit 7-0 **Byte 2<7:0>:** ECAN Message Byte 2

BUFFER 21-6: ECAN[™] MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byt	te 5			
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 4			
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable bi	it	U = Unimplem	ented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	wn

bit 15-8 **Byte 5<15:8>:** ECAN[™] Message Byte 5 bit 7-0 **Byte 4<7:0>:** ECAN Message Byte 4

THE PURPLE WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
Byte 7								
bit 15							bit 8	

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 6			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	•	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	า

bit 15-8 **Byte 7<15:8>:** ECAN[™] Message Byte 7 bit 7-0 **Byte 6<7:0>:** ECAN Message Byte 6

BUFFER 21-8: ECAN[™] MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_			FILHIT<4:0> ⁽¹)	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	-	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0' bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

查询22.0TCHIGHUSPEED 100BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 44. "High-Speed 10-Bit Analog-to-Digital Converter (ADC)" (DS70321) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide high-speed successive approximation Analog-to-Digital conversions to support applications such as AC/DC and DC/DC power converters.

22.1 Features Overview

The ADC module incorporates the following features:

- 10-bit resolution
- Unipolar inputs
- Up to two Successive Approximation Registers (SARs)
- Up to 24 external input channels
- Two internal analog inputs
- · Dedicated result register for each analog input
- · ±1 LSB accuracy at 3.3V
- · Single supply operation
- 4 Msps conversion rate at 3.3V (devices with two SARs)
- 2 Msps conversion rate at 3.3V (devices with one SAR)
- Low-power CMOS technology

22.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- AC/DC power supplies
- DC/DC converters
- · Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This module can sample and convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated sample and hold circuits and one from the shared sample and hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1,AN0), (AN3,AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application.

- · Result alignment options
- Automated sampling
- External conversion start control
- Two internal inputs to monitor 1.2V internal reference and EXTREF input signal

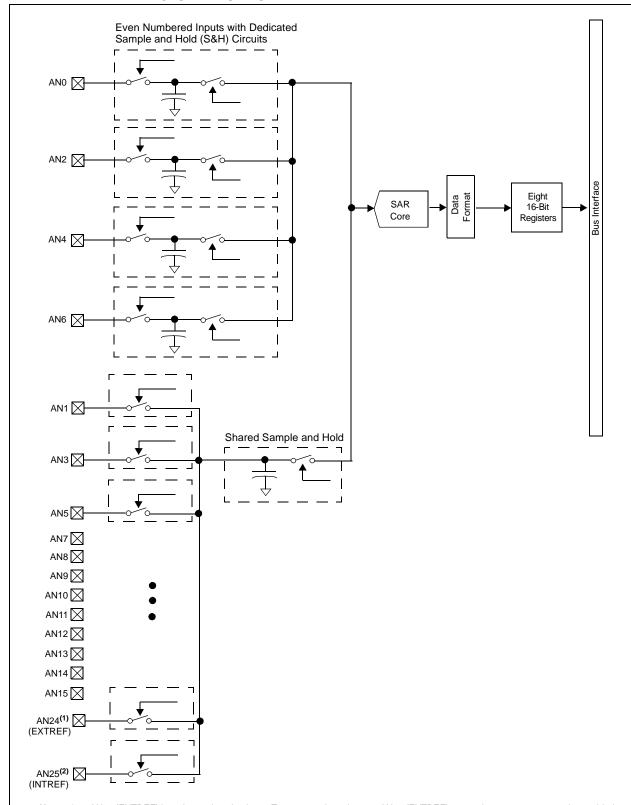
A block diagram of the ADC module is shown in Figure 22-2.

223ds Module Functionality

The high-speed 10-bit ADC is designed to support power conversion applications when used with the High-Speed PWM module. The ADC may have one or two SAR modules, depending on the device variant. If two SARs are present on a device, two conversions can be processed at a time, yielding 4 Msps conversion rate. If only one SAR is present on a device, only one conversion can be processed at a time, yielding 2 Msps conversion rate. The high-speed 10-bit ADC produces two 10-bit conversion results in a 0.5 microsecond.

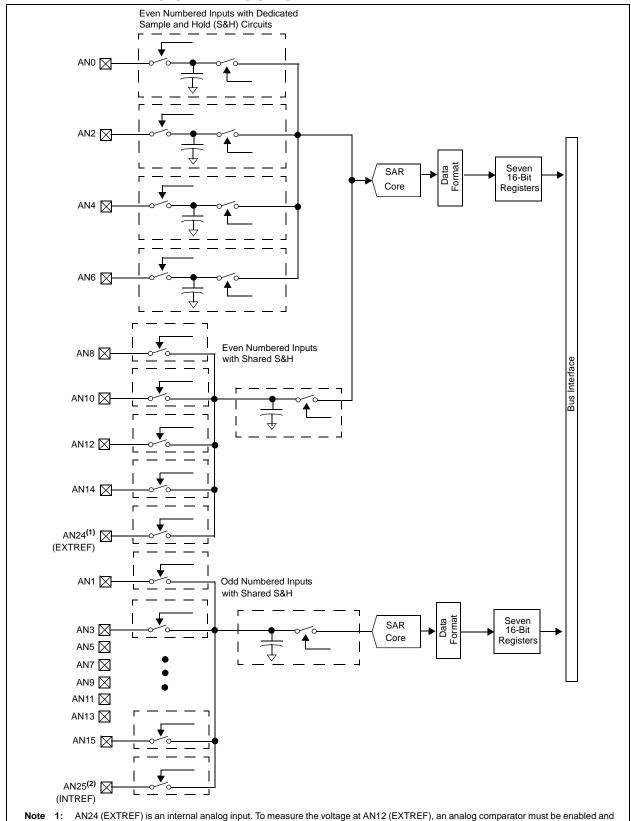
The ADC module supports up to 24 external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN24 and AN25, are connected to the EXTREF and internal band gap voltages (1.2V), respectively.

The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).

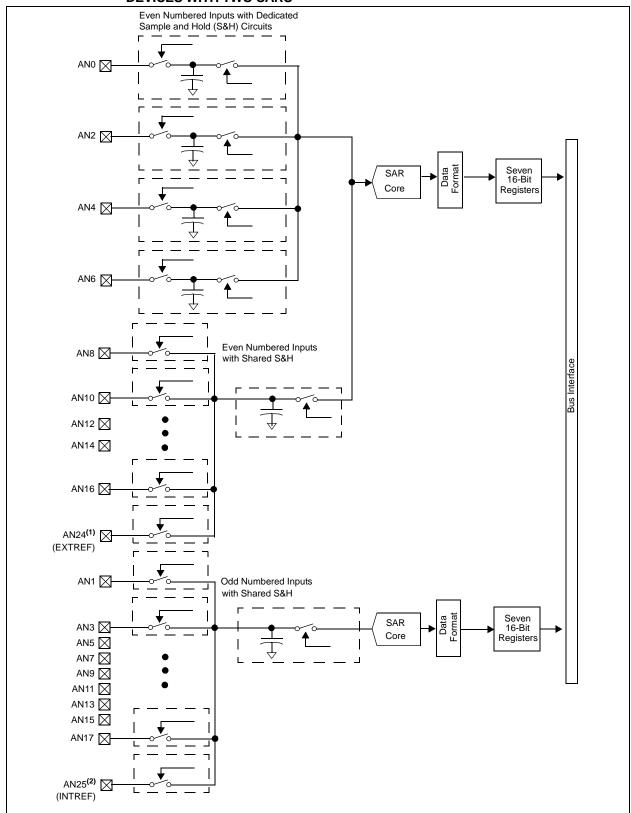

The ADC module uses the following control and STATUS registers:

- ADCON: A/D Control Register
- · ADSTAT: A/D Status Register
- ADBASE: A/D Base Register
- ADPCFG: A/D Port Configuration Register
- ADPCFG2: A/D Port Configuration Register 2
- ADCPC0: A/D Convert Pair Control Register 0
- ADCPC1: A/D Convert Pair Control Register 1
- ADCPC2: A/D Convert Pair Control Register 2
- ADCPC3: A/D Convert Pair Control Register 3
- · ADCPC4: A/D Convert Pair Control Register 4
- ADCPC5: A/D Convert Pair Control Register 5
- ADCPC6: A/D Convert Pair Control Register 6

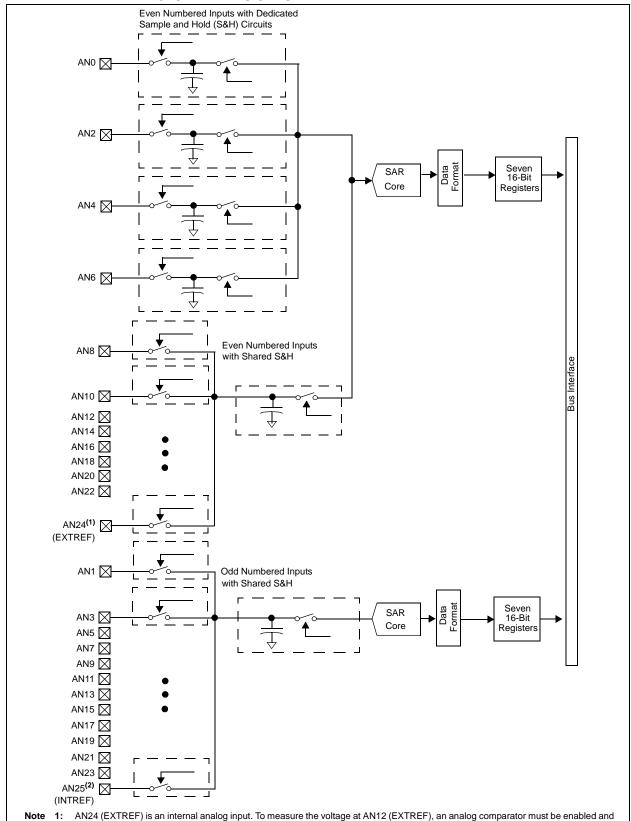
The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG registers configure the port pins as analog inputs or as digital I/O. The ADCPCx registers control the triggering of the ADC conversions. See Register 22-1 through Register 22-12 for detailed bit configurations.


Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual sample and hold circuits can be triggered independently of each other.

查询FIGURE 22-164GS6(AD)C BLEECK DIAGRAM FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES WITH ONE SAR


Note 1: AN24 (EXTREF) is an internal analog input. To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled and EXTREF must be selected as the comparator reference.

查阅报序22-23FJ64(ADC) 图片OC IS DIAGRAM FOR dsPIC33FJ32GS606 AND dsPIC33FJ64GS606 DEVICES WITH TWO SARS


EXTREF must be selected as the comparator reference.

查询FIGURE 22-364GS60A00CBLESCK DIAGRAM FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES WITH TWO SARS

Note 1: AN24 (EXTREF) is an internal analog input. To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled and EXTREF must be selected as the comparator reference.

查阅RF2243FJ64(ADCBHOCKDIAGRAM FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES WITH TWO SARS

EXTREF must be selected as the comparator reference.

查询register 12246560ADEONOA/D CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0		
ADON	_	ADSIDL	SLOWCLK ⁽¹⁾	_	GSWTRG	_	FORM ⁽¹⁾		
bit 15 bit 1									

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ⁽¹⁾	SEQSAMP ⁽¹⁾	ASYNCSAMP ⁽¹⁾	_	,	ADCS<2:0> ⁽¹⁾	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ADON: A/D Operating Mode bit

1 = A/D converter module is operating

0 = A/D converter is off

bit 14 **Unimplemented:** Read as '0'

bit 13 ADSIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12 **SLOWCLK:** Enable The Slow Clock Divider bit⁽¹⁾

1 = ADC is clocked by the auxiliary PLL (ACLK)

0 = ADC is clock by the primary PLL (Fvco)

bit 11 Unimplemented: Read as '0'

bit 10 GSWTRG: Global Software Trigger bit

When this bit is set by the user, it will trigger conversions if selected by the TRGSRC<4:0> bits in the ADCPCx registers. This bit must be cleared by the user prior to initiating another global trigger (i.e., this bit is not auto-clearing).

bit 9 **Unimplemented:** Read as '0'

bit 8 **FORM:** Data Output Format bit⁽¹⁾

1 = Fractional (Dout = dddd dddd dd00 0000)

0 = Integer (Dout = 0000 00dd dddd dddd)

bit 7 **EIE:** Early Interrupt Enable bit⁽¹⁾

1 = Interrupt is generated after first conversion is completed

0 = Interrupt is generated after second conversion is completed

bit 6 ORDER: Conversion Order bit⁽¹⁾

1 = Odd numbered analog input is converted first, followed by conversion of even numbered input

0 = Even numbered analog input is converted first, followed by conversion of odd numbered input

bit 5 **SEQSAMP:** Sequential Sample Enable bit⁽¹⁾

1 = Shared Sample and Hold (S&H) circuit is sampled at the start of the second conversion if ORDER = 0. If ORDER = 1, then the shared S&H is sampled at the start of the first conversion.

0 = Shared S&H is sampled at the same time the dedicated S&H is sampled if the shared S&H is not currently busy with an existing conversion process. If the shared S&H is busy at the time the dedicated S&H is sampled, then the shared S&H will sample at the start of the new conversion cycle.

bit 4 ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit (1)

1 = The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger pulse is detected.

0 = The dedicated S&H starts sampling when the trigger event is detected and completes the sampling process in two ADC clock cycles.

Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).

图 CONTROL REGISTER (CONTINUED)

bit 3 Unimplemented: Read as '0'
bit 2-0 ADCS<2:0>: A/D Conversion Clock Divider Select bits⁽¹⁾

111 = FADC/8 110 = FADC/7 101 = FADC/6 100 = FADC/5

011 = FADC/4 (default)

010 = FADC/3 001 = FADC/2 000 = FADC/1

Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).

查询REGISTER 12242:S60ADSTA商A/D STATUS REGISTER

U-0	U-0	U-0	R/C-0, HS				
_	_	_	P12RDY	P11RDY	P10RDY	P9RDY	P8RDY
bit 15							bit 8

| R/C-0, HS |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| P7RDY | P6RDY | P5RDY | P4RDY | P3RDY | P2RDY | P1RDY | P0RDY |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

C = Clearable bit HS = Hardware Settable bit

bit 15-13	Unimplemented: Read as '0'
bit 6	P12RDY: Conversion Data for Pair 12 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 5	P11RDY: Conversion Data for Pair 11 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 4	P10RDY: Conversion Data for Pair 10 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 3	P9RDY: Conversion Data for Pair 9 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 2	P8RDY: Conversion Data for Pair 8 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 1	P7RDY: Conversion Data for Pair 7 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 6	P6RDY: Conversion Data for Pair 6 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 5	P5RDY: Conversion Data for Pair 5 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 4	P4RDY: Conversion Data for Pair 4 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 3	P3RDY: Conversion Data for Pair 3 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 2	P2RDY: Conversion Data for Pair 2 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 1	P1RDY: Conversion Data for Pair 1 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 0	PORDY: Conversion Data for Pair 0 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.

Note: Not all PxRDY bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3, and Figure 22-4 for the available analog inputs.

REGISTER 322-3:64 (ADBASET AND BASE REGISTER (1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ADBASE<15:8>									
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
	ADBASE<7:1>							
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-1 ADBASE<15:1>: This register contains the base address of the user's ADC Interrupt Service Routine

jump table. This register, when read, contains the sum of the ADBASE register contents and the encoded value of the PxRDY Status bits.

The encoder logic provides the bit number of the highest priority PxRDY bits where P0RDY is the

highest priority, and P6RDY is the lowest priority.

bit 0 **Unimplemented:** Read as '0'

Note 1: The encoding results are shifted left two bits so bits 1-0 of the result are always zero.

2: As an alternative to using the ADBASE Register, the ADCP0-ADCP12 ADC Pair Conversion Complete Interrupts can be used to invoke A to D conversion completion routines for individual ADC input pairs.

查询REGISTER 12245.560AD中CFG A/D PORT CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **PCFG<15:0>:** A/D Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVss

0 = Port pin in Analog mode, port read input disabled, A/D samples pin voltage

Note: Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3, and Figure 22-4 for the available analog inputs (PCFGx = ANx, where x = 0-15).

REGISTER 22-5: ADPCFG2: A/D PORT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **PCFG<23:16>:** A/D Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVss

0 = Port pin in Analog mode, port read input disabled, A/D samples pin voltage

Note: Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3, and Figure 22-4 for the available analog inputs (PCFGx = ANx, where x can be 0 through 15).

REGISTER 22F6.64(ADOPCO) AND CONVERT PAIR CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN1	PEND1	SWTRG1			TRGSRC1<4:0	>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN0	PEND0	SWTRG0			TRGSRC0<4:0	>	
bit 7							bit 0

 Legend:
 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 15 IRQEN1: Interrupt Request Enable 1 bit

1 = Enable IRQ generation when requested conversion of channels AN3 and AN2 is completed

0 = IRQ is not generated

bit 14 PEND1: Pending Conversion Status 1 bit

1 = Conversion of channels AN3 and AN2 is pending. Set when selected trigger is asserted

0 = Conversion is complete

bit 13 **SWTRG1:** Software Trigger 1 bit

1 = Start conversion of AN3 and AN2 (if selected in TRGSRC bits)⁽¹⁾

This bit is automatically cleared by hardware when the PEND1 bit is set.

0 = Conversion is not started

bit 12-8 TRGSRC1<4:0>: Trigger 1 Source Selection bits

Selects trigger source for conversion of analog channels AN3 and AN2.

00000 = No conversion enabled

00001 = Individual software trigger selected

00010 = Global software trigger selected

00011 = PWM Special Event Trigger selected

00100 = PWM Generator 1 primary trigger selected

00101 = PWM Generator 2 primary trigger selected

00110 = PWM Generator 3 primary trigger selected

00111 = PWM Generator 4 primary trigger selected

01000 = PWM Generator 5 primary trigger selected

01001 = PWM Generator 6 primary trigger selected

01010 = PWM Generator 7 primary trigger selected

01011 = PWM Generator 8 primary trigger selected

01100 = Timer1 period match

01101 = PWM secondary special event trigger selected

01110 = PWM Generator 1 secondary trigger selected

01111 = PWM Generator 2 secondary trigger selected

10000 = PWM Generator 3 secondary trigger selected

10001 = PWM Generator 4 secondary trigger selected

10010 = PWM Generator 5 secondary trigger selected

10011 = PWM Generator 6 secondary trigger selected

10100 = PWM Generator 7 secondary trigger selected

10101 = PWM Generator 8 secondary trigger selected

10110 = PWM Generator 9 secondary trigger selected

10111 = PWM Generator 1 current-limit ADC trigger

11000 = PWM Generator 2 current-limit ADC trigger

11001 = PWM Generator 3 current-limit ADC trigger

11010 = PWM Generator 4 current-limit ADC trigger

11011 = PWM Generator 5 current-limit ADC trigger

11100 = PWM Generator 6 current-limit ADC trigger

11101 = PWM Generator 7 current-limit ADC trigger

11110 = PWM Generator 8 current-limit ADC trigger

11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

查询REGISTER 2246S6(ADCRES A/D CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

bit 7 IRQEN0: Interrupt Request Enable 0 bit 1 = Enable IRQ generation when requested conversion of channels AN1 and AN0 is completed 0 = IRQ is not generated bit 6 PEND0: Pending Conversion Status 0 bit 1 = Conversion of channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete bit 5 **SWTRG0:** Software Trigger 0 bit 1 = Start conversion of AN1 and AN0 (if selected by TRGSRC bits)(1) This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion is not started. bit 4-0 TRGSRC0<4:0>: Trigger 0 Source Selection bits Selects trigger source for conversion of analog channels AN1 and AN0. 00000 = No conversion enabled 00001 = Individual software trigger selected 00010 = Global software trigger selected 00011 = PWM Special Event Trigger selected 00100 = PWM Generator 1 primary trigger selected 00101 = PWM Generator 2 primary trigger selected 00110 = PWM Generator 3 primary trigger selected 00111 = PWM Generator 4 primary trigger selected 01000 = PWM Generator 5 primary trigger selected 01001 = PWM Generator 6 primary trigger selected 01010 = PWM Generator 7 primary trigger selected 01011 = PWM Generator 8 primary trigger selected 01100 = Timer1 period match 01101 = PWM secondary special event trigger selected 01110 = PWM Generator 1 secondary trigger selected 01111 = PWM Generator 2 secondary trigger selected 10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected 10010 = PWM Generator 5 secondary trigger selected 10011 = PWM Generator 6 secondary trigger selected 10100 = PWM Generator 7 secondary trigger selected 10101 = PWM Generator 8 secondary trigger selected 10110 = PWM Generator 9 secondary trigger selected 10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11011 = PWM Generator 5 current-limit ADC trigger 11100 = PWM Generator 6 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11110 = PWM Generator 8 current-limit ADC trigger

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

11111 = Timer2 period match

食产GISTER 222764(ADCPC)(ADC) CONVERT PAIR CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN3	PEND3	SWTRG3			TRGSRC3<4:0)>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN2	PEND2	SWTRG2			TRGSRC2<4:0	>	
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15 IRQEN3: Interrupt Request Enable 3 bit

1 = Enable IRQ generation when requested conversion of channels AN7 and AN6 is completed

0 = IRQ is not generated

bit 14 **PEND3:** Pending Conversion Status 3 bit

1 = Conversion of channels AN7 and AN6 is pending. Set when selected trigger is asserted

0 = Conversion is complete

bit 13 SWTRG3: Software Trigger 3 bit

1 = Start conversion of AN7 and AN6 (if selected in TRGSRC bits)⁽¹⁾

This bit is automatically cleared by hardware when the PEND3 bit is set.

0 = Conversion is not started.

bit 12-8 TRGSRC3<4:0>: Trigger 3 Source Selection bits⁽¹⁾

Selects trigger source for conversion of analog channels AN7 and AN6.

00000 = No conversion enabled

00001 = Individual software trigger selected

00010 = Global software trigger selected

00011 = PWM Special Event Trigger selected

00100 = PWM Generator 1 primary trigger selected

00101 = PWM Generator 2 primary trigger selected

00110 = PWM Generator 3 primary trigger selected

00111 = PWM Generator 4 primary trigger selected

01000 = PWM Generator 5 primary trigger selected

01001 = PWM Generator 6 primary trigger selected 01010 = PWM Generator 7 primary trigger selected

01010 = F vvivi Generator / primary trigger selected

01011 = PWM Generator 8 primary trigger selected

01100 = Timer1 period match

01101 = PWM secondary special event trigger selected

01110 = PWM Generator 1 secondary trigger selected

01111 = PWM Generator 2 secondary trigger selected

10000 = PWM Generator 3 secondary trigger selected

10001 = PWM Generator 4 secondary trigger selected

10010 = PWM Generator 5 secondary trigger selected

10011 = PWM Generator 6 secondary trigger selected 10100 = PWM Generator 7 secondary trigger selected

10100 = PWW Generator / Secondary trigger Selected

10101 = PWM Generator 8 secondary trigger selected

10110 = PWM Generator 9 secondary trigger selected 10111 = PWM Generator 1 current-limit ADC trigger

11000 = PWM Generator 2 current-limit ADC trigger

11001 = PWM Generator 3 current-limit ADC trigger

11010 = PWM Generator 4 current-limit ADC trigger

11011 = PWM Generator 5 current-limit ADC trigger

11100 = PWM Generator 6 current-limit ADC trigger

11101 = PWM Generator 7 current-limit ADC trigger 11110 = PWM Generator 8 current-limit ADC trigger

11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

查询REGISTER 2247/S60ADCRC A A/D CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

bit 7 IRQEN2: Interrupt Request Enable 2 bit 1 = Enable IRQ generation when requested conversion of channels AN5 and AN4 is completed 0 = IRQ is not generated bit 6 PEND2: Pending Conversion Status 2 bit 1 = Conversion of channels AN5 and AN4 is pending; set when selected trigger is asserted. 0 = Conversion is complete bit 5 **SWTRG2:** Software Trigger 2 bit 1 = Start conversion of AN5 and AN4 (if selected by TRGSRC bits)(1) This bit is automatically cleared by hardware when the PEND2 bit is set. 0 = Conversion is not started TRGSRC2<4:0>: Trigger 2 Source Selection bits bit 4-0 Selects trigger source for conversion of analog channels AN5 and AN4. 00000 = No conversion enabled 00001 = Individual software trigger selected 00010 = Global software trigger selected 00011 = PWM Special Event Trigger selected 00100 = PWM Generator 1 primary trigger selected 00101 = PWM Generator 2 primary trigger selected 00110 = PWM Generator 3 primary trigger selected 00111 = PWM Generator 4 primary trigger selected 01000 = PWM Generator 5 primary trigger selected 01001 = PWM Generator 6 primary trigger selected 01010 = PWM Generator 7 primary trigger selected 01011 = PWM Generator 8 primary trigger selected 01100 = Timer1 period match 01101 = PWM secondary special event trigger selected 01110 = PWM Generator 1 secondary trigger selected 01111 = PWM Generator 2 secondary trigger selected 10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected 10010 = PWM Generator 5 secondary trigger selected 10011 = PWM Generator 6 secondary trigger selected 10100 = PWM Generator 7 secondary trigger selected 10101 = PWM Generator 8 secondary trigger selected 10110 = PWM Generator 9 secondary trigger selected 10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11011 = PWM Generator 5 current-limit ADC trigger 11100 = PWM Generator 6 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11110 = PWM Generator 8 current-limit ADC trigger

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

11111 = Timer2 period match

REGISTER 22F8 64 (ADOP CZ) AZD CONVERT PAIR CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN5	PEND5	SWTRG5			TRGSRC5<4:0)>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN4	PEND4	SWTRG4			TRGSRC4<4:0	>	
bit 7							bit 0

Legend:W = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15 IRQEN5: Interrupt Request Enable 5 bit

1 = Enable IRQ generation when requested conversion of channels AN11 and AN10 is completed

0 = IRQ is not generated

bit 14 **PEND5:** Pending Conversion Status 5 bit

1 = Conversion of channels AN11 and AN10 is pending; set when selected trigger is asserted

0 = Conversion is complete

bit 13 **SWTRG5:** Software Trigger 5 bit

1 = Start conversion of AN11 and AN10 (if selected in TRGSRC bits) $^{(1)}$

This bit is automatically cleared by hardware when the PEND5 bit is set.

0 = Conversion is not started

bit 12-8 TRGSRC5<4:0>: Trigger 5 Source Selection bits

Selects trigger source for conversion of analog channels AN11 and AN10.

00000 = No conversion enabled

00001 = Individual software trigger selected

00010 = Global software trigger selected

00011 = PWM Special Event Trigger selected

00100 = PWM Generator 1 primary trigger selected

00101 = PWM Generator 2 primary trigger selected

00110 = PWM Generator 3 primary trigger selected

00111 = PWM Generator 4 primary trigger selected 01000 = PWM Generator 5 primary trigger selected

01001 = PWM Generator 6 primary trigger selected

01010 = PWM Generator 7 primary trigger selected

01011 = PWM Generator 8 primary trigger selected

01100 = Timer1 period match

01101 = PWM secondary special event trigger selected

01110 = PWM Generator 1 secondary trigger selected

01111 = PWM Generator 2 secondary trigger selected

10000 = PWM Generator 3 secondary trigger selected

10001 = PWM Generator 4 secondary trigger selected

10010 = PWM Generator 5 secondary trigger selected

10011 = PWM Generator 6 secondary trigger selected

10100 = PWM Generator 7 secondary trigger selected

10101 = PWM Generator 8 secondary trigger selected

10110 = PWM Generator 9 secondary trigger selected

10111 = PWM Generator 1 current-limit ADC trigger

11000 = PWM Generator 2 current-limit ADC trigger

11001 = PWM Generator 3 current-limit ADC trigger

11010 = PWM Generator 4 current-limit ADC trigger

11011 = PWM Generator 5 current-limit ADC trigger

11100 = PWM Generator 6 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger

11110 = PWM Generator 8 current-limit ADC trigger

11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

查询REGISTER 22:48S60ADCRC A/D CONVERT PAIR CONTROL REGISTER 2 (CONTINUED)

bit 7 IRQEN4: Interrupt Request Enable 4 bit 1 = Enable IRQ generation when requested conversion of channels AN9 and AN8 is completed 0 = IRQ is not generated PEND4: Pending Conversion Status 4 bit bit 6 1 = Conversion of channels AN9 and AN8 is pending; set when selected trigger is asserted 0 = Conversion is complete bit 5 SWTRG4: Software Trigger4 bit 1 = Start conversion of AN9 and AN8 (if selected by TRGSRC bits)(1) This bit is automatically cleared by hardware when the PEND4 bit is set. 0 = Conversion is not started bit 4-0 TRGSRC4<4:0>: Trigger 4 Source Selection bits Selects trigger source for conversion of analog channels AN9 and AN8. 00000 = No conversion enabled 00001 = Individual software trigger selected 00010 = Global software trigger selected 00011 = PWM Special Event Trigger selected 00100 = PWM Generator 1 primary trigger selected 00101 = PWM Generator 2 primary trigger selected 00110 = PWM Generator 3 primary trigger selected 00111 = PWM Generator 4 primary trigger selected 01000 = PWM Generator 5 primary trigger selected 01001 = PWM Generator 6 primary trigger selected 01010 = PWM Generator 7 primary trigger selected 01011 = PWM Generator 8 primary trigger selected 01100 = Timer1 period match 01101 = Secondary special event trigger selected 01110 = PWM Generator 1 secondary trigger selected 01111 = PWM Generator 2 secondary trigger selected 10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected 10010 = PWM Generator 5 secondary trigger selected 10011 = PWM Generator 6 secondary trigger selected 10100 = PWM Generator 7 secondary trigger selected 10101 = PWM Generator 8 secondary trigger selected 10110 = PWM Generator 9 secondary trigger selected 10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11011 = PWM Generator 5 current-limit ADC trigger 11100 = PWM Generator 6 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11110 = PWM Generator 8 current-limit ADC trigger 11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

REGISTER 322-954 ADOP CONVERT PAIR CONTROL REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN7	PEND7	SWTRG7			TRGSRC7<4:0)>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN6	PEND6	SWTRG6			TRGSRC6<4:0	 >	
bit 7							bit 0

Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 IRQEN7: Interrupt Request Enable 7 bit

1 = Enable IRQ generation when requested conversion of channels AN15 and AN14 is completed

0 = IRQ is not generated

bit 14 PEND7: Pending Conversion Status 7 bit

1 = Conversion of channels AN15 and AN14 is pending; set when selected trigger is asserted

0 = Conversion is complete

SWTRG7: Software Trigger 7 bit bit 13

> 1 = Start conversion of AN15 and AN14 (if selected in TRGSRC bits)(1) This bit is automatically cleared by hardware when the PEND7 bit is set.

0 = Conversion is not started

bit 12-8 TRGSRC7<4:0>: Trigger 7 Source Selection bits

Selects trigger source for conversion of analog channels AN15 and 14.

00000 = No conversion enabled

00001 = Individual software trigger selected

00010 = Global software trigger selected

00011 = PWM Special Event Trigger selected

00100 = PWM Generator 1 primary trigger selected

00101 = PWM Generator 2 primary trigger selected

00110 = PWM Generator 3 primary trigger selected

00111 = PWM Generator 4 primary trigger selected

01000 = PWM Generator 5 primary trigger selected

01001 = PWM Generator 6 primary trigger selected

01010 = PWM Generator 7 primary trigger selected

01011 = PWM Generator 8 primary trigger selected

01100 = Timer1 period match

01101 = Secondary special event trigger selected

01110 = PWM Generator 1 secondary trigger selected

01111 = PWM Generator 2 secondary trigger selected

10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected

10010 = PWM Generator 5 secondary trigger selected

10011 = PWM Generator 6 secondary trigger selected

10100 = PWM Generator 7 secondary trigger selected

10101 = PWM Generator 8 secondary trigger selected

10110 = PWM Generator 9 secondary trigger selected

10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger

11001 = PWM Generator 3 current-limit ADC trigger

11010 = PWM Generator 4 current-limit ADC trigger

11011 = PWM Generator 5 current-limit ADC trigger

11100 = PWM Generator 6 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger

11110 = PWM Generator 8 current-limit ADC trigger

11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

查询REGISTER 2249S60ADCRC A/D CONVERT PAIR CONTROL REGISTER 3 (CONTINUED)

bit 7 IRQEN6: Interrupt Request Enable 6 bit 1 = Enable IRQ generation when requested conversion of channels AN13 and AN12 is completed 0 = IRQ is not generated PEND6: Pending Conversion Status 6 bit bit 6 1 = Conversion of channels AN13 and AN12 is pending; set when selected trigger is asserted 0 = Conversion is complete bit 5 SWTRG6: Software Trigger 6 bit 1 = Start conversion of AN13 and AN12 (if selected by TRGSRC bits)(1) This bit is automatically cleared by hardware when the PEND6 bit is set. 0 = Conversion is not started bit 4-0 TRGSRC6<4:0>: Trigger 6 Source Selection bits Selects trigger source for conversion of analog channels AN13 and AN12. 00000 = No conversion enabled 00001 = Individual software trigger selected 00010 = Global software trigger selected 00011 = PWM Special Event Trigger selected 00100 = PWM Generator 1 primary trigger selected 00101 = PWM Generator 2 primary trigger selected 00110 = PWM Generator 3 primary trigger selected 00111 = PWM Generator 4 primary trigger selected 01000 = PWM Generator 5 primary trigger selected 01001 = PWM Generator 6 primary trigger selected 01010 = PWM Generator 7 primary trigger selected 01011 = PWM Generator 8 primary trigger selected 01100 = Timer1 period match 01101 = Secondary special event trigger selected 01110 = PWM Generator 1 secondary trigger selected 01111 = PWM Generator 2 secondary trigger selected 10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected 10010 = PWM Generator 5 secondary trigger selected 10011 = PWM Generator 6 secondary trigger selected 10100 = PWM Generator 7 secondary trigger selected 10101 = PWM Generator 8 secondary trigger selected 10110 = PWM Generator 9 secondary trigger selected 10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11011 = PWM Generator 5 current-limit ADC trigger 11100 = PWM Generator 6 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11110 = PWM Generator 8 current-limit ADC trigger 11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

在EGISTER 22月16:4(ADCPC4) AZD CONVERT PAIR CONTROL REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN9	PEND9	SWTRG9			TRGSRC9<4:0	>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN8	PEND8	SWTRG8			TRGSRC8<4:0	 >	
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15 IRQEN9: Interrupt Request Enable 9 bit

1 = Enable IRQ generation when requested conversion of channels AN19 and AN18 is completed

0 = IRQ is not generated

bit 14 **PEND9:** Pending Conversion Status 9 bit

1 = Conversion of channels AN19 and AN18 is pending; set when selected trigger is asserted

0 = Conversion is complete

bit 13 **SWTRG9:** Software Trigger 9 bit

1 = Start conversion of AN19 and AN18 (if selected in TRGSRC bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND9 bit is set.

0 = Conversion is not started

bit 12-8 TRGSRC9<4:0>: Trigger 9 Source Selection bits

Selects trigger source for conversion of analog channels AN19 and AN18.

00000 = No conversion enabled

00001 = Individual software trigger selected

00010 = Global software trigger selected

00011 = PWM Special Event Trigger selected

00100 = PWM Generator 1 primary trigger selected

00101 = PWM Generator 2 primary trigger selected

00110 = PWM Generator 3 primary trigger selected

00111 = PWM Generator 4 primary trigger selected

01000 = PWM Generator 5 primary trigger selected 01001 = PWM Generator 6 primary trigger selected

01010 = PWM Generator 7 primary trigger selected

01011 = PWM Generator 8 primary trigger selected

01100 = Timer1 period match

01101 = PWM secondary special event trigger selected

01110 = PWM Generator 1 secondary trigger selected

01111 = PWM Generator 2 secondary trigger selected

10000 = PWM Generator 3 secondary trigger selected

10001 = PWM Generator 4 secondary trigger selected

10010 = PWM Generator 5 secondary trigger selected

10011 = PWM Generator 6 secondary trigger selected

10100 = PWM Generator 7 secondary trigger selected

10101 = PWM Generator 8 secondary trigger selected

10110 = PWM Generator 9 secondary trigger selected

10111 = PWM Generator 1 current-limit ADC trigger

11000 = PWM Generator 2 current-limit ADC trigger

11001 = PWM Generator 3 current-limit ADC trigger

11010 = PWM Generator 4 current-limit ADC trigger

11011 = PWM Generator 5 current-limit ADC trigger

11100 = PWM Generator 6 current-limit ADC trigger

11101 = PWM Generator 7 current-limit ADC trigger

11110 = PWM Generator 8 current-limit ADC trigger

11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

查询REGISTER 224066(ADCRCA A/D CONVERT PAIR CONTROL REGISTER 4 (CONTINUED)

bit 7 IRQEN8: Interrupt Request Enable 8 bit 1 = Enable IRQ generation when requested conversion of channels AN17 and AN16 is completed 0 = IRQ is not generated PEND8: Pending Conversion Status 8 bit bit 6 1 = Conversion of channels AN17 and AN16 is pending; set when selected trigger is asserted 0 = Conversion is complete bit 5 SWTRG8: Software Trigger 8 bit 1 = Start conversion of AN17 and AN16 (if selected by TRGSRC bits)(1) This bit is automatically cleared by hardware when the PEND8 bit is set. 0 = Conversion is not started bit 4-0 TRGSRC8<4:0>: Trigger 8 Source Selection bits Selects trigger source for conversion of analog channels AN17 and AN16. 00000 = No conversion enabled 00001 = Individual software trigger selected 00010 = Global software trigger selected 00011 = PWM Special Event Trigger selected 00100 = PWM Generator 1 primary trigger selected 00101 = PWM Generator 2 primary trigger selected 00110 = PWM Generator 3 primary trigger selected 00111 = PWM Generator 4 primary trigger selected 01000 = PWM Generator 5 primary trigger selected 01001 = PWM Generator 6 primary trigger selected 01010 = PWM Generator 7 primary trigger selected 01011 = PWM Generator 8 primary trigger selected 01100 = Timer1 period match 01101 = PWM secondary special event trigger selected 01110 = PWM Generator 1 secondary trigger selected 01111 = PWM Generator 2 secondary trigger selected 10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected 10010 = PWM Generator 5 secondary trigger selected 10011 = PWM Generator 6 secondary trigger selected 10100 = PWM Generator 7 secondary trigger selected 10101 = PWM Generator 8 secondary trigger selected 10110 = PWM Generator 9 secondary trigger selected 10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11011 = PWM Generator 5 current-limit ADC trigger 11100 = PWM Generator 6 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11110 = PWM Generator 8 current-limit ADC trigger 11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

在EGISTER 22FJf:4(ADCPC5)(AZD CONVERT PAIR CONTROL REGISTER 5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN11	PEND11	SWTRG11		-	TRGSRC11<4:0)>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN10	PEND10	SWTRG10		•	TRGSRC10<4:0)>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 IRQEN11: Interrupt Request Enable 11 bit

1 = Enable IRQ generation when requested conversion of channels AN23 and AN22 is completed

0 = IRQ is not generated

bit 14 **PEND11:** Pending Conversion Status 11 bit

1 = Conversion of channels AN23 and AN22 is pending; set when selected trigger is asserted

0 = Conversion is complete

bit 13 SWTRG11: Software Trigger 11 bit

1 = Start conversion of AN23 and AN22 (if selected in TRGSRC bits)⁽¹⁾. This bit is automatically cleared by hardware when the PEND11 bit is set.

0 = Conversion is not started

bit 12-8 TRGSRC11<4:0>: Trigger 11 Source Selection bits

Selects trigger source for conversion of analog channels AN23 and AN22.

00000 = No conversion enabled

00001 = Individual software trigger selected

00010 = Global software trigger selected

00011 = PWM Special Event Trigger selected

00100 = PWM Generator 1 primary trigger selected

00101 = PWM Generator 2 primary trigger selected

00110 = PWM Generator 3 primary trigger selected

00111 = PWM Generator 4 primary trigger selected

01000 = PWM Generator 5 primary trigger selected

01001 = PWM Generator 6 primary trigger selected

01010 = PWM Generator 7 primary trigger selected

01011 = PWM Generator 8 primary trigger selected

01100 = Timer1 period match

01101 = PWM secondary special event trigger selected

01110 = PWM Generator 1 secondary trigger selected

01111 = PWM Generator 2 secondary trigger selected

10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected

10010 = PWM Generator 5 secondary trigger selected

10010 = PWM Generator 5 secondary trigger selected 10011 = PWM Generator 6 secondary trigger selected

10100 = PWM Generator 7 secondary trigger selected

10101 = PWM Generator 8 secondary trigger selected

10110 = PWM Generator 9 secondary trigger selected

10111 = PWM Generator 1 current-limit ADC trigger

11000 = PWM Generator 2 current-limit ADC trigger

11001 = PWM Generator 3 current-limit ADC trigger

11010 = PWM Generator 4 current-limit ADC trigger

11011 = PWM Generator 5 current-limit ADC trigger

11100 = PWM Generator 6 current-limit ADC trigger

11101 = PWM Generator 7 current-limit ADC trigger

11110 = PWM Generator 8 current-limit ADC trigger

11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

查询REGISTER 22411660ADCRCS A/D CONVERT PAIR CONTROL REGISTER 5 (CONTINUED)

bit 7 IRQEN10: Interrupt Request Enable 10 bit 1 = Enable IRQ generation when requested conversion of channels AN21 and AN20 is completed 0 = IRQ is not generated bit 6 PEND10: Pending Conversion Status 10 bit 1 = Conversion of channels AN21 and AN20 is pending; set when selected trigger is asserted 0 = Conversion is complete bit 5 **SWTRG10:** Software Trigger 10 bit 1 = Start conversion of AN21 and AN20 (if selected by TRGSRC bits)⁽¹⁾. This bit is automatically cleared by hardware when the PEND10 bit is set. 0 = Conversion is not started bit 4-0 TRGSRC10<4:0>: Trigger 10 Source Selection bits Selects trigger source for conversion of analog channels AN21 and AN20. 00000 = No conversion enabled 00001 = Individual software trigger selected 00010 = Global software trigger selected 00011 = PWM Special Event Trigger selected 00100 = PWM Generator 1 primary trigger selected 00101 = PWM Generator 2 primary trigger selected 00110 = PWM Generator 3 primary trigger selected 00111 = PWM Generator 4 primary trigger selected 01000 = PWM Generator 5 primary trigger selected 01001 = PWM Generator 6 primary trigger selected 01010 = PWM Generator 7 primary trigger selected 01011 = PWM Generator 8 primary trigger selected 01100 = Timer1 period match 01101 = PWM secondary special event trigger selected 01110 = PWM Generator 1 secondary trigger selected 01111 = PWM Generator 2 secondary trigger selected 10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected 10010 = PWM Generator 5 secondary trigger selected 10011 = PWM Generator 6 secondary trigger selected 10100 = PWM Generator 7 secondary trigger selected 10101 = PWM Generator 8 secondary trigger selected 10110 = PWM Generator 9 secondary trigger selected 10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11011 = PWM Generator 5 current-limit ADC trigger 11100 = PWM Generator 6 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11110 = PWM Generator 8 current-limit ADC trigger 11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

在EGISTER 22年12年(ADOPCE) AD CONVERT PAIR CONTROL REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN12	PEND12	SWTRG12		-	TRGSRC12<4:0)>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7 IRQEN12: Interrupt Request Enable 12 bit

1 = Enable IRQ generation when requested conversion of channels AN25 and AN24 is completed

0 = IRQ is not generated

bit 6 **PEND12:** Pending Conversion Status 12 bit

1 = Conversion of channels AN25 and AN24 is pending; set when selected trigger is asserted

0 = Conversion is complete

bit 5 SWTRG12: Software Trigger 12 bit

1 = Start conversion of AN25 (INTREF) and AN24 (EXTREF) if selected by TRGSRC bits (1)

This bit is automatically cleared by hardware when the PEND12 bit is set.

0 = Conversion is not started.

bit 4-0 TRGSRC12<4:0>: Trigger 12 Source Selection bits

Selects trigger source for conversion of analog channels AN25 and AN24.

00000 = No conversion enabled

00001 = Individual software trigger selected

00010 = Global software trigger selected

00011 = PWM Special Event Trigger selected

00100 = PWM Generator 1 primary trigger selected

00101 = PWM Generator 2 primary trigger selected

00110 = PWM Generator 3 primary trigger selected

00111 = PWM Generator 4 primary trigger selected

01000 = PWM Generator 5 primary trigger selected

01001 = PWM Generator 6 primary trigger selected 01010 = PWM Generator 7 primary trigger selected

01011 = PWM Generator 8 primary trigger selected

01100 = Timer1 period match

01101 = PWM secondary special event trigger selected

01110 = PWM Generator 1 secondary trigger selected

01111 = PWM Generator 2 secondary trigger selected

10000 = PWM Generator 3 secondary trigger selected

10001 = PWM Generator 4 secondary trigger selected

10010 = PWM Generator 5 secondary trigger selected

10011 = PWM Generator 6 secondary trigger selected

10100 = PWM Generator 7 secondary trigger selected

10101 = PWM Generator 8 secondary trigger selected

10110 = PWM Generator 9 secondary trigger selected

10111 = PWM Generator 1 current-limit ADC trigger

11000 = PWM Generator 2 current-limit ADC trigger

11001 = PWM Generator 3 current-limit ADC trigger

11010 = PWM Generator 4 current-limit ADC trigger

11011 = PWM Generator 5 current-limit ADC trigger

11100 = PWM Generator 6 current-limit ADC trigger

11101 = PWM Generator 7 current-limit ADC trigger 11110 = PWM Generator 8 current-limit ADC trigger

11111 = Timer2 period match

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

查询23.01 CHIGHISPEED ANALOG COMPARATOR

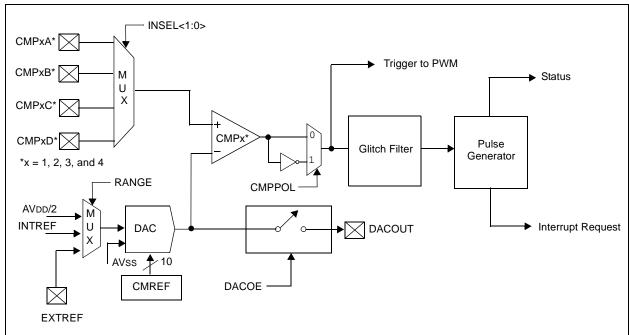
- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/608/608/610 and dsPIC33FJ64GS406/608/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 45. "High-Speed Analog Comparator" (DS70296) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33F SMPS Comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

23.1 Features Overview

The SMPS comparator module offers the following major features:

- 16 selectable comparator inputs
- · Up to four analog comparators
- 10-bit DAC for each analog comparator
- · Programmable output polarity


- Interrupt generation capability
- DACOUT pin to provide DAC output
- DAC has three ranges of operation:
 - AVDD/2
 - Internal Reference 1.2V, 1%
 - External Reference < (AVDD 1.6V)
- · ADC sample and convert trigger capability
- Disable capability reduces power consumption
- Functional support for PWM module:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

23.2 Module Description

Figure 23-1 shows a functional block diagram of one analog comparator from the SMPS comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of ±5 mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

FIGURE 23-1: COMPARATOR MODULE BLOCK DIAGRAM

查達ds FM 6 delie 6 A p p fie a thoms 高

This module provides a means for the SMPS dsPIC DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 10-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- · Generate an Interrupt
- Trigger an ADC Sample and Convert Process
- Truncate the PWM Signal (current limit)
- Truncate the PWM Period (current minimum)
- Disable the PWM Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: (1) generate an interrupt, (2) have the ADC take a sample and convert it, and (3) truncate the PWM output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

23.4 DAC

The range of the DAC is controlled via an analog multiplexer that selects either AVDD/2, internal 1.2V, 1% reference, or an external reference source, EXTREF. The full range of the DAC (AVDD/2) will typically be used when the chosen input source pin is shared with the ADC. The reduced range option (INTREF) will likely be used when monitoring current levels using a current sense resistor. Usually, the measured voltages in such applications are small (<1.25V); therefore the option of using a reduced reference range for the comparator extends the available DAC resolution in these applications. The use of an external reference enables the user to connect to a reference that better suits their application.

DACOUT, shown in Figure 23-1, can only be associated with a single comparator at a given time.

Note: It should be ensured in software that multiple DACOE bits are not set. The output on the DACOUT pin will be indeterminate if multiple comparators enable the DAC output.

23.5 Interaction with I/O Buffers

If the comparator module is enabled and a pin has been selected as the source for the comparator, then the chosen I/O pad must disable the digital input buffer associated with the pad to prevent excessive currents in the digital buffer due to analog input voltages.

23.6 Digital Logic

The CMPCONx register (see Register 23-1) provides the control logic that configures the comparator module. The digital logic provides a glitch filter for the comparator output to mask transient signals in less than two instruction cycles. In Sleep or Idle mode, the glitch filter is bypassed to enable an asynchronous path from the comparator to the interrupt controller. This asynchronous path can be used to wake-up the processor from Sleep or Idle mode.

The comparator can be disabled while in Idle mode if the CMPSIDL bit is set. If a device has multiple comparators, if any CMPSIDL bit is set, then the entire group of comparators will be disabled while in Idle mode. This behavior reduces complexity in the design of the clock control logic for this module.

The digital logic also provides a one Tcy width pulse generator for triggering the ADC and generating interrupt requests.

The CMPDACx (see Register 23-2) register provides the digital input value to the reference DAC.

If the module is disabled, the DAC and comparator are disabled to reduce power consumption.

23.7 Comparator Input Range

The comparator has a limitation for the input Common Mode Range (CMR) of (AVDD - 1.5V), typical. This means that both inputs should not exceed this range. As long as one of the inputs is within the Common Mode Range, the comparator output will be correct. However, any input exceeding the CMR limitation will cause the comparator input to be saturated.

If both inputs exceed the CMR, the comparator output will be indeterminate.

23.8 DAC Output Range

The DAC has a limitation for the maximum reference voltage input of (AVDD-1.6) volts. An external reference voltage input should not exceed this value or the reference DAC output will become indeterminate.

23.9 Comparator Registers

The comparator module is controlled by the following registers:

- CMPCONx: Comparator Control Register
- CMPDACx: Comparator DAC Control Register

查询REGISTER 18346.56 @MPCONX: COMPARATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
CMPON	_	CMPSIDL	_	_	_	_	DACOE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
INSEL	.<1:0>	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 CMPON: Comparator Operating Mode bit

1 = Comparator module is enabled

0 = Comparator module is disabled (reduces power consumption)

bit 14 **Unimplemented:** Read as '0'

bit 13 CMPSIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode.

0 = Continue module operation in Idle mode

If a device has multiple comparators, any CMPSIDL bit set to '1' disables ALL comparators while in

Idle mode.

bit 12-9 Reserved: Read as '0'

bit 8 DACOE: DAC Output Enable

1 = DAC analog voltage is output to DACOUT pin⁽¹⁾

0 = DAC analog voltage is not connected to DACOUT pin

bit 7-6 **INSEL<1:0>:** Input Source Select for Comparator bits

00 = Select CMPxA input pin

01 = Select CMPxB input pin

10 = Select CMPxC input pin

11 = Select CMPxD input pin

bit 5 **EXTREF:** Enable External Reference bit

1 = External source provides reference to DAC (maximum DAC voltage determined by external

voltage source)

0 = Internal reference sources provide reference to DAC (maximum DAC voltage determined by

RANGE bit setting)

bit 4 Reserved: Read as '0'

bit 3 CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit

bit 2 Reserved: Read as '0'

bit 1 CMPPOL: Comparator Output Polarity Control bit

1 = Output is inverted

0 = Output is non-inverted

bit 0 RANGE: Selects DAC Output Voltage Range bit

1 = High Range: Max DAC Value = AVDD/2, 1.65V at 3.3V AVDD

0 = Low Range: Max DAC Value = INTREF, 1.2V, ±1%

Note 1: DACOUT can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DAC output by setting their respective DACOE bit.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

全面 Brister 23-264 CMPD ACX TO OMPARATOR DAC CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	CMRE	F<9:8>
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMREF<7:0>							
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 Reserved: Read as '0'

bit 9-0 **CMREF<9:0>:** Comparator Reference Voltage Select bits

1111111111 = (CMREF * INTREF/1024) or (CMREF * (AVDD/2)/1024) volts depending on RANGE

bit or (CMREF * EXTREF/1024) if EXTREF is set

.

•

00000000000 = 0.0 volts

查询dsPIC33FJ64GS608供应商

24.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 24-2.

Note that address, 0xF80000, is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The device Configuration register map is shown in Table 24-1.

TABLE 24-1: DEVICE CONFIGURATION REGISTER MAP

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	_	_	_	_		BSS<2:0>		BWRP
0xF80002	RESERVED	_	_	_		_	_	_	_
0xF80004	FGS	_	_	_		_	GSS<1:	:0>	GWRP
0xF80006	FOSCSEL	IESO	_	_	_	-	FNO	SC<2:0>	
0xF80008	FOSC	FCKS	Л<1:0>	_	_	_	OSCIOFNC	POSCM	D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST<	:3:0>	
0xF8000C	FPOR	_	ALTQIO	ALTSS1	_	_	FPW	RT<2:0>	
0xF8000E	FICD	Reserved ⁽¹⁾	Reserved ⁽¹⁾	JTAGEN	_	_	_	ICS<	1:0>
0xF80010	FCMP	_	_	CMPPOL1 ⁽²⁾	HYST1	<1:0> ⁽²⁾	CMPPOL0 ⁽²⁾	HYST0	<1:0> ⁽²⁾

Legend: — = unimplemented bit, read as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

2: These bits are reserved on dsPIC33FJXXXGS406 devices and always read as '1'.

查询dsPIC33FJ64GS608供应商 TABLE 24-2: dsPlC33F CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection bit 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size bits x11 = No boot program Flash segment
		Boot space is 256 instruction words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0003FE 010 = High security; boot program Flash segment ends at 0x0003FE
		Boot space is 768 instruction words (except interrupt vectors) 101 = Standard security; boot program Flash segment ends at 0x0007FE 001 = High security; boot program Flash segment ends at 0x0007FE
		Boot space is 1792 instruction words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x000FFE 000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	General Segment Code-Protect bits 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits $1x = \text{Clock}$ switching is disabled, Fail-Safe Clock Monitor is disabled $01 = \text{Clock}$ switching is enabled, Fail-Safe Clock Monitor is disabled $00 = \text{Clock}$ switching is enabled, Fail-Safe Clock Monitor is enabled
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

查询dsPIC33FJ64GS608供应商

 TABLE 24-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

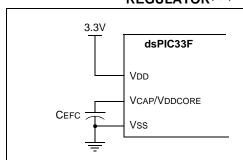
Bit Field	Register	Description
FWDTEN	FWDT	Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • 0001 = 1:2 0000 = 1:1
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
JTAGEN	FICD	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	FICD	ICD Communication Channel Select Enable bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use.
ALTQIO	FPOR	Enable Alternate QEI1 pin bit 1 = QEA1, QEB1 and INDX1 are selected as inputs to QEI1 0 = AQEA1, AQEB1 and AINDX1 are selected as inputs to QEI1
ALTSS1	FPOR	Enable Alternate $\overline{SS1}$ pin bit 1 = $\overline{ASS1}$ is selected as the I/O pin for SPI1 0 = $\overline{SS1}$ is selected as the I/O pin for SPI1
CMPPOL0	FCMP	Comparator Hysteresis Polarity (for even numbered comparators) 1 = Hysteresis is applied to falling edge 0 = Hysteresis is applied to rising edge
HYST0<1:0>	FCMP	Comparator Hysteresis Select 11 = 45 mV Hysteresis 10 = 30 mV Hysteresis 01 = 15 mV Hysteresis 00 = No Hysteresis

查询dsPIC33FJ64GS608供应商

TABLE 24-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description
CMPPOL1	FCMP	Comparator Hysteresis Polarity (for odd numbered comparators) 1 = Hysteresis is applied to falling edge 0 = Hysteresis is applied to rising edge
HYST1<1:0>	FCMP	Comparator Hysteresis Select 11 = 45 mV Hysteresis 10 = 30 mV Hysteresis 01 = 15 mV Hysteresis 00 = No Hysteresis

24.2 On-Chip Voltage Regulator


The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP/VDDCORE pin (Figure 24-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 27-13 located in Section 27.1 "DC Characteristics".

Note:	It is important for the low-ESR capacitor to			
	be placed as close as possible to the			
	VCAP/VDDCORE pin.			

On a POR, it takes approximately 20 μs for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 24-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2)

- Note 1: These are typical operating voltages. Refer to Table 27-13 located in Section 27.1 "DC Characteristics" for the full operating ranges of VDD and VCAP/VDDCORE.
 - 2: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP/ VDDCORE pin.

DS70591C-page 336 Preliminary

查询ds2IC33FI64GS608供应商eset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

24.4 Watchdog Timer (WDT)

For dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/608/610 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

24.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32.767 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32.767 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

24.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the WDT will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

24.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.


The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note:

If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

查询dsPIC33FJ64GS608供应商 FIGURE 24-2: WDT BLOCK DIAGRAM

24.5 JTAG Interface

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of the document.

24.6 In-Circuit Serial Programming

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family digital signal controllers can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

24.7 In-Circuit Debugger

When MPLAB® ICD 2 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGC, PGD and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

查询dsPIC33FJ64GS608供应商

24.8 Code Protection and CodeGuard™ Security

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/608/610 devices offer the intermediate implementation of CodeGuard™ Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard™ Security can be used to securely update Flash even when multiple IPs reside on a single chip.

The code protection features are controlled by the Configuration registers: FBS and FGS.

Secure segment and RAM protection is not implemented in dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices.

Note: Refer to the "CodeGuard Security Reference Manual" (DS70180) for further information on usage, configuration and operation of CodeGuard Security.

TABLE 24-3: CODE FLASH SECURITY SEGMENT SIZES FOR 64K BYTE DEVICES

BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
VS = 256 IW 0000000 0001FE 0002000	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h	VS = 256 IW 000000h 0001FEh 000200h 001FFEh 002000h	VS = 256 IW 000000h 0001FEh 000200h 003FFEh
GS = 21760 IW	GS = 20992 IW 00ABFEh	GS = 17920 IW 00ABFEh	GS = 13824 IW 00ABFEh

TABLE 24-4: CODE FLASH SECURITY SEGMENT SIZES FOR 32K BYTE DEVICES

BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
VS = 256 IW 000000h 0001FEh 000200h	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h	VS = 256 IW 000000h 0001FEh 000200h	VS = 256 IW 000000h 0001FEh 000200h
GS = 11008 IW 0057FEh	GS = 10240 IW 0057FEh	001FFEh 002000h GS = 7168 IW 0057FEh	GS = 3072 IW 003FFEh 004000h 0057FEh
00ABFEh	00ABFEh	00ABFEh	00ABFEh

查询dsPIC33FJ64GS608供应商 NOTES:

查询dsPIC33FJ64GS608供应商

25.0 INSTRUCTION SET SUMMARY

Note:

This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- DSP operations
- · Control operations

Table 25-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 25-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value, 'f'
- The destination, which could be either the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register, 'Wn', or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

查询dsPIC33FJ64GS608供应商 word. Certain double-word instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA

(unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) ∈ {015}
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)

查询dsPIC33FJ64GS608供应商 TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

章和记住P25-2:3F JNSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-Bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb, Wns, Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	-	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if Greater Than or Equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if Unsigned Greater Than or Equal	1	1 (2)	None
		BRA	GT,Expr	Branch if Greater Than	1	1 (2)	None
		BRA	GTU, Expr	Branch if Unsigned Greater Than	1	1 (2)	None
		BRA	LE, Expr	Branch if Less Than or Equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if Unsigned Less Than or Equal	1	1 (2)	None
		BRA	LT,Expr	Branch if Less Than	1	1 (2)	None
		BRA	LTU, Expr	Branch if Unsigned Less Than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if Accumulator B Overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A Saturated	1	1 (2)	None
		BRA	SB, Expr	Branch if Accumulator B Saturated	1	1 (2)	None
		BRA		Branch Unconditionally	1	2	None
		BRA	Expr 7 Expr	Branch if Zero	1	1 (2)	None
		BRA	Z,Expr Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
•	1051	BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW			Write C bit to Ws <wb></wb>	1	1	None
J	MOM	BSW.C	Ws,Wb	Write Z bit to Ws <wb></wb>	1		
9	DTC	BSW.Z	Ws,Wb		1	1	None
J	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		СОМ	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb - Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		СРВ	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f - 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z
	<u> </u>	DEC2	Ws,Wd	Wd = Ws − 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 345

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns, Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	2	None
		GOTO	Wn	Go to Indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb, Wns, Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	AWB Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-Bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-Bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
				Move WREG to f	1	1	N,Z
		MOV	WREG, f		1	-	
		MOV. D	Wns, Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
	1	MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb, Ws, Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb, Ws, Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb, Ws, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
0.4		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f sware	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
GE.	DDG	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f WDEC	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry Ma	1	1	C,N,Z
	Ì	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 347

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc, Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	f = f - WREG - (C)	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

查询26.01C:DEVELOPMENT SUPPORT

The PIC® microcontrollers and dsPIC® digital signal controllers are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
 - MPLAB® IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASMTM Assembler
 - MPLINK™ Object Linker/ MPLIB™ Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- · In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- · Device Programmers
 - PICkit™ 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

26.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third-party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

262ds MPLAB (C Complers For Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

26.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

26.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

26.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

查询26.7ICMPLABSIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a rugge-dized probe interface and long (up to three meters) interconnection cables.

26.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

26.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

26月1sHICkif 26Development

Programmer/Debugger and PICkit 2 Debug Express

The PICkit™ 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline PIC16F5xx), (PIC10F, PIC12F5xx, (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

26.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

26.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, Keeloq® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

查询dsPIC33FI64CS608供应的ARACTERISTICS

This section provides an overview of dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/608/610 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss, when Vdd ≥ 3.0V ⁽⁴⁾	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when VDD < 3.0V ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on VCAP/VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin ⁽²⁾	
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA
Maximum output current sunk by non-remappable PWM pins	16 mA
Maximum output current sourced by non-remappable PWM pins	16 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - **2:** Maximum allowable current is a function of device maximum power dissipation (see Table 27-2).
 - 3: Exceptions are PWMxL, and PWMxH, which are able to sink/source 16 mA, and digital pins, which are able to sink/source 8 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

查询dsPIC33FJ64GS608供应商 27.1 DC Characteristics

TABLE 27-1: OPERATING MIPS VS. VOLTAGE

	Vpp Benge	Town Dongs	Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 27-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD \ x \ (IDD - \Sigma \ IOH)$	PD	!	PINT + PI/O)	W
I/O Pin Power Dissipation: $I/O = \Sigma \; (\{VDD-VOH\} \; x \; IOH) + \Sigma \; (Vol \; x \; IoL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 27-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θЈА	28	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)	θЈА	39	1	°C/W	1
Package Thermal Resistance, 80-Pin TQFP (12x12x1 mm)	θЈА	53.1		°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)	θЈА	43	_	°C/W	1
Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm)	θЈА	43	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

查询点型E33FJ64GS608供应度ATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
Operati	ng Voltag	e						
	Supply V	/oltage						
DC10	VDD		3.0	_	3.6	V	Industrial and extended	
DC12	VDR	RAM Data Retention Voltage ⁽²⁾	1.8	_	_	V		
DC16	VPOR	VDD Start Voltage ⁽⁴⁾ to Ensure Internal Power-on Reset Signal	_	_	Vss	V		
DC17	SVDD	VDD Rise Rate ⁽³⁾ to Ensure Internal Power-on Reset Signal	0.03	_	_	V/ms	0-3.0V in 0.1s	
DC18	VCORE	VDD Core Internal Regulator Voltage	2.25	_	2.75	V	Voltage is dependent on load, temperature and VDD	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

^{2:} This is the limit to which VDD may be lowered without losing RAM data.

^{3:} These parameters are characterized but not tested in manufacturing.

^{4:} VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

章 自ds PIC33F J64CS608供文字 ISTICS: OPERATING CURRENT (IDD)

DC CHARA			(unless of	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Parameter No.	Typical ⁽¹⁾	Max	Units		Conditions						
Operating C	Current (IDD)	(2)	•	•							
DC20d	21	30	mA	-40°C							
DC20a	21	30	mA	+25°C	2.21/	10 MIPS					
DC20b	21	30	mA	+85°C	- 3.3V	See Note 2					
DC20c	22	30	mA	+125°C	1						
DC21d	28	40	mA	-40°C							
DC21a	28	40	mA	+25°C	0.01/	16 MIPS					
DC21b	28	40	mA	+85°C	- 3.3V	See Note 2 and Note 3					
DC21c	29	40	mA	+125°C	1						
DC22d	35	45	mA	-40°C							
DC22a	35	45	mA	+25°C	0.01/	20 MIPS					
DC22b	35	45	mA	+85°C	3.3V	See Note 2 and Note 3					
DC22c	36	45	mA	+125°C	1						
DC23d	49	60	mA	-40°C							
DC23a	49	60	mA	+25°C	2.21/	30 MIPS					
DC23b	49	60	mA	+85°C	- 3.3V	See Note 2 and Note 3					
DC23c	50	60	mA	+125°C]						
DC24d	66	75	mA	-40°C							
DC24a	66	75	mA	+25°C	3.3V	40 MIPS					
DC24b	66	75	mA	+85°C	3.30	See Note 2					
DC24c	67	75	mA	+125°C]						
DC25d	153	170	mA	-40°C		40 MIPS					
DC25a	154	170	mA	+25°C	3.3V	See Note 2, except PWM is					
DC25b	155	170	mA	+85°C	3.30	operating at maximum speed					
DC25c	156	170	mA	+125°C]	(PTCON2 = 0x0000)					
DC26d	122	135	mA	-40°C		40 MIPS					
DC26a	123	135	mA	+25°C	3.3V	See Note 2, except PWM is					
DC26b	124	135	mA	+85°C	J.5 v	operating at 1/2 speed					
DC26c	125	135	mA	+125°C		(PTCON2 = 0x0001)					
DC27d	107	120	mA	-40°C		40 MIPS					
DC27a	108	120	mA	+25°C	3.3V	See Note 2, except PWM is					
DC27b	109	120	mA	+85°C	J 5.5 v	operating at 1/4 speed					
DC27c	110	120	mA	+125°C		(PTCON2 = 0x0002)					
DC28d	88	100	mA	-40°C		40 MIPS					
DC28a	89	100	mA	+25°C	3.3V	See Note 2 , except PWM is					
DC28b	89	100	mA	+85°C	J 5.5 v	operating at 1/8 speed					
DC28c	89	100	mA	+125°C		(PTCON2 = 0x0003)					

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

^{2:} The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating (PMD bits are all set).

^{3:} These parameters are characterized but not tested in manufacturing.

查询dsPIC33FJ64GS608供应商
TABLE 27-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTI	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended								
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions							
Idle Current (IIDLE): Core Off Clock On Base Current ⁽²⁾											
DC40d	8	15	mA	-40°C							
DC40a	9	15	mA	+25°C	3.3V	10 MIPS					
DC40b	9	15	mA	+85°C	3.3 V	10 MIFS					
DC40c	10	15	mA	+125°C							
DC41d	11	20	mA	-40°C							
DC41a	11	20	mA	+25°C	3.3V	16 MIPS ⁽³⁾					
DC41b	11	20	mA	+85°C							
DC41c	12	20	mA	+125°C							
DC42d	14	25	mA	-40°C							
DC42a	14	25	mA	+25°C	3.3V	20 MIPS ⁽³⁾					
DC42b	14	25	mA	+85°C	3.30	20 MIPS.					
DC42c	15	25	mA	+125°C							
DC43d	20	30	mA	-40°C							
DC43a	20	30	mA	+25°C	3.3V	30 MIPS ⁽³⁾					
DC43b	21	30	mA	+85°C	3.37	30 MIF3.					
DC43c	22	30	mA	+125°C							
DC44d	29	40	mA	-40°C							
DC44a	29	40	mA	+25°C	3.3V	40 MIDS					
DC44b	30	40	mA	+85°C	3.3 V	40 MIPS					
DC44c	31	40	mA	+125°C							

- Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - 2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.
 - 3: These parameters are characterized but not tested in manufacturing.

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 357

查询dsPIC33FJ64GS608供<u>应商</u>

TABLE 27-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	erwise state	erating Conditions: 3.0V to 3.6V wise stated) perature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No.	Typical ⁽¹⁾	Max	Units		Conditions				
Power-Down (Current (IPD) ⁽	(2,4)							
DC60d	50	200	μΑ	-40°C					
DC60a	50	200	μΑ	+25°C	3.3V	Base Power-Down Current			
DC60b	200	500	μΑ	+85°C	3.31	base Fower-Down Current			
DC60c	600	1000	μΑ	+125°C					
DC61d	8	13	μΑ	-40°C					
DC61a	10	15	μΑ	+25°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾			
DC61b	12	20	μΑ	+85°C	3.34	Watchdog Timer Current. Alwards			
DC61c	13	25	μΑ	+125°C					

- **Note 1:** Data in the Typical column is at 3.3V, +25°C unless otherwise stated.
 - 2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.
 - **3:** The Δ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
 - 4: These currents are measured on the device containing the most memory in this family.

TABLE 27-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERI	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Parameter No.	Doze Ratio	Units		Conditions			
DC73a	105	120	1:2	mA			
DC73f	82	100	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	82	100	1:128	mA			
DC70a	105	120	1:2	mA			40 MIPS
DC70f	80	100	1:64	mA	+25°C	3.3V	
DC70g	79	100	1:128	mA			
DC71a	105	120	1:2	mA			
DC71f	77	100	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	77	100	1:128	mA			
DC72a	105	120	1:2	mA		•	40 MIPS
DC72f	76	100	1:64	mA	+125°C	+125°C 3.3V	
DC72g	76	100	1:128	mA			

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

查询内部IE27F9.64(D6)(CHARAGTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHA	ARACTER	ISTICS	(unless	d Operatir otherwise g tempera	stated) ture -40°	°C ≤ TA	.0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins	Vss	_	0.2 Vdd	V	
DI15		MCLR	Vss	_	0.2 Vdd	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with SDAx, SCLx, U2RX, U2TX	Vss	_	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SDAx, SCLx, U2RX, U2TX	Vss	_	0.2 VDD	V	SMBus enabled
	VIH	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant (4)	0.7 VDD	_	Vdd	V	
DI21		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD	_	5.5	V	
DIOO	ICNPU	CNx Pull-up Current		050		^	\/ 0.0\/ \/_\\ \/_\
DI30	1	(234)	_	250	_	μΑ	VDD = 3.3V, VPIN = VSS
DIEG	lı∟	Input Leakage Current ^(2,3,4)					
DI50		I/O Pins with: 4 mA Source/Sink Capability	_	_	±2	μΑ	VSS ≤ VPIN ≤ VDD,
		8 mA Source/Sink Capability	_	_	±4	μА	Pin at high-impedance VSS ≤ VPIN ≤ VDD,
		16 mA Source/Sink Capability	_	_	±8	μΑ	Pin at high-impedance Vss ≤ VPIN ≤ VDD,
DI55		MCLR		_	±2	μΑ	Pin at high-impedance Vss ≤ Vpin ≤ Vdd
DI56		OSC1			±2 ±2	μA	VSS ≤ VPIN ≤ VDD,
Dioo		0001			12	μΑ	XT and HS modes
DI57	Isink	Sink Current Pins:					
		RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13	_	_	16	mA	
		Pins: RC15	_	_	8	mA	
		Pins: RA0-RA7, RA14, RA15, RB0- RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6- RG9, RG14, RG15	_	_	4	mA	
		Pins: MCLR	_		2	mA	

- Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
 - 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as current sourced by the pin.
 - 4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.

查询dsPIC33FJ64GS608供应商

TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHA	ARACTER	ISTICS	Standard (unless of Operating	herwise	e stated ature -	l) 40°C ≤ ¯	3.0V to 3.6V $FA \le +85^{\circ}C$ for Industrial $FA \le +125^{\circ}C$ for Extended
Param No.	Symbol	Characteristic	Min	Тур	Max	Conditions	
DO10	VOL	Output Low Voltage					
		I/O Ports: 4 mA Source/Sink Capability 8 mA Source/Sink Capability 16 mA Source/Sink Capability	_ _ _	_ _ _	0.4 0.4 0.4	V V V	IOL = 4 mA, VDD = 3.3V IOL = 8 mA, VDD = 3.3V IOL = 16 mA, VDD = 3.3V
DO16		OSC2/CLKO		_	0.4	V	IOL = 2 mA, VDD = 3.3V
DO26	Voн	Output High Voltage I/O Ports: 4 mA Source/Sink Capability 8 mA Source/Sink Capability 16 mA Source/Sink Capability	2.40 2.40 2.40	_ _ _	_ _ _	V V V	IOH = -4 mA, VDD = 3.3V IOH = -8 mA, VDD = 3.3V IOH = -16 mA, VDD = 3.3V
DO26 DO27	ISOURCE	OSC2/CLKO Source Current Pins:	2.41	_	_	V	IOH = -1.3 mA, VDD = 3.3V
		RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13	_	_	16	mA	
		Pins: RC15	_	_	8	mA	
		Pins: RA0-RA7, RA14, RA15, RB0- RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6- RG9, RG14, RG15 Pins:	_	_	4	mA	
		MCLR	_	_	2	mA	

TABLE 27-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	ise state	ed) -40°C <u>s</u>	≤ T A ≤ + 8	5°C for In	ndustrial Extended
Param No.	Symbol	Character	Min ⁽¹⁾	Тур	Max	Units	Conditions	
BO10	VBOR	BOR Event on VDD Transition High-to-Low BOR Event is Tied to VDD Core Voltage Decrease		2.6	_	2.95	V	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

查询dsPIC33FJ64GS608供应商 TABLE 27-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	C CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial							
50 0111	in the state of th		Operati	ing temp	erature	-40° C \leq TA \leq +85 $^{\circ}$ C for Industrial -40° C \leq TA \leq +125 $^{\circ}$ C for Extended					
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾ Max		Units	Conditions				
		Program Flash Memory									
D130	EP	Cell Endurance	10,000	_	_	E/W	-40°C to +125°C				
D131	VPR	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage				
D132B	VPEW	VDD for Self-Timed Write	VMIN	_	3.6	V	VMIN = Minimum operating voltage				
D134	TRETD	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated, -40°C to +125°C				
D135	IDDP	Supply Current during Programming	_	10	_	mA					
D136a	Trw	Row Write Time	1.43	_	1.58	ms	TRW = 11064 FRC cycles, TA = +85°C, See Note 2				
D136b	Trw	Row Write Time	1.39	_	1.63	ms	TRW = 11064 FRC cycles, TA = +125°C, See Note 2				
D137a	TPE	Page Erase Time	21.8	_	24.1	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2				
D137b	ТРЕ	Page Erase Time	21.1	_	24.8	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2				
D138a	Tww	Word Write Cycle Time	45.8	_	50.7	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2				
D138b	Tww	Word Write Cycle Time	44.5		52.3	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2				

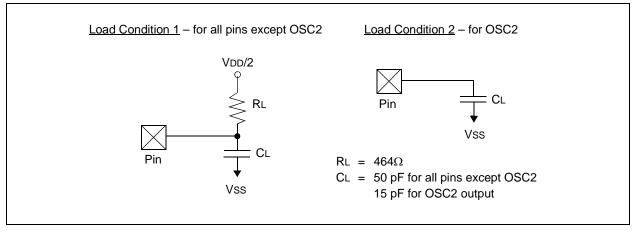
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 27-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating	g Conditio		-40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended							
Param No.	Symbol	Characteristics	Characteristics Min			Units	Comments			
	CEFC	External Filter Capacitor Value	22	_	_	μF	Capacitor must be low series resistance (< 0.5 Ohms)			

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 361

^{2:} Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".


27.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 AC characteristics and timing parameters.

TABLE 27-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature -40 °C \leq TA \leq +85°C for Industrial -40 °C \leq TA \leq +125°C for Extended
	Operating voltage VDD range as described in Section 27.0 "Electrical Characteristics" .

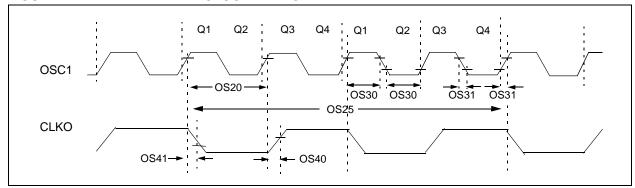

FIGURE 27-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2 Pin	_		15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Cio	All I/O Pins and OSC2	_	_	50	рF	EC mode
DO58	Св	SCLx, SDAx		_	400	pF	In I ² C™ mode

查询dsPIC33FJ64GS608供应商 FIGURE 27-2: EXTERNAL CLOCK TIMING

TABLE 27-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	RACTE	RISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Symb	Characteristic	Min Typ ⁽¹⁾ Max Units Conditi							
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC			
		Oscillator Crystal Frequency	3.5 10	_	10 40	MHz MHz	XT HS			
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns				
OS25	TCY	Instruction Cycle Time ⁽²⁾	25	_	DC	ns				
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	_	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾	— 5.2 — ns							
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2	_	ns				

- **Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
 - 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
 - 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

TABLE 27-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			stated)	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Symbol	Min	Typ ⁽¹⁾	Max	Units	Conditions					
OS50	FPLLI	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, XTPLL modes			
OS51	Fsys	On-Chip VCO System Frequency		100		200	MHz				
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS				
OS53	DCLK	CLKO Stability (Jitter	-3	0.5	3	%	Measured over 100 ms period				

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 27-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHA	RACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Symbol	Characteris	tic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
OS56	FHPOUT	0n-Chip 16x PLL CC Frequency	0	112	118	120	MHz			
OS57	FHPIN	On-Chip 16x PLL Ph Detector Input Frequ		7.0	7.37	7.5	MHz			
OS58	Tsu	Frequency Generato Time	r Lock	_	_	10	μs			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 27-19: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} $							
Param No.	Characteristic	Min	Тур	Max	Units	Condi	tions			
	Internal FRC Accuracy @	FRC Fr	equency	= 7.37 N	IHz ^(1,2)					
F20a	FRC	-1	_	+1	%	$-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ VDD = 3.0-3.6V				
F20b	FRC	-2	_	+2	%	-40°C ≤ TA ≤ +125°C	VDD = 3.0-3.6V			

Note 1: Frequency calibrated at +25°C and 3.3V. The TUN<5:0> bits can be used to compensate for temperature drift.

2: FRC is set to initial frequency of 7.37 MHz (±2%) at +25°C.

查询dsPIC33FJ64GS608供应商 TABLE 27-20: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Characteristic	Min Typ Max Units Conditions							
	LPRC @ 32.768 kHz ⁽¹⁾								
F21a	LPRC	-40	_	+40	%	-40°C ≤ TA ≤ +85°C			
F21b	LPRC	-70	_	+70	%	-40°C ≤ TA ≤ +125°C			

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 27-3: I/O TIMING CHARACTERISTICS

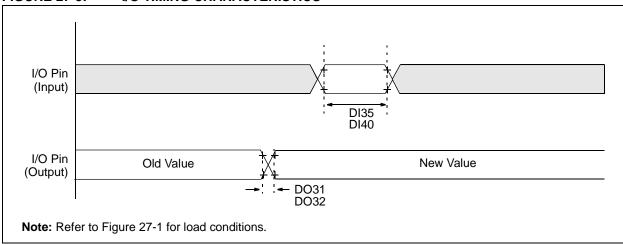


TABLE 27-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended							
Param No. Symbol Characte			ristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
DO31	TioR	Port Output Rise Tim	ne		10	25	ns	Refer to Figure 27-1 for test conditions		
DO32	TioF	Port Output Fall Time	e		10	25	ns	Refer to Figure 27-1 for test conditions		
DI35	TINP	INTx Pin High or Lov	v Time (output)	20	_		ns			
DI40	TRBP	CNx High or Low Tin	ne (input)	2	_		Tcy			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 365

TIMER TIMING CHARACTERISTICS

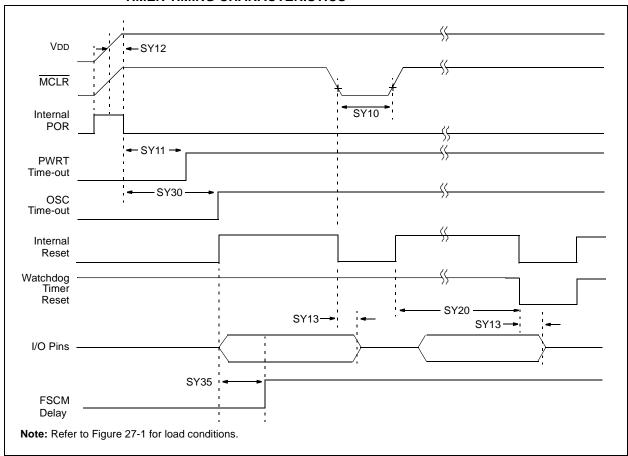


TABLE 27-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	yp ⁽²⁾ Max Uni		Conditions			
SY10	ТмсL	MCLR Pulse Width (low)	2	_	_	μS	-40°C to +85°C			
SY11	TPWRT	Power-up Timer Period		2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable			
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μ\$				
SY20 TWDT1 Watchdog Timer Time-out Period				_	_	ms	See Section 24.4 "Watchdog Timer (WDT)" and LPRC parameter F21a (Table 27-20).			
SY30	Tost	Oscillator Start-up Time	_	1024 Tosc	_	_	Tosc = OSC1 period			

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

查询dsPIC33FJ64GS608供应商 FIGURE 27-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS

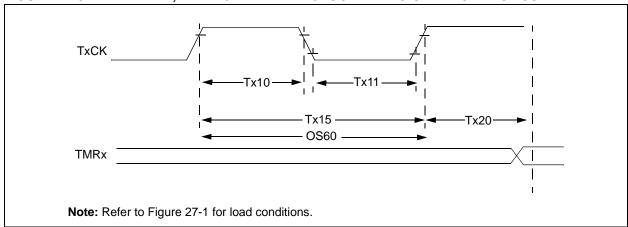


TABLE 27-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHA	RACTERIST	ics		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		0.5 Tcy + 20	_	_	ns	Must also meet parameter TA15		
			Synchror with pres		10		_	ns			
			Asynchro	onous	10	_		ns			
TA11	TTXL	TxCK Low Time	Synchronous, no prescaler		0.5 Tcy + 20	l	_	ns	Must also meet parameter TA15		
			Synchror with pres		10	-	_	ns			
			Asynchro	nous	10	_	_	ns			
TA15	ТтхР	TxCK Input Period	Synchror no presca		Tcy + 40	_	_	ns			
			Synchror with pres		Greater of: 20 ns or (TcY + 40)/N	1	_	_	N = prescale value (1, 8, 64, 256)		
			Asynchro	onous	20		_	ns			
OS60	Ft1	T1CK Oscillator Inp Range (oscillator er bit, TCS (T1CON<1	nabled by setting		DC	_	50	kHz			
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TcY	_	1.5 TcY	_			

Note 1: Timer1 is a Type A.

查询dsPIC33FJ64GS608供应商 TABLE 27-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

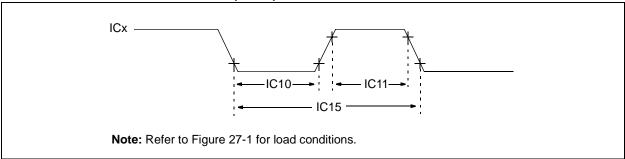

AC CHAPACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions
TB10	ТтхН	TxCK High Time	Synchro no preso		0.5 Tcy + 20	1	ı	ns	Must also meet parameter TB15
			Synchro with pres		10			ns	
TB11	TTXL	TxCK Low Time	Synchro no preso		0.5 Tcy + 20	ı	1	ns	Must also meet parameter TB15
			Synchro with pres		10			ns	
TB15	ТтхР	TxCK Input Period	Synchro no preso		Tcy + 40	_	_	ns	N = prescale value
			Synchro with pres		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from Extern Edge to Timer Inci		Clock	0.5 TcY	_	1.5 Tcy	_	

TABLE 27-25: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	RACTERIST	Standard Operating Conditions: 3.0V to 3 (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C} = -40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$				+85°C fo	or Industrial		
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TC10	ТтхН	TxCK High Time	Synchro	nous	0.5 Tcy + 20	1	_	ns	Must also meet parameter TC15
TC11	TTXL	TxCK Low Time	Synchro	nous	0.5 Tcy + 20	_	_	ns	Must also meet parameter TC15
TC15	ТтхР	TxCK Input Period	Synchro no preso		Tcy + 40	_	_	ns	N = prescale value
			Synchro with pres		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TcY	_	1.5 Tcy	_	

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 369

FIGURE 27-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 27-26: INPUT CAPTURE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characte	cteristic ⁽¹⁾ Min Max Units Condit						
IC10	TccL	ICx Input Low Time	No prescaler	0.5 Tcy + 20		ns			
			With prescaler	10	_	ns			
IC11	TccH	ICx Input High Time	No prescaler	0.5 Tcy + 20	_	ns			
			With prescaler 10 — ns						
IC15	TccP	ICx Input Period	(Tcy + 40)/N — ns N = prescale value (1, 4, 16)						

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 27-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

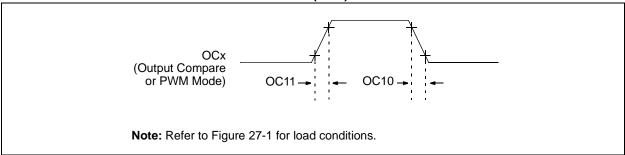


TABLE 27-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
OC10	TccF	OCx Output Fall Time	_	_	_	ns	See parameter D032	
OC11	TccR	OCx Output Rise Time	_	_	_	ns	See parameter D031	

Note 1: These parameters are characterized but not tested in manufacturing.

查询dsPIC33FJ64GS608供应商 FIGURE 27-8: OC/PWM MODULE TIMING CHARACTERISTICS

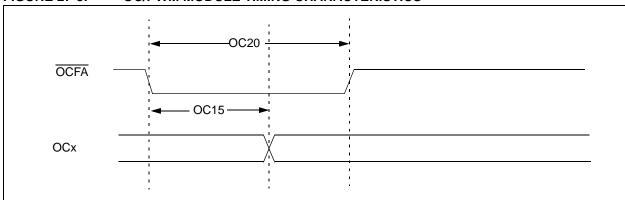


TABLE 27-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC15	TFD	Fault Input to PWM I/O Change	_	_	50	ns		
OC20	TFLT	Fault Input Pulse Width	50	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 371

FIGURE 27-9: HIGH-SPEED PWM MODULE FAULT TIMING CHARACTERISTICS

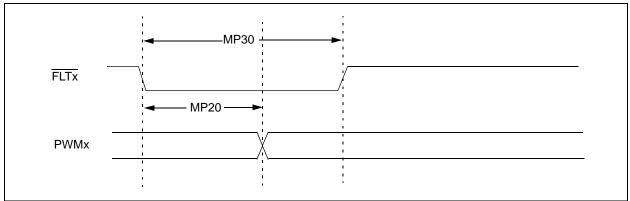


FIGURE 27-10: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS

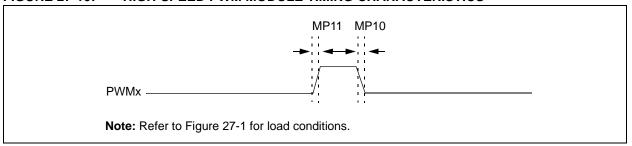


TABLE 27-29: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extende					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
MP10	TFPWM	PWM Output Fall Time	_	2.5	_	ns		
MP11	TRPWM	PWM Output Rise Time	_	2.5	_	ns		
MP20	TFD	Fault Input ↓ to PWM I/O Change	_		15	ns	DTC<10> = 10	
MP30	TFH	Minimum PWM Fault Pulse Width	8			ns		
MP31	TPDLY	Tap Delay	1.04	_	_	ns	ACLK = 120 MHz	
MP32	ACLK	PWM Input Clock	_		120	MHz	See Note 2	

Note 1: These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWM module.

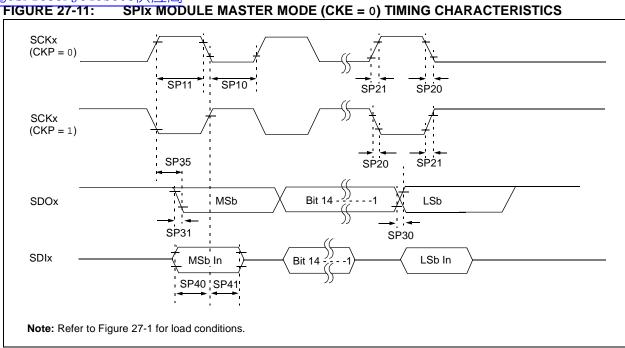


TABLE 27-30: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard (unless o Operating	therwise	stated) ure -40)°C ≤ Ta :	.0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time	Tcy/2	_		ns	See Note 3
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	See Note 3
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See parameter D032 and Note 4
SP21	TscR	SCKx Output Rise Time	_		_	ns	See parameter D031 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See parameter D032 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See parameter D031 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	

- Note 1: These parameters are characterized but not tested in manufacturing.
 - 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
 - **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
 - 4: Assumes 50 pF load on all SPIx pins.

FIGURE 27-12: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

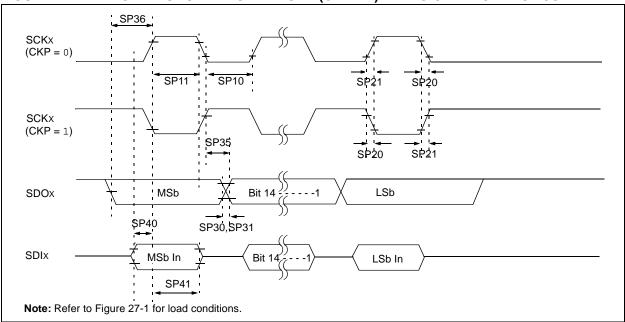


TABLE 27-31: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Condition					
SP10	TscL	SCKx Output Low Time	Tcy/2	_		ns	See Note 3	
SP11	TscH	SCKx Output High Time	Tcy/2	_	1	ns	See Note 3	
SP20	TscF	SCKx Output Fall Time				ns	See parameter D032 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See parameter D031 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	ı			ns	See parameter D032 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	ı		l	ns	See parameter D031 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	ı	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		1	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		

- Note 1: These parameters are characterized but not tested in manufacturing.
 - 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
 - **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
 - 4: Assumes 50 pF load on all SPIx pins.

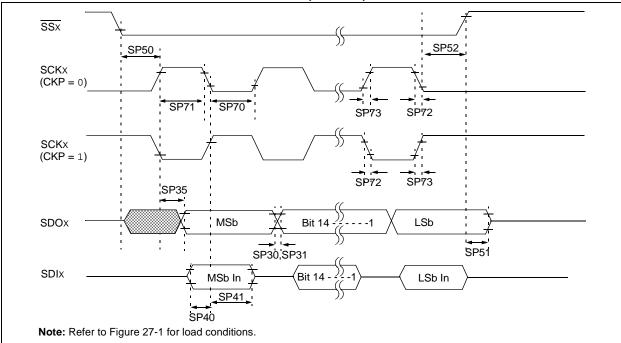
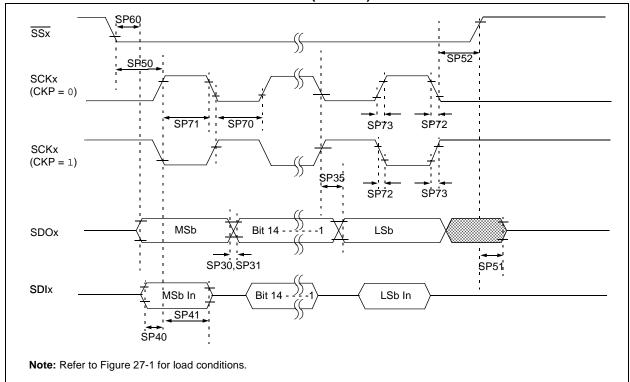



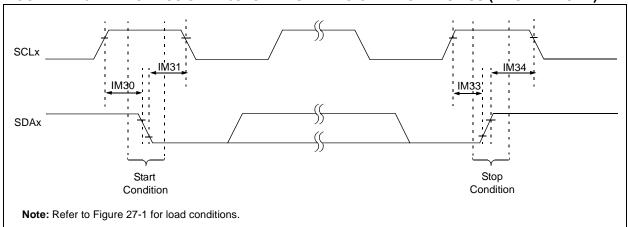
TABLE 27-32: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_	_	ns	
SP71	TscH	SCKx Input High Time	30	_	_	ns	
SP72	TscF	SCKx Input Fall Time	_	10	25	ns	See Note 3
SP73	TscR	SCKx Input Rise Time	_	10	25	ns	See Note 3
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See parameter D032 and Note 3
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See parameter D031 and Note 3
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_		30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20		_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20		_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow \text{ to SCKx} \uparrow \text{ or SCKx Input}$	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 3
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy +40	_	_	ns	

- Note 1: These parameters are characterized but not tested in manufacturing.
 - 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
 - 3: Assumes 50 pF load on all SPIx pins.

FIGURE 27-14: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

查询dsPIC33FJ64GS608供应商 TABLE 27-33: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


AC CHA	RACTERIST	rics	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extende					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	_	_	ns		
SP71	TscH	SCKx Input High Time	30	_	_	ns		
SP72	TscF	SCKx Input Fall Time	_	10	25	ns	See Note 3	
SP73	TscR	SCKx Input Rise Time	_	10	25	ns	See Note 3	
SP30	TdoF	SDOx Data Output Fall Time			_	ns	See parameter D032 and Note 3	
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See parameter D031 and Note 3	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_		30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120		_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 377

章词 RE 27-35 J64G26X BUSSTART/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

FIGURE 27-16: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

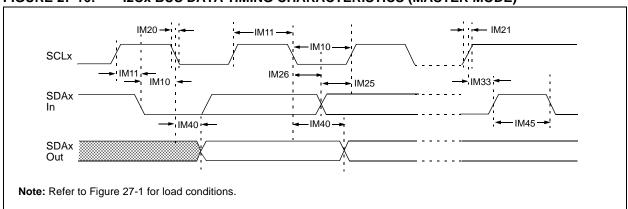
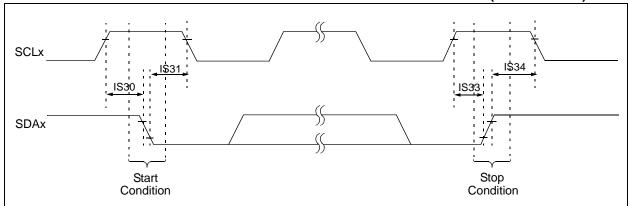
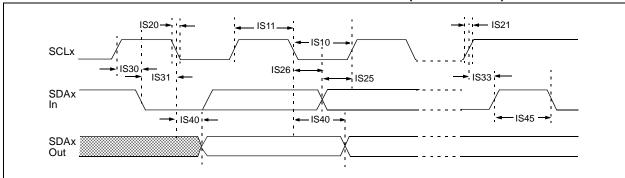


TABLE 27-34: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


AC CHA	RACTER	ISTICS		Standard Operation (unless otherwise Operating temperation	e stated) iture -40)°C ≤ TA ≤	+85°C for Industrial +125°C for Extended
Param No.	Symbol	Charact	eristic	Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 CB	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 CB	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	40	_	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0.2	_	μS	
IM30	Tsu:sta	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	
		From Clock	400 kHz mode	_	1000	ns	
			1 MHz mode ⁽²⁾	_	400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be
			400 kHz mode	1.3	_	μS	free before a new
			1 MHz mode ⁽²⁾	0.5	_	μS	transmission can start
IM50	Св	Bus Capacitive Lo	pading	_	400	pF	
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3

Note 1: BRG is the value of the I²CTM Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²CTM)" (DS70195) in the "dsPIC33F/PIC24F Family Reference Manual".


^{2:} Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

^{3:} Typical value for this parameter is 130 ns.

FIGURE 27-17: IZCX BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

FIGURE 27-18: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)

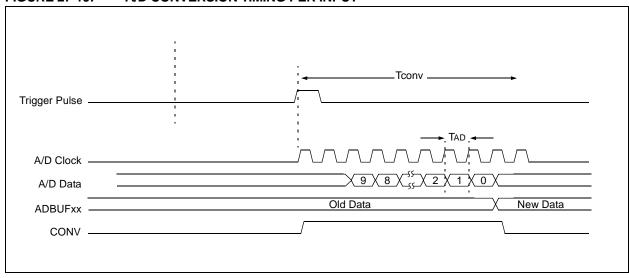
查询dsPIC33FJ64GS608供应商 TABLE 27-35: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	RACTERI	STICS		Standard Ope (unless other Operating terr	rwise sta	ated) e -40°C	ons: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended
Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μ\$	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	_	μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	_	μS	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
IS25	Tsu:dat	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽¹⁾	100	_	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	_	μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	Tsu:sta	Start Condition	100 kHz mode	4.7	_	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μS	Start condition
			1 MHz mode ⁽¹⁾	0.25	_	μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first
		Hold Time	400 kHz mode	0.6	_	μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	_	μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μS	
		Setup Time	400 kHz mode	0.6	_	μS	
			1 MHz mode ⁽¹⁾	0.6	_	μS	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600	_	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
			1 MHz mode ⁽¹⁾	0.5	_	μS	can start
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 27-36: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V and 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
			Device Su	upply				
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply	Vss - 0.3		Vss + 0.3	V		
	_		Analog I	nput				
AD10	VINH-VINL	Full-Scale Input Span	Vss		VDD	V		
AD11	VIN	Absolute Input Voltage	AVss		AVdd	V		
AD12	IAD	Operating Current	_	8	_	mA		
AD13	_	Leakage Current	_	±0.6	_	μА	VINL = AVSS = 0V, AVDD = 3.3 V Source Impedance = 100Ω	
AD17	RIN	Recommended Impedance Of Analog Voltage Source	_		100	Ω		
			DC Accu	racy				
AD20	Nr	Resolution	1	0 data bi	its	bits		
AD21A	INL	Integral Nonlinearity	> -2	±0.5	< 2	LSb	VINL = AVSS = 0V, AVDD = 3.3V	
AD22A	DNL	Differential Nonlinearity	> -1	±0.5	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.3V	
AD23A	GERR	Gain Error	> -5	±2.0	< 5	LSb	VINL = AVSS = 0V, AVDD = 3.3V	
AD24A	EOFF	Offset Error	> -3	±0.75	< 3	LSb	VINL = AVSS = VSS = 0V, AVDD = VDD = 3.3V	
AD25	_	Monotonicity ⁽¹⁾	_	_	_	_	Guaranteed	
	_	Dy	ynamic Perf	ormanc	е			
AD30	THD	Total Harmonic Distortion	_	-73	_	dB		
AD31	SINAD	Signal to Noise and Distortion	_	58	_	dB		
AD32	SFDR	Spurious Free Dynamic Range	_	-73	_	dB		
AD33	FNYQ	Input Signal Bandwidth	_		1	MHz		
AD34	ENOB	Effective Number of Bits	_	9.4		bits		


Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

查询dsPIC33FJ64GS608供应商 TABLE 27-37: 10-BIT HIGH-SPEED A/D MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions							
Clock Parameters										
AD50b	TAD	ADC Clock Period 35.8 — ns								
		Con	version F	Rate						
AD55b	tCONV	Conversion Time	_	14 TAD		_				
AD56b	FCNV	Throughput Rate								
		Devices with Single SAR	_	_	2.0	Msps				
		Devices with Dual SARs	_	_	4.0	Msps				
	Timing Parameters									
AD63b	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	1.0	_	10	μS				

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 27-19: A/D CONVERSION TIMING PER INPUT

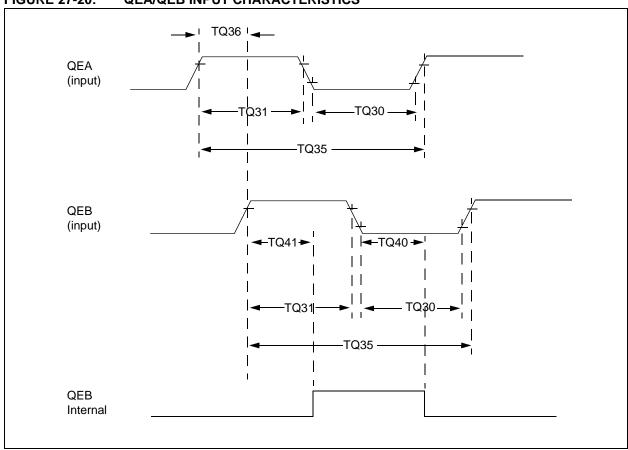
Preliminary © 2010 Microchip Technology Inc. DS70591C-page 383

章洵dsPIC33FJ64GS608供应商 TABLE 27-38: COMPARATOR MODULE SPECIFICATIONS

AC and DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristic	Min	Тур	Max	Comments		
CM10	VIOFF	Input Offset Voltage		±5	±15	mV		
CM11	VICM	Input Common Mode Voltage Range ⁽¹⁾	0	_	AVDD - 1.5	V		
CM12	VGAIN	Open Loop Gain ⁽¹⁾	90	_	_	db		
CM13	CMRR	Common Mode Rejection Ratio ⁽¹⁾	70	_	_	db		
CM14	TRESP	Large Signal Response		20	30	ns	V+ input step of 100 mv while V- input held at AVDD/2. Delay measured from analog input pin to PWM output pin.	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 27-39: DAC MODULE SPECIFICATIONS


AC and DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param. No.	Symbol	Characteristic	Min	Min Typ Max			Comments	
DA01	CVRSRC	External Reference Voltage ⁽¹⁾	0		AVDD - 1.6	V		
DA02	CVRES	Resolution		10 data bits				
DA03	INL	Integral Nonlinearity Error	_	±1.0	_	_	AVDD = 3.3V, DACREF = (AVDD/2)V	
DA04	DNL	Differential Nonlinearity Error	_	±0.8	_	LSB		
DA05	EOFF	Offset Error	_	±2.0	_	LSB		
DA06	EG	Gain Error	_	±2.0	_	LSB		
DA07	TSET	Settling Time ⁽¹⁾			650	nsec	Measured when range = 1 (high range), and CMREF<9:0> transitions from 0x1FF to 0x300.	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

查询dsPIC33FJ64GS608供应商 TABLE 27-40: DAC OUTPUT BUFFER SPECIFICATIONS

DC CHA	RACTERI	ISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments		
DA10	RLOAD	Resistive Output Load Impedance	3K	_	_	Ω			
DA11	CLOAD	Output Load Capacitance	_	20	35	pF			
DA12	IOUT	Output Current Drive Strength	200	300	400	μА	Sink and source		
DA13	VRANGE	Full Output Drive Strength Voltage Range	Avss + 250 mV	_	AVDD - 900 mV	V			
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 μA	AVss + 50 mV	_	AVDD – 500 mV	V			
DA15	IDD	Current Consumed when Module is Enabled, High-Power Mode		_	1.3 х Іоит	μА	Module will always consume this current even if no load is connected to the output		
DA16	ROUTON	Output Impedance when Module is Enabled	_	_	10	Ω	Closed loop output resistance		

FIGURE 27-20: QEA/QEB INPUT CHARACTERISTICS

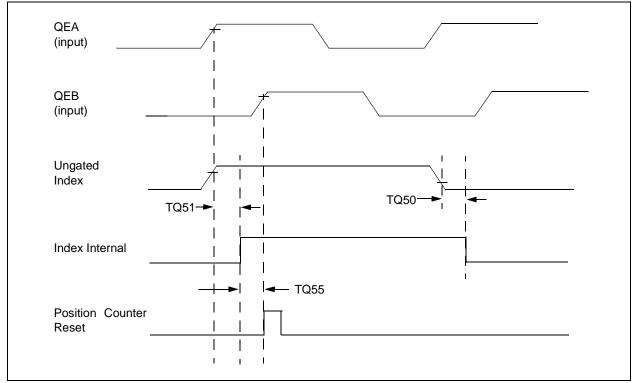


TABLE 27-41: QUADRATURE DECODER TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾		Typ ⁽²⁾	Max	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	_	ns	_	
TQ31	TQUH	Quadrature Input High Time		6 Tcy	_	ns	_	
TQ35	TQUIN	Quadrature Input Period		12 Tcy	_	ns		
TQ36	TQUP	Quadrature Phase Period		3 Tcy	_	ns	_	
TQ40	TQUFL	Filter Time to Recognize Low with Digital Filter	٧,	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize Hig with Digital Filter	h,	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

- **Note 1:** These parameters are characterized but not tested in manufacturing.
 - 2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
 - 3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder Interface (QEI)"** in the "dsPIC33F/PIC24H Family Reference Manual".

FIGURE 27-21: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

DS70591C-page 386 Preliminary

TABLE 27-42: QEI INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless other	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
Param No.	Symbol	Characteristic	; ⁽¹⁾	Min	Max	Units	Conditions		
TQ50	TqIL	Filter Time to Recognize Low, with Digital Filter		3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)		
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter		3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)		
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)		3 Tcy	_	ns	_		

- Note 1: These parameters are characterized but not tested in manufacturing.
 - 2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

FIGURE 27-22: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

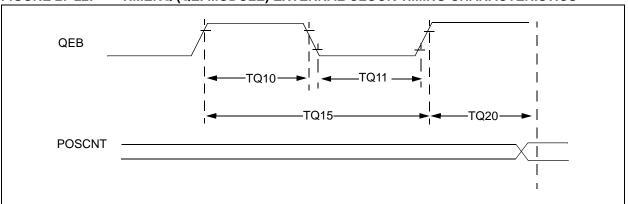


TABLE 27-43: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS (I				(unles	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	cymbol Characteristic ⁽¹⁾			Min	Тур	Max	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler		Tcy + 20		_	ns	Must also meet parameter TQ15	
TQ11	TtQL	TQCK Low Time	Synchro with pre	,	Tcy + 20	_	_	ns	Must also meet parameter TQ15	
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler		2 * Tcy + 40	_	_	ns	_	
TQ20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment			0.5 Tcy		1.5 TcY	_	_	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 27-23: CAN MODULE I/O TIMING CHARACTERISTICS

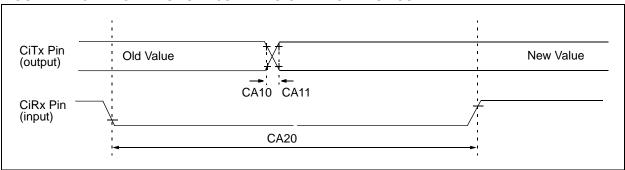
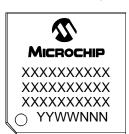


TABLE 27-44: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
CA10	TioF	Port Output Fall Time	_	_	_	ns	See parameter D032	
CA11	TioR	Port Output Rise Time	_	_	_	ns	See parameter D031	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120			ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

查询dspic33F164CS608供加FORMATION

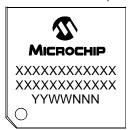

64-Lead QFN (9x9x0.9mm)

Example

64-Lead TQFP (10x10x1mm)

Example

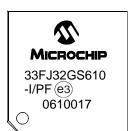
80-Lead TQFP (12x12x1mm)


Example

Legend: XX...X Customer-specific information
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (©3)
can be found on the outer packaging for this package.

Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.

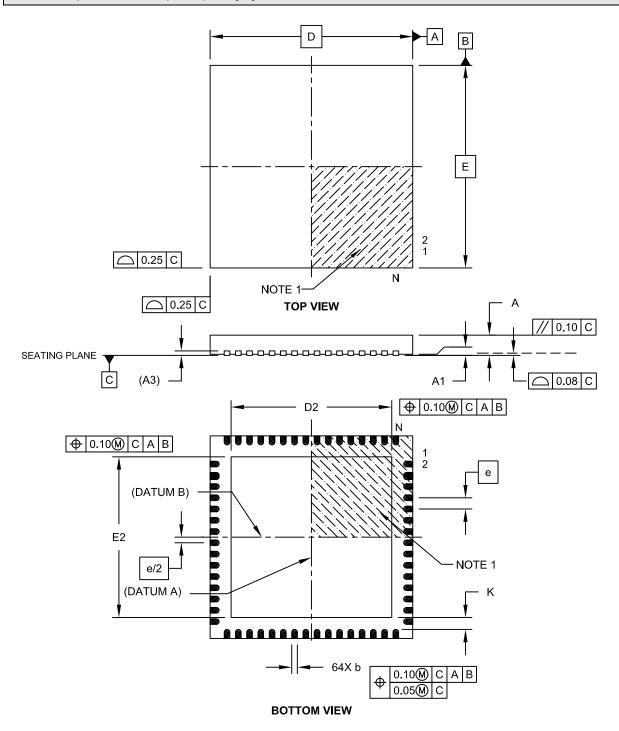
100-Lead TQFP (12x12x1 mm)


100-Lead TQFP (14x14x1mm)

Example

Example

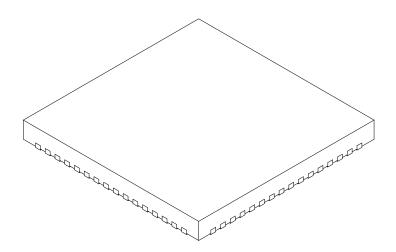
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code


By-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (@3)
can be found on the outer packaging for this package.

Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.

28.1 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

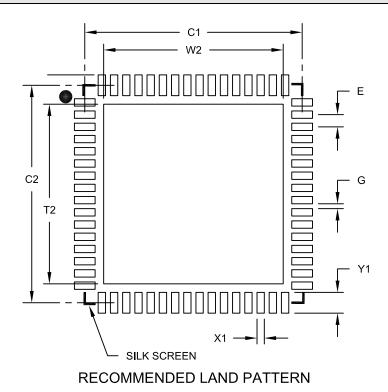
64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN]

e: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	Α	0.80 0.90 1.0				
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	А3	0.20 REF				
Overall Width	Е	9.00 BSC				
Exposed Pad Width	E2	7.05	7.15	7.50		
Overall Length	D		9.00 BSC			
Exposed Pad Length	D2	7.05	7.15	7.50		
Contact Width	b	0.18	0.25	0.30		
Contact Length	L	0.30 0.40 0.50				
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

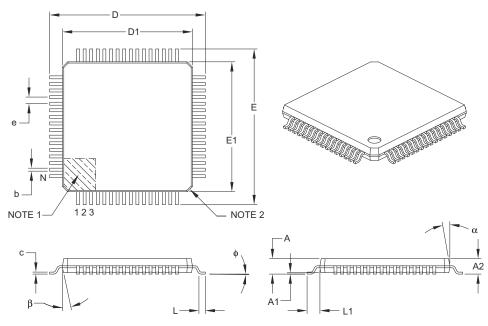
Microchip Technology Drawing C04-149B Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimension	MIN	NOM	MAX		
Contact Pitch	Е		0.50 BSC		
Optional Center Pad Width	W2			7.35	
Optional Center Pad Length	T2			7.35	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

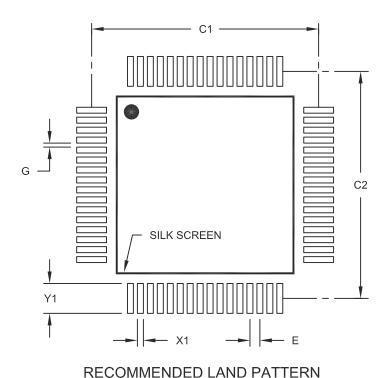
64-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Leads	N	64				
Lead Pitch	е		0.50 BSC			
Overall Height	Α	_	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	ф	0°	3.5°	7°		
Overall Width	E		12.00 BSC			
Overall Length	D		12.00 BSC			
Molded Package Width	E1		10.00 BSC			
Molded Package Length	D1		10.00 BSC			
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

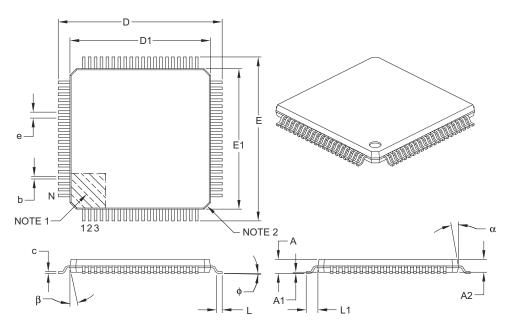
Microchip Technology Drawing C04-085B

64-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units **MILLIMETERS** MAX **Dimension Limits** MIN NOM Contact Pitch 0.50 BSC Ε Contact Pad Spacing C1 11.40 Contact Pad Spacing C2 11.40 Contact Pad Width (X64) X1 0.30 Contact Pad Length (X64) <u>Y1</u> 1.50 0.20 Distance Between Pads G

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

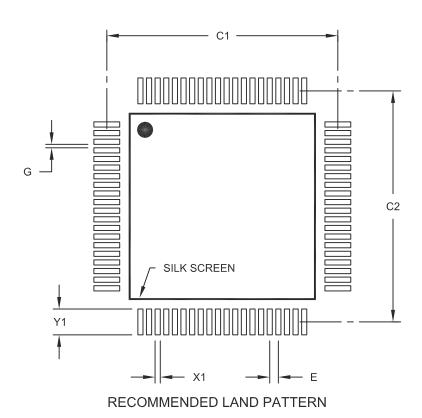
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dime	nsion Limits	MIN	NOM	MAX	
Number of Leads	N	80			
Lead Pitch	е	0.50 BSC			
Overall Height	Α	_	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	_	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	Е	14.00 BSC			
Overall Length	D	14.00 BSC			
Molded Package Width	E1	12.00 BSC			
Molded Package Length	D1	12.00 BSC			
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

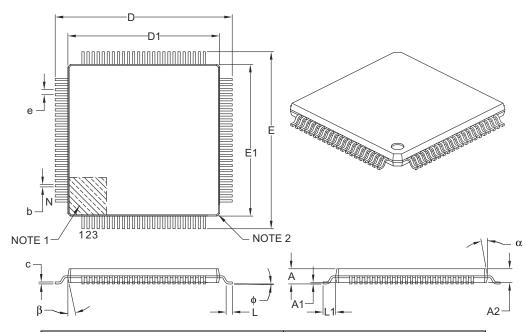
Microchip Technology Drawing C04-092B

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIM	ETERS	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

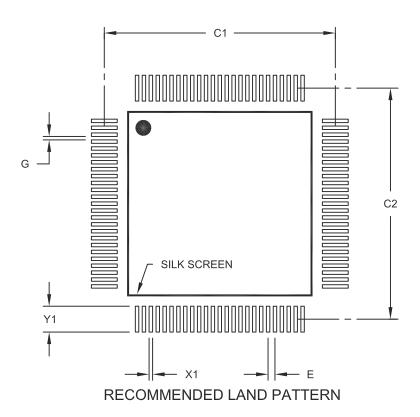
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

100-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		100	
Lead Pitch	е		0.40 BSC	
Overall Height	А	_	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		14.00 BSC	
Overall Length	D	14.00 BSC		
Molded Package Width	E1		12.00 BSC	
Molded Package Length	D1		12.00 BSC	
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.13	0.18	0.23
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

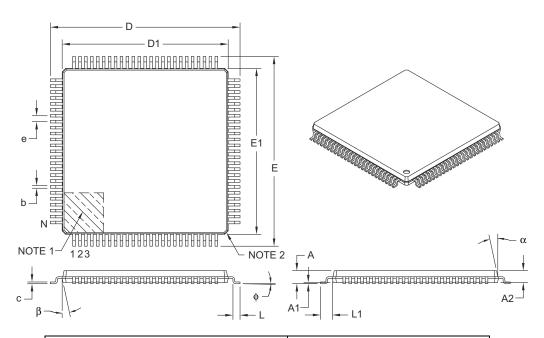
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIM	ETERS	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

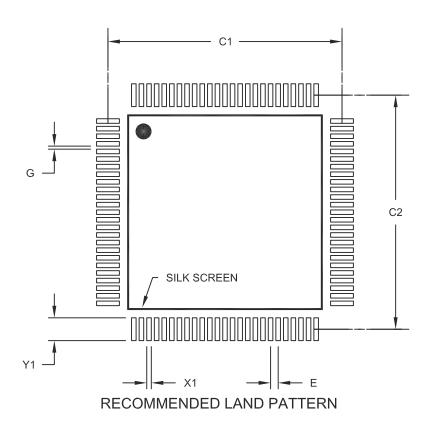
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	;
Dimens	ion Limits	MIN	NOM	MAX
Number of Leads	N		100	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		16.00 BSC	
Overall Length	D	16.00 BSC		
Molded Package Width	E1		14.00 BSC	
Molded Package Length	D1		14.00 BSC	
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIM	ETERS	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110A

查询dsPIC33FJ64GS608供应商 NOTES:

APPENDIX A: MIGRATING FROM dsPIC33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 TO dsPIC33FJ32GS406/606/608/610 AND dsPIC33FJ64GS406/606/608/610 DEVICES

This appendix provides an overview of considerations for migrating from the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of devices to the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of devices. The code developed for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices can be ported to the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices after making the appropriate changes outlined below.

A.1 Device Pins and Peripheral Pin Select (PPS)

On dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices, some peripherals such as the Timer, Input Capture, Output Compare, UART, SPI, External Interrupts, Analog Comparator Output, as well as the PWM4 pin pair, were mapped to physical pins via Peripheral Pin Select (PPS) functionality. On dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, these peripherals are hard-coded to dedicated pins. Because of this, as well as pinout differences between the two devices families, software must be updated to utilize peripherals on the desired pin locations.

A.2 High-Speed PWM

A.2.1 FAULT AND CURRENT-LIMIT CONTROL SIGNAL SOURCE SELECTION

Fault and Current-Limit Control Signal Source selection has changed between the two families of devices. On dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices, Fault1 through Fault8 were assigned to Fault and Current-Limit Controls with the following values:

- 00000 = Fault 1
- 00001 = Fault 2
- 00010 = Fault 3
- 00011 = Fault 4
- 00100 = Fault 5
- 00101 = Fault 6
- 00110 = Fault 7
- 00111 = Fault 8

On dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, Fault1 through Fault8 were assigned to Fault and Current-Limit Controls with the following values:

- 01000 = Fault 1
- 01001 = Fault 2
- 01010 = Fault 3
- 01011 = Fault 4
- 01100 = Fault 5
- 01101 = Fault 6
- 01110 = Fault 7
- 01111 = Fault 8

A.2.2 ANALOG COMPARATORS CONNECTION

Connection of analog comparators to the PWM Fault and Current-Limit Control Signal Sources on dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices is performed by assigning a comparator to one of the Fault sources via the virtual PPS pins, and then selecting the desired Fault as the source for Fault and Current-Limit Control. On dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, analog comparators have a direct connection to Fault and Current-Limit Control, and can be selected with the following values for the CLSRC or FLTSRC bits:

- 00000 = Analog Comparator 1
- 00001 = Analog Comparator 2
- 00010 = Analog Comparator 3
- 00011 = Analog Comparator 4

A.2.3 LEADING-EDGE BLANKING (LEB)

The Leading-Edge Blanking Delay (LEB) bits have been moved from the LEBCOx register on dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices to the LEBDLYx register on dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices.

APPENDIX B: REVISION HISTORY

Revision A (March 2009)

This is the initial release of this document.

Revision B (November 2009)

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table B-1.

TABLE B-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-Bit Digital Signal Controllers"	Added "DMA Channels" column and updated the RAM size to 9K for the dsPIC33FJ64GS406 devices in the controller families table (see Table 1).
	Updated the pin diagrams as follows:
	64-pin TQFP and QFN
	- Removed FLT8 from pin 51
	- Added FLT8 to pin 60
	- Added FLT17 to pin 31
	- Added FLT18 to pin32
	80-pin TQFP
	- Removed FLT8 from pin 63
	- Added FLT8 to pin 76
	- Added FLT19 to pin 53
	- Added FLT20 to pin 52
	100-pin TQFP
	- Removed FLT8 from pin 78
	- Added FLT8 to pin 93
	- Added SYNCO1 to pin 95
Section 4.0 "Memory Organization"	Added Data Memory Map for Devices with 8 KB RAM (see Figure 4-4).
	Removed SFRs IPC25 and IPC26 from the Interrupt Controller Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices (see Table 4-7).
	The following bits in the Interrupt Controller Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices were changed to unimplemented (see Table 4-7):
	Bit 2 of IFS1
	• Bits 9-7 of IFS6
	Bit 2 of IEC1
	Bits 9-7 of IEC6
	• Bits 10-8 of IPC4
	Removed OSCTUN2 and LFSR, updated OSCCON and OSCTUN, renamed bit 13 of the REFOCON SFR in the System Control Register Map from ROSIDL to ROSSLP and changed the All Resets value from '0000' to '2300' for the ACLKCON SFR (see Table 4-56).
	Updated bit 1 of the PMD Register Map for dsPIC33FJ64GS608 devices from unimplemented to C1MD (see Table 4-60).

查询dsPIC33FJ64GS608供应商 TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 9.0 "Oscillator Configuration"	Removed Section 9.2 "FRC Tuning".
	Removed the PRCDEN, TSEQEN, and LPOSCEN bits from the Oscillator Control Register (see Register 9-1).
	Updated the Oscillator Tuning Register (see Register 9-4).
	Removed the Oscillator Tuning Register 2 and the Linear Feedback Shift Register.
	Updated the default reset values from R/W-0 to R/W-1 for the SELACLK and APSTSCLR<2:0> bits in the ACLKCON register (see Register 9-5).
	Renamed the ROSIDL bit to ROSSLP in the REFOCON register (see Register 9-6).
Section 10.0 "Power-Saving Features"	Updated the last paragraph of Section 10.2.2 "Idle Mode" to clarify when instruction execution begins.
	Added Note 1 to the PMD1 register (see Register 10-1).
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 "Open-Drain Configuration" .
Section 16.0 "High-Speed PWM"	Updated the High-Speed PWM Module Register Interconnect Diagram (see Figure 16-2).
	Updated the SYNCSRC<2:0> = 111, 101, and 100 definitions to Reserved in the PTCON and STCON registers (see Register 16-1 and Register 16-5).
	Updated the PWM time base maximum value from 0xFFFB to 0xFFF8 in the PTPER register (Register 16-3).
	Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 1 of the shaded note that follows the MDC register (see Register 16-10).
	Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 2 of the shaded note that follows the PDCx and SDCx registers (see Register 16-12 and Register 16-13).
	Added Note 2 and updated the FLTDAT<1:0> and CLDAT<1:0> bits, changing the word 'data' to 'state' in the IOCONx register (see Register 16-19).
Section 20.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 22.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Updated the TRGSRCx<4:0> = 01101 definition from Reserved to PWM secondary special event trigger selected, and updated Note 1 in the ADCP0-ADCP6 registers (see Register 22-6 through Register 22-12).
Section 24.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 24.1 "Configuration Bits".
	Updated the Device Configuration Register Map (see Table 24-1).

查询dsPIC33FJ64GS608供应商 TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 27.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated all Operating Current (IDD) Typical and Max values in Table 27-5.
	Updated all Idle Current (IIDLE) Typical and Max values in Table 27-6.
	Updated all Power-Down Current (IPD) Typical and Max values in Table 27-7.
	Updated all Doze Current (IDOZE) Typical and Max values in Table 27-8.
	Updated the Typ and Max values for parameter D150 and removed parameters DI26, DI28, and DI29 from the I/O Pin Input Specifications (see Table 27-9).
	Updated the Typ and Max values for parameter DO10 and DO27 and the Min and Typ values for parameter DO20 in the I/O Pin Output Specifications (see Table 27-10).
	Added parameter numbers to the Auxiliary PLL Clock Timing Specifications (see Table 27-18).
	Added parameters numbers and updated the Internal RC Accuracy Min, Typ, and Max values (see Table 27-19 and Table 27-20).
	Added parameter numbers, Note 2, updated the Min and Typ parameter values for MP31 and MP32, and removed the conditions for MP10 and MP11 in the High-Speed PWM Module Timing Requirements (see Table 27-29).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 27-14).
	Added parameter IM51 to the I2Cx Bus Data Timing Requirements (Master Mode) (see Table 27-34).
	Updated the Max value for parameter AD33 in the 10-bit High-Speed A/D Module Specifications (see Table 27-36).
	Updated the titles and added parameter numbers to the Comparator and DAC Module Specifications (see Table 27-38 and Table 27-39) and the DAC Output Buffer Specifications (see Table 27-40).

查询dsPIC33FJ64GS608供应商 Revision C (February 2010)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other changes are referenced by their respective section in Table B-2.

TABLE B-2: MAJOR SECTION UPDATES

Section Name	Update Description
Section 16.0 "High-Speed PWM"	Added Note 2 to PTPER (Register 16-3).
	Added Note 1 to SEVTCMP (Register 16-4).
	Updated Note 1 in MDC (Register 16-10).
	Updated Note 5 and added Note 6 to PWMCONx (Register 16-11).
	Updated Note 1 in PDCx (Register 16-12).
	Updated Note 1 in SDCx (Register 16-13).
	Updated Note 1 and Note 2 in PHASEx (Register 16-14).
	Updated Note 2 in SPHASEx (Register 16-15).
	Updated Note 1 in FCLCONx (Register 16-21).
	Added Note 1 to STRIGx (Register 16-22).
	Updated Leading-Edge Blanking Delay increment value from 8.4 ns to 8.32 ns and added a shaded note in LEBDLYx (Register 16-24).
	Added Note 3 and Note 4 to PWMCAPx (Register 16-26).
Section 27.0 "Electrical Characteristics"	Updated the Min and Typ values for the Internal Voltage Regulator specifications in Table 27-13.
	Updated the Min and Max values for the Internal RC Accuracy specifications in Table 27-20.

Preliminary © 2010 Microchip Technology Inc. DS70591C-page 407 查询dsPIC33FJ64GS608供应商 NOTES:

查询dsPIC33FJ64GS608供应商 INDEX

A	CPU Clocking System	
AC Characteristics	PLL Configuration	
Internal RC Accuracy364	Selection	
Load Conditions	Sources	
Alternate Vector Table (AIVT)	Customer Change Notification Service	415
Arithmetic Logic Unit (ALU)41	Customer Notification Service	415
Assembler	Customer Support	415
MPASM Assembler350	D	
	_	000
В	DAC Output Range	
Barrel Shifter45	Data Accumulators and Adder/Subtracter	
Bit-Reversed Addressing103		
Example104	Data Space Write Saturation	
Implementation103	Overflow and Saturation	
Sequence Table (16-Entry)104	Write Back	
Block Diagrams		
16-bit Timer1 Module211	Data Address Space	
Comparator329	Alignment	
Connections for On-Chip Voltage Regulator336	Memory Map for dsPIC33FJ32GS406/606/608/6	
Device Clock191	vices with 4 KB RAM	
DSP Engine42	Memory Map for dsPIC33FJ64GS406/606/608/6	
dsPIC33FJ32GS406/606/608/610 and	vices with 8 KB RAM	
dsPIC33FJ64GS406/606/608/61020	vices with 9 KB RAM	
dsPIC33FJ32GS406/606/608/610 and		
dsPIC33FJ64GS406/606/608/610 CPU Core 36	Near Data Space	
ECAN Module280	Software Stack	
l ² C266	Width	
Input Capture219	DC Characteristics Doze Current (IDOZE)	
Oscillator System188	,	
Output Compare221	I/O Pin Input Specifications	
PLL191	I/O Pin Output SpecificationsIdle Current (IIDLE)	
Quadrature Encoder Interface255	Operating Current (IDD)	
Reset System115	Power-Down Current (IPD)	
Shared Port Structure209	Program Memory	
Simplified Conceptual High-Speed PWM226	Temperature and Voltage Specifications	
SPI259	Demonstration/Development Boards, Evaluation Kit	
Timer2/3 (32-bit)	Starter Kits	
Type B Timer	Development Support	
Type C Timer	DMAC Registers	
UART	DMAxCNT	
Watchdog Timer (WDT)	DMAxCON	
Brown-out Reset (BOR)	DMAxPAD	
C	DMAxREQ	
	DMAxSTA	
C Compilers	DMAxSTB	
Hi-Tech C	Doze Mode	
MPLAB C	DSP Engine	
Enabling	Multiplier	
•	·	
Sequence	E	
Erasing a Program Memory Page113	ECAN Module	
Initiating a Programming Sequence114	CiBUFPNT1 register	291
Loading Write Buffers114	CiBUFPNT2 register	292
Port Write/Read210	CiBUFPNT3 register	292
PWRSAV Instruction Syntax	CiBUFPNT4 register	
Code Protection	CiCFG1 register	289
CodeGuard Security	CiCFG2 register	290
Configuration Bits	CiCTRL1 register	
Configuration Register Map	CiCTRL2 register	283
Configuring Analog Port Pins	CiEC register	289
CPU	CiFCTRL register	285
Control Registers	CiFEN1 register	
•	CiFIFO register	286

查询drings 3F I 64G S 608 供应商 295	Flexible Configuration
CiFMSKSEL2 register296	
CilNTE register288	Н
CilNTF register287	High-Speed Analog Comparator 329
CiRXFnEID register295	High-Speed PWM225
CiRXFnSID register294	1
CiRXFUL1 register298	ı
CiRXFUL2 register298	I/O Ports
CiRXMnEID register297	Parallel I/O (PIO)
CiRXMnSID register297	Write/Read Timing210
CiRXOVF1 register299	I ² C
CiRXOVF2 register299	Operating Modes
CiTRmnCON register300	Registers
CiVEC register284	In-Circuit Debugger338
Frame Types	In-Circuit Emulation
Modes of Operation281	In-Circuit Serial Programming (ICSP)333, 338
Overview	Input Capture219
ECAN Registers	Registers220
Acceptance Filter Enable Register (CiFEN1)291	Input Change Notification210
Acceptance Filter Extended Identifier Register n (CiRXF-	Instruction Addressing Modes 100
nEID)295	File Register Instructions
Acceptance Filter Mask Extended Identifier Register n	Fundamental Modes Supported 101
(CiRXMnEID)297	MAC Instructions
·	MCU Instructions
Acceptance Filter Mask Standard Identifier Register n	Move and Accumulator Instructions
(CiRXMnSID)	Other Instructions
Acceptance Filter Standard Identifier Register n (CiRXF-	Instruction Set
nSID)	Overview344
Baud Rate Configuration Register 1 (CiCFG1)289	Summary
Baud Rate Configuration Register 2 (CiCFG2)290	•
Control Register 1 (CiCTRL1)282	Instruction-Based Power-Saving Modes
Control Register 2 (CiCTRL2)283	Idle
FIFO Control Register (CiFCTRL)285	Sleep
FIFO Status Register (CiFIFO)286	Interfacing Program and Data Memory Spaces
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) 291	Internal RC Oscillator
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) 293	Use with WDT
Filter 15-8 Mask Selection Register (CiFMSKSEL2). 296	Internet Address
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) 292	Interrupt Control and Status Registers
Filter 7-0 Mask Selection Register (CiFMSKSEL1) 295	IECx127
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) 292	IFSx 127
Interrupt Code Register (CiVEC)284	INTCON1 127
Interrupt Enable Register (CiINTE)288	INTCON2127
Interrupt Flag Register (CiINTF)287	INTTREG 127
Receive Buffer Full Register 1 (CiRXFUL1)298	IPCx127
Receive Buffer Full Register 2 (CiRXFUL2)298	Interrupt Setup Procedures176
Receive Buffer Overflow Register 2 (CiRXOVF2)299	Initialization176
Receive Overflow Register (CiRXOVF1)299	Interrupt Disable176
ECAN Transmit/Receive Error Count Register (CiEC) 289	Interrupt Service Routine176
ECAN TX/RX Buffer m Control Register (CiTRmnCON) 300	Trap Service Routine176
Electrical Characteristics353	Interrupt Vector Table (IVT)123
AC Characteristics and Timing Parameters 362	Interrupts Coincident with Power Save Instructions 200
BOR360	•
Enhanced CAN Module	J
Equations	JTAG Boundary Scan Interface
Device Operating Frequency189	JTAG Interface
Fosc Calculation	1
XT with PLL Mode Example190	L
Errata	Leading-Edge Blanking (LEB)225
Litata	
F	М
Fail-Safe Clock Monitor (FSCM)	Memory Organization47
Flash Program Memory	Microchip Internet Web Site415
Control Registers	Migrating from dsPIC33FJ06GS101/X02 and
Operations110	dsPIC33FJ16GSX02/X04 to dsPIC33FJ32GS406/606/
	608/610 and dsPIC33FJ64GS406/606/608/610 Devices
Programming Algorithm	403
RTSP Operation	Migration
Table Instructions109	Analog Comparators Connection

Device Pins and Peripheral Pin Select (PPS) 403	Q
Fault and Current-Limit Control Signal Source Selection	Quadrature Encoder Interface (QEI)
403	Quadrature Encoder interface (QEI)
Leading-Edge Blanking (LEB)403	R
Modes of Operation	Reader Response
Disable	Register Maps
Initialization281	Analog Comparator
Listen All Messages281	Change Notification (dsPIC33FJ32GS608/610
Listen Only281	dsPIC33FJ64GS608/601 Devices)
Loopback281	Change Notification (dsPIC33FJ64GS406/606 Dev
Normal Operation281	56
Modulo Addressing102	CPU Core
Applicability103	DMA
Operation Example102	ECAN1 (C1CTRL1.WIN = 0 or 1)
Start and End Address102	ECAN1 (C1CTRL1.WIN = 0)
W Address Register Selection102	ECAN1 (C1CTRL1.WIN = 1)
MPLAB ASM30 Assembler, Linker, Librarian 350	High-Speed 10-bit ADC Module (dsPIC33FJ320
MPLAB ICD 3 In-Circuit Debugger System351	and dsPIC33FJ64GS608 Devices)
MPLAB Integrated Development Environment Software 349	High-Speed 10-bit ADC Module (dsPIC33FJ32G
MPLAB PM3 Device Programmer352	and dsPIC33FJ64GS610 Devices)
MPLAB REAL ICE In-Circuit Emulator System351	High-Speed 10-bit ADC Module
MPLINK Object Linker/MPLIB Object Librarian 350	dsPIC33FJ32GS406/606
	dsPIC33FJ64GS406/606 Devices)
0	High-Speed PWM
Open-Drain Configuration210	High-Speed PWM Generator 1
Oscillator Configuration187	High-Speed PWM Generator 2
Oscillator Tuning Register (OSCTUN)195	High-Speed PWM Generator 3
Output Compare221	High-Speed PWM Generator 4
, , , , , , , , , , , , , , , , , , ,	High-Speed PWM Generator 5
P	
Packaging 389	High-Speed PWM Generator 6High-Speed PWM Generator 7 (All devices e
100-Lead TQFP398	• •
100-Lead TQFP Land Pattern399	dsPIC33FJ32GS406 and dsPIC33FJ64GS40
64-Lead QFN391, 392, 395	High-Speed PWM Generator 8 (All devices e
64-Lead QFN Land Pattern395	dsPIC33FJ32GS406 and dsPIC33FJ64GS40
64-Lead TQFP394	High-Speed PWM Generator 9 (dsPIC33FJ320
64-Lead TQFP Land Pattern395	and dsPIC33FJ64GS610 Devices)
80-Lead TQFP396	12C1
80-Lead TQFP Land Pattern397	12C2
Marking389	Input Capture
Peripheral Module Disable (PMD)201	Interrupt Controller (dsPIC33FJ32GS406
PICkit 2 Development Programmer/Debugger and PICkit 2	dsPIC33FJ64GS406 Devices)
Debug Express352	Interrupt Controller (dsPIC33FJ32GS606 Devices)
PICkit 3 In-Circuit Debugger/Programmer and PICkit 3 Debug	Interrupt Controller (dsPIC33FJ32GS608 Devices)
Express 351	Interrupt Controller (dsPIC33FJ32GS610 Devices)
Pinout I/O Descriptions (table)21	Interrupt Controller (dsPIC33FJ64GS606 Devices)
Power-on Reset (POR)119	Interrupt Controller (dsPIC33FJ64GS608 Devices)
Power-Saving Features199	Interrupt Controller (dsPIC33FJ64GS610 Devices)
Clock Frequency and Switching199	NVM
Program Address Space	Output Compare
Construction	PMD (dsIPC33FJ64GS606 Devices)
Data Access from Program Memory Using Program	PMD (dsPIC33FJ32GS406 and dsPIC33FJ640
Space Visibility108	Devices)
Data Access from Program Memory Using Table Instruc-	PMD (dsPIC33FJ32GS606 Devices)
tions107	PMD (dsPIC33FJ32GS608 Devices)
	PMD (dsPIC33FJ32GS610 Devices)
Data Access from, Address Generation	PMD (dsPIC33FJ64GS608 Devices)
Memory Map47	PMD (dsPIC33FJ64GS610 Devices)
Table Read Instructions	PORTA (dsPIC33FJ32GS608 and dsPIC33FJ640
TBLRDH	Devices)
TBLRDL	PORTA (dsPIC33FJ32GS610 and dsPIC33FJ640
Visibility Operation	Devices)
Program Memory	PORTB
Interrupt Vector48	PORTC (dsPIC33FJ32GS406/606
Organization48	dsPIC33FJ64GS406/606 Devices)
Reset Vector48	PORTC (dsPIC33FJ32GS608 and dsPIC33FJ64G
	Devices)

查询dsP1C33FJb4GSbU8供业商		
PORTC (dsPIC33FJ32GS610 and dsPIC33FJ6		CiFCTRL (ECAN FIFO Control)285
Devices)	93	CiFEN1 (ECAN Acceptance Filter Enable)291
PORTD (dsPIC33FJ32GS406/606	and	CiFIFO (ECAN FIFO Status)
dsPIC33FJ64GS406/606 Devices)	94	CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 295
PORTD (dsPIC33FJ32GS608/610	and	CiFMSKSEL2 (ECAN Filter 15-8 Mask Selection) 296
dsPIC33FJ64GS608/610 Devices)	94	CiINTE (ECAN Interrupt Enable)
PORTE (dsPIC33FJ32GS406/606	and	CiINTF (ECAN Interrupt Flag)287
dsPIC33FJ64GS406/606 Devices)	94	CiRXFnEID (ECAN Acceptance Filter n Extended Identi-
PORTE (dsPIC33FJ32GS608/610	and	fier)
dsPIC33FJ64GS608/610 Devices)	94	CiRXFnSID (ECAN Acceptance Filter n Standard Identi-
PORTF (dsPIC33FJ32GS406/606	and	fier)
dsPIC33FJ64GS406/606 Devices)	95	CiRXFUL1 (ECAN Receive Buffer Full 1) 298
PORTF (dsPIC33FJ32GS608 and dsPIC33FJ6	4GS608	CiRXFUL2 (ECAN Receive Buffer Full 2) 298
Devices)	95	CiRXMnEID (ECAN Acceptance Filter Mask n Extended
PORTF (dsPIC33FJ32GS610 and dsPIC33FJ6	4GS610	Identifier)297
Devices)	95	CiRXMnSID (ECAN Acceptance Filter Mask n Standard
PORTG (dsPIC33FJ32GS406/606	and	Identifier)297
dsPIC33FJ64GS406/606 Devices)	96	CiRXOVF1 (ECAN Receive Buffer Overflow 1) 299
PORTG (dsPIC33FJ32GS608 and dsPIC33FJ6	4GS608	CiRXOVF2 (ECAN Receive Buffer Overflow 2) 299
Devices)	96	CiTRBnSID (ECAN Buffer n Standard Identifier) 301,
PORTG (dsPIC33FJ32GS610 and dsPIC33FJ6	4GS610	302, 304
Devices)	95	CiTRmnCON (ECAN TX/RX Buffer m Control) 300
Quadrature Encoder Interface (QEI) 1	72	CiVEC (ECAN Interrupt Code)
Quadrature Encoder Interface (QEI) 2	72	CLKDIV (Clock Divisor)
SPI1	83	CMPCONx (Comparator Control)
SPI2	83	CMPCPNx (Comparator Control)
System Control	96	CMPDACx (Comparator DAC Control)
Timers		CORCON (Core Control)
UART1	82	DFLTCON (QEI Control)258
UART2	82	DFLTxCON (Digital Filter Control)
Registers		DMACS0 (DMA Controller Status 0) 183
A/D Control Register (ADCON)	311	DMACS1 (DMA Controller Status 1)184
A/D Convert Pair Control Register 0 (ADCPC0)	316	DMAxCNT (DMA Channel x Transfer Count) 182
A/D Convert Pair Control Register 1 (ADCPC1)	318	DMAxCON (DMA Channel x Control)179
A/D Convert Pair Control Register 2 (ADCPC2)	320	DMAxPAD (DMA Channel x Peripheral Address) 182
A/D Convert Pair Control Register 3 (ADCPC3)	322	DMAxREQ (DMA Channel x IRQ Select) 180
A/D Convert Pair Control Register 4 (ADCPC4)	324	DMAxSTA (DMA Channel x RAM Start Address A) . 181
A/D Convert Pair Control Register 5 (ADCPC5)	326	DMAxSTB (DMA Channel x RAM Start Address B) . 181
A/D Convert Pair Control Register 6 (ADCPC6)	328	DSADR (Most Recent DMA RAM Address) 185
A/D Port Configuration Register (ADPCFG)	315	DTRx (PWM Dead Time)242
A/D Status Register (ADSTAT)		FCLCONx (PWM Fault Current-Limit Control) 247
ACLKCON (Auxiliary Clock Divisor Control)		I2CxCON (I2Cx Control)267
ADBASE (A/D Base)		I2CxMSK (I2Cx Slave Mode Address Mask) 271
ADCON (A/D Control)		I2CxSTAT (I2Cx Status)
ADCPC0 (A/D Convert Pair Control 0)		ICxCON (Input Capture x Control, $x = 1, 2$)
ADCPC1 (A/D Convert Pair Control 1)		ICxCON (Input Capture x Control)220
ADCPC2 (A/D Convert Pair Control 2)		IEC0 (Interrupt Enable Control 0)141
ADCPC3 (A/D Convert Pair Control 3)		IEC1 (Interrupt Enable Control 1)
ADCPC4 (A/D Convert Pair Control 4)		IEC2 (Interrupt Enable Control 2)144
ADCPC5 (A/D Convert Pair Control 5)		IEC3 (Interrupt Enable Control 3)145
ADCPC6 (A/D Convert Pair Control 6)		IEC4 (Interrupt Enable Control 4)146
ADPCFG (A/D Port Configuration)		IEC5 (Interrupt Enable Control 5)147
ADPCFG2 (A/D Port Configuration)		IEC6 (Interrupt Enable Control 6) 148
ADSTAT (A/D Status)		IEC7 (Interrupt Enable Control 7)149
ALTDTRx (PWM Alternate Dead Time)		IFS0 (Interrupt Flag Status 0)
AUXCONx (PWM Auxiliary Control)		IFS1 (Interrupt Flag Status 1)
CHOP (PWM Chop Clock Generator)		IFS2 (Interrupt Flag Status 2)
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)		IFS3 (Interrupt Flag Status 3)
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)		IFS4 (Interrupt Flag Status 4)
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)		IFS5 (Interrupt Flag Status 5)
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)		IFS6 (Interrupt Flag Status 6)
CiCFG1 (ECAN Baud Rate Configuration 1)		IFS7 (Interrupt Flag Status 7)
CiCFG2 (ECAN Baud Rate Configuration 2)		INTCON1 (Interrupt Control 1)
CiCTRL1 (ECAN Control 1)		INTCON1 (Interrupt Control Register 1)
CiCTRL2 (ECAN Control 2)		INTCON2 (Interrupt Control Register 2)
CiEC (ECAN Transmit/Receive Error Count)	289	INTTREG (Interrupt Control and Status) 175

INTIREG Interrupt Control and Status1	75	235
IOCONx (PWM I/O Control)		STCON (PWM Secondary Master Time Base Control)
		·
IPC0 (Interrupt Priority Control 0)		233
IPC1 (Interrupt Priority Control 1)		STCON2 (PWM Secondary Clock Divider Select) 234
IPC12 (Interrupt Priority Control 12) 1		STPER (Secondary Master Time Base Period) 234
IPC13 (Interrupt Priority Control 13)1		STRIGx (PWM Secondary Trigger Compare Value) 250
IPC14 (Interrupt Priority Control 14)1	62	T1CON (Timer1 Control)
IPC16 (Interrupt Priority Control 16)1	63	TRGCONx (PWM Trigger Control) 243
IPC17 (Interrupt Priority Control 17)1		TRIGx (PWM Primary Trigger Compare Value) 246
IPC18 (Interrupt Priority Control 18)1		TxCON (Timer Control, x = 2)
IPC2 (Interrupt Priority Control 2)1		TyCON (Timer Control, y = 3)
IPC20 (Interrupt Priority Control 20)		UxMODE (UARTx Mode)274
IPC21 (Interrupt Priority Control 21)		UxSTA (UARTx Status and Control)
IPC23 (Interrupt Priority Control 23)		Reset
IPC24 (Interrupt Priority Control 24) 1		Illegal Opcode115, 120
IPC25 (Interrupt Priority Control 25) 1	70	Trap Conflict
IPC26 (Interrupt Priority Control 26)1	71	Uninitialized W Register 115, 120
IPC27 (Interrupt Priority Control 27) 1	72	Reset Sequence
IPC28 (Interrupt Priority Control 28)1		Resets
IPC29 (Interrupt Priority Control 29)1		Resources Required for Digital PFC
, , ,		Resources Required for Digital Phase-Shift ZVT Converter34
IPC3 (Interrupt Priority Control 3)		Resources Required for Digital Phase-Shift ZVT Converters4
IPC4 (Interrupt Priority Control 4)		S
IPC5 (Interrupt Priority Control 5)1	55	
IPC6 (Interrupt Priority Control 6)1	56	Serial Peripheral Interface (SPI)
IPC7 (Interrupt Priority Control 7)1	57	Software RESET Instruction (SWR)
IPC8 (Interrupt Priority Control 8)1		Software Simulator (MPLAB SIM)351
IPC9 (Interrupt Priority Control 9)1		Software Stack Pointer, Frame Pointer
LEBCONx (Leading-Edge Blanking Control)		CALL Stack Frame
		Special Event Compare Register (SEVTCMP) 232, 235
LEBDLYx (Leading-Edge Blanking Delay)2		
MDC (PWM Master Duty Cycle)		Special Features of the CPU
NVMCON (Flash Memory Control) 1		Symbols Used in Opcode Descriptions 342
NVMKEY (Non-Volatile Memory Key)1	12	Т
NVMKEY (Nonvolatile Memory Key)1	12	•
OCxCON (Output Compare x Control, x = 1, 2) 2	23	Temperature and Voltage Specifications
OSCCON (Oscillator Control)1		AC362
OSCTUN (Oscillator Tuning) 1		Timer1
PDCx (PWM Generator Duty Cycle)2		Timer2/3
		Timing Diagrams
PHASEx (PWM Primary Phase Shift)		A/D Conversion per Input
PLLFBD (PLL Feedback Divisor)1		
PMD1 (Peripheral Module Disable Control 12		Brown-out Situations
PMD1 (Peripheral Module Disable Control 1)2	202	CAN I/O
PMD2 (Peripheral Module Disable Control 2)2	204	External Clock 363
PMD3 (Peripheral Module Disable Control 3)2	205	High-Speed PWM372
PMD4 (Peripheral Module Disable Control 4)2		High-Speed PWM Fault372
PMD6 (Peripheral Module Disable Control 6)2		I/O365
PMD7 (Peripheral Module Disable Control 7)2		I2Cx Bus Data (Master Mode)
, .		I2Cx Bus Data (Slave Mode)
PTCON (PWM Time Base Control)		I2Cx Bus Start/Stop Bits (Master Mode)378
PTCON2 (PWM Clock Divider Select)2		
PTPER (Primary Master Time Base Period)2		I2Cx Bus Start/Stop Bits (Slave Mode)
PWMCAPx (Primary PWM Time Base Capture) 2	254	Input Capture (CAPx)
PWMCONx (PWM Control)2	237	OC/PWM 371
QEICON (QEI Control)2	256	Output Compare (OCx)
QEIxCON (QEIx Control, x = 1 or 2)2		QEA/QEB Input
RCON (Reset Control)		QEI Module Index Pulse
		Reset, Watchdog Timer, Oscillator Start-up Timer and
REFOCON (Reference Oscillator Control)		Power-up Timer
SDCx (PWM Secondary Duty Cycle)2		·
SEVTCMP2		SPIx Master Mode (CKE = 0)
SEVTCMP (Special Event Compare)2	232	SPIx Master Mode (CKE = 1)
SPHASEx (PWM Secondary Phase Shift)2	<u>.</u> 41	SPIx Slave Mode (CKE = 0)
SPIxCON1 (SPIx Control 1)2		SPIx Slave Mode (CKE = 1)
SPIxCON2 (SPIx Control 2)		Timer1, 2, 3 External Clock
SPIxSTAT (SPIx Status and Control)		TimerQ (QEI Module) External Clock
		Timing Requirements
SR (CPU STATUS)1		External Clock
SR (CPU Status)		
SSEVTCMP (PWM Secondary Special Event Compa	re)	I/O
		Input Capture370

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software.
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing.
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives.

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

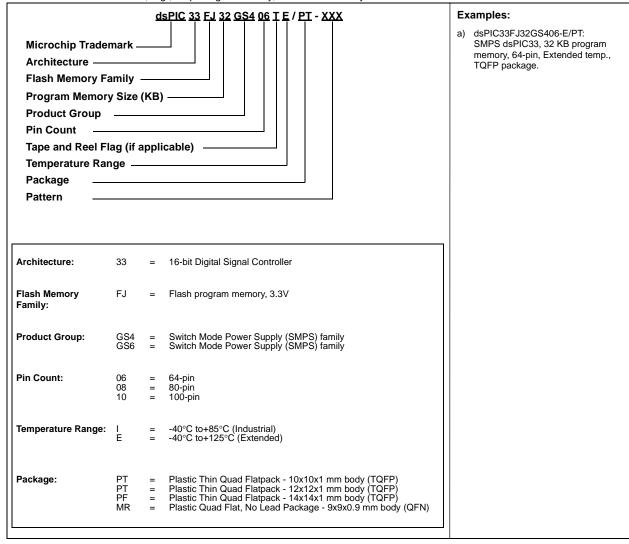
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

查询dsPIC33FJ64GS608供应商

READER RESPONSE


It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	m: Name	
	Company	
	A -l-l	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	uld you like a reply?YN	
	ice: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 estions:	Literature Number: DS70591C
1.	What are the best features of this document?	
2.	How does this document meet your hardware	and software development needs?
3.	Do you find the organization of this document	easy to follow? If not, why?
4.	What additions to the document do you think	would enhance the structure and subject?
5.	What deletions from the document could be n	nade without affecting the overall usefulness?
6.	Is there any incorrect or misleading information	on (what and where)?
7.	How would you improve this document?	

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada

Callaua

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/05/10