
SHEET Image: Sheet in the second	I TD	T	···							EVIS	IONS			.			-	.			
REV Image: Shear in the system is available of the department of defense and constrained in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of defense area in the system is available of the department of the system is available of the department of the system is available of the department of the system is available of the system is available of the system is available of the department of the system is available of the system	查询 5962	-922	1501	M2A	"供应	<u>ī商</u> D	ESCR	IPTI	ON						DATE	(YR-M	0-DA)		APPF	ROVED)
SHEET Image: Sheet in the second						•															
REV Image: Stream of the s																					
SHEET 15 16 17 18 19 20 21 22 22 22 23 4 5 6 7 8 9 10 11 12 13 13 REV STATUS OF SHEETS REV Image: Colspan="4">Image: Colspan= 40 Image: Colspan= 40 I	REV										<u> </u>					[F
REV R	SHEET																				
FMIC N/A Joseph A. Kerby DEFENSE DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO STANDARDIZED MILITARY DRAWING CHECKED BY CHECKED BY MICROCIRCUIT, DIGITAL, FAST CMOS THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE APPROVED BY Monica L. Poelking MICROCIRCUIT, DIGITAL, FAST CMOS DRAWING APPROVAL DATE DEPARTMENT OF DEFENSE Monica L. Poelking MICROCIRCUIT, DIGITAL, FAST CMOS AMSC N/A REVISION LEVEL SIZE CAGE CODE	SHEET REV	15	16	17	18	19	20	21	22												
MILITARY DRAWING Thomas J. Ricciuti MILITARY DRAWING Thomas J. Ricciuti MICROCIRCUIT, DIGITAL, FAST CMOS OCTAL D-TYPE FLIP-FLOPS WITH ASYNCHRONOUS MASTER RESET, TTL COMPATIBLE INPUTS AND LIMITED OUTPU VOLTAGE SWING, MONOLITHIC SILICON AMSC N/A REVISION LEVEL	SHEET REV SHEET REV STATU	JS	16	17	RE		20			3	4	5	6	7	8	9	10	11	12	13	
AMSC N/A REVISION LEVEL 93-03-23 SIZE CAGE CODE 5962-92215 CAGE CODE 67268	SHEET REV SHEET REV STATU OF SHEETS PMIC N/A	JS S			RE SH PREP	EET ARED B	Y Josept	1	2	3			SE EL	.ECTR		s su	PPLY	CEN		13	
SHEET 1 OF 22	SHEET REV SHEET REV STATL OF SHEETS PMIC N/A STANDA MILI DRA THIS DRAWING FOR USE BY A AND AGENC	JS S ARDI ITAR WING G IS AN LL DEP CLES OI	ZED LY G VAILAB ARTMEN F THE	LE	RE SH PREP, CHECI APPRI	ARED BY	Y Josept Thon Y Mor	1 n A. Ko nas J. nica L.	2 erby Ricci	uti	DI MIC OCT ASY COM	FENS CROC CAL NCH	SE EL D IRCU D-TY RONC IBLE	ECTR AYTO JIT, ZPE DUS E IN	ONIC N, O DIC FLII MAS: PUT:	S SU HIO GITA P-FL FER S AN	PPLY 454 L, 1 OPS RESI	CEN 44 FASI WII ET, IMII	TER TER CM TH TTL TED	OS	l

DC output source current (I_{OL}) per output		/ dc to +7.0 V dc / dc to V _{CC} + 0.5 V dc / dc to V _{CC} + 0.5 V dc	\$/
DC output clamp current (1%) (1N = _0.5 V and ±7.0 V	20 mA	dc to V_{CC}° + 0.5 V dc	4/ 4/
DC output source current (Im) per output) ±20 mA 30 mA	l l	
DC output sink current (I_{OL}) per output	+70 mA	l	
Storage temperature range (T _{STG}) Case temperature under bias (BIAS) Maximum power dissipation (P _D) Lead temperature (soldering, 10 seconds)		to +150°C to +135°C	
Maximum power dissipation $(P_D)^{BIAS'}$	500 mW	1	
Thermal resistance, junction-to-case (θ_{JC}) Junction temperature (T_J)	+300°C See MI	L-STD-1835	
•	+175°C		
1.4 <u>Recommended operating conditions</u> . 2/ 3/			
Supply voltage range (V _{CC})	+4.5 V	dc to +5.5 V dc	
Output voltage range (V_{DUT})	+0.0 V	dc to V _{CC} dc to V _{CC}	
Maximum low level input voltage (V _{IL})	0.8 V		
Output voltage range (V_{0T})	2.0 V 55°C	to +125°C	
$(from V_{TAV} = 0.3 V to 2.7 V, 2.7 V to 0.3 V)$	5 ns/V		
Maximum high level output current (I _{OH}): Device types 01, 03, and 05			
Device types 02, 04, and 06	12 mA	l .	
Maximum low level output current (I _{OL})	48 mA		
1.5 <u>Digital logic testing for device classes Q and V</u> .			
I/ Stresses above the absolute maximum rating may cause p maximum levels may degrade performance and affect reli 2/ Unless otherwise noted, all voltages are referenced to 3/ The limits for the parameters specified herein shall a range of -55°C to +125°C. 4/ For V _{CC} ≥ 6.5 V, the upper limit on the range is limit	iability. 9 GND. upply over the f		
	leu 10 7.0 V.		
5/ Values will be added when they become available.			
STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUBBLY CENTER	SIZE A		5962-92215
DEFENSE ELECTRONICS SUPPLY CENTER		REVISION LEVEL	SHEET

Γ

2. APPLICABLE DOCUMENTS

查询 60002mene 15001Mbachon供应在前dards, builetin, and handbook. Unless otherwise specified, the following specifications, standards, bulletin, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified here in.

SPECIFICATIONS

MILITARY

MIL-M-38510 MIL-I-38535	 Microcircuits, General Specification for. Integrated Circuits, Manufacturing, General Specification for.
STANDARDS	
MILITARY	
MIL-STD-480 MIL-STD-883 MIL-STD-1835	 Configuration Control-Engineering Changes, Deviations and Waivers. Test Methods and Procedures for Microelectronics. Microcircuit Case Outlines
BULLETIN	
MILITARY	
MIL-BUL-103	- List of δtandardized Military Drawings (SMD's).
HANDBOOK	
MILITARY	
MIL-HDBK-780	- Standardized Military Drawings.
(Copies of the specific acquisition functions s	cations, standards, bulletin, and handbook required by manufacturers in connection with specific should be obtained from the contracting activity or as directed by the contracting activity.)
2.2 <u>Order of precede</u> herein, the text of thi	nce. In the event of a conflict between the text of this drawing and the references cited is drawing shall take precedence.
3. REQUIREMENTS	
MIL-SID-883, "Provision	3. The individual item requirements for device class M shall be in accordance with 1.2.1 of is for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified item requirements for device classes B and S shall be in accordance with MI 398.10 and ac

herein. The individual item requirements for device classes B and S shall be in accordance with MIL-M-38510 and as specified herein. The individual item requirements for device classes Q and V shall be in accordance with MIL-I-38535, the device manufacturer's Quality Management (QM) plan, and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 for device classes M, B, and S and MIL-I-38535 for device classes Q and V and herein.

3.2.1 <u>Case outline</u>. The case outline shall be in accordance with 1.2.4 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2.

3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.

3.2.5 Ground bounce waveforms and test circuit. The ground bounce load circuit and waveforms shall be as specified on figure 4.

3.2.6 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 5.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 4

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified thereton the eleptrical performings characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range. Test conditions for these specified characteristics and limits are as specified in table I.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. Marking for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein). In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103. Marking for device classes B and S shall be in accordance with MIL-M-38510. Marking for device classes Q and V shall be in accordance with MIL-I-38535.

3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-STD-883 (see 3.1 herein). The certification mark for device classes B and S shall be a "J" or "JAN" as required in MIL-M-38510. The certification mark for device classes Q and V shall be a "QML" as required in MIL-I-38535.

3.6 <u>Certificate of compliance</u>. For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7.3 herein). For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.2 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device class M the requirements of MIL-STD-883 (see 3.1 herein), or for device classes Q and V, the requirements of MIL-1-38535 and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device class M in MIL-STD-883 (see 3.1 herein) or device classes B and S in MIL-M-38510 or for device classes Q and V in MIL-I-38535 shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DESC-EC of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-480.

3.9 <u>Verification and review for device class M</u>. For device class M, DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device classes M, B, and S</u>. Device classes M, B, and S devices covered by this drawing shall be in microcircuit group number 38 (see MIL-M-38510, appendix E).

3.11 <u>Serialization for device class S</u>. All device class S devices shall be serialized in accordance with MIL-M-38510.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 5

Test and MIL-STD-883 test	Symbol	4.5 V ≤ V _{CC} ≤ 5.5 V	/ Device / type	v _{cc}	Group A subgroups	Lin	nits <u>3</u> /	Unit
method <u>1</u> /	ļ	unless otherwiše specified		ļ		Min	Max	
ligh level output voltage 3006	V _{OH1} <u>4</u> /	For all inputs affecting output under test VIN = VIL or VIL VIN = 2.0 V	01,03, 05	4.5 V	1,2,3	2.7	V _{CC} -0.5	v
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{IH} = 2.8 \text{ V}$ $V_{IL} = 0.8 \text{ V}$ For all other inputs $V_{IN} = V_{CC} \text{ or } GND$ $I_{OH} = -300^{\circ}\mu A$	02,04, 06			3.0	V _{CC} -0.5	
	V _{OH2}	For all inputs affecting I _{OH} output under test V _{IN} = V _{IU} or V _{II}	- 01,03, 6 mA 05	4.5 V	1,2,3	2.4	V _{CC} -0.5	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{IH} = 2.8 \text{ V}$ $V_{IH} = 0.8 \text{ V}$ For all other inputs	= 2 mA			2.0	V _{CC} -0.5	ļ
		$V_{IN} = V_{CC} \text{ or } GND \qquad I_{OH_{1}}$	= 02,04, 2 mA 06			2.4	V _{CC} -0.5	
Low level output voltage 3007	V _{0L1} <u>4</u> /	For all inputs affecting output under test VIN = VIN or VIL VIN = 2.0 V VIL = 0.8 V For all other inputs VIN = VCC or GND IOL = 300 µA	All	4.5 V	1,2,3		0.20	V
	V _{OL2}	For all inputs affecting output under test VIN = VIH or VIL VIH = 2:0 V VIH = 0.8 V For all other inputs VIN = VCC or GND I _{OL} = 48 mA	All	4.5 V	1,2,3		0.55	
ee footnotes at en	nd of tab	le.						
M	ILITAR	ARDIZED Y DRAWING	SIZE A				5962-	9221
		ICS SUPPLY CENTER	A					

道词"5962-922150: Test and MIL-STD-883 test	Symbo 1	-55°C ≤ T _c ≤ +125°C 2/ 4.5 V ≤ V _{cC} ≤ 5.5 V unless otherwise specified	Device type	v _{cc}	Group A subgroups	Lin	nits <u>3</u> /	Unit
method <u>1</u> /		unless otherwiše specified		1		Min	Max	
Negative input clamp voltage	V _{IC-}	For input under test I _{IN} = -18 m	A 01,03, 05	4.5 V	1,2,3		-1.2	v
3022		For input under test I _{IN} = -15 m	A 02,04, 06				-1.3	
Input current high 3010	I ^{IH}	For input under test VIN = VCC For all other inputs	01,03, 05	5.5 V	1,2		1.0	μΑ
		For all other inputs V _{IN} = V _{CC} or GND		-	3		5.0	-
			02,04, 06		<u>1,2</u> 3	·	0.1	
Input current low 3009	IIL	For input under test	01,03,	5.5 V	1,2		-1.0	μA
3003		V _{IN} = GND Forall other inputs V _{IN} = V _{CC} or GND	05	-	3		-5.0	_
			02,04,		1,2		-0.1	
	ļ				3		-1.0	
Input capacitance 3012	C1N 5	See 4.4.1c T _C = +25°C	A11	GND	4		10	pF
Output capacitance 3012	Солт 5	See 4.4.1c T _C = +25°C	A11	GND	4		12	pF
Short circuit output current 3005	^I 0S <u>6</u> /	For all inputs V _{IN} = V _{CC} or GND V _{OUT} = GND	A11	5.5 V	1,2,3	-60	-225	mA
Dynamic Power supply current	I _{CCD} 4/7/	Outputs open	A11	5.5 V	4,5,6		0.25	mA∕ MHz●B
Quiescent supply current delta, TTL input levels 3005	Δ ^I cc <u>8</u> /	For input under test V _{IN} = V _{CC} - 2.1 V For all other inputs V _{IN} = V _{CC} or GND	A11	5.5 V	1,2,3		2.0	mA
Quiescent supply current output high 3005	^I CCH	For all inputs V _{IN} - V _{CC} or GND	A11	5.5 V	1,2,3		1.5	mA
See footnotes at end	STANDA	ARDIZED	SIZE			T	5962-	9221!
DEFENSE EL	ECTRON	ICS SUPPLY CENTER HIO 45444	<u> </u>	DEVT			SHEET	
DAI	104, 0	HTA 43444		IKEVI	SION LEV	EL	SHEET	

Test and MIL-STD-883 test	Symbol	"供应商Test conditi -55°C ≤ T ≤ +1 4.5 V ≤ V _{CC} ≤ unless otherwise s	ions 25°C <u>2/</u> 5.5 V	Device type	v _{cc}	Group A subgroups	Lim	nits <u>3</u> /	Unit
method <u>1</u> /		unless otherwise s	specified				Min	Max	
Quiescent supply current output low 3005	ICCL	For all inputs V _{IN} = V _{CC} or GND		A11	5.5 V	1,2,3		1.5	BA
Fotal supply current	^I сст <u>9</u> /	<u>Ou</u> tputs open, MR = V _{CC} f _{CP} = 10 MHz, 50% Duty cycle,	For switching inputs V _{IN} - V _{CC Or} GND	A11	5.5 V	4,5,6		4.0	mA
		One bit toggling f ₁ = 5 MHz, 50% Duty cycle, For nonswitching inputs V _{IN} = V _{CC} or <u>GND</u>	For switching inputs V _{IN} = 3.4 V or GMD			4,5,6		6.0	
		Outputs open, <u>4</u> / MR = V f _{CP} = 10 MHz, 50% Duty cycle,	For switching inputs V _{IN} - V _{CC Or} GND			4,5,6		7.8	
		Eight bits toggling $f_1 = 2.5$ MHz, 50% Duty cycle, For nonswitching inputs V _{IN} = V _{CC} or GND	For switching inputs V _{IN} = 3.4 V or GND			4,5,6		16.8	
.ow level ground bounce noise	v <u>5</u> 9∟ <u>Po</u> ∕	$V_{IH} = 3.0 V$ $V_{IL} = 0.0 V$ $T_{A} = +25 °C$		01,03, 	5.0 V	4		1500	Var
		See figure 4		02,04, _06				840	
ow level ground bounce noise	х <u>5</u> 9∟ <u>Үо</u> ∕			_05	5.0 V	4		-1700	mV.
				02,04, 06	ļ			-1000	
ligh level V _{CC} bounce noise	V0HP 5910/			01,03, _05	5.0 V	4	<u> </u>	500	. mV
				02,04, _06				260	
ligh level V _{CC} bounce noise	v _{0Hy} <u>5</u> 9H <u>y</u> 0/			01,03 05	5.0 V	4		-500	. mV
				02,04 06				-340	
See footnotes at en	d of tabl	e.							
	LITARY	ARDIZED 7 DRAWING ICS SUPPLY CENTE		IZB A				5962-	92215
DAY	TON, O	HIO 45444			REVI	SION LEV	EL	SHEET	

$-55^{\circ}C \le T_{V} \le +125^{\circ}C \ge 2/$ $4.5 V \le V_{CC} \le 5.5 V$ unless otherwise specified $V_{IL} = 0.8 V$ $V_{IH} = 2.0 V$ Verify output V ₀ See 4.4.1d $V_{IL} = 0.8 V$ $V_{IH} = 2.0 V$	A11	4.5 V	7.0	Min		1
$V_{IL} = 0.8 V$ $V_{III} = 2.0 V$	A11	4.5 V			Max	<u> </u>
V _{IL} = 0.8 V V _{IL} = 2.0 V			7,8	L	Н	
Verify output V _O See 4.4.1d	A11	5.5 V	7,8	L	H	
C _L = 50 pF minimum,	01,02	4.5 V	9,10,11	2.0	15.0	ns
See figure 5	03,04		9,10,11	2.0	8.3	
	05,06		9,10,11	2.0	6.5	
C _L = 50 pF minimum, R ^L = 5000	01,02	4.5 V	9,10,11	2.0	15.0	ns
See figure 5	03,04	 	9,10,11	2.0	8.3	
	05,06	ļ	9,10,11	2.0	6.8	
C _L = 50 pF minimum, B. = 5000	01,02	4.5 V	9,10,11	3.5		ns
See figure 5	03,04		9,10,11	2.0		
	05,06	 	9,10,11	2.0		ļ
C _L = 50 pF minimum, R = 5000	01,02	4.5 V	9,10,11	2.0		ns
See figure 5	03,04		9,10,11	1.5		
	05,06		9,10,11	1.5		
C _L = 50 pF minimum, R. = 500Ω.	_01,02	4.5 V	9,10,11	7.0		ns
See figure 5	03,04		9,10,11	6.0		
	05,06		9,10,11	6.0		
C _L = 50 pF minimum, R. = 500Ω.	01,02	4.5 V	9,10,11	7.0		ns
See figure 5	03,04		9,10,11	6.0		
	05,06	<u> </u>	9,10,11	6.0		
C₁ = 50 pF minimum,	01,02	4.5 V	9,10,11	5.0		ns
$R_{\rm c} = 500\Omega_{\rm c}$						
$R_1 = 500\Omega$, $R_1 = 500\Omega$, See figure 5	_03,04		9,10,11	2.5		
	$R_{L}^{L} = 500\Omega$, See figure 5 $C_{L} = 50 \text{ pF minimum}$, $R_{L}^{L} = 500\Omega$, See figure 5 $C_{L} = 50 \text{ pF minimum}$, $R_{L}^{L} = 500\Omega$, See figure 5 $C_{L} = 50 \text{ pF minimum}$, $R_{L}^{L} = 500\Omega$,	$\begin{array}{c c} 05,06\\ \hline 01,02\\ R_{L} = 500\Omega,\\ \hline 03,04\\ \hline 05,06\\ \hline 03,04\\ \hline 05,06\\ \hline 01,02\\ \hline 03,04\\ \hline 05,06\\ \hline 01,02\\ \hline 03,04\\ \hline 01,02\\ \hline 03,04\\ \hline 05,06\\ \hline 01,02\\ \hline 03,04\\ \hline 05,06\\ \hline 01,02\\ \hline 03,04\\ \hline 01,02\\ \hline 01,02\\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$05,06$ $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{R_1 = 500\Omega,}$ $01,02$ 4.5 V $9,10,11$ $See figure 5$ $03,04$ $9,10,11$ $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{R_1 = 500\Omega,}$ $01,02$ 4.5 V $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{R_1 = 500\Omega,}$ $01,02$ 4.5 V $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{See figure 5}$ $03,04$ $9,10,11$ $9,10,11$ $C_1 = 50 \text{ pF minimum.}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ $C_1 = 500\Omega,$ See figure 5 $03,04$ $9,10,11$ $9,10,11$	$05,06$ $9,10,11$ 2.0 $C_1 = 50 \text{ pF minimum,}}{R_1 = 500\Omega,}$ $01,02$ 4.5 V $9,10,11$ 2.0 $03,04$ $9,10,11$ 2.0 $9,10,11$ 2.0 $05,06$ $9,10,11$ 2.0 $9,10,11$ 2.0 $C_1 = 50 \text{ pF minimum,}}{R_1 = 500\Omega,}$ $01,02$ 4.5 V $9,10,11$ 3.5 $See figure 5$ $03,04$ $9,10,11$ 2.0 $C_1 = 50 \text{ pF minimum,}}{R_1 = 500\Omega,}$ $01,02$ 4.5 V $9,10,11$ 2.0 $C_1 = 50 \text{ pF minimum,}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ 2.0 $C_1 = 50 \text{ pF minimum,}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ 2.0 $C_1 = 50 \text{ pF minimum,}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ 1.5 $C_1 = 50 \text{ pF minimum,}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ $1.6.0$ $C_1 = 50 \text{ pF minimum,}}{See figure 5}$ $01,02$ 4.5 V $9,10,11$ 6.0 $05,06$ $9,10,11$ 6.0 $9,10,11$ 6.0 $05,06$ $9,10,11$ 6.0 $9,10,11$ 6.0 $05,06$ $9,10,11$ 6.0 $9,10,11$ 6.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE I. <u>Electrical performance characteristics</u> - continued.

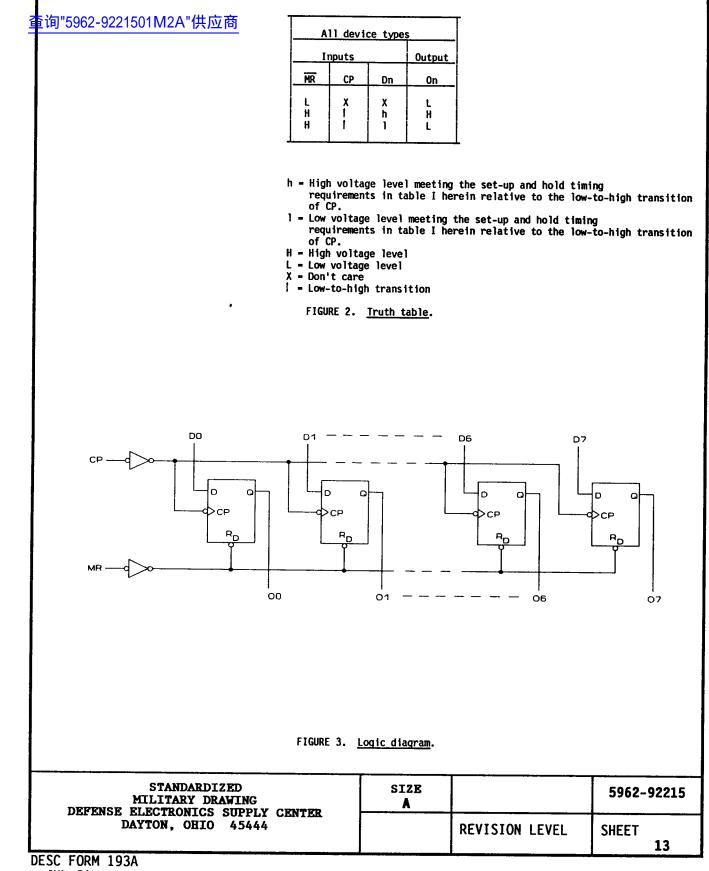
查询For Sesternot State in the Yere renced MIL-STD-883 (e.g. AI_{CC}), utilize the general test procedure of 883 under the conditions listed herein.

- 2/ Each input/output, as applicable shall be tested at the specified temperature, for the specified limits, to the tests in table I herein. Output terminals not designated shall be high level logic, low level logic, or open, except for all I_{CC} and Δ I_{CC} tests, the output terminals shall be open. When performing these tests, the current meter shall be placed in the circuit such that all current flows through the meter.
- 3/ For negative and positive voltage and current values: The sign designates the potential difference in reference to GND and the direction of current flow respectively; and the absolute value of the magnitude, not the sign, is relative to the minimum and maximum limits, as applicable, listed herein. All devices shall meet or exceed the limits specified in table I at 4.5 V \leq V_{CC} \leq 5.5 V.
- 4/ This parameter is guaranteed, if not tested, to the limits specified in table I.
- 5/ This test is required only for Group A testing, see 4.4.1 herein.
- 6/ Not more than one output should be shorted at a time. The duration of the short circuit test should not exceed one second.
- \underline{I} I_{CCD} may be verified by the following equation:

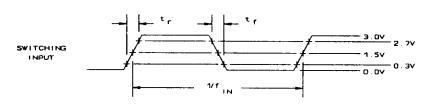
$$I_{CCD} = \frac{I_{CCT} - I_{CC} - D_H N_T \Delta I_{CC}}{f_{CP}/2 + f_i N_i}.$$

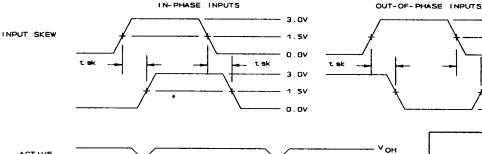
where I_{CCT} , I_{CC} (I_{CCL} or I_{CCH} in table I), and ΔI_{CC} shall be the measured values of these parameters, for the device under test, when tested as described in table I, herein. The values for D_H , N_T , f_{CP} , f_i , N_i shall be as listed in the test conditions column for I_{CCT} in table I, herein.

 $\frac{8}{10}$ This test may be performed either one input at a time (preferred method) or with all input pins simultaneously at $V_{IN} = V_{CC}$ -2.1 V (alternate method). Classes B, S, Q, and V shall use the preferred method. When the test is performed using the alternate test method: the maximum limit is equal to the number of inputs at a high TTL input level times 2.0 mA; and the preferred method and limits are guaranteed.


STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 10

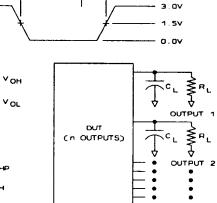
	"5062-13224150141k42.#\$"供顶帧商 			
	where I_{CC} = Quiescent supply current (any I_{CCL} or I_{CCL} D_H = Duty cycle for TTL inputs at 3.4 V N_T = Number of TTL inputs at 3.4 V ΔI_{CC} = Quiescent supply current delta, TTL input I_{CCD} = Dynamic power supply current caused by an f_{CP} = Clock frequency for registered devices (f f_i = Input frequency N_i = Number of inputs at f_i	H ⁾ ts at 3.4 V n input transitio _{CP} = 0 for nonreg	on pair (HLH or LHL) fistered devices)	
<u>10</u> /		bounce tests ar lead noise caused ture. For the de of load capacit tents shall be lo this distance be ground. The valu	re performed on a non-swit I by other simultaneously vice under test, all outp ance (see figure 4). Onl cated as close as possibl kept to less than .25 inc ues of these decoupling ca d and Vee bounce noise is	switching outputs suts shall be load y chip capacitors e to the device thes. Decoupling pacitors shall be
	The device inputs shall be conditioned such that all shall then be conditioned such that they switch sime other outputs possible are switched from V_{OH} to V_{OI} to the largest negative and positive peaks, respection outputs not under test switching from V_{OL} to V_{OH} .	l outputs are at iltaneously and t VOHV and VOHP ively (see figure	a high nominal V _{OH} level. he output under test rema are then measured from th 4). This is then repeat	The device inpu ins at V _{OH} as all e nominal V _{OH} leve ed with the Same
	The device inputs shall be conditioned such that all shall then be conditioned such that they switch simulation other outputs possible are switched from V_{OL} to V_{OH} to the largest positive and negative peaks, respection outputs not under test switching from V_{OH} to V_{OL} .	outputs are at iltaneously and t V _{OLP} and V _{OLV} vely (see figure	a low nominal V _{OL} level. he output under test rema are then measured from th 4). This is then repeat	The device input: ins at V _{OL} as all e nominal V _{OL} leve ed with the same
<u>11</u> /	Tests shall be performed in sequence, attributes dat other logic patterns used for fault detection. The t minimum, test all functions of each input and output shall be guaranteed, if not tested, to the truth tab in sequence as approved by the qualifying activity o become available from an approved source of supply.	est vectors used All possible le in figure 2.	to verify the truth table input to output logic pat herein. Functional tests	e shall, at a terns per function shall be performe
<u>12</u> /	AC limits at V_{CC} = 5.5 V are equal to the limits at Minimum propagation delay time limits for V_{CC} = 4.5 specified in table I, herein. For ac tests, all pat	V _{CC} = 4.5 V and V and 5.5 V are hs must be teste	guaranteed by testing at guaranteed if not tested d.	V _{CC} - 4.5 V. to the limits
	STANDARDIZED	SIZE		5962-9221
	STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	REVISION LEVEL	5962-9221 SHEET


l


登询"5962-9221501M2A"供应商	Device t	ypes	01,02,03,04,05,0	06	
	Case out	lines	R, S, and 2		
	<u>Terminal</u>	number	Terminal symbol		
	1 2 3 4 5 6 7 7 8 9 9 10 11 11 12 13 14 15 16 17 18 19 20		MR 00 D1 01 02 D2 D3 03 GND CP 04 D4 D5 05 05 06 D6 D7 07 V CC		
Terminal sy			scriptions Descripti	on	
Dn (n = 0 to 7	<u>')</u>	Data in	puts		
MR			onous master rese		
<u>CP</u> On (n = 0 to 7	7)		nous timing input (noninverting)		
	FIGURE	1. <u>Terr</u>	<u>ninal connections</u> .		
STANDARDIZED			SIZE	·····	·····

I

查询"5962-9221501M2A"供应商



[∨]olp

Ό

OLV

₹ OUTPUT n

L.

я_L

3.07

1.57

0. OV

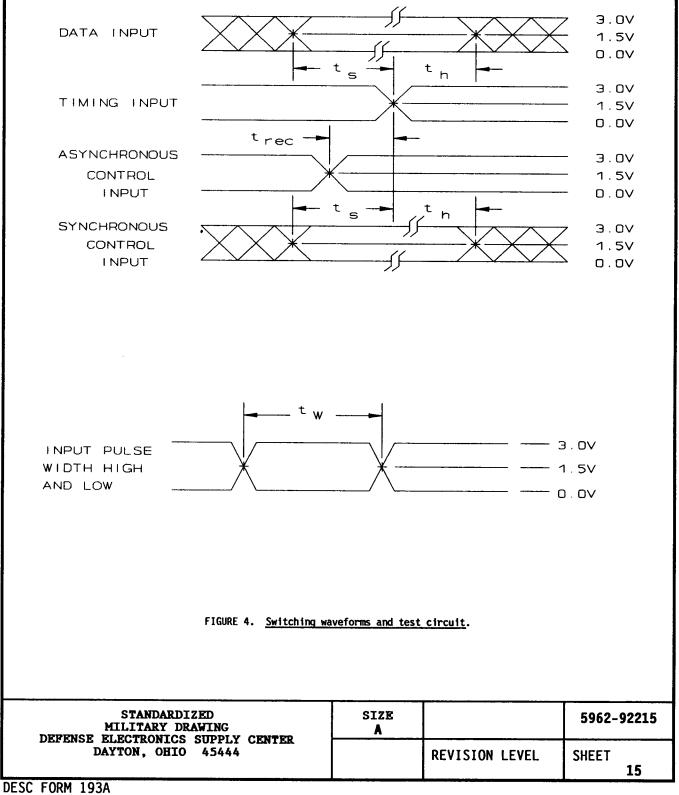
t sk

ACTIVE OUTPUTS

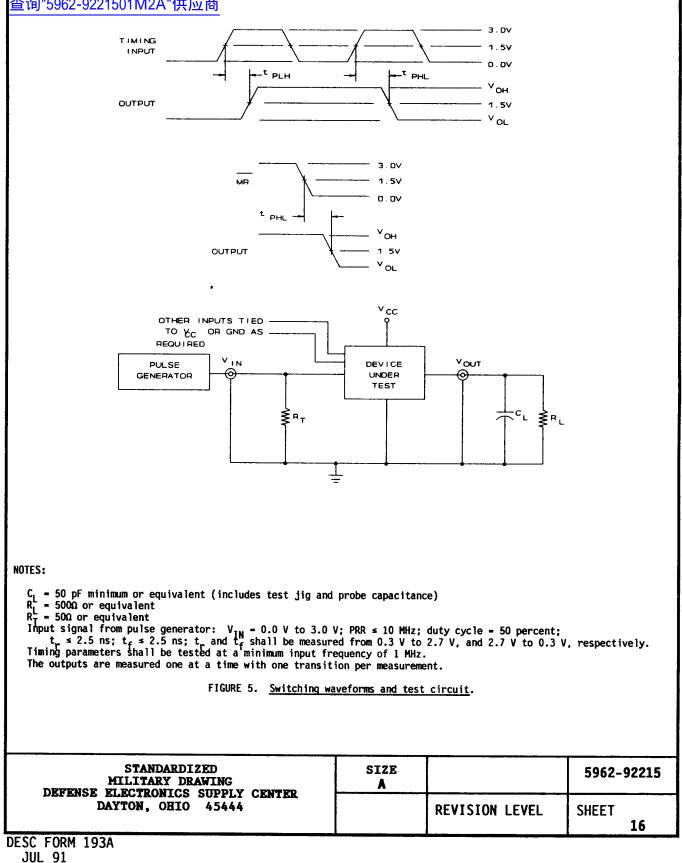
QUIET

OUTPUT

UNDER TEST


NOTES: $C_L = 47 \text{ pF} - 0$ percent, +20 percent chip capacitor plus $\ge 3 \text{ pF}$ of equivalent capacitance from the test jig and probe. $R_L = 450 \ \Omega \pm 1$ percent, chip resistor in series with a 50 Ω termination. For monitored outputs, the 50 Ω termination shall be the 50Ω characteristic impedance of the coaxial connector to the oscilloscope. Input signal to the device under test: Not signal to the device under test: $V_{IN} = 0.0 V$ to 3.0 V; duty cycle = 50 percent; f, $\ge 1 MHz$. t_r , $t_f = 3 ns \pm 1.0 ns$. For input signal generators incapable of maintaining this values of t_r and t_f , the 3.0 ns limit may be increased up to 10 ns, as needed, maintaining the $\pm 1.0 ns$ tolerance and guaranteeing the results at 3.0ns ±1.0 ns; Skew between any two switching inputs signals (t_{sk}) : \leq 250 ps. FIGURE 4. Ground bounce load circuit and waveforms.

OHF


он

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 14
DESC EODM 103A			14

查询"5962-9221501M2A"供应商

4. QUALITY ASSURANCE PROVISIONS

4.1. Sampling and Inspection. For device class M, sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein). For device class B, sampling and inspection procedures shall be in accordance with MIL-M-38510 and method 5005 of MIL-STD-883, except as modified herein. For device class S, sampling and inspection procedures shall be in accordance with MIL-M-38510 and method 5005 of MIL-STD-883, except as modified herein. For device class S, sampling and inspection procedures shall be in accordance with MIL-M-38510 and method 5005 of MIL-STD-883, except as modified herein. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-I-38535 and the device manufacturer's QM plan.

4.2 <u>Screening</u>. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device classes B and S, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to qualification and quality conformance inspection. For device classes Q and V, screening shall be in accordance with MIL-I-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. The following additional criteria shall apply.

4.2.1 Additional criteria for device classes M, B, and S.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C or D. For device class M, the test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. For device classes B and S, the test circuit shall be submitted to the qualifying activity. For device classes M, B, and S, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) For device class M, unless otherwise noted, the requirements for device class B in method 1015 of MIL-STD-883 shall be followed.

4.2.2	Additional	criteria	for device	classes C) and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-I-38535 and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
- b. Interim and final electrical test parameters shall be as specified in table II herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-I-38535.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 17

查询'996世igeties (1998年19世边商

4.3.1 <u>Qualification inspection for device classes B and S</u>. Qualification inspection for device classes B and S shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5).

4.3.2 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-I-38535. Inspections to be performed shall be those specified in MIL-I-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5).

Test requirements		Subgroups lance with MI l 5005, table	(in acco	Subgroups (in accordance with MIL-I-38535, table III)	
	Device class M	Device class B	Device class S	Device class Q	Device class V
Interim electrical parameters (see 4.2)		1	1	1	1
Final electrical parameters (see 4.2)	<u>1</u> / 1,2,3, 4,5,6,7,8, 9,10,11	<u>1</u> / 1,2,3, 4,5,6,7,8, 9,10,11	<u>2/</u> 1.2.3. 4.5.6.7.8. 9,10,11	<u>1</u> / 1,2,3, 4,5,6,7,8, 9,10,11	<u>2/</u> 1.2.3. 4.5.6.7.8. 9.10.11
Group A test requirements (see 4.4)	1,2,3,4, 5,6,7,8,9, 10,11	1,2,3,4, 5,6,7,8,9, 10,11	1,2,3,4, 5,6,7,8,9, 10,11	1,2,3,4, 5,6,7,8,9, 10,11	1,2,3,4, 5,6,7,8,9, 10,11
Group B end-point electrical parameters (see 4.4)			1,2,3,4,7, 8,9,10,11		1,2,3,4,7, 8,9,10,11
Group C end-point electrical parameters (see 4.4)	1,2,3,4, 5,6	1,2,3,4, 5,6		1,2,3,4, 5,6	
Group D end-point electrical parameters (see 4.4)	1,2,3	1,2,3	1,2,3	1,2,3	1,2,3
Group E end-point electrical parameters (see 4.4)	1,4,7,9	1,4,7,9	1,4,7,9	1,4,7,9	1,4,7,9

	TABLE	п.	Electrical	test	requirements	
--	-------	----	------------	------	--------------	--

 $\underline{1}/$ PDA applies to subgroups 1 and 4 (i.e., I_{CCT} only). $\underline{2}/$ PDA applies to subgroups 1, 4 and 7.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444SIZE
A5962-92215
AREVISION LEVELSHEET
18

4.3.3 <u>Electrostatic discharge sensitivity qualification inspection</u>. Electrostatic discharge sensitivity (ESDS) **CENTING CARD De Den formed "Int accord**ance with MIL-STD-883, method 3015. ESDS testing shall be measured only for initial qualification and after process or design changes which may affect ESDS classification.

4.4 <u>Conformance inspection</u>. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Quality conformance inspection for device classes B and S shall be in accordance with MIL-M-38510 and as specified herein. Inspections to be performed for device classes M, B, and S shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5). Technology conformance inspection for classes Q and V shall be in accordance with MIL-I-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-I-38535 permits alternate in-line control testing.

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Ground and V_{CC} bounce tests are required for all device classes. These tests shall be performed only for initial qualification, after process or design changes which may affect the performance of the device, and any changes to the test fixture. V_{OLP} , V_{OLV} , V_{OHP} , and V_{OHV} shall be measured for the worst case outputs of the device. All other outputs shall be guaranteed, if not tested to limits established for the worst case outputs. The worst case outputs tested are to be determined by the manufacturer. Test 5 devices assembled in the worst case package type supplied to this document. All other package types shall be guaranteed, if not tested to limits established for the worst case package. The 5 devices to be tested shall be the worst case device type supplied to this drawing. All other device types shall be guaranteed, if not tested, to the limits established for the worst case device type. The package type and device type to be tested shall be determined by the manufacturer. The device manufacturer will submit to DESC-EC data that shall include, all measured peak values for each device tested and detailed oscilloscope plots for each V_{OLP} , V_{OLV} , V_{OHP} , and V_{OHV} from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test.

Each device manufacturer shall test product on the fixtures they currently use. When a new fixture is used, the device manufacturer shall inform DESC-EC of this change and test the 5 devices on both the new and old test fixtures. The device manufacturer shall then submit to DESC-EC data from testing on both fixtures, that shall include, all measured peak values for each device tested and detailed oscilloscope plots for each V_{OLP} , V_{OLV} , V_{OHP} , and V_{OHV} from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test."

- c. C_{IN} and C_{OUT} shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} and C_{OUT} shall be measured between the designated terminal and GND at a frequency of 1 MHz. For C_{IN} and C_{OUT} , test all applicable pins on five devices with zero failures.
- d. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2, herein. For device classes B and S, subgroups 7 and 8 tests shall be sufficient to verify the truth table as approved by the qualifying activity. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.5 herein).

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 19

4.4.2 <u>Group B inspection</u>. The group B inspection end-point electrical parameters shall be as specified in table II herein. Class S steady state life (accelerated) shall be conducted using test condition D of method 1005 of MIL-STD-**383** For device class S steady state life tests, the test circuit shall be submitted to and approved by the qualifying activity.

4.4.3 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.3.1 <u>Additional criteria for device classes M and B</u>. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A, B, C or D. For device class M, the test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. For device class B, the test circuit shall be submitted to the qualifying activity. For device classes M and B, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.3.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's TRB in accordance with MIL-I-38535 and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table IV of method 5005 of MIL-STD-883. End-point electrical parameters shall be as specified in table II herein.

4.4.5 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes B, S, Q, and V shall be M, D, R, and H and for device class M shall be M and D.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes M, B, and S, the devices shall be subjected to radiation hardness assured tests as specified in MIL-M-38510 for the RHA level being tested. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-M-38535 for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as specified in table I at $T_A = +25^{\circ}C$, after exposure, to the subgroups specified in table II herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.
- 4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified as follows:

4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET
			20

5. PACKAGING

[≦]询"5962-9221501M2A"供应商 The requirements for packaging shall be in accordance with MIL-M-38510 for device classes M, B, and S and MIL-I-38535 for device classes Q and V.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device classes B and Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).

6.3 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and which SMD's are applicable to that system. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.

Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444, or 6.4 <u>Comments</u>. telephone (513) 296-5377.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-M-38510 and MIL-STD-1331, and as follows:

GND	Ground zero voltage potential.
	Quiescent supply current.
1n	Input current low.
	Input current high.
	Case temperature.
T _A	Ambient temperature.
V _{cc}	Positive supply voltage.
	Input terminal-to-GND capacitance.
V _{1C}	Negative input clamp voltage.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 21

6.6 <u>One part - one part number system</u>. The one part - one part number system described below has been developed to allow for transitions between identical generic devices covered by the four major microcircuit requirements documents (MIL-M-30510, MIL-H-30534, MIL-1-30535, and 1.2.1 of MIL-STD-883) without the necessity for the generation of unique PIN's. The four military requirements documents represent different class levels, and previously when a device manufacturer upgraded military product from one class level to another, the benefits of the upgraded product were unavailable to the Original Equipment Manufacturer (OEM), that was contractually locked into the original unique PIN. By establishing a one part number system covering all four documents, the OEM can acquire to the highest class level available for a given generic device to meet system needs without modifying the original contract parts selection criteria.

Military documentation format	Example PIN <u>under new system</u>	Manufacturing source listing	Document listing
New MIL-M-38510 Military Detail Specifications (in the SMD format)	5962-XXXXXZZ(B or S)YY	QPL-38510 (Part 1 or 2)	MIL-BUL-103
New MIL-H-38534 Standardized Military Drawings	5962-XXXXXZZ(H or K)YY	QML-38534	MIL-BUL-103
New MIL-I-38535 Standardized Military Drawings	5962-XXXXXZZ(Q or V)YY	QML-38535	MIL-BUL-103
New 1.2.1 of MIL-STD-883 Standardized Military Drawings	5962-XXXXXZZ(M)YY	MIL-BUL-103	MIL-BUL-103

6.7 Sources of supply.

6.7.1 <u>Sources of supply for device classes B and S</u>. Sources of supply for device classes B and S are listed in QPL-38510.

6.7.2 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DESC-EC and have agreed to this drawing.

6.7.3 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-92215
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 22

037642 🗸 _ _ _