DU 意识 FAIF CTI WIPH TEHAND 南ESET; NEGATIVE-EDGE TRIGGER

FEATURES

- Asynchronous set and reset
- Output capability: standard
- I_{CC} category: flip-flops

GENERAL DESCRIPTION

The 74HC/HCT112 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A,

The 74HC/HCT112 are dual negative-edge triggered JK-type flip-flops featuring individual nJ, nK, clock (nCP), set (nSD) and reset (nRD) inputs. The set and reset inputs, when LOW, set or reset the outputs as shown in the function table regardless of the levels at the other inputs.

A HIGH level at the clock (n\overline{\text{CP}}\) input enables the nJ and nK inputs and data will be accepted. The nJ and nK inputs control the state changes of the flip-flops as shown in the function table. The nJ and nK inputs must be stable one set-up time prior to the HIGH-to-LOW clock transition for predictable operation. Output state changes are initiated by the HIGH-to-LOW transition of n\overline{\text{CP}}\).

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

SYMBOL	0.	CONDITIONS	TYP		
	PARAMETER	CONDITIONS	нс	нст	UNIT
propagation delay tPHL/ nCP to nQ, nQ tPLH nSp to nQ, nQ nRp to nQ, nQ		C _L = 15 pF V _{CC} = 5 V	17 15 18	19 15 19	ns ns ns
f _{max}	maximum clock frequency		66	70	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	27	30	pF

GND = 0 V;
$$T_{amb}$$
 = 25 °C; t_r = t_f = 6 ns

Notes

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

$$PD = CPD \times VCC^2 \times f_i + \Sigma (CL \times VCC^2 \times f_0)$$
 where:

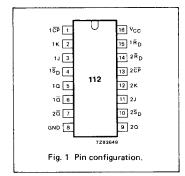
f; = input frequency in MHz

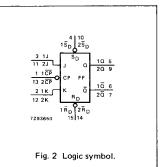
CL = output load capacitance in pF VCC = supply voltage in V

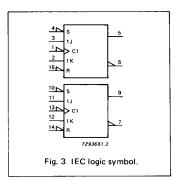
fo = output frequency in MHz

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

2. For HC the condition is V_I = GND to V_{CC}
For HCT the condition is V_I = GND to V_{CC} - 1.5 V


PACKAGE OUTLINES


16-lead DIL; plastic (SOT38Z).


16-lead mini-pack; plastic (SO16; SOT109A).

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION						
1, 13	1CP, 2CP	clock input (HIGH-to-LOW, edge triggered)						
2, 12	1K, 2K	data inputs; flip-flops 1 and 2						
3, 11	1J, 2J	data inputs; flip-flops 1 and 2						
4, 10	15D, 25D	set inputs (active LOW)						
5, 9	10, 20	true flip-flop outputs						
6, 7	10, 20	complement flip-flop outputs						
8	GND	ground (0 V)						
15, 14	1RD, 2RD	reset inputs (active LOW)						
16	Vcc	positive supply voltage						

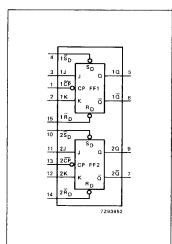


Fig. 4 Functional diagram.

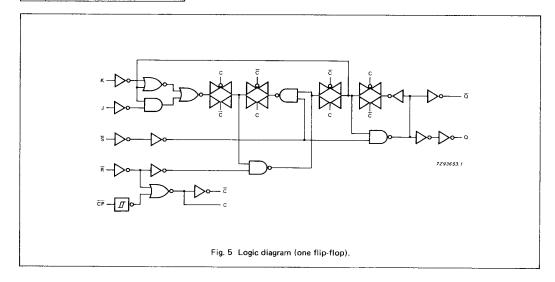
FUNCTION TABLE

OPERATING MODE		OUTPUTS					
OPERATING MODE	n∇D	nRD	nCP	nJ	nK	nQ	ηQ
asynchronous set	L	Н	х	×	х	Н	L
asynchronous reset	Н	L	Х	х	х	L	Н
undetermined	L	L	х	х	х	Н	L
toggle load "0" (reset) load "1" (set) hold "no change"	H H H	H H H	† †	h l h	h h	a L H a	a H Lla

Note to function table

If $n\overline{S}_D$ and $n\overline{R}_D$ simultaneously go from LOW to HIGH, the output states will be unpredictable.

H = HIGH voltage level


h = HIGH voltage level one set-up time prior to the HIGH-to-LOW CP transition

L = LOW voltage level

= LOW voltage level one set-up time prior to the HIGH-to-LOW CP transition q = lower case letters indicate the state of the referenced output one set-up time

prior to the HIGH-to-LOW CP transition

X = don't care ↓ = HIGH-to-LOW CP transition

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard I_{CC} category: flip-flops

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
		74HC						LINIT	\ \ \ 	MANEEO BAS	
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay nCP to nQ		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig. 6
tpHL/	propagation delay nCP to nQ		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig. 6
t _{PHL} /	propagation delay nR _D to nQ, nΩ		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	Fig. 7
tpHL/ tpLH	propagation delay nSD to nQ, nQ		50 18 14	155 31 26		295 39 33		235 47 40	ns	2.0 4.5 6.0	Fig. 7
tTHL/ tTLH	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 6
t _W	clock pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 6
tw	set or reset pulse width LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 7
t _{rem}	removal time nRD to nCP	80 16 14	22 8 6		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig. 7
t _{rem}	removal time nSD to nCP	80 16 14	-19 -7 -6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 7
t _{su}	set-up time nJ, nK to nCP	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 6
th	hold time nJ, nK to nCP	0 0 0	-11 -4 -3		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig. 6
f _{max}	maximum clock pulse frequency	6 30 35	20 60 71		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig. 6

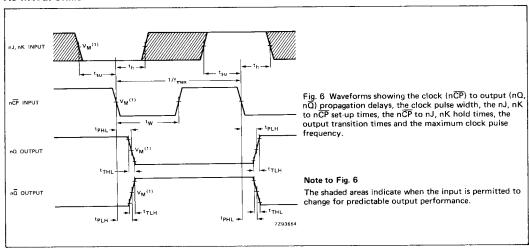
DC CHARACTERISTICS FOR 74HCT

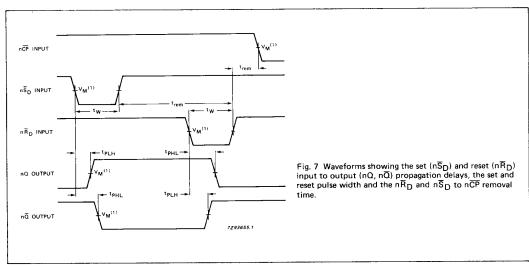
For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard ICC category: flip-flops

Note to HCT types

The value of additional quiescent supply current ($\triangle I_{CC}$) for a unit load of 1 is given in the family specifications. To determine $\triangle I_{CC}$ per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
1\$\overline{S}_D, 2\$\overline{S}_D \\ 1K, 2K	0.5 0.6
1R _D , 2R _D	0.65
1J, 2J	1
1CP, 2CP	1


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 \text{ ns}; C_L = 50 pF$

SYMBOL		T _{amb} (°C)							-	TEST CONDITIONS	
	PARAMETER										
		+25			-40 to +85		-40 to +125		UNIT	VCC	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.	1		
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		21	35		44		53	ns	4.5	Fig. 6
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		23	40		50	,	60	ns	4.5	Fig. 6
t _{PHL} / t _{PLH}	propagation delay $n\overline{R}_D$ to $n\overline{Q}$		22	37		46		56	ns	4.5	Fig. 7
^t PHL [/] ^t PLH	propagation delay nS _D to nQ, nQ		18	32		40		48	ns	4.5	Fig. 7
^t THL/ ^t TLH	output transition time		7	15		19		22	ns	4.5	Fig. 6
tw	clock pulse width HIGH or LOW	16	8		20		24		ns	4.5	Fig. 6
t _W	set or reset pulse width LOW	18	10		23		27		ns	4.5	Fig. 7
t _{rem}	removal time nRD to nCP	20	11		25		30		ns	4.5	Fig. 7
t _{rem}	removal time nSD to nCP	20	-8		25		30		ns	4.5	Fig. 7
t _{su}	set-up time nJ, nK to nCP	16	7		20		24		ns	4.5	Fig. 6
t _h	hold time nJ, nK to nCP	0	-7		0		0		ns	4.5	Fig. 6
f _{max}	maximum clock pulse frequency	30	64		24		20		MHz	4.5	Fig. 6

AC WAVEFORMS

Note to AC waveforms

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.