

LM380

2.5W Audio Power Amplifier

General Description

The LM380 is a power audio amplifier for consumer applications. In order to hold system cost to a minimum, gain is internally fixed at 34 dB. A unique input stage allows ground referenced input signals. The output automatically self-centers to one-half the supply voltage.

The output is short circuit proof with internal thermal limiting. The package outline is standard dual-in-line. The LM380N uses a copper lead frame. The center three pins on either side comprise a heat sink. This makes the device easy to use in standard PC layouts.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, small servo drivers, power converters, etc.

A selected part for more power on higher supply voltages is available as the LM384. For more information see AN-69.

Features

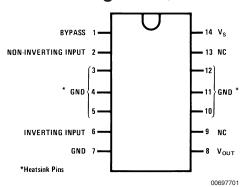
■ Wide supply voltage range: 10V-22V

■ Low quiescent power drain: 0.13W (V_S= 18V)

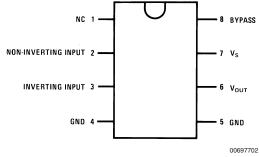
■ Voltage gain fixed at 50

■ High peak current capability: 1.3A

■ Input referenced to GND

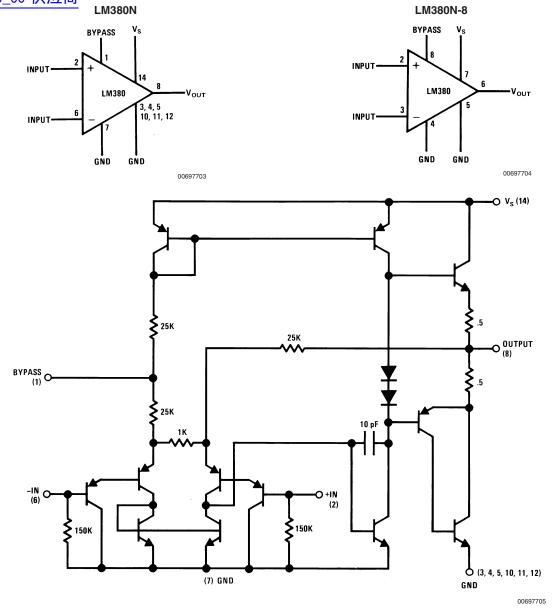

■ High input impedance: 150kΩ

■ Low distortion


 Quiescent output voltage is at one-half of the supply voltage

■ Standard dual-in-line package

Connection Diagrams (Dual-In-Line Packages, Top View)



Order Number LM380N See NS Package Number N14A

Order Number LM380N-8 See NS Package Number N08E

Block and Schematic Diagrams 查询"LM380_00"供应商

www.national.com

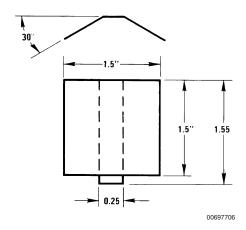
Absolute Maximum Ratings (Note 1)

If devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	22V
Peak Current	1.3A
Package Dissipation 14-Pin DIP (Note	
7)	8.3W
Package Dissipation 8-Pin DIP (Note 7)	1.67W
Input Voltage	±0.5V
Storage Temperature	−65°C to
	+150°C

Operating remperature	0 C to +/0 C
Junction Temperature	+150°C
Lead Temperature (Soldering, 10 sec.)	+260°C
ESD rating to be determined	
Thermal Resistance	
θ_{JC} (14-Pin DIP)	30°C/W
θ_{JC} (8-Pin DIP)	37°C/W
θ_{JA} (14-Pin DIP)	79°C/W
θ _{JA} (8-Pin DIP)	107°C/W

Electrical Characteristics (Note 2)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
P _{OUT(RMS)}	Output Power	$R_L = 8\Omega$, THD = 3% (Notes 4, 5)	2.5			W
A _V	Gain		40	50	60	V/V
V _{OUT}	Output Voltage Swing	$R_L = 8\Omega$		14		V _{p-p}
Z _{IN}	Input Resistance			150k		Ω
THD	Total Harmonic Distortion	(Notes 5, 6)		0.2		%
PSRR	Power Supply Rejection Ratio	(Note 3)		38		dB
V _S	Supply Voltage		10		22	V
BW	Bandwidth	$P_{OUT} = 2W, R_L = 8\Omega$		100k		Hz
I _Q	Quiescent Supply Current			7	25	mA
V _{OUTQ}	Quiescent Output Voltage		8	9.0	10	V
I _{BIAS}	Bias Current	Inputs Floating		100		nA
I _{sc}	Short Circuit Current			1.3		Α

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

- Note 2: $V_S = 18V$ and $T_A = 25$ °C unless otherwise specified.
- Note 3: Rejection ratio referred to the output with C_{BYPASS} = 5 μF .
- Note 4: With device Pins 3, 4, 5, 10, 11, 12 soldered into a 1/16" epoxy glass board with 2 ounce copper foil with a minimum surface of 6 square inches.
- Note 5: $C_{BYPASS} = 0.47 \mu fd$ on Pin 1.
- Note 6: The maximum junction temperature of the LM380 is $150^{\circ}C$.
- Note 7: The package is to be derated at 15°C/W junction to heat sink pins for 14-pin pkg; 75°C/W for 8-pin.

Heat Sink Dimensions

Heat Sink Dim 查询"LM380_00"供应商

Staver Heat Sink #V-7

Staver Company

41 Saxon Ave.

P.O. Drawer H

Bayshore, NY 11706

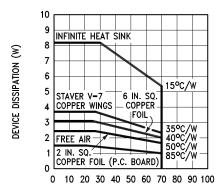
Tel: (516) 666-8000

Copper Wings

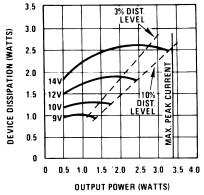
2 Required

Soldered to

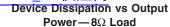
Pins 3, 4, 5,

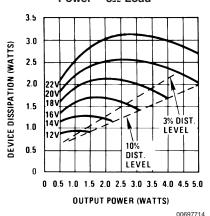

10, 11, 12

Thickness 0.04

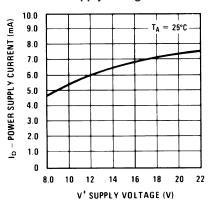

Inches

Typical Performance Characteristics

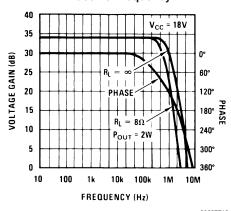

Maximum Device Dissipation vs **Ambient Temperature**



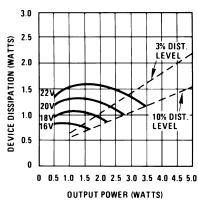
TA- AMBIENT TEMPERATURE (°C) Note: 2 oz. copper foil, single-sided PC board. **Device Dissipation vs Output** Power -4Ω Load



Typical Performance Characteristics (Continued) 查询"LM380_00"供应商

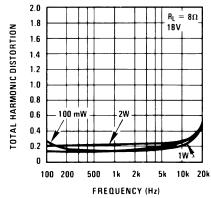


Power Supply Current vs Supply Voltage

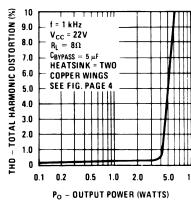


00697716

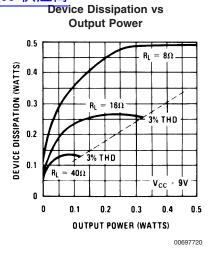
Output Voltage Gain and Phase vs Frequency

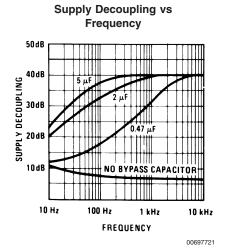


Device Dissipation vs Output Power — 16Ω Load

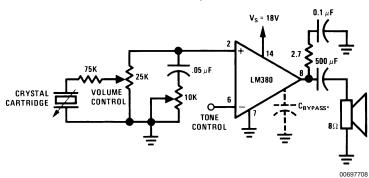

00697715

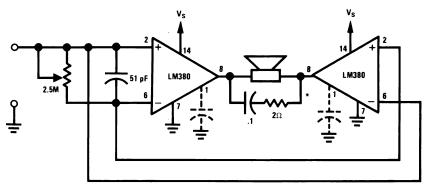
Total Harmonic Distortion vs Frequency


00697717


Total Harmonic Distortion vs Output Power

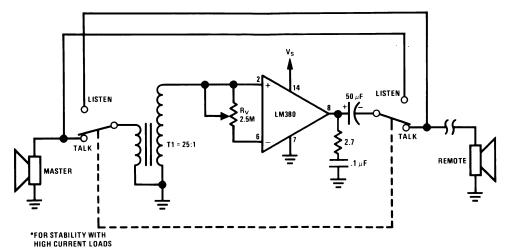
00697719


Typical Performance Characteristics (Continued) 询"LM380_00"供应商

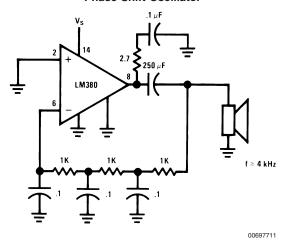


Typical Applications

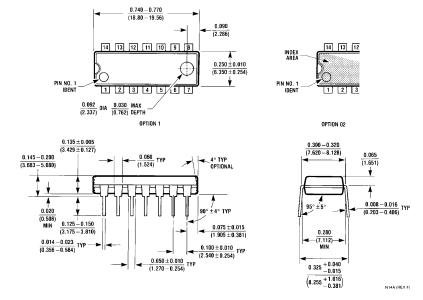
Phono Amplifier


Bridge Amplifier

00697709


Typical Applications (Continued) 查询"LM380_00"供应商

Intercom


00697710

Phase Shift Oscillator

7 www.national.com Physical Dimensions inches (millimeters) unless otherwise noted 词"LM380_00"供应商 0.373-0.400 🔾 (9.474 - 10.16)0.090 (2.286) 7 6 5 8 7 0.092 $\boldsymbol{0.032 \pm 0.005}$ (2.337) (0.813 ± 0.127) $\underline{\textbf{0.250}\pm\textbf{0.005}}$ PIN NO. 1 IDENT (6.35 ± 0.127) PIN NO. 1 IDENT OPTION 1 1 2 3 4 0.040 12N TYP→ 0.280 MIN 0.030 MAX (7.112) OPTION 2 (1.016)0.039 0.145 - 0.200 0.300 - 0.320(0.762)(0.991)(3.683 - 5.080)(7.62 - 8.128) 0.130 ± 0.005 (3.302 ± 0.127) 0.125 - 0.140(3.175 - 3.556)0.065 0.020 0.125 (1.651) $\frac{0.009 - 0.015}{(0.229 - 0.381)}$ 90°±4° (0.508) MIN (3.175) ĎΙΑ 0.018 ± 0.003 NOM $0.325 \,{}^{+\, 0.040}_{-\, 0.015}$ (0.457 ± 0.076) 0.100 ± 0.010 (2.540 ± 0.254) 0.045 ± 0.015 (1.143 ± 0.381) 0.060 (1.524)0.050 (1.270) N08E (REV F)

Molded Dual-In-Line Package (N) Order Number LM380N-8 NS Package Number N08E

Molded Dual-In-Line Package (N) Order Number LM380N NS Package Number N14A

www.national.com 8

Notes

查询"LM380_00"供应商

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560